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ABSTRACT Recent advancements have highlighted the limitations of current quantum systems, particu-
larly the restricted number of qubits available on near-term quantum devices. This constraint greatly inhibits
the range of applications that can leverage quantum computers. Moreover, as the available qubits increase,
the computational complexity grows exponentially, posing additional challenges. Consequently, there is an
urgent need to use qubits efficiently and mitigate both present limitations and future complexities. To address
this, existing quantum applications attempt to integrate classical and quantum systems in a hybrid framework.
In this article, we concentrate on quantum deep learning and introduce a collaborative classical-quantum
architecture called co-TenQu. The classical component employs a tensor network for compression and
feature extraction, enabling higher dimensional data to be encoded onto logical quantum circuits with limited
qubits. On the quantum side, we propose a quantum-state-fidelity-based evaluation function to iteratively
train the network through a feedback loop between the two sides. co-TenQu has been implemented and
evaluated with both simulators and the IBM-Q platform. Compared to state-of-the-art approaches, co-TenQu
enhances a classical deep neural network by up to 41.72% in a fair setting. In addition, it outperforms other
quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer
qubits.

INDEX TERMS Collaborative training, quantum deep learning, quantum-classical hybrid systems.

I. INTRODUCTION
Recent years have witnessed significant progress in machine
learning and deep learning. Groundbreaking models and
algorithms have significantly enhanced our capabilities to
identify patterns and process data in areas, such as computer
vision, natural language processing, and finance. However,
this accelerated development has led to an exponential in-
crease in the computational power needed to execute increas-
ingly sophisticated deep learning tasks. As the era ofMoore’s
Law comes to a close, however, the acceleration of compu-
tational demand is starting to surpass the growth in avail-
able computing power [1]. Consequently, this trend fuels

the search for alternative computing approaches capable of
managing the ever-growing computational needs. Quantum
computing provides considerable potential in delivering the
increased computational power essential to meet the expand-
ing demands of deep learning. Classical computers employ
binary bits, representing either 0 or 1, which constitute the
current computing standard. In contrast, quantum computers
use quantum bits (or qubits), which are probabilistic com-
binations of 0 and 1, achieved through quantum superpo-
sition and entanglement. As a result, the expected value of
a qubit measurement can represent any number between 0
and 1. Therefore, a specific number of qubits can exhibit
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substantially greater representational power compared to an
equivalent number of classical bits. In 1998, the first quantum
computer capable of executing computations was developed
[2]. The IBM-QExperience was introduced in 2016, granting
developers access to state-of-the-art quantum resources [3].
In 2020, Google AI demonstrated that a 53-qubit quantum
computer could complete a task in 200 s that would require
a classical computer more than 10 000 years. This advantage
of quantum computing over classical computing is frequently
referred to as “quantum supremacy” [4].
Researchers inspired by the concept of quantum supre-

macy are actively exploring methods to convert classical
algorithms into their quantum versions, aiming to achieve
significant reductions in time complexity compared to
classical counterparts. Quantum speed-ups have already
been demonstrated for Shor’s algorithm [5], which addresses
prime factorization and discrete logarithms, and Grover’s
algorithm, which tackles database searches [6]. Quantum
computing can be applied to machine learning tasks by
employing variational quantum circuits (VCQ)–quantum
circuits with trainable parameters. Specific areas within
classical learning, such as deep learning and support
vector machines, could potentially benefit from quantum
computing [7], [8]. Quantum speed-ups have been achieved
for several algorithms, including expectation maximization
solving [9] (where the algorithm’s speed has been increased
to sublinear time [10]), support vector machines [11], and
natural language processing [12].
However, in the noisy intermediate-scale quantum (NISQ)

era, the qubits are both limited in number and subject to
noise. For instance, IBM-Q provides only 5–7 qubit ma-
chines to the public. Furthermore, as the qubit count in-
creases, the computational complexity of the system grows
exponentially [13], which leads to a higher overall noise level
in a quantum machine. In the context of deep learning, an
increased number of qubits may employ a greater number of
gates, potentially augmenting circuit depth and noise inter-
ference. Consequently, it is crucial to efficiently and reliably
utilize the representational power of qubits through effective
encoding, making quantum algorithms more feasible on both
current and NISQ quantum computers, while mitigating the
surge in computational complexity as the number of qubits
increases. A potential solution to data encoding challenges
involves performing classical preprocessing of the data for
compression and/or feature extraction. One prevalent method
for dimension reduction is principal component analysis
(PCA), as demonstrated in prior works [14], [15], [16], [17],
[18]. However, PCA may not possess the representational
power necessary to compress data accurately. More sophis-
ticated methods, such as employing neural network layers,
demand substantial pretraining and significantly increase the
number of parameters requiring tuning. Therefore, there is
a pressing need for efficient data compression techniques
tailored to quantum machine learning.
In this work, we introduce a novel classical-quantum col-

laborative training architecture, that incorporates a classical

tensor network (TN) into the feature extraction stage to facili-
tate dimensionality reduction. Specifically, the TN serves as a
trainable module designed to capture high-level abstractions
of the input data, the output of which is subsequently fed into
a VQC for classification purposes. Furthermore, we employ a
quantum-state-fidelity-based cost function to train the model
directly on qubits’ states. Our proposed solution presents
significant advantages over existing techniques, such as
PCA, which lacks trainability, and conventional neural net-
works that require a considerable number of parameters to be
optimized or pretrained. The integration of our hybrid system
enables more efficient data encoding, thereby enhancing
the overall performance of the quantum machine learning
pipeline. The main contributions are summarized as follows.

1) We propose co-TenQu, a quantum-classical collabo-
rative training architecture. On the classical part, it
employs TN layers for data preprocessing and prepa-
ration. In the quantum part, it utilizes a preprocessed
dataset to build circuits with fewer qubits to reduce the
overall qubit requirement and noise interference.

