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For a given class of materials, universal deformations
are those deformations that can be maintained
in the absence of body forces and by applying
solely boundary tractions. For inhomogeneous
bodies, in addition to the universality constraints
that determine the universal deformations, there
are extra constraints on the form of the
material inhomogeneities—universal inhomogeneity
constraints. Those inhomogeneities compatible with
the universal inhomogeneity constraints are called
universal inhomogeneities. In a Cauchy elastic solid,
stress at a given point and at an instance of
time is a function of strain at that point and that
exact moment in time, without any dependence
on prior history. A Cauchy elastic solid does not
necessarily have an energy function, ie. Cauchy
elastic solids are, in general, non-hyperelastic (or
non-Green elastic). In this paper, we characterize
universal deformations in both compressible and
incompressible inhomogeneous isotropic Cauchy
elasticity. As Cauchy elasticity includes hyperelasticity,
one expects the universal deformations of Cauchy
elasticity to be a subset of those of hyperelasticity both
in compressible and incompressible cases. It is also
expected that the universal inhomogeneity constraints
to be more stringent than those of hyperelasticity,
and hence, the set of universal inhomogeneities to
be smaller than that of hyperelasticity. We prove
the somewhat unexpected result that the sets of
universal deformations of isotropic Cauchy elasticity
and isotropic hyperelasticity are identical, in both the
compressible and incompressible cases. We also prove
that their corresponding universal inhomogeneities are
identical as well.
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1. Introduction

Within a given class of materials, universal deformations refer to those deformations that can
be maintained in the absence of body forces and by applying only boundary tractions, for
any member of the material class. Universal deformations do not depend on the particular
material within the class. However, the boundary tractions necessary to sustain a universal
deformation depend on the specific material. Universal deformations have played a crucial
role in nonlinear elasticity and anelasticity (in the sense of Eckart [1]): (i) They have had an
important organizational role in the semi-inverse solutions in nonlinear elasticity [2-6], and
more recently in anelasticity [7] and viscoelasticity [8]. (ii) They offer guidance for designing
experiments for determining the constitutive relations of a specific material [9,10]." (iii) All
the existing exact solutions of defects in nonlinear solids are related to universal deformations
[12-19]. (iv) Universal deformations have been important for finding exact solutions for the
stress field of distributed finite eigenstrains in nonlinear solids and for solving the nonlinear
analogues of Eshelby’s inclusion problem [20-23]. (v) These exact solutions have been used as
benchmark problems in computational mechanics [10,24-26]. (vi) Universal deformations have
been used in deriving effective properties for nonlinear composites [27-29].

The systematic study of universal deformations began in the 1950s by Jerry Ericksen [30,31]
for homogeneous compressible and incompressible isotropic solids. His work was influenced
by the earlier contributions of Ronald Rivlin [32-34]. Ericksen [31] proved that for homoge-
neous compressible isotropic solids, universal deformations are homogeneous. The character-
ization of universal deformations in the presence of internal constraints is a particularly
challenging problem [10]. Ericksen [30] discovered four families of universal deformations
for incompressible isotropic elastic solids. Initially, he speculated that a deformation with
constant-principal invariants is homogeneous, but this conjecture was proven incorrect [35].
Subsequently, a fifth family of universal deformations was found [36,37]. The fifth family of
universal deformations have constant-principal invariants but are not homogeneous. As of now,
it is not known whether there exist additional inhomogeneous constant-principal invariant
universal deformations (Ericksen’s problem). The following are the six known families of
universal deformations:

— Family 0: Homogeneous deformations;

— Family 1: Bending, stretching and shearing of a rectangular block;

— Family 2: Straightening, stretching and shearing of a sector of a cylindrical shell;

— Family 3: Inflation, bending, torsion, extension and shearing of a sector of an annular
wedge;

— Family 4: Inflation/inversion of a sector of a spherical shell; and

— Family 5: Inflation, bending, extension and azimuthal shearing of an annular wedge.

There have been several attempts to solve Ericksen’s problem in the past few decades [38-41].
Fosdick & Schuler [42] showed that for the case of plane deformations with uniform transverse
stretch, there are no new solutions other than the known families. Fosdick [43] reached the same
conclusion for radially symmetric deformations.

