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For a given class of materials, universal deformations
are those deformations that can be maintained
in the absence of body forces and by applying
solely boundary tractions. For inhomogeneous
bodies, in addition to the universality constraints
that determine the universal deformations, there
are extra constraints  on the form of  the
material inhomogeneities—universal inhomogeneity
constraints. Those inhomogeneities compatible with
the universal inhomogeneity constraints are called
universal inhomogeneities. In a Cauchy elastic solid,
stress at a given point and at an instance of
time is a function of strain at that point and that
exact moment in time, without any dependence
on prior history. A Cauchy elastic solid does not
necessarily have an energy function, i.e. Cauchy
elastic solids are, in general, non-hyperelastic (or
non-Green elastic). In this paper, we characterize
universal deformations in both compressible and
incompressible inhomogeneous isotropic Cauchy
elasticity. As Cauchy elasticity includes hyperelasticity,
one expects the universal deformations of Cauchy
elasticity to be a subset of those of hyperelasticity both
in compressible and incompressible cases. It is also
expected that the universal inhomogeneity constraints
to be more stringent than those of hyperelasticity,
and hence, the set of universal inhomogeneities to
be smaller than that of hyperelasticity. We prove
the somewhat unexpected result that the sets of
universal deformations of isotropic Cauchy elasticity
and isotropic hyperelasticity are identical, in both the
compressible and incompressible cases. We also prove
that their corresponding universal inhomogeneities are
identical as well.
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1. Introduction
Within a given class of materials, universal deformations refer to those deformations that can
be maintained in the absence of body forces and by applying only boundary tractions, for
any member of the material class. Universal deformations do not depend on the particular
material within the class. However, the boundary tractions necessary to sustain a universal
deformation depend on the specific material. Universal deformations have played a crucial
role in nonlinear elasticity and anelasticity (in the sense of Eckart [1]): (i) They have had an
important organizational role in the semi-inverse solutions in nonlinear elasticity [2–6], and
more recently in anelasticity [7] and viscoelasticity [8]. (ii) They offer guidance for designing
experiments for determining the constitutive relations of a specific material [9,10].1 (iii) All
the existing exact solutions of defects in nonlinear solids are related to universal deformations
[12–19]. (iv) Universal deformations have been important for finding exact solutions for the
stress field of distributed finite eigenstrains in nonlinear solids and for solving the nonlinear
analogues of Eshelby’s inclusion problem [20–23]. (v) These exact solutions have been used as
benchmark problems in computational mechanics [10,24–26]. (vi) Universal deformations have
been used in deriving effective properties for nonlinear composites [27–29].

The systematic study of universal deformations began in the 1950s by Jerry Ericksen [30,31]
for homogeneous compressible and incompressible isotropic solids. His work was influenced
by the earlier contributions of Ronald Rivlin [32–34]. Ericksen [31] proved that for homoge-
neous compressible isotropic solids, universal deformations are homogeneous. The character-
ization of universal deformations in the presence of internal constraints is a particularly
challenging problem [10]. Ericksen [30] discovered four families of universal deformations
for incompressible isotropic elastic solids. Initially, he speculated that a deformation with
constant-principal invariants is homogeneous, but this conjecture was proven incorrect [35].
Subsequently, a fifth family of universal deformations was found [36,37]. The fifth family of
universal deformations have constant-principal invariants but are not homogeneous. As of now,
it is not known whether there exist additional inhomogeneous constant-principal invariant
universal deformations (Ericksen’s problem). The following are the six known families of
universal deformations:

— Family 0: Homogeneous deformations;
— Family 1: Bending, stretching and shearing of a rectangular block;
— Family 2: Straightening, stretching and shearing of a sector of a cylindrical shell;
— Family 3: Inflation, bending, torsion, extension and shearing of a sector of an annular

wedge;
— Family 4: Inflation/inversion of a sector of a spherical shell; and
— Family 5: Inflation, bending, extension and azimuthal shearing of an annular wedge.

There have been several attempts to solve Ericksen’s problem in the past few decades [38–41].
Fosdick & Schuler [42] showed that for the case of plane deformations with uniform transverse
stretch, there are no new solutions other than the known families. Fosdick [43] reached the same
conclusion for radially symmetric deformations.

In a simple material, stress at any given point and time t depends only on the history of
the deformation gradient at that point up to time t [44]. Carroll [45] demonstrated that the
above-known universal deformations of homogenous incompressible isotropic elastic solids are
universal for simple materials as well.

