

PROCEEDINGS A

royalsocietypublishing.org/journal/rspa

Research

Cite this article: Yavari A. 2024 Universal deformations and inhomogeneities in isotropic Cauchy elasticity. *Proc. R. Soc. A* **480**: 20240229. <https://doi.org/10.1098/rspa.2024.0229>

Received: 28 March 2024

Accepted: 5 June 2024

Subject Category:

Engineering

Subject Areas:

mechanical engineering, mechanics

Keywords:

universal deformation, universal inhomogeneity, Cauchy elasticity, hyperelasticity, Green elasticity, isotropic solids

Author for correspondence:

Arash Yavari

e-mail: arash.yavari@ce.gatech.edu

Universal deformations and inhomogeneities in isotropic Cauchy elasticity

Arash Yavari^{1,2}

¹School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

²The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

ID AY, 0000-0002-7088-7984

For a given class of materials, universal deformations are those deformations that can be maintained in the absence of body forces and by applying solely boundary tractions. For inhomogeneous bodies, in addition to the universality constraints that determine the universal deformations, there are extra constraints on the form of the material inhomogeneities—universal inhomogeneity constraints. Those inhomogeneities compatible with the universal inhomogeneity constraints are called universal inhomogeneities. In a Cauchy elastic solid, stress at a given point and at an instance of time is a function of strain at that point and that exact moment in time, without any dependence on prior history. A Cauchy elastic solid does not necessarily have an energy function, i.e. Cauchy elastic solids are, in general, non-hyperelastic (or non-Green elastic). In this paper, we characterize universal deformations in both compressible and incompressible inhomogeneous isotropic Cauchy elasticity. As Cauchy elasticity includes hyperelasticity, one expects the universal deformations of Cauchy elasticity to be a subset of those of hyperelasticity both in compressible and incompressible cases. It is also expected that the universal inhomogeneity constraints to be more stringent than those of hyperelasticity, and hence, the set of universal inhomogeneities to be smaller than that of hyperelasticity. We prove the somewhat unexpected result that the sets of universal deformations of isotropic Cauchy elasticity and isotropic hyperelasticity are identical, in both the compressible and incompressible cases. We also prove that their corresponding universal inhomogeneities are identical as well.

1. Introduction

Within a given class of materials, universal deformations refer to those deformations that can be maintained in the absence of body forces and by applying only boundary tractions, for any member of the material class. Universal deformations do not depend on the particular material within the class. However, the boundary tractions necessary to sustain a universal deformation depend on the specific material. Universal deformations have played a crucial role in nonlinear elasticity and anelasticity (in the sense of Eckart [1]): (i) They have had an important organizational role in the semi-inverse solutions in nonlinear elasticity [2–6], and more recently in anelasticity [7] and viscoelasticity [8]. (ii) They offer guidance for designing experiments for determining the constitutive relations of a specific material [9,10].¹ (iii) All the existing exact solutions of defects in nonlinear solids are related to universal deformations [12–19]. (iv) Universal deformations have been important for finding exact solutions for the stress field of distributed finite eigenstrains in nonlinear solids and for solving the nonlinear analogues of Eshelby's inclusion problem [20–23]. (v) These exact solutions have been used as benchmark problems in computational mechanics [10,24–26]. (vi) Universal deformations have been used in deriving effective properties for nonlinear composites [27–29].

The systematic study of universal deformations began in the 1950s by Jerry Ericksen [30,31] for homogeneous compressible and incompressible isotropic solids. His work was influenced by the earlier contributions of Ronald Rivlin [32–34]. Ericksen [31] proved that for homogeneous compressible isotropic solids, universal deformations are homogeneous. The characterization of universal deformations in the presence of internal constraints is a particularly challenging problem [10]. Ericksen [30] discovered four families of universal deformations for incompressible isotropic elastic solids. Initially, he speculated that a deformation with constant-principal invariants is homogeneous, but this conjecture was proven incorrect [35]. Subsequently, a fifth family of universal deformations was found [36,37]. The fifth family of universal deformations have constant-principal invariants but are not homogeneous. As of now, it is not known whether there exist additional inhomogeneous constant-principal invariant universal deformations (Ericksen's problem). The following are the six known families of universal deformations:

- Family 0: Homogeneous deformations;
- Family 1: Bending, stretching and shearing of a rectangular block;
- Family 2: Straightening, stretching and shearing of a sector of a cylindrical shell;
- Family 3: Inflation, bending, torsion, extension and shearing of a sector of an annular wedge;
- Family 4: Inflation/inversion of a sector of a spherical shell; and
- Family 5: Inflation, bending, extension and azimuthal shearing of an annular wedge.

There have been several attempts to solve Ericksen's problem in the past few decades [38–41]. Fosdick & Schuler [42] showed that for the case of plane deformations with uniform transverse stretch, there are no new solutions other than the known families. Fosdick [43] reached the same conclusion for radially symmetric deformations.

In a simple material, stress at any given point and time t depends only on the history of the deformation gradient at that point up to time t [44]. Carroll [45] demonstrated that the above-known universal deformations of homogenous incompressible isotropic elastic solids are universal for simple materials as well.

¹The following quote from [11, p. 89] explains it best: 'From the standpoint of attempting to determine the form of Σ for a given material by comparing general solutions with results of experiment, it appears that the solutions which are most useful are those which correspond to deformations which can be produced in every material of the type considered by the application of surface tractions only'. Here, Σ is the energy function and by 'general' they mean 'universal'.

The study of universal deformations has recently been extended to inhomogeneous anisotropic solids [46–48].² These comprehensive studies include both compressible and incompressible isotropic, transversely isotropic, orthotropic and monoclinic solids. For these three classes of compressible anisotropic solids, it was shown that universal deformations are homogenous, and the material-preferred directions are uniform. Additionally, for isotropic solids and each of the three classes of anisotropic solids, the corresponding universal inhomogeneities—these represent inhomogeneities in the energy function that are compatible with the universality constraints—were characterized. The corresponding universal inhomogeneities for each of the above six known families of universal deformations were determined for inhomogeneous isotropic and the three classes of inhomogeneous incompressible anisotropic solids.

In linear elasticity, universal displacements are the counterparts of universal deformations [50–53]. Yavari *et al.* [53] demonstrated the explicit dependence of universal displacements on the symmetry class of the material. Specifically, the larger the symmetry group, the larger the corresponding set of universal displacements. Therefore, isotropic solids have the largest set of universal displacements, while triclinic solids possess the smallest set of universal displacements. The investigation into universal displacements has also been extended to inhomogeneous solids [54] and linear anelasticity [55].

A class of materials with internal constraints, significant in engineering applications, consists of materials reinforced with inextensible fibres [56–59]. Despite their importance, there is a scarcity of literature on the universal deformations of fibre-reinforced solids. Beskos [60] studied homogeneous compressible isotropic solids reinforced with inextensible fibres, investigating whether universal deformations of incompressible isotropic solids are universal for this class as well. Families 1, 2, 3 and 4 were specifically analysed, revealing that certain subsets of these families are universal for specific fibre distributions. Interestingly, all these universal deformations are found to be homogeneous except for the shearing of a circular tube with circumferential fibres. Beatty [61] further examined homogeneous compressible isotropic solids reinforced by a single family of inextensible fibres. He investigated the problem of finding all those fibre distributions for which homogeneous deformations are universal. He proved that there are only three types of such fibre distributions, all characterized by straight fibres. In a recent study, Yavari [62] studied universal displacements in compressible anisotropic linear elastic solids reinforced by a single family of inextensible fibres. For each symmetry class, and under the assumption of a uniform distribution of straight fibres respecting the corresponding symmetry, the respective universal displacements were characterized. Interestingly, it was observed that, except for triclinic and cubic solids, the presence of inextensible fibres enlarges the set of universal displacements within the other five classes.³

In recent years, Erickson's analysis has been extended to anelasticity. Yavari & Goriely [63] showed that in compressible anelasticity, universal deformations are covariantly homogeneous. Universal deformations and eigenstrains in incompressible anelasticity were studied by Goodbrake *et al.* [64]. It was observed that the six known families of universal deformations are invariant under specific Lie subgroups of the special Euclidean group. There are also some recent studies of universal deformations and eigenstrains in accreting bodies [65–67]. There have also been studies of universal deformations in liquid crystal elastomers [68,69].

In this paper, we extend the study of universal deformations and inhomogeneities to inhomogeneous compressible and incompressible isotropic Cauchy elasticity. Cauchy elastic solids may not necessarily have an energy function and include hyperelastic solids (Green elastic solids) as a special case. This suggests that Cauchy elasticity may have more stringent universality and universal inhomogeneity constraints compared with those of hyperelasticity. This, in turn, leads one to anticipate smaller sets of universal deformations and universal inhomogeneities for Cauchy elasticity compared with those of hyperelasticity. We prove the

²Prior to our work, there had been some limited work on universal deformations in anisotropic solids [49].

³It should be noted that a fibre-reinforced solid with straight fibres cannot be isotropic.

somewhat unexpected result that the universal deformations and inhomogeneities of Cauchy elasticity are identical to those of Green elasticity in both the compressible and incompressible cases.