2) We introduce a quantum state fidelity-based cost func-
tion. Instead of converting back to classical states, co-
TenQu train the model directly on quantum states aim-
ing at accelerating the training process and improving
performance.

3) We implement co-TenQu with popular quantum toolk-
its, e.g., Qiskit and PennyLane, and compare it with
state-of-the-art solutions in literature, by up to 1.9×
and 70.59% less quantum resources. In addition, we
conduct proof-of-concept experiments on 14 different
IBM-Q quantum machines.

II. RELATED WORK
Recent developments [19], [20], [21], [22], [23] in quantum
computing show great potential to enhance current learn-
ing algorithms through utilization of the qubit, the unit of
quantum information. In this field, quantum neural networks
(QNN) have emerged as a promising research area in quan-
tum machine learning [8], [24]. Due to the limited quan-
tum resources available, most of the existing works focused
on numerical analysis or datasets with lower dimensionali-
ties [17], [25], [26], such as MNIST [27].
Farhi et al. [28] introduced a QNN for binary classifica-

tion, which utilizes quantum entanglement to enhance the
model’s computational power. In addition, quantum circuit
learning [29], [30] developed a quantum-classical hybrid
algorithm. They employed an iterative optimization of the
parameters to circumvent the high-depth circuit. Moreover,
Stokes et al. [31] presented a novel method for gradient de-
scent using quantum circuits, enabling the optimization of
VQCs in a manner analogous to classical neural networks.
However, these solutions focused on theoritical analysis and
only numerical experiments were provided.
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In the NISQ era, QCNN [32] suggests a design for a quan-
tum convolutional neural network that uses O(log(N)) train-
able parameters forN-dimensional inputs and can be realized
on near-term quantum computers. In addition, QuCNN [33]
employed an entanglement-based backpropagation for NISQ
machines. Jiang et al. [34] proposed a codesign framework
named QuantumFlow, which features quantum-friendly neu-
ral networks, a mapping tool to generate quantum circuits,
and an execution engine. However, QuantumFlow requires
local training of the network prior tomapping to quantum cir-
cuits, which leads to sensitivity to noise when implemented
on real quantum computers as opposed to simulations.
Expanding upon the use of quantum operations to per-

form distance measurements, Stein et al. [14], [15] proposed
the QuClassi system: a hybrid quantum-classical system
with a quantum-state-fidelity based loss function. QuClassi
was able to provide improvements in accuracy compared to
other contemporary quantum-based solutions, such as Ten-
sorFlow Quantum [35] and QuantumFlow. The QuClassi
system demonstrated success in both binary and multiclass
classification. It used PCA to compress dataset classically.
However, PCA fails to fully utilize the classical resources by
providing trainable layers. TN-VQC [36] proposed the use of
TNs for feature extraction and data compression to achieve
higher classification accuracy for VCQs. Tensor networks do
provide the advantage of having fewer parameters compared
to neural networks while still providing some trainability
unlike PCA. TN-VQC employed a circuit architecture in-
volving cnot gates rather than cswap gates like QuClassi.
This article proposes co-TenQu, a hybrid quantum-

classical architecture for deep neural networks. Comparing
with existing literature, it utilizes a quantum-state fidelity
based cost function to train the quantum section directly on
qubits’ states. In addition, TNs are employed to fully exploit
classical resources to compensate for the limitations (e.g.,
low qubit count and noises) of quantum resources. Through
a collaborative training process, co-TenQu is able to outper-
form state of the arts.

III. BACKGROUND
In this section, we present the background that is necessary
for designing our solution.

A. QUANTUM COMPUTING BASICS
1) QUBIT AND ITS SUPERPOSITION
Classical computing uses bits that are binary in nature and
measure either 0 or 1. Quantum computing uses quantum
bits or qubits. Qubits, unlike classical bits, are a probabilistic
mixture of 0 and 1. This mixture of 0 and 1 is known as a
superposition. Uponmeasurement, the qubit in superposition
will collapse to either a value of 0 or 1. Quantum circuits are
often run many times, using the results to get a probability
distribution for the circuit results. Calculations are performed
by manipulating the probability distributions of qubits. 0 and
1 can be represented in vector notation, as seen in (1).

Quantum systems are often described using 〈bra| |ket〉
notation, where 〈bra| and |ket〉 represent horizontal and ver-
tical quantum state vectors, respectively. Because a qubit is a
mixture of 0 and 1, qubit states are described mathematically
as a linear combination of |0〉 and |1〉, as in

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
, |�〉 =

[
α

β

]
(1)

|�〉 = α|0〉 + β|1〉. (2)

This linear combination of qubit states is referred to as a
qubit’s statevector. |0〉 and |1〉 are orthonormal vectors in an
eigenspace. In (2), |�〉 represents the qubit state, a proba-
bilistic combination of |0〉 and |1〉.

The tensor product of qubit states can be used to describe
the quantum states of multiple qubits. The tensor product
between the qubits shown in (2) and (3) can be described
using (4).

|�〉 = γ |0〉 + ω|1〉 (3)

|��〉=|�〉⊗|�〉=γα|00〉 + ωα|01〉 + γ β|10〉 + ωβ|11〉
(4)

|0〉 and |1〉 represent opposite points of the sphere on the
z-axis. Measurements of qubit states can be taken with re-
spect to any basis, but convention typically dictates that mea-
surements are taken against the z-axis. However, the x-axis,
y-axis, or any pair of opposite points on the sphere could po-
tentially be used as a basis of measurement. Quantum states
are responsible for encoding data, and to perform operations
on quantum states quantum gates are used. Quantum gates
apply a transformation over a quantum state into some new
quantum state.