1The following quote from [11, p. 89] explains it best: ‘From the standpoint of attempting to determine the form of Σ for
a given material by comparing general solutions with results of experiment, it appears that the solutions which are most
useful are those which correspond to deformations which can be produced in every material of the type considered by the
application of surface tractions only’. Here, Σ is the energy function and by ‘general’ they mean ‘universal’.
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The study of universal deformations has recently been extended to inhomogeneous
anisotropic solids [46–48].2 These comprehensive studies include both compressible and
incompressible isotropic, transversely isotropic, orthotropic and monoclinic solids. For these
three classes of compressible anisotropic solids, it was shown that universal deformations are
homogenous, and the material-preferred directions are uniform. Additionally, for isotropic
solids and each of the three classes of anisotropic solids, the corresponding universal inhomoge-
neities—these represent inhomogeneities in the energy function that are compatible with the
universality constraints—were characterized. The corresponding universal inhomogeneities for
each of the above six known families of universal deformations were determined for inhomoge-
neus isotropic and the three classes of inhomogeneous incompressible anisotropic solids.

In linear elasticity, universal displacements are the counterparts of universal deformations
[50–53]. Yavari et al. [53] demonstrated the explicit dependence of universal displacements on
the symmetry class of the material. Specifically, the larger the symmetry group, the larger the
corresponding set of universal displacements. Therefore, isotropic solids have the largest set
of universal displacements, while triclinic solids possess the smallest set of universal displace-
ments. The investigation into universal displacements has also been extended to inhomogene-
ous solids [54] and linear anelasticity [55].

A class of materials with internal constraints, significant in engineering applications,
consists of materials reinforced with inextensible fibres [56–59]. Despite their importance,
there is a scarcity of literature on the universal deformations of fibre-reinforced solids. Beskos
[60] studied homogeneous compressible isotropic solids reinforced with inextensible fibres,
investigating whether universal deformations of incompressible isotropic solids are universal
for this class as well. Families 1, 2, 3 and 4 were specifically analysed, revealing that certain
subsets of these families are universal for specific fibre distributions. Interestingly, all these
universal deformations are found to be homogeneous except for the shearing of a circular tube
with circumferential fibres. Beatty [61] further examined homogeneous compressible isotropic
solids reinforced by a single family of inextensible fibres. He investigated the problem of
finding all those fibre distributions for which homogenous deformations are universal. He
proved that there are only three types of such fibre distributions, all characterized by straight
fibres. In a recent study, Yavari [62] studied universal displacements in compressible anisotropic
linear elastic solids reinforced by a single family of inextensible fibres. For each symmetry
class, and under the assumption of a uniform distribution of straight fibres respecting the
corresponding symmetry, the respective universal displacements were characterized. Interest-
ingly, it was observed that, except for triclinic and cubic solids, the presence of inextensible
fibres enlarges the set of universal displacements within the other five classes.3

In recent years, Ericksen’s analysis has been extended to anelasticity. Yavari & Goriely [63]
showed that in compressible anelasticity, universal deformations are covariantly homogene-
ous. Universal deformations and eigenstrains in incompressible anelasticity were studied by
Goodbrake et al. [64]. It was observed that the six known families of universal deformations
are invariant under specific Lie subgroups of the special Euclidean group. There are also some
recent studies of universal deformations and eigenstrains in accreting bodies [65–67]. There
have also been studies of universal deformations in liquid crystal elastomers [68,69].

In this paper, we extend the study of universal deformations and inhomogeneities to
inhomogeneous compressible and incompressible isotropic Cauchy elasticity. Cauchy elastic
solids may not necessarily have an energy function and include hyperelastic solids (Green
elastic solids) as a special case. This suggests that Cauchy elasticity may have more stringent
universality and universal inhomogeneity constraints compared with those of hyperelasticity.
This, in turn, leads one to anticipate smaller sets of universal deformations and universal
inhomogeneities for Cauchy elasticity compared with those of hyperelasticity. We prove the

2Prior to our work, there had been some limited work on universal deformations in anisotropic solids [49].
3It should be noted that a fibre-reinforced solid with straight fibres cannot be isotropic.
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somewhat unexpected result that the universal deformations and inhomogeneities of Cauchy
elasticity are identical to those of Green elasticity in both the compressible and incompressible
cases.

This paper is organized as follows. In §2, Cauchy elasticity is briefly reviewed. Universal
deformations of inhomogeneous compressible isotropic Cauchy elasticity are characterized in
§3. In §4, the same problem is studied for inhomogeneous incompressible isotropic Cauchy
elasticity. Conclusions are given in §5.