This paper is organized as follows. In §2, Cauchy elasticity is briefly reviewed. Universal deformations of inhomogeneous compressible isotropic Cauchy elasticity are characterized in §3. In §4, the same problem is studied for inhomogeneous incompressible isotropic Cauchy elasticity. Conclusions are given in §5.

2. Cauchy elasticity

Let us consider a body that in its undeformed configuration is identified with an embedded submanifold \mathcal{B} of the Euclidean ambient space \mathcal{S} . The flat metric of the Euclidean ambient space is denoted by \mathbf{g} and the induced metric on the body in its reference configuration is by $\mathbf{G} = \mathbf{g}|_{\mathcal{B}}$. Deformation is a map from \mathcal{B} to the ambient space, i.e. $\varphi: \mathcal{B} \rightarrow \mathcal{C} \subset \mathcal{S}$, where $\mathcal{C} = \varphi(\mathcal{B})$ is the current configuration. The tangent map of φ is the so-called deformation gradient $\mathbf{F} = T\varphi$ (a metric-independent map), which at each material point $X \in \mathcal{B}$ is a linear map $\mathbf{F}(X): T_X \mathcal{B} \rightarrow T_{\varphi(X)} \mathcal{C}$. With respect to the coordinate charts $\{X^A\}$ and $\{x^a\}$ for \mathcal{B} and \mathcal{C} , respectively, the deformation gradient has components $F^a{}_A = \partial \varphi^a / \partial X^A$. The transpose of the deformation gradient \mathbf{F}^T has components $(F^T)^A{}_a = g_{ab} F^b{}_B G^{AB}$. The right Cauchy–Green strain is defined as $\mathbf{C} = \mathbf{F}^T \mathbf{F}$ and has components $C^A{}_B = (F^T)^A{}_a F^a{}_B$. Thus, $C_{AB} = (g_{ab} \circ \varphi) F^a{}_A F^b{}_B$, which means that the right Cauchy–Green strain is the pull-back of the spatial metric to the reference configuration, i.e. $\mathbf{C}^b = \varphi^* \mathbf{g}$, where b is the flat operator induced by the metric \mathbf{G} (which lowers indices). The left Cauchy–Green strain is defined as $\mathbf{B}^\# = \varphi^*(\mathbf{g}^\#)$, which has components $B^{AB} = F^{-A}{}_a F^{-B}{}_b g^{ab}$. The spatial analogue of \mathbf{C}^b is defined as $\mathbf{c}^b = \varphi_* \mathbf{G}$, which has components $c_{ab} = F^{-A}{}_a F^{-B}{}_b G_{AB}$. Similarly, the spatial analogue of $\mathbf{B}^\#$ is $\mathbf{b}^\# = \varphi_*(\mathbf{G}^\#)$, which has components $b^{ab} = F^a{}_A F^b{}_B G^{AB}$. Recall that $\mathbf{b} = \mathbf{c}^{-1}$. The two tensors \mathbf{C} and \mathbf{b} have the same principal invariants I_1 , I_2 and I_3 , which are defined as [70,71] $I_1 = \text{tr } \mathbf{b} = b^{ab} g_{ab}$, $I_2 = \frac{1}{2} (I_1^2 - \text{tr } \mathbf{b}^2) = \frac{1}{2} (I_1^2 - b^{ab} b^{cd} g_{ac} g_{bd})$ and $I_3 = \det \mathbf{b}$.

In Cauchy elasticity, stress at a point and a given moment in time is explicitly a function of strain at that point and that particular moment in time [72–74]. However, an energy function does not necessarily exist.⁴ In terms of the first Piola–Kirchhoff stress [70,73,74]

$$\mathbf{P} = \hat{\mathbf{P}}(X, \mathbf{F}, \mathbf{G}, \mathbf{g}). \quad (2.1)$$

One can show that objectivity implies that the second Piola–Kirchhoff stress has the following functional form [74]

$$\mathbf{S} = \hat{\mathbf{S}}(X, \mathbf{C}^b, \mathbf{G}). \quad (2.2)$$

For an isotropic solid, one has the following classic representation [78–80]

$$\mathbf{S} = \Lambda_0 \mathbf{G}^\# + \Lambda_1 \mathbf{C}^\# + \Lambda_{-1} \mathbf{C}^{-\#}, \quad (2.3)$$

⁴It is important to note that Cauchy elasticity does not encompass all elastic solids. In recent years, there has been some interest in implicit constitutive equations, e.g. constitutive equations of the form $\mathbf{f}(\boldsymbol{\sigma}, \mathbf{b}) = \mathbf{0}$ [75–77]. Cauchy elasticity is a subset of this class of solids.

where $\Lambda_i = \Lambda_i(X, I_1, I_2, I_3)$, $i = -1, 0, 1$, and \sharp is the sharp operator induced from the metric \mathbf{G} (which raises indices). For incompressible isotropic Cauchy solids $I_3 = 1$, and one has

$$\mathbf{S} = -p \mathbf{C}^{-\sharp} + \Lambda_0 \mathbf{G}^\sharp + \Lambda_1 \mathbf{C}^\sharp, \quad (2.4)$$

where $p = p(X, t)$ is the Lagrange multiplier associated with the incompressibility constraint $J = \sqrt{I_3} = 1$ and $\Lambda_i = \Lambda_i(X, I_1, I_2)$, $i = 0, 1$.

In terms of the Cauchy stress, the constitutive equations of compressible isotropic Cauchy elastic solids are written as

$$\boldsymbol{\sigma} = \alpha \mathbf{g}^\sharp + \beta \mathbf{b}^\sharp + \gamma \mathbf{c}^\sharp, \quad (2.5)$$

where $\alpha = \alpha(X, I_1, I_2, I_3)$, $\beta = \beta(X, I_1, I_2, I_3)$ and $\gamma = \gamma(X, I_1, I_2, I_3)$ are arbitrary response functions. Similarly, for incompressible isotropic Cauchy elastic solids, one has

$$\boldsymbol{\sigma} = -p \mathbf{g}^\sharp + \beta \mathbf{b}^\sharp + \gamma \mathbf{c}^\sharp, \quad (2.6)$$

where $\beta = \beta(X, I_1, I_2)$ and $\gamma = \gamma(X, I_1, I_2)$ are arbitrary response functions. In components, they read $\sigma^{ab} = \alpha g^{ab} + \beta b^{ab} + \gamma c^{ab}$ and $\sigma^{ab} = -p g^{ab} + \beta b^{ab} + \gamma c^{ab}$, respectively.

Green & Naghdi [81] showed that Cauchy elasticity is consistent with the first and second laws of thermodynamics. They demonstrated that over a closed path in the space of strains, the net work of stress in a Cauchy elastic solid may not vanish. They explicitly demonstrated this in the case of a linear stress-strain relationship and observed that the lack of major symmetries is responsible for the non-zero work.⁵ There is no consensus in the literature of nonlinear elasticity on Cauchy elasticity being a viable theory; while some dismiss it [83–86], others appear to accept it [70,73,74,87–89]. Our motivation for studying Cauchy elasticity is because of its promise in describing the mechanics of active solids at large strains. Active solids may have access to external sources of energy, and hence, the net work of stress in a closed loop in the strain space may not vanish. The recent interest in the physics literature in the so-called ‘odd elasticity’ [82,90], which is simply linearized non-hyperelastic Cauchy elasticity, is another motivation for revisiting Cauchy elasticity.

3. Universal deformations in compressible isotropic Cauchy elasticity

Let us consider a compressible isotropic Cauchy elastic body deforming in the Euclidean ambient space. In a local coordinate chart $\{x^a\}$, which may be curvilinear, the Cauchy stress has the following representation

$$\sigma^{ab} = \alpha g^{ab} + \beta b^{ab} + \gamma c^{ab}. \quad (3.1)$$

When there are no body forces present, the equilibrium equations read $\sigma^{ab}{}_{|b} = 0$.⁶ Thus,⁷

$$\sigma^{ab}{}_{|b} = \beta b^{ab}{}_{|b} + \gamma c^{ab}{}_{|b} + \alpha_{,b} g^{ab} + \beta_{,b} b^{ab} + \gamma_{,b} c^{ab} = 0. \quad (3.2)$$

Note that

⁵The same thing was shown 50 years later in [82] when formulating the so-called ‘odd elasticity’. These authors clearly were not aware of similar developments in the literature of nonlinear elasticity.

⁶ $(.)_{|a}$ denotes covariant derivative with respect to the vector $\frac{\partial}{\partial x^a}$. In Cartesian coordinates, this reduces to a partial derivative. Also, it should be noted that for any scalar field f , $f_{|a} = f_{,a}$.