B. QUANTUM GATES
Similar to classical data which are manipulated and encoded
using gates, quantum data are manipulated and encoded us-
ing quantum gates. Quantum gates can either perform a rota-
tion about an axis or perform an operation on a qubit based
on the value of another qubit. These are referred to as rotation
gates and controlled gates, respectively.

1) SINGLE-QUBIT GATES
A common type of single-qubit operations are the rotation
gates. These gates perform qubit rotations by parameterized
amounts. The generalized single-rotation gate R is shown in
matrix form in

R(θ, φ) =
[

cos θ
2 −ie−iφ sin θ

2
−ie−iφ sin θ

2 cos θ
2

]
. (5)

Three commonly used special cases of this gate are the RX ,
RY , and RZ gates. These gates represent rotations in the x, y,
and z plane and are expressed in (6), (7), and (8), respectively.
RX and RY can be thought of as special cases of the R gate in
which φ = 0 and φ = π

2 , respectively. Therefore, RX (θ ) is a
rotation about the x-axis by angle θ and RY (θ ) is a rotation
about the y-axis by angle θ . The derivation of RZ from the
general rotation gate is less straightforward, and thus, is not
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included here.

RX (θ ) =
[

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

]
= R(θ, 0) (6)

RY (θ ) =
[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
= R

(
θ,

π

2

)
(7)

RZ (θ ) =
[
e

−iθ
2 0

0 e
−iθ
2

]
(8)

2) HADAMARD GATE
A fundamental gate of quantum computation is the
Hadamard gate. It is a single-qubit gate that puts a qubit
into superposition, as described in Section III-A1. It can be
expressed in the matrix shown in (9). The 1/

√
2 coefficient

is due to the fact that the sum of the squares of the state
amplitudes must add to 1, so each state has a probability of
1/2 and an amplitude of 1/

√
2

H = 1√
2

[
1 1
1 −1

]
. (9)

3) TWO-QUBIT GATES
There are also operations that function as two-qubit rotations
which perform an equal rotation on two qubits. These gates
are described in (10), (11), and (12). Note that these gates are
expressed as 4× 4matrices while the single-qubit gates were
2 × 2 matrices. This is because for a two-qubit gate, each
individual qubit has two possible measurements, yielding
four possible results (|00〉, |01〉, |10〉, |11〉) rather than two
as seen previously for the single-qubit gates.

RXX (θ ) =

⎡
⎢⎢⎣

cos θ
2 0 0 −i sin θ

2
0 cos θ

2 −i sin θ
2 0

0 −i sin θ
2 cos θ

2 0
−i sin θ

2 0 0 cos θ
2

⎤
⎥⎥⎦ (10)

RYY (θ ) =

⎡
⎢⎢⎣
cos θ

2 0 0 i sin θ
2

0 cos θ
2 −i sin θ

2 0
0 −i sin θ

2 cos θ
2 0

i sin θ
2 0 0 cos θ

2

⎤
⎥⎥⎦ (11)

RZZ (θ ) =

⎡
⎢⎢⎢⎣
e−i

θ
2 0 0 0

0 e−i
θ
2 0 0

0 0 e−i
θ
2 0

0 0 0 e−i
θ
2

⎤
⎥⎥⎥⎦ (12)

4) CONTROLLED GATES
There are also two-qubit gates which utilize a control qubit
and a target qubit. These gates, known as controlled gates,
perform an operation on a target qubit depending on the value
of the control qubit.

CNOT Gate: The cnot gate is an example of a two-qubit
gate used in quantum computing. The cnot gate flips the
value of the target qubit if the control qubit is measured as
1 and does nothing otherwise. The cnot gate can be seen

FIG. 1. CNOT gate circuit notation.

FIG. 2. SWAP test quantum circuit.

represented in matrix form as follows:

CNOT =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ . (13)

Fig. 1 depicts the circuit notation for the cnot gate. q0 is the
control qubit and q1 is the target qubit.
Controlled Rotation Gates: Equations (14)–(16) are con-

trolled rotation gates in matrix notation. Controlled rotation
gates are similar to the cnot gate but apply a rotation when
the control qubit measures 1 instead of flipping the state. This
allows for variable levels of entanglement between qubits.

CRX (θ ) =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 cos θ

2 − sin θ
2

0 0 − sin θ
2 cos θ

2

⎤
⎥⎥⎦ (14)

CRY (θ ) =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 cos θ

2 − sin θ
2

0 0 sin θ
2 cos θ

2

⎤
⎥⎥⎦ (15)

CRZ (θ ) =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0

0 0 e
iθ
2 0

0 0 0 e
iθ
2

⎤
⎥⎥⎦ (16)

C. CONTROLLED SWAP GATE
Another type of controlled gate is the controlled swap gate.
The swap gatemeasures the difference between two quantum
states and outputs the result to an ancilla qubit. Therefore,
this gate is a three-qubit gate. The swap test output values
range from 0.5 to 1. Maximally different (orthogonal) states
will measure 1 with 50% probability while identical states
will measure 1 with 100% probability. The swap test gate
can be used to measure quantum state fidelity. The controlled
swap gate is described in

CSWAP(q0, q1, q2)=|0〉〈0| ⊗ I ⊗ I+|1〉〈1| ⊗ SWAP
(17)
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FIG. 3. co-TenQu: A quantum-classical collaborative training architecture.

CSWAP(q0, q1, q2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Fig. 2 depicts a swap test being performed. The ancilla
qubit q0 is placed is superposition using a Hadamard gate.
Then, a swap test is performed between q1 and q2 and mea-
sured onto q0. Another Hadamard gate is performed on the
ancilla qubit. Finally, the ancilla qubit is then measured onto
a classical bit to obtain the result.
One advantage of the cswap gate is that it only requires the

measurement of the ancilla qubit. When qubits are measured
directly, their states collapse and the superposition is lost.
The swap test allows the superposition of the other qubits
to be maintained by measuring the quantum state fidelity
through the ancilla qubit instead of measuring the qubits
directly. Therefore, minimal information is lost through
measurement.