2. Cauchy elasticity
Let us consider a body that in its undeformed configuration is identified with an embedded
submanifold B of the Euclidean ambient space S. The flat metric of the Euclidean ambient

space is denoted by g and the induced metric on the body in its reference configuration
is by G = g B . Deformation is a map from B to the ambient space, i.e. φ:B→ C ⊂ S, where

C = φ(B) is the current configuration. The tangent map of φ is the so-called deformation

gradient F = Tφ (a metric-independent map), which at each material point X ∈ B is a linear

map F X :TXB→ Tφ X C. With respect to the coordinate charts {XA} and {xa} for B and C,

respectively, the deformation gradient has components FaA = ∂φa/∂XA. The transpose of the

deformation gradient FT has components (FT)Aa = gab FbBGAB. The right Cauchy–Green strain

is defined as C = FTF and has components CAB = (FT)Aa FaB. Thus, CAB = (gab ∘ φ) FaA FbB, which
means that the right Cauchy–Green strain is the pull-back of the spatial metric to the refer-
ence configuration, i.e. C♭ = φ*g, where ♭ is the flat operator induced by the metric G (which
lowers indices). The left Cauchy–Green strain is defined as B♯ = φ*(g♯), which has componentsBAB = F −Aa F −Bb gab. The spatial analogue of C♭ is defined as c♭ = φ*G, which has componentscab = F −Aa F −BbGAB. Similarly, the spatial analogue of B♯ is b♯ = φ*(G♯), which has componentsbab = FaA FbBGAB. Recall that b = c−1. The two tensors C and b have the same principal invariantsI1, I2 and I3, which are defined as [70,71] I1 = tr b = bab gab, I2 = 1

2 I1
2 − trb2 = 1

2 I1
2 − bab bcd gac gbd

and I3 = det b.
In Cauchy elasticity, stress at a point and a given moment in time is explicitly a function of

strain at that point and that particular moment in time [72–74]. However, an energy function
does not necessarily exist.4 In terms of the first Piola–Kirchhoff stress [70,73,74]

(2.1)P = P̂(X ,F,G, g) .

One can show that objectivity implies that the second Piola–Kirchhoff stress has the following
functional form [74]

(2.2)S = Ŝ(X ,C♭,G) .

For an isotropic solid, one has the following classic representation [78–80]

(2.3)S = Λ0G♯ + Λ1C♯ + Λ −1C−♯,

4It is important to note that Cauchy elasticity does not encompass all elastic solids. In recent years, there has been some

interest in implicit constitutive equations, e.g. constitutive equations of the form f σ,b = 0 [75–77]. Cauchy elasticity is a
subset of this class of solids.
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where Λi = Λi(X , I1, I2, I3), i = −1,0,1, and ♯ is the sharp operator induced from the metric G
(which raises indices). For incompressible isotropic Cauchy solids I3 = 1, and one has

(2.4)S = − pC−♯ + Λ0G♯ + Λ1C♯,
where p = p(X , t) is the Lagrange multiplier associated with the incompressibility constraintJ = I3 = 1 and Λi = Λi(X , I1, I2), i = 0,1.

In terms of the Cauchy stress, the constitutive equations of compressible isotropic Cauchy
elastic solids are written as

(2.5)σ = αg♯ + βb♯ + γ c♯,
where α = α(X , I1, I2, I3), β = β(X , I1, I2, I3) and γ = γ(X , I1, I2, I3) are arbitrary response functions.
Similarly, for incompressible isotropic Cauchy elastic solids, one has

(2.6)σ = − pg♯ + βb♯ + γ c♯,
where β = β(X , I1, I2) and γ = γ(X , I1, I2) are arbitrary response functions. In components, they

read σab = α gab + β bab + γ cab and σab = −p gab + β bab + γ cab, respectively.
Green & Naghdi [81] showed that Cauchy elasticity is consistent with the first and second

laws of thermodynamics. They demonstrated that over a closed path in the space of strains, the
net work of stress in a Cauchy elastic solid may not vanish. They explicitly demonstrated this
in the case of a linear stress-strain relationship and observed that the lack of major symmetries
is responsible for the non-zero work.5 There is no consensus in the literature of nonlinear
elasticity on Cauchy elasticity being a viable theory; while some dismiss it [83–86], others
appear to accept it [70,73,74,87–89]. Our motivation for studying Cauchy elasticity is because
of its promise in describing the mechanics of active solids at large strains. Active solids may
have access to external sources of energy, and hence, the net work of stress in a closed loop
in the strain space may not vanish. The recent interest in the physics literature in the so-called
‘odd elasticity’ [82,90], which is simply linearized non-hyperelastic Cauchy elasticity, is another
motivation for revisiting Cauchy elasticity.