⁷We have used the fact that a Riemannian metric is compatible with its Levi–Civita connection, i.e. $g^{ab}{}_{|c} = 0$, and hence $g^{ab}{}_{|b} = 0$, where summation over repeated indices is implied.

$$\begin{aligned}\alpha_{,b} &= F^{-A} b \frac{\partial \alpha}{\partial X^A} + \frac{\partial \alpha}{\partial I_1} I_{1,b} + \frac{\partial \alpha}{\partial I_2} I_{2,b} + \frac{\partial \alpha}{\partial I_3} I_{3,b}, \\ \beta_{,b} &= F^{-A} b \frac{\partial \beta}{\partial X^A} + \frac{\partial \beta}{\partial I_1} I_{1,b} + \frac{\partial \beta}{\partial I_2} I_{2,b} + \frac{\partial \beta}{\partial I_3} I_{3,b}, \\ \gamma_{,b} &= F^{-A} b \frac{\partial \gamma}{\partial X^A} + \frac{\partial \gamma}{\partial I_1} I_{1,b} + \frac{\partial \gamma}{\partial I_2} I_{2,b} + \frac{\partial \gamma}{\partial I_3} I_{3,b}.\end{aligned}\quad (3.3)$$

These can be written more concisely as

$$\begin{aligned}\alpha_{,b} &= F^{-A} b \alpha_{,A} + \alpha_1 I_{1,b} + \alpha_2 I_{2,b} + \alpha_3 I_{3,b}, \\ \beta_{,b} &= F^{-A} b \beta_{,A} + \beta_1 I_{1,b} + \beta_2 I_{2,b} + \beta_3 I_{3,b}, \\ \gamma_{,b} &= F^{-A} b \gamma_{,A} + \gamma_1 I_{1,b} + \gamma_2 I_{2,b} + \gamma_3 I_{3,b},\end{aligned}\quad (3.4)$$

where

$$\begin{aligned}\alpha_{,A} &= \frac{\partial \alpha}{\partial X^A}, & \beta_{,A} &= \frac{\partial \beta}{\partial X^A}, & \gamma_{,A} &= \frac{\partial \gamma}{\partial X^A}, & A &= 1, 2, 3, \\ \alpha_i &= \frac{\partial \alpha}{\partial I_i}, & \beta_i &= \frac{\partial \beta}{\partial I_i}, & \gamma_i &= \frac{\partial \gamma}{\partial I_i}, & i &= 1, 2, 3.\end{aligned}\quad (3.5)$$

Substituting equation (3.4) into equation (3.2), one obtains

$$\begin{aligned}\beta b^{ab}{}_{|b} + \gamma c^{ab}{}_{|b} + I_{1,b} g^{ab} \alpha_1 + I_{2,b} g^{ab} \alpha_2 + I_{3,b} g^{ab} \alpha_3 + I_{1,b} b^{ab} \beta_1 + I_{2,b} b^{ab} \beta_2 + I_{3,b} b^{ab} \beta_3 \\ + I_{1,b} c^{ab} \gamma_1 + I_{2,b} c^{ab} \gamma_2 + I_{3,b} c^{ab} \gamma_3 + F_b^{-A} \delta^{ab} \alpha_{,A} + F_b^{-A} b^{ab} \beta_{,A} + F_b^{-A} c^{ab} \gamma_{,A} = 0.\end{aligned}\quad (3.6)$$

Note that α , β and γ are arbitrary functions and their derivatives are independent. Therefore, for the equilibrium equations to hold for any compressible isotropic Cauchy elastic solid, the coefficient of each derivative must vanish. Thus,

$$b^{ab}{}_{|b} = c^{ab}{}_{|b} = 0, \quad (3.7)$$

$$g^{ab} I_{1,b} = g^{ab} I_{2,b} = g^{ab} I_{3,b} = 0, \quad (3.8)$$

$$b^{ab} I_{1,b} = b^{ab} I_{2,b} = b^{ab} I_{3,b} = 0, \quad (3.9)$$

$$c^{ab} I_{1,b} = c^{ab} I_{2,b} = c^{ab} I_{3,b} = 0, \quad (3.10)$$

$$F_b^{-A} \delta^{ab} \alpha_{,A} = F_b^{-A} b^{ab} \beta_{,A} = F_b^{-A} c^{ab} \gamma_{,A} = 0. \quad (3.11)$$

The universality constraints (3.8) imply that I_1, I_2, I_3 are constant. Then, the universality constraints (3.9) and (3.10) are trivially satisfied. From (3.11), one concludes that $\alpha_{,A} = \beta_{,A} = \gamma_{,A} = 0$, i.e. the body must be homogeneous. Thus, in summary we have concluded that

$$I_1, I_2, I_3 \text{ are constant and } b^{ab}{}_{|b} = c^{ab}{}_{|b} = 0. \quad (3.12)$$

Using these and the compatibility equations, one can show that the universal deformations must be homogeneous [31]. Thus, we have proved the following two results.

Proposition 3.1. *The set of universal deformations of homogeneous compressible isotropic Cauchy elastic solids is the set of all homogeneous deformations.*

Proposition 3.2. *Inhomogeneous compressible isotropic Cauchy elastic solids do not admit universal deformations.*

Remark 3.3. We observe that the set of universal deformations of homogeneous compressible isotropic Cauchy elastic solids is identical to that of homogeneous compressible isotropic hyperelastic solids [31]. Additionally, it is noteworthy that neither inhomogeneous compressible isotropic Cauchy elastic solids nor inhomogeneous compressible isotropic hyperelastic solids admit universal deformations [47].

4. Universal deformations in incompressible isotropic Cauchy elasticity

For an incompressible isotropic Cauchy elastic solid, the Cauchy stress has the following component representation

$$\sigma^{ab} = -p g^{ab} + \beta b^{ab} + \gamma c^{ab}, \quad (4.1)$$

where a curvilinear coordinate chart $\{x^a\}$ is assumed. Equilibrium equations in the absence of body forces read $\sigma^{ab}_{|b} = \sigma^{ab}_{,b} + \gamma^a_{bc} \sigma^{cb} + \gamma^b_{bc} \sigma^{ac} = 0$, where γ^a_{bc} (not to be confused with the scalar field γ in (4.1)) are the Levi–Civita connection components corresponding to the metric \mathbf{g} . Thus

$$p_{,n} g^{an} = \beta b_{|n}^{an} + \gamma c_{|n}^{an} + \beta_{,n} b^{an} + \gamma_{,n} c^{an}, \quad (4.2)$$

or⁸

$$p_{,a} = \beta b_{|n}^n + \gamma c_{|n}^n + \beta_{,n} b_a^n + \gamma_{,n} c_a^n. \quad (4.3)$$

Thus, $dp = p_{,a} dx^a = (\beta b_{|n}^n + \gamma c_{|n}^n + \beta_{,n} b_a^n + \gamma_{,n} c_a^n) dx^a = \xi$, where d is the exterior derivative. This means the one-form ξ must be exact. A necessary condition for ξ to be exact is $d\xi = 0$. This implies that $p_{,ab} = p_{,ba}$, which is equivalent to $p_{|ab} = p_{|ba}$. Thus,

$$p_{|ab} = \beta b_{|nb}^n + \gamma c_{|nb}^n + \beta_{,n} b_{|b}^n + \gamma_{,n} c_{|b}^n + \beta_{,b} b_{|n}^n + \gamma_{,b} c_{|n}^n + (\beta_{,n})_{|b} b_a^n + (\gamma_{,n})_{|b} c_a^n, \quad (4.4)$$

must be symmetric in (a, b) .

Note that,

$$\beta_{,n} = F^{-A}{}_n \beta_{,A} + \beta_1 I_{1,n} + \beta_2 I_{2,n}, \quad \gamma_{,n} = F^{-A}{}_n \gamma_{,A} + \gamma_1 I_{1,n} + \gamma_2 I_{2,n}, \quad (4.5)$$

where

$$\beta_i = \frac{\partial \beta}{\partial I_i}, \quad \gamma_i = \frac{\partial \gamma}{\partial I_i}, \quad i = 1, 2, \quad \beta_{,A} = \frac{\partial \beta}{\partial X^A}, \quad \gamma_{,A} = \frac{\partial \gamma}{\partial X^A}, \quad A = 1, 2, 3. \quad (4.6)$$