In a simple material, stress at any given point and time ¢ depends only on the history of
the deformation gradient at that point up to time ¢ [44]. Carroll [45] demonstrated that the
above-known universal deformations of homogenous incompressible isotropic elastic solids are
universal for simple materials as well.

'The following quote from [11, p. 89] explains it best: ‘From the standpoint of attempting to determine the form of £ for
a given material by comparing general solutions with results of experiment, it appears that the solutions which are most
useful are those which correspond to deformations which can be produced in every material of the type considered by the
application of surface tractions only’. Here, L is the energy function and by ‘general’ they mean “universal’.
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The study of universal deformations has recently been extended to inhomogeneous
anisotropic solids [46-48]> These comprehensive studies include both compressible and
incompressible isotropic, transversely isotropic, orthotropic and monoclinic solids. For these
three classes of compressible anisotropic solids, it was shown that universal deformations are
homogenous, and the material-preferred directions are uniform. Additionally, for isotropic
solids and each of the three classes of anisotropic solids, the corresponding universal inhomoge-
neities—these represent inhomogeneities in the energy function that are compatible with the
universality constraints—were characterized. The corresponding universal inhomogeneities for
each of the above six known families of universal deformations were determined for inhomoge-
neus isotropic and the three classes of inhomogeneous incompressible anisotropic solids.

In linear elasticity, universal displacements are the counterparts of universal deformations
[50-53]. Yavari et al. [53] demonstrated the explicit dependence of universal displacements on
the symmetry class of the material. Specifically, the larger the symmetry group, the larger the
corresponding set of universal displacements. Therefore, isotropic solids have the largest set
of universal displacements, while triclinic solids possess the smallest set of universal displace-
ments. The investigation into universal displacements has also been extended to inhomogene-
ous solids [54] and linear anelasticity [55].

A class of materials with internal constraints, significant in engineering applications,
consists of materials reinforced with inextensible fibres [56-59]. Despite their importance,
there is a scarcity of literature on the universal deformations of fibre-reinforced solids. Beskos
[60] studied homogeneous compressible isotropic solids reinforced with inextensible fibres,
investigating whether universal deformations of incompressible isotropic solids are universal
for this class as well. Families 1, 2, 3 and 4 were specifically analysed, revealing that certain
subsets of these families are universal for specific fibre distributions. Interestingly, all these
universal deformations are found to be homogeneous except for the shearing of a circular tube
with circumferential fibres. Beatty [61] further examined homogeneous compressible isotropic
solids reinforced by a single family of inextensible fibres. He investigated the problem of
finding all those fibre distributions for which homogenous deformations are universal. He
proved that there are only three types of such fibre distributions, all characterized by straight
fibres. In a recent study, Yavari [62] studied universal displacements in compressible anisotropic
linear elastic solids reinforced by a single family of inextensible fibres. For each symmetry
class, and under the assumption of a uniform distribution of straight fibres respecting the
corresponding symmetry, the respective universal displacements were characterized. Interest-
ingly, it was observed that, except for triclinic and cubic solids, the presence of inextensible
fibres enlarges the set of universal displacements within the other five classes.?

In recent years, Ericksen’s analysis has been extended to anelasticity. Yavari & Goriely [63]
showed that in compressible anelasticity, universal deformations are covariantly homogene-
ous. Universal deformations and eigenstrains in incompressible anelasticity were studied by
Goodbrake et al. [64]. It was observed that the six known families of universal deformations
are invariant under specific Lie subgroups of the special Euclidean group. There are also some
recent studies of universal deformations and eigenstrains in accreting bodies [65-67]. There
have also been studies of universal deformations in liquid crystal elastomers [68,69].