3. Universal deformations in compressible isotropic Cauchy elasticity
Let us consider a compressible isotropic Cauchy elastic body deforming in the Euclidean
ambient space. In a local coordinate chart {xa}, which may be curvilinear, the Cauchy stress
has the following representation

(3.1)σab = α gab + β bab + γ cab .

When there are no body forces present, the equilibrium equations read σab
|b = 0.6 Thus,7

(3.2)σab
|b = β bab|b + γ cab|b + α,b gab + β,b bab + γ,b cab = 0 .

Note that

5The same thing was shown 50 years later in [82] when formulating the so-called ‘odd elasticity’. These authors clearly were
not aware of similar developments in the literature of nonlinear elasticity.
6(.)|a denotes covariant derivative with respect to the vector ∂

∂xa . In Cartesian coordinates, this reduces to a partial

derivative. Also, it should be noted that for any scalar field f, f|a = f,a.
7We have used the fact that a Riemannian metric is compatible with its Levi–Civita connection, i.e. gab|c = 0, and hencegab|b = 0, where summation over repeated indices is implied.
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(3.3)

α, b = F −Ab ∂α
∂XA + ∂α

∂I1
I1, b + ∂α

∂I2
I2, b + ∂α

∂I3
I3, b ,

β, b = F −Ab ∂β
∂XA + ∂β

∂ I1
I1, b + ∂β

∂I2
I2, b + ∂β

∂I3
I3, b ,

γ, b = F −Ab ∂γ
∂XA + ∂γ

∂ I1
I1, b + ∂γ

∂I2
I2, b + ∂γ

∂I3
I3, b .

These can be written more concisely as

(3.4)

α, b = F −Abα, A + α1 I1, b + α2 I2, b + α3 I3, b ,β, b = F −Ab β, A + β1 I1, b + β2 I2, b + β3 I3, b ,γ, b = F −Ab γ, A + γ1 I1, b + γ2 I2, b + γ3 I3, b ,

where

(3.5)

α, A = ∂α
∂XA , β, A = ∂β

∂XA , γ, A = ∂γ
∂XA , A = 1, 2, 3,

αi = ∂α
∂Ii , βi = ∂β

∂Ii , γi = ∂γ
∂Ii , i = 1, 2, 3.

Substituting equation (3.4) into equation (3.2), one obtains

(3.6)β bab|b + γ cab|b + I1, b gabα1 + I2, b gabα2 + I3, b gabα3 + I1, b bab β1 + I2, b bab β2 + I3, b bab β3

+ I1, b cab γ1 + I2, b cab γ2 + I3, b cab γ3 + Fb−A δabα, A + Fb−A bab β, A + Fb−A cab γ, A = 0.

Note that α, β and γ are arbitrary functions and their derivatives are independent. Therefore,
for the equilibrium equations to hold for any compressible isotropic Cauchy elastic solid, the
coefficient of each derivative must vanish. Thus,

(3.7)bab|b = cab|b = 0,

(3.8)gab I1, b = gab I2, b = gab I3, b = 0,

(3.9)bab I1, b = bab I2, b = bab I3, b = 0,

(3.10)cab I1, b = cab I2, b = cab I3, b = 0,

(3.11)F −Ab δabα, A = F −Ab bab β, A = F −Ab cab γ, A = 0.

The universality constraints (3.8) imply that I1, I2, I3 are constant. Then, the universal-
ity constraints (3.9) and (3.10) are trivially satisfied. From (3.11), one concludes thatα,A = β,A = γ,A = 0, i.e. the body must be homogeneous. Thus, in summary we have concluded
that

(3.12)I1, I2, I3 are constant and bab|b = cab|b = 0.

Using these and the compatibility equations, one can show that the universal deformations
must be homogeneous [31]. Thus, we have proved the following two results.

Proposition 3.1. The set of universal deformations of homogeneous compressible isotropic Cauchy
elastic solids is the set of all homogeneous deformations.

Proposition 3.2. Inhomogeneous compressible isotropic Cauchy elastic solids do not admit universal
deformations.