Also

$$\begin{aligned} (\beta_{,n})_{|b} &= \beta_1 I_{1|nb} + \beta_2 I_{2|nb} + \beta_{1,b} I_{1,n} + \beta_{2,b} I_{2,n} \\ &+ (F^{-B}{}_b F^{-A}{}_{n,B} - \gamma^m{}_{nb} F^{-A}{}_m) \beta_{,A} + F^{-A}{}_n (F^{-B}{}_b \beta_{,AB} + \beta_{1,A} I_{1,b} + \beta_{2,A} I_{2,b}) \\ &= \beta_1 I_{1|nb} + \beta_2 I_{2|nb} + I_{1,b} I_{1,n} \beta_{11} + I_{2,b} I_{2,n} \beta_{22} + (I_{1,b} I_{2,n} + I_{1,n} I_{2,b}) \beta_{12} \\ &+ (F^{-B}{}_b F^{-A}{}_{n,B} - \gamma^m{}_{nb} F^{-A}{}_m) \beta_{,A} + \frac{1}{2} (F^{-A}{}_n F^{-B}{}_b + F^{-B}{}_n F^{-A}{}_b) \beta_{,AB} \\ &+ (F^{-A}{}_b I_{1,n} + F^{-A}{}_n I_{1,b}) \beta_{1,A} + (F^{-A}{}_b I_{2,n} + F^{-A}{}_n I_{2,b}) \beta_{2,A}, \end{aligned} \quad (4.7)$$

and

$$\begin{aligned} (\gamma_{,n})_{|b} &= \gamma_1 I_{1|nb} + \gamma_2 I_{2|nb} + \gamma_{1,b} I_{1,n} + \gamma_{2,b} I_{2,n} + (F^{-B}{}_b F^{-A}{}_{n,B} - \gamma^m{}_{nb} F^{-A}{}_m) \gamma_{,A} \\ &+ F^{-A}{}_n (F^{-B}{}_b \gamma_{,AB} + \gamma_{1,A} I_{1,b} + \gamma_{2,A} I_{2,b}) \\ &= \gamma_1 I_{1|nb} + \gamma_2 I_{2|nb} + I_{1,b} I_{1,n} \gamma_{11} + I_{2,b} I_{2,n} \gamma_{22} + (I_{1,b} I_{2,n} + I_{1,n} I_{2,b}) \gamma_{12} \\ &+ (F^{-B}{}_b F^{-A}{}_{n,B} - \gamma^m{}_{nb} F^{-A}{}_m) \gamma_{,A} + \frac{1}{2} (F^{-A}{}_n F^{-B}{}_b + F^{-B}{}_n F^{-A}{}_b) \gamma_{,AB} \\ &+ (F^{-A}{}_b I_{1,n} + F^{-A}{}_n I_{1,b}) \gamma_{1,A} + (F^{-A}{}_b I_{2,n} + F^{-A}{}_n I_{2,b}) \gamma_{2,A}, \end{aligned} \quad (4.8)$$

⁸Note that $b^n{}_a = b^{nm} g_{ma}$ and $b_a^n = b^{mn} g_{am}$, which are equal. Thus, we use $b_a^n = b^n{}_a = b_a^n$. Similarly, the same notation is used for \mathbf{c} .

where

$$\begin{aligned}\beta_{ij} &= \frac{\partial^2 \beta}{\partial I_i \partial I_j}, & \gamma_{ij} &= \frac{\partial^2 \gamma}{\partial I_i \partial I_j}, & i \leq j = 1, 2, \\ \beta_{i,A} &= \frac{\partial^2 \beta}{\partial I_i \partial X^A}, & \gamma_{i,A} &= \frac{\partial^2 \gamma}{\partial I_i \partial X^A}, & i = 1, 2, A = 1, 2, 3, \\ \beta_{,AB} &= \frac{\partial^2 \beta}{\partial X^A \partial X^B}, & \gamma_{,AB} &= \frac{\partial^2 \gamma}{\partial X^A \partial X^B}, & A \leq B = 1, 2, 3.\end{aligned}\quad (4.9)$$

Therefore,

$$\begin{aligned}p_{|ab} &= b_a^n |_{nb} \beta + c_a^n |_{nb} \gamma \\ &+ [I_{1,b} b_a^n |_n + (b_a^n I_{1,n})_{|b}] \beta_1 + [I_{2,b} b_a^n |_n + (b_a^n I_{2,n})_{|b}] \beta_2 \\ &+ I_{1,n} I_{1,b} b_a^n \beta_{11} + I_{2,n} I_{2,b} b_a^n \beta_{22} + (I_{1,n} I_{2,b} + I_{2,n} I_{1,b}) b_a^n \beta_{12} \\ &+ [I_{1,b} c_a^n |_n + (c_a^n I_{1,n})_{|b}] \gamma_1 + [I_{2,b} c_a^n |_n + (c_a^n I_{2,n})_{|b}] \gamma_2 \\ &+ I_{1,n} I_{1,b} c_a^n \gamma_{11} + I_{2,n} I_{2,b} c_a^n \gamma_{22} + (I_{1,n} I_{2,b} + I_{2,n} I_{1,b}) c_a^n \gamma_{12} \\ &+ [F^{-A}_n b_a^n |_b + F^{-A}_b b_a^n |_n + (F^{-B}_b F^{-A}_{n,B} - \gamma^m_{nb} F^{-A}_m) b_a^n] \beta_{,A} \\ &+ [F^{-A}_n c_a^n |_b + F^{-A}_b c_a^n |_n + (F^{-B}_b F^{-A}_{n,B} - \gamma^m_{nb} F^{-A}_m) c_a^n] \gamma_{,A} \\ &+ F^{-A}_n b_a^n I_{1,b} \beta_{1,A} + F^{-A}_n b_a^n I_{2,b} \beta_{2,A} + F^{-A}_n c_a^n I_{1,b} \gamma_{1,A} + F^{-A}_n c_a^n I_{2,b} \gamma_{2,A} \\ &+ F^{-A}_n F^{-B}_b b_a^n \beta_{,AB} + F^{-A}_n F^{-B}_b c_a^n \gamma_{,AB}.\end{aligned}\quad (4.10)$$

The functions β and γ and their derivatives are independent, and hence, the coefficient of each function must be symmetric. Thus, we have the following set of universality constraints for homogeneous Cauchy elasticity

$$\mathcal{A}_{ab}^0 = b_a^n |_{nb}, \quad (4.11)$$

$$\mathcal{A}_{ab}^1 = I_{1,b} b_a^n |_n + (b_a^n I_{1,n})_{|b}, \quad (4.12)$$

$$\mathcal{A}_{ab}^2 = I_{2,b} b_a^n |_n + (b_a^n I_{2,n})_{|b}, \quad (4.13)$$

$$\mathcal{A}_{ab}^{11} = I_{1,n} I_{1,b} b_a^n, \quad (4.14)$$

$$\mathcal{A}_{ab}^{22} = I_{2,n} I_{2,b} b_a^n, \quad (4.15)$$

$$\mathcal{A}_{ab}^{12} = (I_{1,n} I_{2,b} + I_{2,n} I_{1,b}) b_a^n, \quad (4.16)$$

$$\mathcal{B}_{ab}^0 = c_a^n |_{nb}, \quad (4.17)$$

$$\mathcal{B}_{ab}^1 = I_{1,b} c_a^n |_n + (c_a^n I_{1,n})_{|b}, \quad (4.18)$$

$$\mathcal{B}_{ab}^2 = I_{2,b} c_a^n |_n + (c_a^n I_{2,n})_{|b}, \quad (4.19)$$

$$\mathcal{B}_{ab}^{11} = I_{1,n} I_{1,b} c_a^n, \quad (4.20)$$

$$\mathcal{B}_{ab}^{22} = I_{2,n} I_{2,b} c_a^n, \quad (4.21)$$

$$\mathcal{B}_{ab}^{12} = (I_{1,n} I_{2,b} + I_{2,n} I_{1,b}) c_a^n. \quad (4.22)$$

The six terms (4.11), (4.12), (4.14), (4.17), (4.19) and (4.21) are identical to those of hyperelasticity [30]. The following is the set of universal inhomogeneity constraints for inhomogeneous Cauchy elasticity

$$\mathcal{C}_{ab}^{0A} = F^{-A}_n b_a^n |_b + F^{-A}_b b_a^n |_n + (F^{-B}_b F^{-A}_{n,B} - \gamma^m_{nb} F^{-A}_m) b_a^n, \quad (4.23)$$

$$\mathcal{C}_{ab}^{1A} = (F^{-A}_n I_{1,b} + F^{-A}_b I_{1,n}) b_a^n, \quad (4.24)$$

$$\mathcal{C}_{ab}^{2A} = (F^{-A}_n I_{2,b} + F^{-A}_b I_{2,n}) b_a^n, \quad (4.25)$$

$$\mathcal{C}_{ab}^{0AB} = (F^{-A}_n F^{-B}_b + F^{-B}_n F^{-A}_b) b_a^n, \quad (4.26)$$

$$\mathcal{D}_{ab}^{0A} = F^{-A}_n c_{a|b}^n + F^{-A}_b c_{a|n}^n + (F^{-B}_b F^{-A}_{n,B} - \gamma^m_{nb} F^{-A}_m) c_a^n, \quad (4.27)$$

$$\mathcal{D}_{ab}^{1A} = (F^{-A}_n I_{1,b} + F^{-A}_b I_{1,n}) c_a^n, \quad (4.28)$$

$$\mathcal{D}_{ab}^{2A} = (F^{-A}_n I_{2,b} + F^{-A}_b I_{2,n}) c_a^n, \quad (4.29)$$

$$\mathcal{D}_{ab}^{0AB} = (F^{-A}_n F^{-B}_b + F^{-B}_n F^{-A}_b) c_a^n. \quad (4.30)$$

These terms must be symmetric in (a, b) for $A = 1, 2, 3$ and $A \leq B = 1, 2, 3$. The six terms (4.23), (4.24), (4.26), (4.27), (4.29) and (4.30) are identical to those of inhomogeneous isotropic hyperelasticity [23].