D. QUANTUM ENTANGLEMENT
A key principle of quantum computing is quantum entangle-
ment. A qubit’s state is said to be entangled when its mea-
surement is dependent on the measurement of another qubit.
This dependence allows information to be transferred be-
tween qubits, even if they are not physically close together (a
phenomena sometimes referred to as “action at a distance”).
When one entangled qubit is measured, the other entangled
qubit’s state also collapses. For example, if two qubits are
entangled using the cnot gate, after the state of one qubit
is measured, the state of the second entangled qubit can be
predicted with absolute certainty. Quantum entanglement is
a key component of the quantum advantage over classical
computing, as it is a property of quantum computing with no
classical equivalent.

IV. SYSTEM DESIGN
Our architecture employs a feedback loop between classical
computers and quantum computers, as illustrated in Fig. 3.
Initially, the data are fed into TNs with a layer of trainable
parameters and output into a preconfigured dimension. The
data are then converted from classical data into quantum
data through a quantum data encoding method, as outlined
in Section IV-A. This results in a quantum dataset are rep-
resented by quantum state preparation parameters. For each
predictable class in the dataset, a quantum state is initialized
with the same qubit count as the number of qubits in the
classical quantum dataset, due to the constraints of the swap
test. The quantum states, along with quantum classical data,
are then used to generate a logical quantum circuit and sent
to a quantum computer for further processing.
This initialization of state is the core architecture to co-

TenQu. In this, a quantum circuit of a certain number of lay-
ers representing a quantum deep neural network (detailed in
Section IV-B) is prepared with randomly initialized param-
eters containing a certain number of qubits. The produced
quantum state of this circuit is to be swap tested against the
quantum data point, which is fed back to the classical com-
puter and analyzed with quantum state fidelity-based cost
function (described in Section IV-D), forming the overall
collaborative quantum-classical deep learning architecture of
co-TenQu.
The quantum computer calculates the quantum fidelity

from one ancilla qubit which is used to calculate model loss,
and sends this metric back to the classical computer. The
classical computer uses this information to update the learn-
able parameters in attempts to minimize the cost function.
This procedure of loading quantum states, measuring state
fidelity, updating states to minimize cost is iterated upon
until the desired convergence or sufficient epochs have been
completed.

A. DATA ENCODING ON QUBITS
When evaluating quantummachine learning architectures on
classical datasets, it is crucial to have amethod for translating
classical data into quantum states. One question that arises
is how to represent a classical dataset in a quantum setting.
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Our architecture utilizes the expectation of a qubit to trans-
late traditional numerical data points. To achieve this, data
x1, x2, . . ., xn of dimension d can be mapped onto a quantum
setting by normalizing each dimension di to fall within the
range of 0 to 1. This is because a qubit’s expectation can
only take on values within this range. In contrast to classical
computing, which requires a string of bits to represent the
same number, encoding a single dimension data point only
requires one qubit. To translate the traditional value xi into
some quantum state, we perform a rotation around the y-axis
parameterized by the following equation:

RY(θxi ) = 2sin−1(
√
xi). (19)

The RY(θxi ) operation results in the expectation of a qubit
being measured against the z-axis, corresponding to the xi
value from the classical data that the qubit encodes. Building
upon this concept, we can encode the second dimension of
data across the X–Y plane. To achieve this, we employ two
parameterized rotations on one qubit initialized in state |0〉
to prepare classical data in the quantum setting. To encode
a data point, we apply the necessary rotations across d/2
qubits, with each rotation parameterized by the normalized
value of that data point’s corresponding dimension. It is
worth noting that the encoding of 2-D data onto a single qubit
may pose challenges for extreme values of x. However, we
explore the dual-dimensional encoding as a possible method
of reducing high qubit counts and evaluate the performance
when each dimension of data are encoded into one respective
qubit solely through an RY Gate. This approach is validated
by the fact that we never measure any of our qubits, but only
their quantum fidelity through the swap test. As a result, we
can bypass the superposition-collapsing issue inherent in this
approach. We encode the second dimension of data on the
same qubit through the following rotation:

RZ(θxi+1 ) = 2sin−1(
√
xi). (20)

When dealing with a limited number of qubits, methods
that can reduce the number required are highly valuable.
Unlike classical computers, which utilize formats, such as
integers and floats, classical data encoding in quantum states
does not have a tried and tested method. Therefore, our ap-
proach may be subject to criticism. Nevertheless, our ap-
proach has been tested and proven to be a viable solution
to the problem at hand. In addition, having knowledge of
both the qubit’s expectation across the Y and Z domains
enables the reconstruction of classical data. Various meth-
ods for classical-to-quantum data encoding exist, ranging
from encoding 2n classical data points across n qubits using
state-vector encoding to encoding classical data into a binary
representation on quantum states by translating a vector of bi-
nary values onto qubits. The former method is highly suscep-
tible to noise, whereas the latter loses significant information
in the process but is less susceptible to noise and exponential-
sampling problems. Exponential data-encodingmethods also
exist and can be integrated into co-TenQu since it does not
directly perform quantum state tomography, making the data
encoding section scalable.

FIG. 4. Single qubit unitary.

FIG. 5. Dual qubit.

FIG. 6. Entanglement.

The co-TenQu quantum circuits consist of n+ 1 qubits,
with n representing the dimension of the input data. The input
data are encoded on n/2 qubits, while trainable parameters
are applied to the remaining n/2 qubits. In addition, there is
one ancilla qubit used for swap test measurements.