Remark 3.3. We observe that the set of universal deformations of homogeneous compressi-
ble isotropic Cauchy elastic solids is identical to that of homogeneous compressible isotropic
hyperelastic solids [31]. Additionally, it is noteworthy that neither inhomogeneous compressible
isotropic Cauchy elastic solids nor inhomogeneous compressible isotropic hyperelastic solids
admit universal deformations [47].
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4. Universal deformations in incompressible isotropic Cauchy elasticity
For an incompressible isotropic Cauchy elastic solid, the Cauchy stress has the following
component representation

(4.1)σab = −p gab + β bab + γ cab ,

where a curvilinear coordinate chart {xa} is assumed. Equilibrium equations in the absence of
body forces read σab

|b = σab
,b + γabcσcb + γbbcσac = 0, where γabc (not to be confused with the scalar

field γ in (4.1) are the Levi–Civita connection components corresponding to the metric g. Thus

(4.2)p,n gan = β b|nan + γ c|nan + β,n ban + γ,n can,

or8

(4.3)p, a = β ba|nn + γ ca|nn + β,n ban + γ,n can .

Thus, dp = p,a dxa = (β ba|nn + γ ca|nn + β,n ban + γ,n can)dxa = ξ, where d is the exterior derivative. This
means the one-form ξ must be exact. A necessary condition for ξ to be exact is dξ = 0. This
implies that p,ab = p, ba , which is equivalent to p|ab = p|ba . Thus,

(4.4)p|ab = β ba|nbn + γ ca|nbn + β,n ba|bn + γ,n ca|bn + β,b ba|nn + γ,b ca|nn + (β,n)|b ban + (γ,n)|b can ,

must be symmetric in (a, b).
Note that,

(4.5)β,n = F −An β, A + β1 I1,n + β2 I2,n, γ,n = F −An γ, A + γ1 I1,n + γ2 I2,n ,

where

(4.6)βi = ∂β
∂Ii , γi = ∂γ

∂Ii , i = 1, 2, β, A = ∂β
∂XA , γ, A = ∂γ

∂XA , A = 1, 2, 3.

Also

(4.7)β,n |b = β1 I1|nb + β2 I2|nb + β1, b I1,n + β2, b I2,n
+ F −Bb F −An, B − γmnb F −Am β, A + F −An F −Bb β, AB + β1, A I1, b + β2, A I2, b

  = β1 I1|nb + β2 I2|nb + I1, b I1,n β11 + I2, b I2,n, β22 + I1, b I2,n + I1,n I2, b β12

+ F −Bb F −An, B − γmnb F −Am β, A + 1
2 F −An Fb−B + F −Bn F −Ab β, AB

+ F −Ab I1,n + F −An I1, b β1, A + F −Ab I2,n + F −An I2, b β2, A ,

and

(4.8)γ,n |b = γ1 I1|nb + γ2 I2|nb + γ1, b I1,n + γ2, b I2,n + F −Bb F −An, B − γmnb F −Am γ, A
+ F −An F −Bb γ, AB + γ1, A I1, b + γ2, A I2, b

  = γ1 I1|nb + γ2 I2|nb + I1, b I1,n γ11 + I2, b I2,n γ22 + I1, b I2,n + I1,n I2, b γ12

+ F −Bb F −An, B − γmnb F −Am γ, A + 1
2 F −An F −Bb + F −Bn Fb−A γ, AB

+ F −Ab I1,n + F −An I1, b γ1, A + F −Ab I2,n + F −An I2, b γ2, A ,

8Note that bna = bnm gma, and ba  n = bmn gam, which are equal. Thus, we use ban = bna = ba  n. Similarly, the same

notation is used for c.
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where

(4.9)βij = ∂2β
∂Ii∂Ij , γij = ∂2γ

∂Ii∂Ij ,    i ≤ j = 1, 2,

βi, A = ∂2β
∂Ii∂XA , γi, A = ∂2γ

∂Ii∂XA ,    i = 1, 2, A = 1, 2, 3,

β, AB = ∂2β
∂XA∂XB , γ, AB = ∂2γ

∂XA∂XB , A ≤ B = 1, 2, 3.

Therefore,

(4.10)p|ab = ba|nbn β + ca|nbn γ
+ I1, b ba|nn + ban I1,n |b β1 + I2, b ba|nn + ban I2,n |b β2

+ I1,n I1, b ban β11 + I2,n I2, b ban β22 + I1,n I2, b + I2,n I1, b ban β12

+ I1, b ca|nn + can I1,n |b γ1 + I2, b ca|nn + can I2,n |b γ2

+ I1,n I1, b can γ11 + I2,n I2, b can γ22 + I1,n I2, b + I2,n I1, b can γ12

+ F −An ba|bn + F −Ab ba|nn + F −Bb F −An, B − γmnb F −Am ban β, A
+ F −An ca|bn + F −Ab ca|nn + F −Bb F −An, B − γmnb F −Am can γ, A
+ F −An ban I1, b β1, A + F −An ban I2, b β2, A + F −An can I1, b γ1, A + F −An can I2, b γ2, A
+ F −An F −Bb ban β, AB + F −An Fb−B can γ, AB .