Recall that Ericksen's universality constraints of isotropic hyperelasticity are [30]:

$$\mathcal{A}_{ab}^1 = b_{a|bn}^n, \quad (4.31)$$

$$\mathcal{A}_{ab}^2 = c_{a|bn}^n, \quad (4.32)$$

$$\mathcal{A}_{ab}^{11} = b_{a|n}^n I_{1,b} + (b_a^n I_{1,n})_{|b}, \quad (4.33)$$

$$\mathcal{A}_{ab}^{22} = c_{a|n}^n I_{2,b} + (c_a^n I_{2,n})_{|b}, \quad (4.34)$$

$$\mathcal{A}_{ab}^{12} = (b_a^n I_{2,n})_{|b} + b_{a|n}^n I_{2,b} - [(c_a^n I_{1,n})_{|b} + c_{a|n}^n I_{1,b}], \quad (4.35)$$

$$\mathcal{A}_{ab}^{111} = b_a^n I_{1,n} I_{1,b}, \quad (4.36)$$

$$\mathcal{A}_{ab}^{222} = c_a^n I_{2,n} I_{2,b}, \quad (4.37)$$

$$\mathcal{A}_{ab}^{112} = b_a^n (I_{1,b} I_{2,n} + I_{1,n} I_{2,b}) - c_a^n I_{1,n} I_{1,b}, \quad (4.38)$$

$$\mathcal{A}_{ab}^{122} = b_a^n I_{2,b} I_{2,n} - c_a^n (I_{1,b} I_{2,n} + I_{1,n} I_{2,b}). \quad (4.39)$$

Also, the universal inhomogeneity constraints of hyperelasticity are [23]:

$$\mathcal{C}_{ab}^{1A} = F^{-A}_n b_{a|b}^n + F^{-A}_b c_{a|n}^n + b_a^n [F^{-B}_b F^{-A}_{n,B} - \gamma^m_{nb} F^{-A}_m], \quad (4.40)$$

$$\mathcal{C}_{ab}^{2A} = F^{-A}_n c_{a|b}^n + F^{-A}_b c_{a|n}^n + c_a^n [F^{-B}_b F^{-A}_{n,B} - \gamma^m_{nb} F^{-A}_m], \quad (4.41)$$

$$\mathcal{C}_{ab}^{11A} = b_a^n [F^{-A}_n I_{1,b} + F^{-A}_b I_{1,n}], \quad (4.42)$$

$$\mathcal{C}_{ab}^{22A} = c_a^n [F^{-A}_n I_{2,b} + F^{-A}_b I_{2,n}], \quad (4.43)$$

$$\mathcal{C}_{ab}^{12A} = b_a^n [F^{-A}_n I_{2,b} + F^{-A}_b I_{2,n}] - c_a^n [F^{-A}_n I_{1,b} + F^{-A}_b I_{1,n}], \quad (4.44)$$

$$\mathcal{C}_{ab}^{1AB} = b_a^n [F^{-A}_n F^{-B}_b + F^{-B}_n F^{-A}_b], \quad (4.45)$$

$$\mathcal{C}_{ab}^{2AB} = c_a^n [F^{-A}_n F^{-B}_b + F^{-B}_n F^{-A}_b]. \quad (4.46)$$

First, notice that there are nine sets of universality constraints (4.31–4.39) for homogeneous isotropic hyperelasticity [30] compared with twelve for compressible isotropic Cauchy elasticity (4.11–4.22). Second, the six terms (4.11), (4.12), (4.14), (4.17), (4.19) and (4.21) are identical to those of hyperelasticity. Thus, we first look at these six terms.

Ericksen [30] used the following result. Suppose \mathbf{u} and \mathbf{v} are vectors such that $\mathbf{u} \otimes \mathbf{v} = \mathbf{v} \otimes \mathbf{u}$. Assuming that $\mathbf{v} \neq \mathbf{0}$ (if both vectors are zero this equality trivially holds), one can write

$$\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} = \lambda \mathbf{v}, \quad (4.47)$$

i.e. \mathbf{u} and \mathbf{v} must be parallel. Now suppose that $\mathbf{u}^b = d\phi$ and $\mathbf{v}^b = d\psi$, where b is the flat operator that gives the one-form corresponding to a vector, d is the exterior derivative, and ϕ and ψ are scalar fields. Note that, $\lambda = \lambda(\mathbf{u}, \mathbf{v}) = \lambda(\phi, \psi)$. Thus, $\mathbf{u}^b = d\phi = \lambda(\phi, \psi)d\psi$. Hence

$$0 = d \circ d\phi = d\lambda(\phi, \psi) \wedge d\psi = \frac{\partial \lambda}{\partial \phi} d\phi \wedge d\psi, \quad (4.48)$$

where \wedge is the wedge product of differential forms. Therefore, $\lambda = \lambda(\psi)$, i.e. $\mathbf{u}^b = \lambda(\psi)d\psi$.

$W_{111}(\mathcal{A}_{ab}^{11})$ and $W_{222}(\mathcal{B}_{ab}^{22})$ terms: symmetry of the coefficient of the \mathcal{A}_{ab}^{11} term implies that [30]

$$(b_a^n I_{1,n}) I_{1,b} = (b_b^n I_{1,n}) I_{1,a}. \quad (4.49)$$

One concludes that either $I_{1,a} = 0$ or $b_a^n I_{1,n} = A^{-1} I_{1,a}$, for some scalar function A . This means that $I_{1,a}$ is an eigenvector of b_a^b with eigenvalue A^{-1} . We know that $b^{am} c_{mb} = \delta_a^m$, and hence, $b_b^m c_m^a = \delta_b^a$. Similarly, $b_{am} c^{mb} = \delta_a^b$, and hence, $b_m^a c_b^m = \delta_b^a$. Therefore, $c_a^n I_{1,n} = A I_{1,a}$.⁹ Similarly, the symmetry of the coefficient of the \mathcal{B}_{ab}^{22} term implies that

$$(c_a^n I_{2,n}) I_{2,b} = (c_b^n I_{2,n}) I_{2,a}. \quad (4.50)$$

The conclusion is that either $I_{2,a} = 0$ or $c_a^n I_{2,n} = \bar{A} I_{2,a}$, for some scalar function \bar{A} . One also has $b_a^n I_{2,n} = \bar{A}^{-1} I_{2,a}$. In summary,

$$c_a^n I_{1,n} = A I_{1,a}, \quad (4.51)$$

$$c_a^n I_{2,n} = \bar{A} I_{2,a}, \quad (4.52)$$

$$b_a^n I_{1,n} = A^{-1} I_{1,a}, \quad (4.53)$$

$$b_a^n I_{2,n} = \bar{A}^{-1} I_{2,a}. \quad (4.54)$$

\mathcal{A}_{ab}^{22} and \mathcal{B}_{ab}^{11} terms: symmetry of the coefficient of the \mathcal{A}_{ab}^{22} term implies that

$$(b_a^n I_{2,n}) I_{2,b} = (b_b^n I_{2,n}) I_{2,a} \quad \text{or} \quad \bar{A}^{-1} I_{2,a} I_{2,b} = \bar{A}^{-1} I_{2,b} I_{2,a}, \quad (4.55)$$

which is trivially satisfied. Similarly, the symmetry of the coefficient of the \mathcal{B}_{ab}^{11} term implies that

$$(c_a^n I_{1,n}) I_{1,b} = (c_b^n I_{1,n}) I_{1,a} \quad \text{or} \quad A I_{1,a} I_{1,b} = A I_{1,b} I_{1,a}, \quad (4.56)$$

which is also trivially satisfied.

\mathcal{A}_{ab}^{12} and \mathcal{B}_{ab}^{12} terms: symmetry of the coefficient of the \mathcal{A}_{ab}^{12} term implies that

$$(I_{1,n} I_{2,b} + I_{2,n} I_{1,b}) b_a^n = (I_{1,n} I_{2,a} + I_{2,n} I_{1,a}) b_b^n, \quad (4.57)$$

which is identical to the symmetry condition that comes from the coefficient of the W_{112} in hyperelasticity [30]. Thus,

$$(I_{1,b} I_{2,n} + I_{1,n} I_{2,b}) b_a^n = (I_{1,a} I_{2,n} + I_{1,n} I_{2,a}) b_b^n. \quad (4.58)$$

⁹Note that both \mathbf{b} and \mathbf{c} are positive definite. This means that when I_1 is not constant, $A \neq 0$, and hence, A^{-1} is an eigenvalue of \mathbf{c} .