In this paper, we extend the study of universal deformations and inhomogeneities to
inhomogeneous compressible and incompressible isotropic Cauchy elasticity. Cauchy elastic
solids may not necessarily have an energy function and include hyperelastic solids (Green
elastic solids) as a special case. This suggests that Cauchy elasticity may have more stringent
universality and universal inhomogeneity constraints compared with those of hyperelasticity.
This, in turn, leads one to anticipate smaller sets of universal deformations and universal
inhomogeneities for Cauchy elasticity compared with those of hyperelasticity. We prove the

*Prior to our work, there had been some limited work on universal deformations in anisotropic solids [49].
*It should be noted that a fibre-reinforced solid with straight fibres cannot be isotropic.
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somewhat unexpected result that the universal deformations and inhomogeneities of Cauchy
elasticity are identical to those of Green elasticity in both the compressible and incompressible
cases.

This paper is organized as follows. In §2, Cauchy elasticity is briefly reviewed. Universal
deformations of inhomogeneous compressible isotropic Cauchy elasticity are characterized in
§3. In §4, the same problem is studied for inhomogeneous incompressible isotropic Cauchy
elasticity. Conclusions are given in §5.

2. Cauchy elasticity
Let us consider a body that in its undeformed configuration is identified with an embedded
submanifold B of the Euclidean ambient space S. The flat metric of the Euclidean ambient

space is denoted by g and the induced metric on the body in its reference configuration
is by G =g|z. Deformation is a map from B to the ambient space, i.e. p:8— C C S, where

C=@(B) is the current configuration. The tangent map of ¢ is the so-called deformation

gradient F =Ty (a metric-independent map), which at each material point X € B is a linear
map F(X):TxB — Tyx)C. With respect to the coordinate charts {XA} and {x% for B and C,

respectively, the deformation gradient has components F%, = d¢p?/dX". The transpose of the
deformation gradient F' has components (F')", = g, F*5G*5. The right Cauchy-Green strain
is defined as C = F'F and has components C*5 = (F')*, F. Thus, Cyp = (g4 o ¢) F*4 F’5, which
means that the right Cauchy-Green strain is the pull-back of the spatial metric to the refer-
ence configuration, i.e. C’ = ¢*g, where b is the flat operator induced by the metric G (which
lowers indices). The left Cauchy-Green strain is defined as B" = #*(g"), which has components
B =F4 F5 g% The spatial analogue of C’ is defined as ¢’ = #,G, which has components
cap=F A F B Gy Similarly, the spatial analogue of B" is bf = qo*(Gﬁ), which has components
b® = F*, F’; G*P. Recall that b = ¢ . The two tensors C and b have the same principal invariants
I, I, and I, which are defined as [70,71] I; =tr b=b% g, I, = %(1% - trb%) = %(1% = b b g 8ha)
and I3 = det b.

In Cauchy elasticity, stress at a point and a given moment in time is explicitly a function of

strain at that point and that particular moment in time [72-74]. However, an energy function
does not necessarily exist.* In terms of the first Piola—Kirchhoff stress [70,73,74]

P=P(X,F,G,g). @1

One can show that objectivity implies that the second Piola—Kirchhoff stress has the following
functional form [74]

s=5(x,C’,G). 22
For an isotropic solid, one has the following classic representation [78-80]

S=AG + A CPF+ A CF (2.3)

‘It is important to note that Cauchy elasticity does not encompass all elastic solids. In recent years, there has been some
interest in implicit constitutive equations, e.g. constitutive equations of the form f(a, b) = 0 [75-77]. Cauchy elasticity is a
subset of this class of solids.
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where A;=A(X, 11,1, I3), i=-1,0,1, and 4 is the sharp operator induced from the metric G
(which raises indices). For incompressible isotropic Cauchy solids I3 = 1, and one has

S=-pCHf+A G + A CF, (2.4)

where p = p(X,t) is the Lagrange multiplier associated with the incompressibility constraint
J=yI;=1and A;= A(X, I, I),i=0,1.

In terms of the Cauchy stress, the constitutive equations of compressible isotropic Cauchy
elastic solids are written as

c=agl+Bb +ych (2.5)

where a = a(X, I, I, I3), B =B(X, 1,1 I3) and y = y(X, I, I, I3) are arbitrary response functions.
Similarly, for incompressible isotropic Cauchy elastic solids, one has

o =-pgh+pbityc, (2.6)
where §=8(X, I, I,) and y = y(X, I, I;) are arbitrary response functions. In components, they
read 0® = ag®+Bb™ +yc® and 0% = -p g® + Bb™ +y ¢, respectively.