B. QUANTUM LAYERS
Similar to classical artificial neural networks, quantum cir-
cuits can also be thought of as having layers. For a quantum
circuit, these layers would be comprised of quantum gates.
In co-TenQu, we define three quantum layer styles: 1)

single-qubit unitary; 2) dual-qubit unitary; and 3) controlled-
qubit unitary. Each of these layer styles comprises rotations
that serve as the trainable parameters in our quantum ma-
chine learning model. Defining these three types of layers
enables system design at a higher level than individual gates.
Single-Qubit Unitary: A single-qubit unitary layer in-

volves single-qubit rotations around the y-axis and z-axis
(RY and RZ). This allows for total manipulation of a qubit’s
quantum state. A single-qubit unitary layer is depicted in
Fig. 4.
Dual-Qubit Unitary: A dual-qubit untary layer involves

dual-qubit rotations around the y- and z-axis (RYY and RZZ).
The same y rotation and z rotation are applied to both qubits
involved. A dual-qubit unitary layer is depicted in Fig. 5.
Entanglement-Based Unitary: A controlled-qubit unitary

utilizes controlled rotation gates (CRY and CRZ) to entangle
qubits. The use of these gates allows the level of entangle-
ment between qubits to be trainable. In Fig. 6, the top row is
the control qubit and the bottom row is the target qubit.
The layers can be combined linearly to composite a mul-

tilayer mode. For example, as seen in Fig. 7, the circuit fea-
tures three layer types: 1) single-qubit unitary; 2) dual-qubit;
unitary; and 3) controlled-qubit unitary.

C. PARAMETER SHIFT
Backpropagation is a necessary step for training any deep
neural network. Gradients for the parameters of quantum
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FIG. 7. co-TenQu with 3-layer and 5-qubit setting.

circuits cannot be calculated by the same methods used in
classical backpropagation. Therefore, the gradients of the
parameters are calculated using parameter shift shown as

∇θ f (θ ) = 0.5 ∗ [ f (θ + s) − f (θ − s)]. (21)

With the parameter shift rule, the quantum circuit can
be viewed as a black box and the gradient is calculated by
obtaining circuit results when the parameter is increased or
decreased by a shift s. The difference in results can be used
to obtain a gradient for the parameter.

D. STATE FIDELITY BASED COST FUNCTION
When training a neural network to accomplish a task, an
explicit description of system improvement goal needs to
be established, i.e., the cost function. The quantum machine
learning cost function landscape can be slightly ambiguous
compared to classical machine learning, as we could be ma-
nipulating the expected values of each qubit in some way.
However, even this is ambiguous: the direction being mea-
sured in heavily affects the expectation value and or what
our iteration count would be for measuring expectation, with
lower iterations leading to increasingly noisy outputs. Within
our system, we make use of the swap test to parse quantum
state fidelity to an appropriate cost function. One of the ben-
efits of the swap test is that we only need to measure one
ancilla qubit. In the case of binary classification, each data
point is represented in a quantum state represented by |φ〉,
which is used to train the quantum state prepared by our DL
model |ω〉 such that the state of |ω〉 minimizes some cost
function. The classical cross-entropy cost function outlined
in (23) is an appropriate measure for state fidelity, as we
want the fidelity returned to be maximized in the case of
Class = 1, and minimized otherwise.

min(Cost(θd,X ) = 1

n

n∑
i=1

SWAP(|φX (i)〉, |ω〉) (22)

Cost = − ylog(p) − (1 − y)log(1 − p) (23)

where θd is a collection of parameters defining a circuit, x
is the dataset, φx(i) is the quantum state representation of
data point i, and ω is the state being trained to minimize the
function in (22) and (23).
Optimization of the parameters θd requires us to perform

gradient descent on our cost function. We make use of the

following modified parameterized quantum gate differentia-
tion formula outlined as

δCost

δθi
= 1

2

(
f (θi + π

2
√

ε
) − f

(
θi − π

2
√

ε

))
(24)

where θi is a parameter, Cost is the cost function, and ε is the
epoch number of training the circuit. Our addition of the ε

is targeted at allowing for a change in search-breadth of the
cost landscape, shrinking constantly ensuring a local-minima
is found.
The gradients of quantum parameters can also be deter-

mined using numerical methods. Equation (25) shows a for-
mula to numerically determine the gradients of quantum
parameters. However, numerical methods can run into is-
sues due to the noise an error associated with current quan-
tum computers. Therefore, the gradients calculated may be
inaccurate and lead to inefficiency in training [37].

∇θ f (θ ) = f (θ + s) − f (θ − s)

2˜s
(25)

E. HYBRID TENSOR NETWORK AND QUANTUM CIRCUIT
DESIGN
A hybrid model with a TN and a quantum circuit is used
to classify 28 × 28 MNIST images. The TN functions as a
trainable feature extractor to compress the 784-D data into
four dimensions for classification by the quantum circuit.
There are several different types of TNs. For this study,

the matrix product state (MPS) will be employed. The MPS,
also referred to as a tensor train, is the simplest type of TN. In
an MPS, tensors are contracted through virtual indexes. The
number of these indexes is referred to as a bond dimension,
denoted by χ . A greater bond dimension indicates a greater
amount of quantum entanglement that can be represented and
therefore more representational power in the MPS. An N-
dimensional input is mapped into a product state using the
mapping shown in (26). This mapping for the MPS input is
known as a feature map.

x → |�〉 =
[
cos

(
π
2 x1

)
sin

(
π
2 x1

)
]

⊗
[
cos

(
π
2 x2

)
sin

(
π
2 x2

)
]

⊗ . . . ⊗
[
cos

(
π
2 xN

)
sin

(
π
2 xN

)
]

(26)
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FIG. 8. co-TenQu diagram (binary).