The functions β and γ and their derivatives are independent, and hence, the coefficient of each
function must be symmetric. Thus, we have the following set of universality constraints for
homogeneous Cauchy elasticity

(4.11)A ab0 = ba|nbn ,

(4.12)A ab1 = I1, b ba|nn + ban I1,n |b,
(4.13)A ab2 = I2, b ba|nn + ban I2,n |b,
(4.14)A ab11 = I1,n I1, b ban,

(4.15)A ab22 = I2,n I2, b ban,

(4.16)A ab12 = I1,n I2, b + I2,n I1, b ban,

(4.17)Bab0 = ca|nbn ,

(4.18)Bab1 = I1, b ca|nn + can I1,n |b,
(4.19)Bab2 = I2, b ca|nn + can I2,n |b,
(4.20)Bab11 = I1,n I1, b can,

(4.21)Bab22 = I2,n I2, b can,

(4.22)Bab12 = I1,n I2, b + I2,n I1, b can .

The six terms (4.11), (4.12), (4.14), 4.17), (4.19) and (4.21) are identical to those of hyperelastic-
ity [30]. The following is the set of universal inhomogeneity constraints for inhomogeneous
Cauchy elasticity

(4.23)C ab0A = F −An ba|bn + F −Ab ba|nn + F −Bb F −An, B − γmnb F −Am ban,

(4.24)C ab1A = F −An I1, b + F −Ab I1,n ban,
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(4.25)C ab2A = F −An I2, b + F −Ab I2,n ban,

(4.26)C ab0AB = F −An F −Bb + F −Bn F −Ab ban,

(4.27)Dab0A = F −An ca|bn + F −Ab ca|nn + F −Bb F −An, B − γmnb F −Am can,

(4.28)Dab1A = F −An I1, b + F −Ab I1,n can,

(4.29)Dab2A = F −An I2, b + F −Ab I2,n can,

(4.30)Dab0AB = F −An F −Bb + F −Bn F −Ab can .

These terms must be symmetric in (a, b) for A = 1,2,3 and A ≤ B = 1,2,3. The six terms (4.23),
(4.24), (4.26), (4.27), (4.29) and (4.30) are identical to those of inhomogeneous isotropic hypere-
lasticity [23].

Recall that Ericksen’s universality constraints of isotropic hyperelasticity are [30]:

(4.31)Aab1 = ba|bnn ,

(4.32)Aab2 = ca|bnn ,

(4.33)Aab11 = ba|nn I1, b + ban I1,n |b,
(4.34)Aab22 = ca|nn I2, b + can I2,n |b,
(4.35)Aab12 = ban I2,n |b + ba|nn I2, b − can I1,n |b + ca|nn I1, b ,

(4.36)Aab111 = ban I1,n I1, b,
(4.37)Aab222 = can I2,n I2, b,
(4.38)Aab112 = ban I1, b I2,n + I1,n I2, b − can I1,n I1, b,
(4.39)Aab122 = ban I2, b I2,n − can I1, b I2,n + I1,n I2, b .

Also, the universal inhomogeneity constraints of hyperelasticity are [23]:

(4.40)Cab1A = F −An ban|b + F −Ab ban|n + ban F −Bb F −An, B − γmnb F −Am ,

(4.41)Cab2A = F −An can|b + F −Ab can|n + can F −Bb F −An, B − γmnb F −Am ,

(4.42)Cab11A = ban F −An I1, b + F −Ab I1,n ,

(4.43)Cab22A = can F −An I2, b + F −Ab I2,n ,

(4.44)Cab12A = ban F −An I2, b + F −Ab I2,n − can F −An I1, b + F −Ab I1,n ,

(4.45)Cab1AB = ban F −An F −Bb + F −Bn F −Ab ,

(4.46)Cab2AB = can F −An F −Bb + F −Bn F −Ab .