Green & Naghdi [81] showed that Cauchy elasticity is consistent with the first and second
laws of thermodynamics. They demonstrated that over a closed path in the space of strains, the
net work of stress in a Cauchy elastic solid may not vanish. They explicitly demonstrated this
in the case of a linear stress-strain relationship and observed that the lack of major symmetries
is responsible for the non-zero work.” There is no consensus in the literature of nonlinear
elasticity on Cauchy elasticity being a viable theory; while some dismiss it [83-86], others
appear to accept it [70,73,74,87-89]. Our motivation for studying Cauchy elasticity is because
of its promise in describing the mechanics of active solids at large strains. Active solids may
have access to external sources of energy, and hence, the net work of stress in a closed loop
in the strain space may not vanish. The recent interest in the physics literature in the so-called
‘odd elasticity’ [82,90], which is simply linearized non-hyperelastic Cauchy elasticity, is another
motivation for revisiting Cauchy elasticity.

3. Universal deformations in compressible isotropic Cauchy elasticity

Let us consider a compressible isotropic Cauchy elastic body deforming in the Euclidean

ambient space. In a local coordinate chart {x%}, which may be curvilinear, the Cauchy stress
has the following representation

aab=agab+‘3bab+ycab. (31)
When there are no body forces present, the equilibrium equations read 0%, = 0. Thus,’
o= BbY +y Pyt g®+ BybP +y,c =0. (3.2)

Note that

°The same thing was shown 50 years later in [82] when formulating the so-called ‘odd elasticity’. These authors clearly were

not aware of similar developments in the literature of nonlinear elasticity.

®)1q denotes covariant derivative with respect to the vector a%. In Cartesian coordinates, this reduces to a partial
X

derivative. Also, it should be noted that for any scalar field f, f|4 = f 4.

"We have used the fact that a Riemannian metric is compatible with its Levi-Civita connection, i.e. gab\c =0, and hence

g%, p =0, where summation over repeated indices is implied.
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A, Jax | O oo o
boxA Ton et L e e e

4 0 9 9
Br=F" 96 ﬁIlb aflzb‘“alﬁfsbf

OC’b=F

x4 6[1
—FA Oy , 9y oy
vp=F a x4 61 nvet A 12b+61 ’ (3.3)

These can be written more concisely as

-A
ap=F pa +talyptonly+azlsy,

-A
Bo=F "sBa+Pilip+Polop+Bslsp,

Yo=F yatnlp+ byt vslss, (34)
where
oa B oy
= = = A=1,23,
A 9xA Fa ax4 TAT XA
_ Oa 9B oy .
a; = a_Ii, ﬁi aI Vi= aI l 1' 2’ 3. (35)

Substituting equation (3.4) into equation (3.2), one obtains

ﬁbabbﬂ’c w1 pgPan+1p g% O‘Z+I3bg 053+11bbabﬁ1+12bbab52+13bbabﬁa (3.6)
+Ip Py + I p ey + I3 P ys + Fy 8% 4+ Fy b B 4+ Fy ¢y 4= 0.

Note that , § and y are arbitrary functions and their derivatives are independent. Therefore,
for the equilibrium equations to hold for any compressible isotropic Cauchy elastic solid, the
coefficient of each derivative must vanish. Thus,

by =c =0, (3.7)
gn,=8"D,=8"15,=0, (3.8)
b1, =b" I, = b" I, =0, (3.9)
I p=c"Ip=c"I5, =0, (3.10)

F48%a ,=F 2 b®B ,=F "¢y ,=0. (3.11)

The universality constraints (3.8) imply that I, I, I3 are constant. Then, the universal-
ity constraints (3.9) and (3.10) are trivially satisfied. From (3.11), one concludes that
as=Ba=74=0, ie. the body must be homogeneous. Thus, in summary we have concluded
that

I, I, I5 are constant and ~ b%, = ¢®,, = 0. (3.12)

Using these and the compatibility equations, one can show that the universal deformations
must be homogeneous [31]. Thus, we have proved the following two results.