TheMPS takes an input of size 784 (28 times 28) and outputs
an n-length tensor. The output dimension of the MPS is a
hyperparameter of the system that can be adjusted based on
the problem at hand. This tensor output from theMPS is then
encoded into a quantum circuit. n dimensions are encoded
onto n/2 qubits using an RY and RZ rotation on each qubit to
encode two dimensions per qubit. Because the output of the
MPS is not bounded, the arctangent of the input values are en-
coded for the rotations to keep inputs to the quantum circuit
in the range of [-π

2 , π
2 ]. After encoding, the circuit is run to

get a quantum state fidelity measurement. This measurement
is then mapped from [0.5, 1] to [0, 1] by subtracting 0.5
and multiplying by 2. The swap test may sometimes measure
below 0.5 due to statistical error, so an ReLu layer is applied
after the quantum circuit to prevent negative outputs. For
multiclass classification, the ReLu layer is not used due to
the presence of the Softmax layer. If the output is below 0.5,
the image is classified as 0; otherwise the image is classified
as label 1. The quantum circuit has up to three types of
layers: 1) single-qubit unitary, 2) dual-qubit unitary, and 3)
controlled-qubit unitary.
For binary classification, a single quantum circuit is run.

For n-class classification where n > 2, n quantum circuits
with the same circuit design, but different parameters are run
in parallel. The outputs of these circuits are then softmaxed
to get probabilities for each class. The image is classified as
the class with the highest probability. System diagrams for
the binary and multiclass versions of this system can be seen
in Figs. 8 and 9, respectively
This system can be trained all together at once rather

than requiring a feature extractor to be pretrained. The entire
training algorithm is summarized in Algorithm 1. First, the
data are loaded, as shown in (26) (Line 1). Lines 2–3 involve
introducing training parameters set by the user at run time.
The learning rate α indicates how large the updates to the
system parameters should be during training. The network

weights are initialized randomly. The number of epochs ε

indicates how many times the network will be trained on the
dataset X . Line 6 represents the input data x being encoded
into the TN. Line 7 represents the output of the TN being
obtained through tensor contractions. Lines 8–23 represent
the process by which each of the quantum parameters θ is
updated. The output of the TN and the trainable quantum
circuit parameters θd are all loaded into the quantum cir-
cuit with one of the parameters (θ ) either increased by π

2
(�fwd) and the swap test is performed. Then, the parameters
are reset, θ is decreased by π

2 (�bck), and the swap test is
performed again. The overall cost function of the network
f (θd ) is then obtained for the two adjusted parameter values
and used to update θ , as seen in Line 22. After all of the
quantum parameters have been updated, the parameters of
the TN layer are updated, as seen in Line 24. The quantum
neural network is induced across all trained classes and the
quantum state fidelity outputs are softmaxed. The class with
the highest probability is returned as the classification.
Algorithm 1 presents a hybrid training process that in-

volves both classical and quantum ends, e.g., data loading
and TNs on the classical side; quantum layers and mea-
surements on the quantum side. The time and space com-
plexity analysis should consider both quantum and classical
resources. Due to the page limit and scope, we omit the
theoretical algorithm analysis in this article.

V. EVALUATION
We utilized Python 3.9 and the IBM Qiskit Quantum Com-
puting simulator package to implement co-TenQu. The cir-
cuits were trained on NSF Cloudlab M510 nodes at the Uni-
versity of Utah datacenter. In our experiments, co-TenQu is
compared with state-of-the-art solutions listed as follows.

1) PCA-QuClassi [14]: It is the predecessor of co-TenQu.
Instead of a collaborative quantum-classical training
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FIG. 9. co-TenQu diagram (3-class).

framework, it utilizes PCA to reduce the dimensions of
the dataset. In our evaluations, we use PCA-5, PCA-7,
and PCA-17 to denote its 5-qubit, 7-qubit, and 17-qubit
settings. In addition, PCA-QuClassi has been com-
pared with its different versions, including the single
qubit unitary layer, dual qubit unitary layer, and entan-
glement layer.

2) QuntumFlow [34] (QF-pNet): It employs a codesign
framework of QNNs and utilizes downsampling to re-
duce the dimensions along with the amplitude encod-
ing method.

3) TensorFlow Quantum [35] (TFQ): The example codes
provided by the Tensorflow Quantum library are based
on Cirq circuits and standard layer designs.

4) DNN-Fair [38]: A classical deep neural network for
MNIST datamay contain 1.2Mparameters. For amore
fair comparison, we construct a deep neural network
with 3145 parameters.

Furthermore, when comparing our co-TenQu architecture
to above-mentioned solutions in literature of quantum
deep learning, the MNIST dataset is a commonly used
benchmark. MNIST comprises hand-written digits of
resolution 28 × 28, resulting in 784 dimensions. However,
the evaluation data-encoding technique makes it impractical
to perform experiments on near-term quantum computers
and simulators due to the lack of qubits and computational
complexity. As a result, we need to reduce the dimensionality
to perform practical experiments. Therefore, it is necessary
to reduce the dimensionality of the dataset. In our research,
we have reduced the number of dimensions to 4 for binary
experiments/simulations and 6 for multiclass evaluations.
Besides the original MNIST dataset, our evaluation involves

FIG. 10. Identify 0 (Epoch 1 versus 10). (a) Qubit 1–0 epochs. (b) Qubit
1–10 epochs.

two derived datasets, FashionMNIST and ExtendedMNIST.
We conducted both binary and multiclass experiments and
evaluated them with simulators, as well as IBM-Q quantum
machines.