First, notice that there are nine sets of universality constraints (4.31–4.39) for homogeneous
isotropic hyperelasticity [30] compared with twelve for compressible isotropic Cauchy elasticity
(4.11–4.22). Second, the six terms (4.11), (4.12), (4.14), (4.17), (4.19) and (4.21) are identical to
those of hyperelasticity. Thus, we first look at these six terms.
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Ericksen [30] used the following result. Suppose u and v are vectors such that u⊗ v = v⊗ u.
Assuming that v ≠ 0 (if both vectors are zero this equality trivially holds), one can write

(4.47)u = u ⋅ v
|v|2v = λv,

i.e. u and v must be parallel. Now suppose that u♭ = d ϕ and v♭ = dψ, where ♭ is the flat operator
that gives the one-form corresponding to a vector, d is the exterior derivative, and ϕ and ψ are
scalar fields. Note that, λ = λ(u, v) = λ( ϕ ,ψ). Thus, u♭ = d ϕ = λ( ϕ ,ψ)dψ. Hence

(4.48)0 = d ∘ d ϕ = dλ( ϕ ,ψ) ∧ dψ = ∂λ
∂ ϕ d ϕ ∧ dψ ,

where ∧ is the wedge product of differential forms. Therefore, λ = λ(ψ), i.e. u♭ = λ(ψ)dψ.W111 (A ab11) and W222 Bab22  terms: symmetry of the coefficient of the Aab11 term implies that [30]

(4.49)ban I1,n I1, b = bbn I1,n I1,a .

One concludes that either I1, a = 0 or banI1,n = A−1I1, a , for some scalar function A. This means thatI1, a is an eigenvector of bab with eigenvalue A−1. We know that bamcmb = δba , and hence, bbm cma = δba .

Similarly, bam cmb = δab , and hence, bma cbm = δba . Therefore, canI1,n = AI1, a .9 Similarly, the symmetry

of the coefficient of the Bab22 term implies that

(4.50)can I2,n I2, b = cbn I2,n I2, a .

The conclusion is that either I2,a = 0 or can I2,n = Ā I2,a , for some scalar function Ā. One also hasban I2,n = Ā−1 I2,a . In summary,

(4.51)can I1,n = A I1, a,
(4.52)can I2,n = Ā I2, a,
(4.53)ban I1,n = A−1I1, a,
(4.54)ban I2,n = Ā−1I2, a .

Aab22 and ℬab11 terms: symmetry of the coefficient of the A ab22 term implies that

(4.55)ban I2,n I2, b = bbn I2,n I2, a or Ā−1 I2, a I2, b = Ā−1I2, b I2,a ,

which is trivially satisfied. Similarly, the symmetry of the coefficient of the Bab11 term implies
that

(4.56)can I1,n I1, b = cbn I1,n I1,a or A I1, a I1, b = A I1, b I1,a ,

which is also trivially satisfied.
A ab12 and Bab12 terms: symmetry of the coefficient of the A ab12 term implies that

(4.57)I1,nI2, b + I2,nI1, b ban = I1,nI2,a + I2,nI1, a bbn ,

which is identical to the symmetry condition that comes from the coefficient of the W112 in
hyperelasticity [30]. Thus,

(4.58)I1, b I2,n + I1,n I2, b ban = I1, a I2,n + I1,n I2, a bbn .

9Note that both b and c are positive definite. This means that when I1 is not constant, A ≠ 0, and hence, A−1 is an eigenvalue
of c.
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Hence,

(4.59)I1, b Ā−1I2, a + A−1I1, a I2, b = I1, a Ā−1I2, b + A−1I1, b I2,a .

Or

(4.60)A−1 − Ā−1 I1, a I2, b − I1, b I2,a = 0.

Similarly, the symmetry of the coefficient of the Bab12 term implies that

(4.61)I1,n I2, b + I2,n I1, b can = I1,n I2, a + I2,n I1, a cbn .

This is simplified to read

(4.62)A − Ā I1, a I2, b − I1, b I2, a = 0 ,

which is identical to the symmetry condition that comes from the coefficient of the W221 in
hyperelasticity [30]. If either I1 or I2 is constant, (4.60) is satisfied for any A and Ā. If Ā ≠ A,
one has I1, a I2, b = I1, b I2, a , which implies that I1, a and I2,a are parallel. However, these are

eigenvectors of bab corresponding to the distinct eigenvalues Ā ≠ A and must be perpendicular.
This contradiction shows that Ā = A.

Next, Ericksen shows that I1 and I2 must be functionally dependent.10 If either I1 or I2 is
constant, this is trivially the case. If all the eigenvalues of b (and hence those of c) are distinct,
each must have a one-dimensional eigenspace. Therefore, I1, a and I2,a , which are eigenvectors
corresponding to the same eigenvalue, must be parallel. This guarantees that the rank of the
Jacobian matrix in (4.63) is less that 2, and hence, I1 and I2 are functionally dependent. Note
that,

(4.64)I1 = 1c1
+ 1c2

+ 1c3
, I2 = 1c1 c2

+ 1c2 c3
+ 1c3 c1

, I3 = c1 c2 c3 = 1,

where ci are eigenvalues of c. If two eigenvalues are equal, e.g. c1 = c2 , one has (the casec1 = c2 = c3 is trivial as incompressibility implies c1 = c2 = c3 = 1)

(4.65)I1 = 2c1
+ c1

2 , I2 = 1c1
2 + 2c1 .