Proposition 3.1. The set of universal deformations of homogeneous compressible isotropic Cauchy
elastic solids is the set of all homogeneous deformations.

Proposition 3.2. Inhomogeneous compressible isotropic Cauchy elastic solids do not admit universal
deformations.

Remark 3.3. We observe that the set of universal deformations of homogeneous compressi-
ble isotropic Cauchy elastic solids is identical to that of homogeneous compressible isotropic
hyperelastic solids [31]. Additionally, it is noteworthy that neither inhomogeneous compressible
isotropic Cauchy elastic solids nor inhomogeneous compressible isotropic hyperelastic solids
admit universal deformations [47].
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4. Universal deformations in incompressible isotropic Cauchy elasticity

For an incompressible isotropic Cauchy elastic solid, the Cauchy stress has the following
component representation

O'ab=—pgab+ﬁbab+}/cab, 4.1)

where a curvilinear coordinate chart {x%} is assumed. Equilibrium equations in the absence of
body forces read o, = a“b,b + Y% 0 + y2. 0% = 0, where y%, (not to be confused with the scalar
field y in (4.1) are the Levi—Civita connection components corresponding to the metric g. Thus

Dng" = Bbin+ycly+p b+, (4.2)
or
P,a=5b2|n+703\n+5,nb2+%ncg- (43)

Thus, dp = p,dx® = (Bbain+¥ Chin+ Buba+¥nch)dx® =& where d is the exterior derivative. This
means the one-form & must be exact. A necessary condition for £ to be exact is d¢ =0. This
implies that p 4 = p,pq, Which is equivalent to p 4, = pjpq- Thus,

Piab = Bbainb ¥ Cainb + Bubais+VnCiio*+ Bobain* Vb Cain* (Bn)ipba+ (Vn)15¢h, (4.4)
must be symmetric in (a, b).
Note that,
Bn=F " wBatBilun*Balon?n=F wyatvilun*tv2lon, (4.5)
where
=% n=3 =12 =L ya=Lo a-123 (46)
Also
(B ) io=PBriTiino+Bal2ins* B, oT1,n* Bo,pIon (4.7)
+ (F_BbF_An,B 7" F_Am) Ba+F ™, (F_Bbﬁ,AB +Balp+P2a Iz,b)
=Biliim+ Bolaine+ 1o 11, n P11+ Io b Ion Boo + (11,5 1o, n + 11, n I ) B2
H(E B a Y F ) B at 5 (F AW Ey + F 5 F ) 8 g
+(F I+ F I ) Bra+ (F 4 I+ F 400, ) Bo a1
and
Wmp=r1Tiim+ Valaim + ¥ Tunt Vo p Lot (F 55 F 0 5=y F )7, (4.8)

+F 2 (F Py, a5+ 71,al1,p+ 72, a1 0)

=yl tValo i+ I eI, n Vi1 1o p o n Yoo + (1,6 2, n + 11, n 12, b) V12
1

(PP F =y F ) Va* 5 (F " F P+ F 20 Fy )y, ap

+H(F I+ F I )y a+ (F 5 Lyn+ F 0T 0) 72,4,

*Note that b", = b"" g,,q and by" = b™" g, which are equal. Thus, we use by = b", = b,". Similarly, the same

notation is used for c.

!
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where

OB Oy o
= = < j=
Pi= stary Vi = 3191, i<j=12 49)
B oy .
- _ =27 i=1,2,4=1,23,
Bia aax? T anaxA
B oy
-——F = , A<B=1,2,3.
Ban= Sxiox® VBT SxioxB
Therefore,
Piab=Dbain B+ Cinpy (4.10)

+ [Il,bbg\n"' (bgll,n)u;] B+ [Iz,bbgln"' (bZIZ,n)\b] B>

+ 11,011, ba P11+ o, n o, 5 DG Boo + (I, n I, b+ To, n 11, 5) DG B

+[Iypcaint (calyn)ipl Vi + T2 b a1+ (Ca 2 n) 1] 72

+1 e v+ I lopCa v+ (I n o+ 1o, n 11, 5) €6 V12

+[F b 1o+ F b5 1+ (F 5 F 5= 7™ F ) b 8.4

+ [FiAnctrzllb"'FiAngIn"' (FiBbFiAn,B_ymaniAm)Cg] Y4

+F oI B a+ FAbalo pBoa+ Fuchl vy, a+ Fuchi 72,4
+F 4 F P08 ap+ F Fy ey, ap.