A. QUANTUM BINARY CLASSIFICATION
In order to understand how our learning process works, we
visualized the training process of identifying a 0 against a 6
by looking at the final state that is passed to the swap test. As
illustrated in Fig. 10, an initial random quantum state is used
to learn to classify 0 against 6. It is important to note that the
state visualization does not account for potential learned en-
tanglements, but serves as a visual aid to the learning process.
In Fig. 10, we can observe the evolution of the identifying
state through epochs. The green arrows indicate the deep
learning final state, and the blue points represent the training
points. Initially, the identifying states are random, but they
rotate and move toward the data, gradually minimizing the
cost.
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Algorithm 1: co-TenQu Algorithm
1: Data set Loading Dataset: (X |Class : Mixed)
2: Distribute Dataset X By Class
3: Parameter Initialization:

Learning Rate : α = 10−4

Network Weights : θd = [Rand Num between
0 − 1 × π ]
epochs : ε = 40
Dataset: (X |Class = ω)
Qubit Channels: Q = 2nXdim

4: for ζ ∈ ε do
5: for xk ∈ X do

6: Encode in TN x →

⎡
⎢⎣cos(π

2 x1)

sin(π
2 x1)

⎤
⎥⎦ ⊗

[
cos(π

2 x2)

sin(π
2 x2)

]
⊗ · · · ⊗

[
cos(π

2 xN )

sin(π
2 xN )

]

7: Perform Tensor contractions to get TN output
8: for θ ∈ θd do
9: Perform Hadamard Gate on Q0

10: Load xk
Quantum−−−−−−−−→

Data Encoding
QQ1 → Qcount

11: Load θd
Quantum−−−−−−−−→

Data Encoding
QQcount

2 +1 + 1 →
Qcount

2 + 1
12: Add π

2 → θ

13: � fwd = (EQ0 f (θd ))
14: cswap(Control Qubit = Q0, Learned State

Qubit, Data Qubit)
15: Measure Q0
16: Reset Q0 to |0〉
17: Perform Hadamard Gate on Q0
18: Subtract π

2 → θ

19: cswap(Control Qubit = Q0, Learned State
Qubit, Data Qubit)

20: Measure Q0
21: �bck = (EQ0 f (θd ))
22: θ = θ − (0.5 ∗ (� fwd − �bck )) × α

23: end for
24: Update TN parameters
25: end for
26: end for

For binary classifications, we adopted popular digit com-
binations from literature, specifically (1, 5), (3, 6), (3, 8),
and (3, 9). The binary classification results are compared and
visualized in Fig. 11. Clearly, co-TenQu consistently outper-
forms all other solutions. For example, in the (1, 5) classifica-
tion withMNIST dataset [as shown on Fig. 11(a)], it achieves
the largest improvement of 41.72% compared to classical
deep neural networks, DNN-Fair (3145 parameters), with
an accuracy of 99.79%. While classical DNN can achieve

perfect accuracies on the MNIST dataset, it requires a much
larger parameter size. By introducing 5-qubits, co-TenQu is
able to achieve better or similar performance with 49.54%
less parameters.
When compared to quantum-based solutions with MNIST

dataset, co-TenQu outperforms others, with the largest mar-
gin achieved in the (3, 8) and (3, 9) classification, where we
observe improvements of 35.07% and 30.71% over Tensor-
flow Quantum and QF-pNet. One noticeable thing is that, if
we train TensorflowQuantumwith 17 qubits (verus 5 qubits),
the accuracies increase substantially. For example, the ac-
curacy boosted to from 71.25% to 90.63%. The primary
difference between the designs is that co-TenQu utilizes
a quantum-state-based evaluation function that can directly
train the network on qubits and provide stable results. co-
TenQu also outperformed its predecessor, PCA-QuClassi
with MNIST dataset. While both employ a quantum-state-
based evaluation function, co-TenQu incorporates a new
trainable TN layer, allowing part of the training job to
be completed on the classical part of the collaborative
architecture.
A similar trend is discovered with both Fashion and Ex-

tended MNIST datasets, as illustrated on Fig. 11(b) and (c).
We can see that co-TenQu outperforms all other solutions
in compared two-digit combinations. Comparing the results
across three different datasets, TensorFlow Quantum’s per-
formance is not stable. For example, it achieves 62.58%,
84.08%, and 66.25% for (3, 8) classification that is a 21.50%
difference between datasets. With co-TenQu, however, the
same value is 1.55% with 97.65%, 99.20%, and 98.54%
for original, Fashion and Extended MNIST datasets, respec-
tively. co-TenQu also beats PCA-QuClassi with 5-qubit set-
ting (shown as PCA-5 on the figures) in all binary com-
binations with the largest gain, 26.58%, observes at (3, 6)
Fashion MNIST [Fig. 11(b)]. This is due to the fact that
co-TenQu utilizes the classical computational resource to
partially complete training and preprocess the data for quan-
tum parts.
Furthermore, we find that co-TenQu converges faster

than PCA-QuClassi when taking a closer look at the train-
ing processes. Fig. 12 presents the accuracy per each epoch
of (1,5) classification on Extended MNIST dataset. co-
TenQu reaches 93.75% at its their epoch, after which it in-
creases 5.10% to 98.85% at the 40th epoch. Comparing with
PCA-QuClassi with the 5-qubit setting, however, it records a
87.95% accuracy at the 18th epoch and climbs up to 93.30%
at the end, a 5.35% increase. Given the training process,
co-TenQu converges significantly faster than PCA-QuClassi
as it leverages trainable layers on the classical part.

B. QUANTUM MULTICLASS CLASSIFICATION
Next, we evaluate our solution with multiclass classifica-
tions. In these experiments, co-TenQu utilizes a 7-qubit
setting. The results demonstrate that co-TenQu provides
substantially better multiclass classification accuracies when
comparing with the state of the arts. With the multiclass
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FIG. 11. Binary classifications with 5-qubit circuits for co-TenQu. (a) MNIST. (b) Fashion MNIST. (c) Extended MNIST.