Hence,

$$I_{1,b} \bar{\mathbf{A}}^{-1} I_{2,a} + \mathbf{A}^{-1} I_{1,a} I_{2,b} = I_{1,a} \bar{\mathbf{A}}^{-1} I_{2,b} + \mathbf{A}^{-1} I_{1,b} I_{2,a}. \quad (4.59)$$

Or

$$(\mathbf{A}^{-1} - \bar{\mathbf{A}}^{-1})(I_{1,a} I_{2,b} - I_{1,b} I_{2,a}) = 0. \quad (4.60)$$

Similarly, the symmetry of the coefficient of the \mathcal{B}_{ab}^2 term implies that

$$(I_{1,n} I_{2,b} + I_{2,n} I_{1,b}) c_a^n = (I_{1,n} I_{2,a} + I_{2,n} I_{1,a}) c_b^n. \quad (4.61)$$

This is simplified to read

$$(\mathbf{A} - \bar{\mathbf{A}})(I_{1,a} I_{2,b} - I_{1,b} I_{2,a}) = 0, \quad (4.62)$$

which is identical to the symmetry condition that comes from the coefficient of the W_{221} in hyperelasticity [30]. If either I_1 or I_2 is constant, (4.60) is satisfied for any \mathbf{A} and $\bar{\mathbf{A}}$. If $\bar{\mathbf{A}} \neq \mathbf{A}$, one has $I_{1,a} I_{2,b} = I_{1,b} I_{2,a}$, which implies that $I_{1,a}$ and $I_{2,a}$ are parallel. However, these are eigenvectors of b_a^b corresponding to the distinct eigenvalues $\bar{\mathbf{A}} \neq \mathbf{A}$ and must be perpendicular. This contradiction shows that $\bar{\mathbf{A}} = \mathbf{A}$.

Next, Ericksen shows that I_1 and I_2 must be functionally dependent.¹⁰ If either I_1 or I_2 is constant, this is trivially the case. If all the eigenvalues of \mathbf{b} (and hence those of \mathbf{c}) are distinct, each must have a one-dimensional eigenspace. Therefore, $I_{1,a}$ and $I_{2,a}$, which are eigenvectors corresponding to the same eigenvalue, must be parallel. This guarantees that the rank of the Jacobian matrix in (4.63) is less than 2, and hence, I_1 and I_2 are functionally dependent. Note that,

$$I_1 = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}, \quad I_2 = \frac{1}{c_1 c_2} + \frac{1}{c_2 c_3} + \frac{1}{c_3 c_1}, \quad I_3 = c_1 c_2 c_3 = 1, \quad (4.64)$$

where c_i are eigenvalues of \mathbf{c} . If two eigenvalues are equal, e.g. $c_1 = c_2$, one has (the case $c_1 = c_2 = c_3$ is trivial as incompressibility implies $c_1 = c_2 = c_3 = 1$)

$$I_1 = \frac{2}{c_1} + c_1^2, \quad I_2 = \frac{1}{c_1^2} + 2c_1. \quad (4.65)$$

Clearly, in this case I_1 and I_2 are functionally dependent. Therefore, there is a scalar function \mathbf{B} such that, $I_1 = I_1(\mathbf{B})$ and $I_2 = I_2(\mathbf{B})$. Similarly, $c_i = c_i(\mathbf{B})$.

W_{11} (\mathcal{A}_{ab}^1) and W_{22} (\mathcal{B}_{ab}^2) terms: note that, $I_{i,a} = I'_i(\mathbf{B}) \mathbf{B}_{,a}$, $i = 1, 2$. The second term in the coefficient of W_{22} (\mathcal{B}_{ab}^2) is simplified to read $(c_a^n I_{2,n})_b = (c_1 I'_2 \mathbf{B}_{,a})_b = (c_1 I'_2)' \mathbf{B}_{,b} \mathbf{B}_{,a} + c_1 I'_2 \mathbf{B}_{,ab}$, which is symmetric. Therefore, the symmetry of the coefficient of W_{22} implies that

$$I'_2 (c_a^n \mathbf{B}_{,b} - c_b^n \mathbf{B}_{,a}) = 0. \quad (4.66)$$

Thus, either I_2 is constant or

¹⁰ I_1 and I_2 are functionally dependent if there exists a non-trivial function (a function that is not identically zero) such that $F(I_1, I_2) = 0$. Taking derivatives one obtains

$$\begin{bmatrix} I_{1,1} & I_{2,1} \\ I_{1,2} & I_{2,2} \\ I_{1,3} & I_{2,3} \end{bmatrix} \begin{bmatrix} \frac{\partial F}{\partial I_1} \\ \frac{\partial F}{\partial I_2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. \quad (4.63)$$

For F to be non-trivial, the Jacobian matrix must have rank less than 2.

$$c_{a,n}^n = D B_{,a}, \quad (4.67)$$

where D is a scalar field. Similarly, the symmetry of the coefficient of W_{11} (\mathcal{A}_{ab}^1) dictates that either I_1 is constant or

$$b_{a|n}^n = E B_{,a}, \quad (4.68)$$

where E is a scalar field.

\mathcal{A}_{ab}^2 and \mathcal{B}_{ab}^1 terms: The symmetry of \mathcal{A}_{ab}^2 terms implies that

$$I'_2(b_{a|n}^n B_{,b} - b_{b|n}^n B_{,a}) = I'_2(E B_{,a} B_{,b} - E B_{,b} B_{,a}) = 0, \quad (4.69)$$

which is trivially satisfied. Similarly, the symmetry of \mathcal{B}_{ab}^1 terms implies that

$$I'_1(c_{a|n}^n B_{,b} - c_{b|n}^n B_{,a}) = I'_1(D B_{,a} B_{,b} - D B_{,b} B_{,a}) = 0, \quad (4.70)$$

which is also trivially satisfied.

The only two remaining universality constraints are \mathcal{A}_{ab}^0 and \mathcal{B}_{ab}^0 terms, which are identical to the coefficients of W_1 and W_2 in hyperelasticity. Using these two sets of universality constraints, Ericksen [30] found Families 1–4 of universal deformations.

Note that if I_1 and I_2 are constant, (4.11–4.22) reduce to the symmetry of the two terms $b_{a|nb}^n$ and $c_{a|nb}^n$, which is exactly what one would have in hyperelasticity. We have thus shown that although there are more universality constraints in incompressible isotropic Cauchy elasticity and some of the universality constraints are not identical to those of hyperelasticity, nevertheless the two sets of universality constraints are equivalent.

Next, we show that the universal inhomogeneity constraints of Cauchy elasticity (4.23–4.30) are equivalent to those of hyperelasticity (4.40–4.46). We only need to check the terms (4.25) and (4.28). Let us define $P_{bn}^A = F^{-A}{}_n I_{1,b} + F^{-A}{}_b I_{1,n}$ and note that, $P_{nb}^A = P_{bn}^A$. From (4.24), we know that

$$P_{bn}^A b_a^n = P_{an}^A b_b^n. \quad (4.71)$$

Multiply both sides by $c_m^a c_k^b$ to obtain $c_k^b P_{bn}^A b_a^n c_m^a = c_m^a P_{an}^A b_b^n c_k^b$, or $c_k^b P_{bn}^A \delta_m^n = c_m^a P_{an}^A \delta_k^n$. Thus,

$$c_k^b P_{bm}^A = c_m^a P_{ak}^A, \quad \text{or} \quad c_a^n P_{nb}^A = c_b^n P_{na}^A, \quad (4.72)$$

which is (4.28). Similarly, (4.29) is equivalent to (4.25). Moreover, the symmetry of the terms (4.42) and (4.43) implies the symmetry of (4.44). Therefore, we have proved the following result.

Proposition 4.1. *The set of universal deformations of incompressible isotropic Cauchy elasticity is identical to that of incompressible isotropic hyperelasticity. For a given universal deformation, the corresponding set of universal inhomogeneities is identical to that of hyperelasticity.*

5. Conclusions

The existing studies of universal deformations have been restricted to hyperelasticity, or more generally, to materials that have an underlying energy function. In this paper, we extended the analysis of universal deformations to Cauchy elastic solids, which, in general, do not have an energy function. We considered both compressible and incompressible inhomogeneous isotropic Cauchy elasticity. As hyperelasticity is a proper subset of Cauchy elasticity, one would expect the set of universal deformations of Cauchy elasticity to be a proper subset of that of hyperelasticity. We proved the somewhat unexpected result that the sets of universal deformations of isotropic Cauchy elasticity and isotropic hyperelasticity are identical, in both

the compressible and incompressible cases. We also proved that their corresponding universal inhomogeneities are identical as well.

Data accessibility. This article has no additional data.

Declaration of AI use. I have not used AI-assisted technologies in creating this article.

Authors' contributions. A.Y.: conceptualization, formal analysis, funding acquisition, investigation, writing—original draft, writing—review and editing.

Conflict of interest declaration. I declare I have no competing interests.

Funding. This work was supported by NSF – grant no. CMMI 1939901.

Dedication. Dedicated to Professor Kaushik Bhattacharya on the occasion of his 60th birthday.