The functions 8 and y and their derivatives are independent, and hence, the coefficient of each
function must be symmetric. Thus, we have the following set of universality constraints for
homogeneous Cauchy elasticity

A = bl 1 by @.11)

Ao =11,b51 0+ (b3 11, 0) 1 4.12)
Aoy =Ty p b1+ (ba Do, )1 (4.13)
Aoy =Ty Iy p b, (4.14)

Aoy =1 n I pbl, (4.15)
Aoy = (I no o+ I, n Ty, b) b, (4.16)
Bap = nby 4.17)

Bap =T b1+ (1)1 (4.18)
Bap=TopClin+ (o, n) (4.19)
Bip=1I1,nl1,pcl, (4.20)

By =D nIppcl, 4.21)
Biiy = (I, no,p+ I n 11, p) 1. (4.22)

The six terms (4.11), (4.12), (4.14), 4.17), (4.19) and (4.21) are identical to those of hyperelastic-
ity [30]. The following is the set of universal inhomogeneity constraints for inhomogeneous
Cauchy elasticity

aﬁ = F_An bg bt F_Ab bg Int (F_BbF_An,B - yman_Am) bg, (423)

Cap = (F " uIyp+ F 11, ) b, (4.24)
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Cao = (Fnlop+ F I ) b,
Car” = (F 0 F P+ F2, F ) b,
Dty = F o+ F 5l int (F 2 F gy F )
Dap = (FuIy o+ Fp11,0) L,
Doy = (F Lo+ F I, )

Day” = (F W F P+ F5, F ) el

(4.25)
(4.26)
(4.27)
(4.28)
(4.29)

(4.30)

These terms must be symmetric in (a, b) for A=1,2,3 and A <B=1,2,3. The six terms (4.23),
(4.24), (4.20), (4.27), (4.29) and (4.30) are identical to those of inhomogeneous isotropic hypere-

lasticity [23].

Recall that Ericksen’s universality constraints of isotropic hyperelasticity are [30]:

Ay = bg 1 pn,
Ay = Ciow
AGh=bg 1 nTyp+ (Dah, )i
A =ciinl b+ (cilon) 1y
Azt = (Dalo,n)ip+ bainla, b= [(chT1,n)ip+ Chinly,b),
Agb' =ba I, n 1T,
AGE = ciIon Db
Ag =ba (I, o Io,n+ I nTo,p) = i Ty, 1, b,
A =balopTon =i (Ip o n+ 11, n o p) -
Also, the universal inhomogeneity constraints of hyperelasticity are [23]:
Caf = Fybaip + F b+ bg [F 5 F 4 =y F 0],
e A Y L e
Cabt =bg[F Iy + F I ),
Cat=ct [F_An Ly +F I n]/

Citt = ba|[F " uloy+ F 4 I | = G [F " u Ty + F 414, ),
CMB = p [F‘A FB +FB F4 ]

CHB = ¢ [F‘A,, F5+r5 F‘Ab] .

(4.31)
(4.32)
(4.33)
(4.34)
(4.35)
(4.36)
(4.37)
(4.38)

(4.39)

(4.40)
(4.41)
(4.42)
(4.43)
(4.44)
(4.45)

(4.46)

First, notice that there are nine sets of universality constraints (4.31-4.39) for homogeneous
isotropic hyperelasticity [30] compared with twelve for compressible isotropic Cauchy elasticity
(4.11-4.22). Second, the six terms (4.11), (4.12), (4.14), (4.17), (4.19) and (4.21) are identical to

those of hyperelasticity. Thus, we first look at these six terms.
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Ericksen [30] used the following result. Suppose u and v are vectors such thatu @ v=v @ u.
Assuming that v # 0 (if both vectors are zero this equality trivially holds), one can write