FIG. 12. 1/5 Extended MNIST training.

classification, we select the popular digit combinations, (0,
3, 6), (1, 3, 6), (0, 1, 3, 6, 9), and 10-class, in literature. The
results are illustrated in Fig. 13. On the figure, we observe
that co-TenQu consistently outperforms other solutions. It
achieves 97.39%, 98.94%, and 91.48% for the first threemul-
ticlass experiments. PCA-QuClassi with the same 7-qubit
setting records 58.55%, 67.68%, and 62.02%. It demon-
strates that co-TenQu gains superior performance improve-
ment, up to 66.3%, by introducing the quantum-classical
collaborative training architecture. When increase the qubits
utilization of PCA-QuClassi to the 17-qubit setting (shown
as PCA-17 on the figures), its performance boosts to 94.91%,
94.18%, and 92.49% such that co-TenQu wins the first two
experiments, but fails the last one by 1%. It further proves
that co-TenQu is able to achieve similar performance with
70.59% less quantum resources (5 versus 17). Considering
10-class experiment, co-TenQu performs significantly better
PCA-QuClassi 7-qubit setting (73.21% versus 33.41%), but
slightly worse than its 17-qubit version by 5%. The reason
lies in the fact that 17-qubit setting contains much more
information for the training.
When comparing with QF-pNet, co-TenQu improves

the accuracies in all experiments. For example, co-
TenQu achieves 97.39% and 98.94% for (0, 3, 6) and (1,
3, 6), comparing with 78.70% and 86.50% obtained by QF-
pNet, which leads to accuracy increases of 23.75% and
14.38%. In 5-class classification, co-TenQu gains 19.92%
(91.48% versus 71.56%). As the number of classes increase,

co-TenQu outperforms QF-pNet by more than 181.90%
(73.21% versus 25.97%) for 10-class classification. In Quan-
tumFlow (QF-pNet), most of the training is done on the clas-
sical computer, where the traditional loss function is in use.
With co-TenQu, however, we employ a quantum-state-based
evaluation function that can fully utilize the qubits and a
collaborative training architecture.
We further compare co-TenQu with PCA-QuClassi un-

der the same 7-qubit setting with Fashion and Extended
MNIST datasets. The same trend can be found on the
Fig. 13(b) and (c), where co-TenQu consistently outperforms
its predecessor. It achieves the largest gain on (1, 3, 6) clas-
sification with Extended MNIST that is 99.06% comparing
with PCA-7’s 50.90%. co-TenQu achieves stable perfor-
mance on all 3-class and 5-class classifications across dif-
ferent datasets. For example, the accuracies for (0, 3, 6), (1,
3, 6), and (0, 1, 3, 6, 9) on Extended MNIST are 98.16%,
99.06%, and 94.88%, respectively. With the 10-class job, the
values drop to 73.40% and 63.38% for Fashion and Extended
MNIST, respectively. However, co-TenQu utilizes merely 7
qubits and performs much better, up to 1.90×, than PCA-
QuClassi.

C. EXPERIMENTS ON IBM-Q PLATFORM
As a proof of concept, we evaluate co-TenQu on real
quantum computers through the IBM-Q platform. 300 data
points of the (1, 5) and (3, 6) MNIST experiments are sub-
mitted to 14 of IBM-Q’s superconducting quantum comput-
ers. Circuits are generated based off of a trained co-TenQu
network, whereby 300 circuits are submitted per machine in
one job at 8192 shots each. The results are demonstrated in
Fig. 14. Eight of the 14 machines generate a 66.67% accu-
racy, which is the accuracy of the experiment for assuming
all 0’s (i.e., ground state). Variational parameters from simu-
lation can perform poorly on real machines, with problems,
such as temporal drift and machine specific bias causing
induction issues [39]. Within tested machines, IBMQ-Lima
achieved the best results, at 82.10%. Lima’s topology is
drawn in Fig. 15, and has a Quantum Volume of 8, one of
the lowest of IBM machines. This highlights the complexity
that is predicting machine performance of quantum routines,
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FIG. 13. Multiclass classifications with 7-qubit circuits for co-TenQu . (a) MNIST. (b) Fashion MNIST. (c) Extended MNIST.

FIG. 14. (1, 5) and (3, 6) MNIST binary classifications on IBM-Q quantum.

FIG. 15. IBM-Q Lima topology.

and the implications that temporal drift has on learned pa-
rameters. Therefore, given sufficient resource, performance
can be improved by optimizing the trained network locally,
and finalizing training on the processor to learn the machine
specific biases.

VI. CONCLUSION
In this work, we propose co-TenQu, a collaborative quantum-
classic architecture for QNNs. On the classical side, it uti-
lizes a TN with trainable layers to preprocess the dataset
to extract features and reduce the dimensionality. On the
quantum part, it employs the quantum-state fidelity-based
cost function to train the model. Comparing to classical deep
neural networks, co-TenQu achieves 41.72% accuracy im-
provement with a 49.54% reduction in the parameter count.
In addition, it outperforms other quantum-based solutions,
up to 1.9 times, in multiclass classification. Furthermore,

it records similar performance with 70.59% less quantum
resources.
co-TenQu represents a notable advancement in the realm

of quantum deep learning. However, there remains consid-
erable room for progress. Due to the limitations of current
quantum machines, the existing solutions can only be evalu-
ated on small dataset such as MNIST. In addition, the 10-
class classification of MNIST resulted in a 73.21% accu-
racy, which is relatively modest in comparison to classical
counterparts. Although classical methods employ a higher
number of parameters, they achieve accuracies approaching
100%, which highlights the potential benefits that quantum
computing could offer.
Our future research will concentrate on extending the

quantum-state fidelity-based cost function and collaborative
quantum-classical architecture to other applications, such as
quantum transformers and quantum natural language pro-
cessing. In addition, exploring the low-qubit representation
and its resilience to dynamic noises in the field of quantum-
based learning warrants further investigation.
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