Clearly, in this case I1 and I2 are functionally dependent. Therefore, there is a scalar function B
such that, I1 = I1(B) and I2 = I2(B). Similarly, ci = ci(B).W11 (A ab1 ) and W22 (Bab2 ) terms: note that, Ii,a = Ii′ B B, a, i = 1,2. The second term in the

coefficient of W22 (Bab2 ) is simplified to read can I2,n , b = c1I2′ B,a , b = c1I2′ ′B, bB, a + c1I2′ B, ab , which
is symmetric. Therefore, the symmetry of the coefficient of W22 implies that

(4.66)I2′ ca|nn B, b − cb|nn B, a = 0.

Thus, either I2 is constant or

10I1 and I2 are functionally dependent if there exists a non-trivial function (a func-
tion that is not identically zero) such that F(I1, I2) = 0. Taking derivatives one obtains

For F to be non-trivial, the Jacobian matrix must have rank less than 2.

11

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 480: 20240229
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
29

 Ju
ly

 2
02

4 



(4.67)ca,nn = DB,a ,

where D is a scalar field. Similarly, the symmetry of the coefficient of W11 (A ab1 ) dictates that
either I1 is constant or

(4.68)ba|nn = EB,a ,

where E is a scalar field.
A ab2  and Bab1  terms: The symmetry of A ab2  terms implies that

(4.69)I2′ ba|nn B, b − bb|nn B, a = I2′ EB, aB, b − EB, bB, a = 0,

which is trivially satisfied. Similarly, the symmetry of Bab1  terms implies that

(4.70)I1′ ca|nn B, b − cb|nn B, a = I1′ DB, aB, b − DB, bB, a = 0,

which is also trivially satisfied.
The only two remaining universality constraints are A ab0  and Bab0  terms, which are identi-

cal to the coefficients of W1 and W2 in hyperelasticity. Using these two sets of universality
constraints, Ericksen [30] found Families 1–4 of universal deformations.

Note  that  if  I1  and I2  are  constant,  (4.11–4.22)  reduce to  the  symmetry of  the  two

terms ba|nbn  and ca|nbn ,  which is  exactly  what  one would have in  hyperelasticity.  We
have thus  shown that  although there  are  more universality  constraints  in  incompressible
isotropic  Cauchy elasticity  and some of  the  universality  constraints  are  not  identical  to
those  of  hyperelasticity,  nevertheless  the  two sets  of  universality  constraints  are  equiva-
lent.

Next, we show that the universal inhomogeneity constraints of Cauchy elasticity (4.23–4.30)
are equivalent to those of hyperelasticity (4.40–4.46). We only need to check the terms (4.25) and
(4.28). Let us define PbnA = F −An I1, b + F −Ab I1,n and note that, PnbA = PbnA . From (4.24), we know that

(4.71)PbnA ban = PanA bbn .

Multiply both sides by cma ckb to obtain ckbPbnA ban cma = cma PanA bbn ckb, or ckbPbnA δmn = cma PanA δkn. Thus,

(4.72)ckbPbmA = cma PakA , or canPnbA = cbnPnaA ,

which is (4.28). Similarly, (4.29) is equivalent to (4.25). Moreover, the symmetry of the terms
(4.42) and (4.43) implies the symmetry of (4.44). Therefore, we have proved the following result.

Proposition 4.1. The set of universal deformations of incompressible isotropic Cauchy elasticity
is identical to that of incompressible isotropic hyperelasticity. For a given universal deformation, the
corresponding set of universal inhomogeneities is identical to that of hyperelasticity.

5. Conclusions
The existing studies of universal deformations have been restricted to hyperelasticity, or more
generally, to materials that have an underlying energy function. In this paper, we extended
the analysis of universal deformations to Cauchy elastic solids, which, in general, do not
have an energy function. We considered both compressible and incompressible inhomogene-
ous isotropic Cauchy elasticity. As hyperelasticity is a proper subset of Cauchy elasticity, one
would expect the set of universal deformations of Cauchy elasticity to be a proper subset of
that of hyperelasticity. We proved the somewhat unexpected result that the sets of universal
deformations of isotropic Cauchy elasticity and isotropic hyperelasticity are identical, in both
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the compressible and incompressible cases. We also proved that their corresponding universal
inhomogeneities are identical as well.
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