=——v=2»1, (4.47)

i.e. uand v must be parallel. Now suppose that u’ = d ¢ and v’ = dg, where b is the flat operator
that gives the one-form corresponding to a vector, d is the exterior derivative, and ¢ and ¢ are

scalar fields. Note that, 1 = A(u, v) = A( ¢, 9). Thus, w’ =d ¢ = A( b, ¢)dy. Hence

0=dodq)=d/1(q),1p)/\dzp=%dq) Ady, (4.48)

where A is the wedge product of differential forms. Therefore, 1 = A(¥), i.e. u’ = A()de.
Wi (7 31}3) and szz(%ﬁ%) terms: symmetry of the coefficient of the A},}J term implies that [30]

(baT1,n) I1,6= (bpI1,n) I, - (4.49)

One concludes that either I; , =0 or byl , = Aflll,a, for some scalar function A. This means that
I  is an eigenvector of b}, with eigenvalue A'. We know that b*"c,,;, = &, and hence, b g, = &5 .
Similarly, bg,c™ =82, and hence, bg ¢ = 8§ . Therefore, c!'l; , = Al ,.° Similarly, the symmetry

of the coefficient of the @ﬁ term implies that

(i, n) o= (ch In,n) In, - (4.50)

The conclusion is that either I ;=0 or ¢z I, , = AIZ,a/ for some scalar function A. One also has

baly, = A I, . In summary,

calin=Alq (4.51)
il n=Ah, (4.52)
baly,=A T4 (4.53)
biL,=AL,. (4.54)

Aﬁ% and B}l}, terms: symmetry of the coefficient of the szfﬁzb term implies that
(balon) Iob = (bpIp,n) I, OF At Lol =A7112,b12,a/ (4.55)

which is trivially satisfied. Similarly, the symmetry of the coefficient of the Bip term implies
that

(chh,n)D,p=(chI,n)I1,q or Al Iy p=Alp 14, (4.56)

which is also trivially satisfied.

¥ ﬁ and %,11% terms: symmetry of the coefficient of the .27 5, term implies that

(T4, 1o, b+ I, ul1,b) ba = (I, w2, o + Io, n11, ) bp (4.57)

which is identical to the symmetry condition that comes from the coefficient of the Wi, in
hyperelasticity [30]. Thus,

(I,pIo, 0+ 11, Io p) b = (I1,a 1o, n + 11, n Ip, o) D) - (4.58)

°Note that both b and ¢ are positive definite. This means that when I is not constant, A # 0, and hence, Alisan eigenvalue

of c.
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Hence,

LA 'L o+ A oIy p =Ty oA Ty p + AT p I . (4.59)

(A=A (I a L b= 11 T2,0) = 0. (4.60)
Similarly, the symmetry of the coefficient of the u@ﬁ term implies that
(IynDo o+ IpnTyp) o = (I n 1o, + I n 11, 0) € - (4.61)
This is simplified to read
(A=A)Iyalp~T1p10) =0, (4.62)

which is identical to the symmetry condition that comes from the coefficient of the Wy in
hyperelasticity [30]. If either I; or I, is constant, (4.60) is satisfied for any A and A. If A=A,
one has Iy qIp =11 514, which implies that I , and I, , are parallel. However, these are

eigenvectors of bY corresponding to the distinct eigenvalues A # A and must be perpendicular.
This contradiction shows that A = A.

Next, Ericksen shows that I; and I, must be functionally dependent.”’ If either I; or I is
constant, this is trivially the case. If all the eigenvalues of b (and hence those of c) are distinct,
each must have a one-dimensional eigenspace. Therefore, I; , and I, ,, which are eigenvectors
corresponding to the same eigenvalue, must be parallel. This guarantees that the rank of the
Jacobian matrix in (4.63) is less that 2, and hence, I; and I, are functionally dependent. Note
that,

[1=l+l+l, I=L+L+L

Iz=cicc=1 4.64
¢l G G 2 C1C CC3 C3 Cll 3 15253 ! ( )

where ¢; are eigenvalues of c. If two eigenvalues are equal, e.g. ¢; =c,, one has (the case
1 = ¢ = c3 is trivial as incompressibility implies ¢; = ¢; = ¢z = 1)
2 1
11=C—1+c%, L= +2c. (4.65)

C1

Clearly, in this case I; and I, are functionally dependent. Therefore, there is a scalar function B
such that, I = I1(B) and I, = I(B). Similarly, ¢; = ¢,(B).