References

1. Eckart C. 1948 The thermodynamics of irreversible processes. 4. The theory of elasticity and anelasticity. *Phys. Rev.* **73**, 373–382. (doi:[10.1103/PhysRev.73.373](https://doi.org/10.1103/PhysRev.73.373))
2. Knowles JK. 1979 Universal states of finite anti-plane shear: Ericksen's problem in miniature. *Am. Math. Mon.* **86**, 109–113. (doi:[10.1080/00029890.1979.11994744](https://doi.org/10.1080/00029890.1979.11994744))
3. Polignone DA, Horgan CO. 1991 Pure torsion of compressible non-linearly elastic circular cylinders. *Quart. Appl. Math.* **49**, 591–607. (doi:[10.1090/qam/1121689](https://doi.org/10.1090/qam/1121689))
4. De Pascalis R, Rajagopal K, Saccomandi G. 2009 Remarks on the use and misuse of the semi-inverse method in the nonlinear theory of elasticity. *The. Quart. J. Mech. Appl. Math.* **62**, 451–464. (doi:[10.1093/qjmam/hbp019](https://doi.org/10.1093/qjmam/hbp019))
5. Tadmor EB, Miller RE, Elliott RS. 2012 *Continuum mechanics and thermodynamics: from fundamental concepts to governing equations*. Cambridge, UK: Cambridge University Press.
6. Goriely A. 2017 *The mathematics and mechanics of biological growth*. vol. 45. New York, NY: Springer.
7. Kumar A, Yavari A. 2023 Nonlinear mechanics of remodeling. *J. Mech. Phys. Solids* **181**, 105449. (doi:[10.1016/j.jmps.2023.105449](https://doi.org/10.1016/j.jmps.2023.105449))
8. Sadik S, Yavari A. 2024 Nonlinear anisotropic viscoelasticity. *J. Mech. Phys. Solids* **182**, 105461. (doi:[10.1016/j.jmps.2023.105461](https://doi.org/10.1016/j.jmps.2023.105461))
9. Rivlin RS, Saunders DW. 1951 Large elastic deformations of isotropic materials VII. experiments on the deformation of rubber. *Phil. Trans. R. Soc. Lond. A* **243**, 251–288. (doi:[10.1098/rsta.1951.0004](https://doi.org/10.1098/rsta.1951.0004))
10. Saccomandi G. 2001 Universal solutions and relations in finite elasticity. In *Topics in finite elasticity*, pp. 95–130. Springer. (doi:[10.1007/978-3-7091-2582-3](https://doi.org/10.1007/978-3-7091-2582-3))
11. Doyle T, Ericksen JL. 1956 Nonlinear elasticity. *Adv. Appl. Mech.* **4**, 53–115. (doi:[10.1016/S0065-2156\(08\)70371-5](https://doi.org/10.1016/S0065-2156(08)70371-5))
12. Wesołowski Z, Seeger A. 1968 On the screw dislocation in finite elasticity (ed. E Kröner). In *Mechanics of Generalized Continua. Proceedings of the IUTAM Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications*, pp. 294–297. Berlin, Germany: Springer.
13. Gairola B. 1979 Nonlinear elastic problems. In *Dislocations in solids* (ed. FRN Nabarro). Amsterdam, the Netherlands: North-Holland Publishing Co.
14. Zubov LM. 1997 *Nonlinear theory of dislocations and disclinations in elastic bodies*. vol. 47. Berlin, Germany: Springer Science & Business Media.
15. Yavari A, Goriely A. 2012 Riemann–Cartan geometry of nonlinear dislocation mechanics. *Arch. Ration. Mech. Anal.* **205**, 59–118. (doi:[10.1007/s00205-012-0500-0](https://doi.org/10.1007/s00205-012-0500-0))
16. Yavari A, Goriely A. 2012 Weyl geometry and the Nonlinear mechanics of distributed point defects. *Proc. R. Soc. A* **468**, 3902–3922. (doi:[10.1098/rspa.2012.0342](https://doi.org/10.1098/rspa.2012.0342))
17. Yavari A, Goriely A. 2013 Riemann–Cartan geometry of nonlinear disclination mechanics. *Math. Mech. Solids* **18**, 91–102. (doi:[10.1177/1081286511436137](https://doi.org/10.1177/1081286511436137))
18. Yavari A, Goriely A. 2014 The geometry of discombinations and its applications to semi-inverse problems in anelasticity. *Proc. R. Soc. A* **470**, 20140403. (doi:[10.1098/rspa.2014.0403](https://doi.org/10.1098/rspa.2014.0403))

19. Golgoon A, Yavari A. 2018 Line and point defects in nonlinear anisotropic solids. *Z. Angew. Math. Phys.* **69**, 1–28. (doi:10.1007/s00033-018-0973-2)
20. Yavari A, Goriely A. 2013 Nonlinear elastic inclusions in isotropic solids. *Proc. R. Soc. A* **469**, 20130415. (doi:10.1098/rspa.2013.0415)
21. Yavari A, Goriely A. 2015 The twist-fit problem: finite torsional and shear eigenstrains in nonlinear elastic solids. *Proc. R. Soc. A* **471**, 20150596. (doi:10.1098/rspa.2015.0596)
22. Golgoon A, Yavari A. 2018 Nonlinear elastic inclusions in anisotropic solids. *J. Elast.* **130**, 239–269. (doi:10.1007/s10659-017-9639-0)
23. Yavari A. 2021 On Eshelby’s inclusion problem in nonlinear anisotropic elasticity. *J. Micromech. Mol. Phys.* **06**, 2150002. (doi:10.1142/S2424913021500028)
24. Dragoni E. 1996 The radial compaction of a hyperelastic tube as a benchmark in compressible finite elasticity. *Int. J. Non Linear Mech.* **31**, 483–493. (doi:10.1016/0020-7462(95)00002-X)
25. Chi H, Talischi C, Lopez-Pamies O, H.Paulino G. 2015 Polygonal finite elements for finite elasticity. *Int. J. Numer. Methods Eng.* **101**, 305–328. (doi:10.1002/nme.4802)
26. Shojaei MF, Yavari A. 2018 Compatible-strain mixed finite element methods for incompressible nonlinear elasticity. *J. Comput. Phys.* **361**, 247–279. (doi:10.1016/j.jcp.2018.01.053)
27. Hashin Z. 1985 Large isotropic elastic deformation of composites and porous media. *Int. J. Solids Struct.* **21**, 711–720. (doi:10.1016/0020-7683(85)90074-5)
28. Lopez-Pamies O, Moraleda J, Segurado J, Llorca J. 2012 On the extremal properties of Hashin’s hollow cylinder assemblage in nonlinear elasticity. *J. Elast.* **107**, 1–10. (doi:10.1007/s10659-011-9331-8)
29. Golgoon A, Yavari A. 2021 On Hashin’s hollow cylinder and sphere assemblages in anisotropic nonlinear elasticity. *J. Elast.* **146**, 65–82. (doi:10.1007/s10659-021-09856-2)
30. Ericksen JL. 1954 Deformations possible in every isotropic, incompressible, perfectly elastic body. *J. Appl. Math. Phys.* **5**, 466–489. (doi:10.1007/BF01601214)
31. Ericksen JL. 1955 Deformations possible in every compressible, isotropic, perfectly elastic material. *J. Math. Phys.* **34**, 126–128. (doi:10.1002/sapm1955341126)
32. Rivlin RS. 1948 Large elastic deformations of isotropic materials IV. further developments of the general theory. *Phil. Trans. R. Soc. Lond. A* **241**, 379–397. (doi:10.1098/rsta.1948.0024)
33. Rivlin RS. 1949 Large elastic deformations of isotropic materials. V. the problem of flexure. *Proc. R. Soc. Lond. A.* **195**, 463–473. (doi:10.1098/rspa.1949.0004)
34. Rivlin RS. 1949 A note on the torsion of an incompressible highly-elastic cylinder. *Math. Proc. Camb. Philos. Soc.* **45**, 485–487. (doi:10.1017/S0305004100025135)
35. Fosdick RL. 1965 Remarks on compatibility. In *Proc Int Conf Rheology, Pinebrook Conference Center of Syracuse University, Pinebrook, NY, 23–27 August*, pp. 109–127.
36. Singh M, Pipkin AC. 1965 Note on Ericksen’s problem. *Zeitschrift fur angewandte Mathematik und Physik* **16**, 706–709. (doi:10.1007/BF01590971)
37. Klingbeil WW, Shield RT. 1966 On a class of solutions in plane finite elasticity. *Zeitschrift fur angewandte Mathematik und Physik* **17**, 489–511. (doi:10.1007/BF01595984)
38. Marris AW, Shiau JF. 1970 Universal deformations in isotropic incompressible hyperelastic materials when the deformation tensor has equal proper values. *Arch. Rational Mech. Anal.* **36**, 135–160. (doi:10.1007/BF00250814)
39. Kafadar CB. 1972 On Ericksen’s problem. *Arch. Rational Mech. Anal.* **47**, 15–27. (doi:10.1007/BF00252185)
40. Marris AW. 1975 Universal deformations in incompressible isotropic elastic materials. *J. Elast.* **5**, 111–128. (doi:10.1007/BF01390072)
41. Marris AW. 1982 Two new theorems on Ericksen’s problem. *Arch. Rational Mech. Anal.* **79**, 131–173. (doi:10.1007/BF00250840)
42. Fosdick RL, Schuler KW. 1969 On Ericksen’s problem for plane deformations with uniform transverse stretch. *Int. J. Eng. Sci.* **7**, 217–233. (doi:10.1016/0020-7225(69)90058-5)
43. Fosdick RL. 1971 Statically possible radially symmetric deformations in isotropic, incompressible elastic solids. *Zeitschrift fur angewandte Mathematik und Physik* **22**, 590–607. (doi:10.1007/BF01614002)
44. Noll W. 1958 A mathematical theory of the mechanical behavior of continuous media. *Arch. Rational Mech. Anal.* **2**, 197–226. (doi:10.1007/BF00277929)