Wi (Méb) and Wy, (%) terms: note that, I,,=I(B)B, i=12. The second term in the
coefficient of Wy, (%2) is simplified to read (cf I ) » = (c1I5B o) p = (112)' B p B o + c1I5 B 45, which
is symmetric. Therefore, the symmetry of the coefficient of W, implies that

I(cz1nB,b—Ch14B, o) =0. (4.66)

Thus, either I, is constant or

“I7 and I, are functionally dependent if there exists a non-trivial function (a  func-

tion that is not identically zero) such that F(I},I)=0. Taking derivatives one  obtains

Iiqn 121 0
oF
oI
1172 1272 = of - (4-63)
OF
B
I3 I23 0

For F to be non-trivial, the Jacobian matrix must have rank less than 2.
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can=DBg, (4.67)

where D is a scalar field. Similarly, the symmetry of the coefficient of Wy, (7, ,11[,) dictates that
either I is constant or

aln=EBg, (4.68)

where E is a scalar field.

&iﬁb and %}lb terms: The symmetry of szib terms implies that
15(b21 B~ b} 1B o) =I5(EB (B , —EB ,B o) = 0, (4.69)
which is trivially satisfied. Similarly, the symmetry of B, terms implies that
L(ch.Bp—cfinBg)=1(DB,B,-DB;,B,) =0, (4.70)

which is also trivially satisfied.

The only two remaining universality constraints are ﬂﬂb and %?,b terms, which are identi-
cal to the coefficients of W; and W, in hyperelasticity. Using these two sets of universality
constraints, Ericksen [30] found Families 1-4 of universal deformations.

Note that if Iy and I, are constant, (4.11-4.22) reduce to the symmetry of the two

terms by, and ¢l which is exactly what one would have in hyperelasticity. We
have thus shown that although there are more universality constraints in incompressible
isotropic Cauchy elasticity and some of the universality constraints are not identical to
those of hyperelasticity, nevertheless the two sets of universality constraints are equiva-
lent.

Next, we show that the universal inhomogeneity constraints of Cauchy elasticity (4.23-4.30)
are equivalent to those of hyperelasticity (4.40—4.46). We only need to check the terms (4.25) and

(4.28). Let us define Pp=F 4, Iy +F AT 1,n» and note that, P4, = Pih. From (4.24), we know that
P b = P2, b (@71)
Multiply both sides by cf, ¢} to obtain cf Pj, bl c& = c& P4, by cb, or ¢ Ph, 8, = c& Pan Sk Thus,
Pp, =c4PA, or P = P, (4.72)

which is (4.28). Similarly, (4.29) is equivalent to (4.25). Moreover, the symmetry of the terms
(4.42) and (4.43) implies the symmetry of (4.44). Therefore, we have proved the following result.

Proposition 4.1. The set of universal deformations of incompressible isotropic Cauchy elasticity
is identical to that of incompressible isotropic hyperelasticity. For a given universal deformation, the
corresponding set of universal inhomogeneities is identical to that of hyperelasticity.

5. Conclusions

The existing studies of universal deformations have been restricted to hyperelasticity, or more
generally, to materials that have an underlying energy function. In this paper, we extended
the analysis of universal deformations to Cauchy elastic solids, which, in general, do not
have an energy function. We considered both compressible and incompressible inhomogene-
ous isotropic Cauchy elasticity. As hyperelasticity is a proper subset of Cauchy elasticity, one
would expect the set of universal deformations of Cauchy elasticity to be a proper subset of
that of hyperelasticity. We proved the somewhat unexpected result that the sets of universal
deformations of isotropic Cauchy elasticity and isotropic hyperelasticity are identical, in both
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the compressible and incompressible cases. We also proved that their corresponding universal
inhomogeneities are identical as well.
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