45. Carroll MM. 1967 Controllable deformations of incompressible simple materials. *Int. J. Eng. Sci.* **5**, 515–525. (doi:10.1016/0020-7225(67)90038-9)

46. Yavari A, Goriely A. 2021 Universal deformations in anisotropic nonlinear elastic solids. *J. Mech. Phys. Solids* **156**, 104598. (doi:10.1016/j.jmps.2021.104598)

47. Yavari A. 2021 Universal deformations in inhomogeneous isotropic nonlinear elastic solids. *Proc. R. Soc. A* **477**, 20210547. (doi:10.1098/rspa.2021.0547)

48. Yavari A, Goriely A. 2023 The universal program of nonlinear hyperelasticity. *J. Elast.* **154**, 91–146. (doi:10.1007/s10659-022-09906-3)

49. Erickson JL, Rivlin RS. 1954 Large elastic deformations of homogeneous anisotropic materials. *Indiana Univ. Math. J.* **3**, 281–301. (doi:10.1512/iumj.1954.3.53014)

50. Truesdell C. 1966 *The elements of continuum mechanics*. Berlin, Germany: Springer-Verlag.

51. Gurtin ME. 1972 The linear theory of elasticity. In *Handbuch der Physik, band Via/2*. Berlin, Germany: Springer-Verlag.

52. Carroll MM. 1973 Controllable states of stress for compressible elastic solids. *J. Elast.* **3**, 57–61. (doi:10.1007/BF00045799)

53. Yavari A, Goodbrake C, Goriely A. 2020 Universal displacements in linear elasticity. *J. Mech. Phys. Solids* **135**, 103782. (doi:10.1016/j.jmps.2019.103782)

54. Yavari A, Goriely A. 2023 The universal program of linear elasticity. *Math. Mech. Solids* **28**, 251–268. (doi:10.1177/10812865221091305)

55. Yavari A, Goriely A. 2022 Universality in anisotropic linear anelasticity. *J. Elast.* **150**, 241–259. (doi:10.1007/s10659-022-09910-7)

56. Adkins JE, Rivlin RS. 1955 Large elastic deformations of isotropic materials X. reinforcement by inextensible cords. *Phil. Trans. R. Soc. Lond. A* **248**, 201–223. (doi:10.1098/rsta.1955.0014)

57. Pipkin AC, Rogers TG. 1971 Plane deformations of Incompressible fiber-reinforced materials. *J. Appl. Mech.* **38**, 634–640. (doi:10.1115/1.3408866)

58. Pipkin AC. 1974 Generalized plane deformations of ideal fiber-reinforced materials. *Quart. Appl. Math.* **32**, 253–263. (doi:10.1090/qam/99681)

59. Pipkin AC. 1979 Stress analysis for fiber-reinforced materials. In *Advances in applied mechanics*, pp. 1–51, vol. **19**. Elsevier.

60. Beskos DE. 1972 Universal solutions for fiber-reinforced compressible isotropic elastic materials. *J. Elast.* **2**, 153–168. (doi:10.1007/BF00125524)

61. Beatty MF. 1978 General solutions in the equilibrium theory of Inextensible elastic materials. *Acta Mech.* **29**, 119–126. (doi:10.1007/BF01176630)

62. Yavari A. 2023 Universal displacements in inextensible fiber-reinforced linear elastic solids. *Math. Mech. Solids* **29**. (doi:10.1177/10812865231181924)

63. Yavari A, Goriely A. 2016 The anelastic Erickson problem: universal eigenstrains and deformations in compressible isotropic elastic solids. *Proc. R. Soc. A* **472**, 20160690. (doi:10.1098/rspa.2016.0690)

64. Goodbrake C, Yavari A, Goriely A. 2020 The anelastic Erickson problem: universal deformations and universal eigenstrains in incompressible nonlinear anelasticity. *J. Elast.* **142**, 291–381. (doi:10.1007/s10659-020-09797-2)

65. Yavari A, Pradhan SP. 2022 Accretion mechanics of nonlinear elastic circular cylindrical bars under finite torsion. *J. Elast.* **152**, 29–60. (doi:10.1007/s10659-022-09957-6)

66. Yavari A, Safa Y, Soleiman Fallah A. 2023 Finite extension of accreting nonlinear elastic solid circular cylinders. *Continuum Mech. Thermodyn.* (doi:10.1007/s00161-023-01208-w)

67. Pradhan SP, Yavari A. 2023 Accretion-ablation mechanics. *Phil. Trans. R. Soc. A* **381**, 20220373. (doi:10.1098/rsta.2022.0373)

68. Lee V, Bhattacharya K. 2023 Universal deformations of incompressible nonlinear elasticity as applied to ideal liquid crystal elastomers. *J. Elast.* (doi:10.1007/s10659-023-10018-9)

69. Mihai LA, Goriely A. 2023 Controllable deformations of unconstrained ideal nematic elastomers. *J. Elast.* (doi:10.1007/s10659-023-10038-5)

70. Ogden RW. 1984 *Non-linear elastic deformations*. Mineola, NY: Dover.

71. Marsden JE, Hughes TJR. 1994 *Mathematical foundations of elasticity*. Mineola, NY: Dover Publications.

72. Cauchy AL. 1828 Sur les ‘équations qui expriment les conditions d’‘équilibre ou les lois du mouvement intérieur d’un corps solide, ‘élastique ou non ‘élastique. *Exerc. de Math.* **3**, 160–187.

73. Truesdell C. 1952 The mechanical foundations of elasticity and fluid dynamics. *J. R. Mech. Anal.* **1**, 125–300. (doi:10.1512/iumj.1952.1.51005)

74. Truesdell C, Noll W. 2004 *The non-linear field theories of mechanics*. Berlin, Heidelberg, Germany: Springer.

75. Morgan AJA. 1966 Some properties of media defined by constitutive equations in implicit form. *Int. J. Eng. Sci.* **4**, 155–178. (doi:10.1016/0020-7225(66)90021-8)

76. Rajagopal KR. 2003 On implicit constitutive theories. *Appl. Math.* **48**, 279–319. (doi:10.1023/A:1026062615145)

77. Rajagopal KR. 2007 The elasticity of elasticity. *Z. angew. Math. Phys.* **58**, 309–317. (doi:10.1007/s00033-006-6084-5)

78. Rivlin RS, Ericksen JL. 1955 Stress-deformation relations for isotropic materials. *J. R. Mech. Anal.* **4**, 323–425. (doi:10.1512/iumj.1955.4.54011)

79. Wang CC. 1969 On representations for isotropic functions: part I. isotropic functions of symmetric tensors and vectors. *Arch. Ration. Mech. Anal.* **33**, 249–267. (doi:10.1007/BF00281278)

80. Boehler JP. 1977 On irreducible representations for isotropic scalar functions. *Z. angew. Math. Mech.* **57**, 323–327. (doi:10.1002/zamm.19770570608)

81. Green AE, Naghdi PM. 1971 On thermodynamics, rate of work and energy. *Arch. Ration. Mech. Anal.* **40**, 37–49. (doi:10.1007/BF00281529)

82. Scheibner C, Souslov A, Banerjee D, Surówka P, Irvine WTM, Vitelli V. 2020 Odd elasticity. *Nat. Phys.* **16**, 475–480. (doi:10.1038/s41567-020-0795-y)

83. Rivlin RS. 1986 Reflections on certain aspects of themomechanics. In *Contributi del centro linceo interdisciplinare di scienze matematiche E loro applicazioni*, pp. 11–43. Berlin, Germany: Springer.

84. Casey J. 2005 A remark on cauchy-elasticity. *Int. J. Non Linear Mech.* **40**, 331–339. (doi:10.1016/j.ijnonlinmec.2004.06.006)

85. Carroll MM. 2009 Must elastic materials be hyperelastic *Math. Mech. Solids* **14**, 369–376. (doi:10.1177/1081286508099385)

86. Rajagopal KR. 2011 Conspectus of concepts of elasticity. *Math. Mech. Solids* **16**, 536–562. (doi:10.1177/1081286510387856)

87. Ericksen JL. 1956 Stress deformation relations for solids. *Can. J. Phys.* **34**, 226–227. (doi:10.1139/p56-025)

88. Bordiga G, Piccolroaz A, Bigoni D. 2022 A way to hypo-elastic artificial materials without a strain potential and displaying flutter instability. *J. Mech. Phys. Solids* **158**, 104665. (doi:10.1016/j.jmps.2021.104665)

89. Kružík, M., and T. Roubíček. 2019. *Mathematical Methods in Continuum Mechanics of Solids*. Springer.

90. Fruchart M, Scheibner C, Vitelli V. 2023 Odd viscosity and odd elasticity. *Annu. Rev. Condens. Matter Phys.* **14**, 471–510. (doi:10.1146/annurev-conmatphys-040821-125506)