F THE GEOLOGICAL SOCIETY
@ ‘ OF AMERICA®

© 2024 Geological Society of America. For permission to copy, contact editing@geosociety.org.

https://doi.org/10.1130/G52272.1
Manuscript received 28 March 2024
Revised manuscript received 22 May 2024

Manuscript accepted 3 June 2024

Published online 27 June 2024

Eocene exhumation of the High Andes at ~30°S differentiated
by detrital multimethod U-Pb-He thermochronology

Julie C. Fosdick'*, Andrea L. Stevens Goddard?, Chelsea Mackaman-Lofland?, Ana C. Lossada®, Maria Pia Rodriguez®,

and Barbara Carrapa®

"Department of Earth Sciences, University of Connecticut, Storrs, Connecticut 06269, USA

2Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana 47408, USA
SDepartment of Earth and Environmental Sciences, Denison University, Granville, Ohio 43023, USA

“Instituto de Estudio Andinos (IDEAN), Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET),

Universidad de Buenos Aires, Buenos Aires 1428, Argentina

5Carrera de Geologia, Facultad de Ingenieria, Universidad Andrés Bello, Santiago 8370134, Chile

8Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA

ABSTRACT

The southern Central Andes (~25-40°S) exhibit a complex tectonic history, crucial for
understanding orogenic processes in subduction-related orogens, yet debate on the timing
and mechanisms of early Cenozoic topographic growth persists. We present double-dated
detrital zircon U-Pb and (U-Th)/He thermochronology data from the early Oligocene-Mio-
cene Bermejo Basin at ~30°S to investigate source unroofing during development of the
High Andes. (U-Th)/He results yield dates of ca. 565-16 Ma (n = 73), with distinct detrital
modes that indicate a mixing of sediment sources characterized by variable cooling and ex-
humation histories. We employ a novel approach for modeling detrital thermochronology
data that leverages the shared basin subsidence history of multiple detrital modes to resolve
provenance and source unroofing histories. Results from the lower Oligocene Vallecito For-
mation (northwestern Argentina) reveal that detritus was sourced from Permian-Triassic
Choiyoi Group rocks that underwent rapid late Eocene cooling, indicated by short lag time
(2-5 m.y.) between source cooling and deposition. Our findings are consistent with bedrock
studies of Eocene exhumation in the High Andes and establish source-to-basin connectivity
during this time. Other detrital modes with pre-Cenozoic cooling histories were derived from
Carboniferous Elqui-Colangiiil and Choiyoi Group rocks or recycled from Paleozoic basins.
We propose that an early Oligocene drainage divide in the High Andes was located west of
the Punilla—La Plata fault, an active thrust front at ~30°S. These findings challenge Paleo-
gene neutral stress-state models for the Andes and underscore the importance of improved
knowledge of erosion and deformation histories for refining models of Andean orogenesis.

INTRODUCTION

The Central Andes are an archetypal sub-
duction-related orogen (Ramos, 1988), with
a tectonic history that underpins geodynamic
models of Cordilleran orogenesis and debate
on the timing and mechanisms of topographic
growth (Coira et al., 1982; DeCelles et al., 2015;
Quade et al., 2015; Giambiagi et al., 2022). In
the southern Central Andes (~25-40°S), the
Miocene-recent tectonic history is increasingly
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well-understood as a time of major orogenic
wedge development (Giambiagi et al., 2022).
In contrast, the early Cenozoic record remains
contentious even after decades of work in devel-
oping tectonic reconstructions, stress state, and
surface response to subduction dynamics (Coira
et al., 1982; Ramos, 1988; Giambiagi et al.,
2022). The paucity of Paleogene basin records
has been interpreted as a period of tectonic stasis
and diminished plate coupling during subduc-
tion (Horton and Fuentes, 2016). However, new
basin studies suggest initiation of distal retroarc
deposition starting in Eocene time and point to
a sediment source in the High Andes (e.g., Fos-

dick et al., 2017; Suriano et al., 2023; Ronemus
etal., 2024). Recent work from the High Andes
(Fig. 1) documents late Eocene shortening and
rapid rock cooling at 30°S (Lossada et al., 2017,
Rodriguez et al., 2018; Mackaman-Lofland
et al., 2023). These studies suggest an earlier
history of Andean orogenic development simi-
lar to that observed farther north at the latitude
of the Puna Plateau (22-26°S) (DeCelles et al.,
2011; Carrapa and DeCelles, 2015).

Detrital thermochronology using multiple
chronometers has enabled major advances in
understanding sediment provenance, hence
advancing our knowledge of orogenic ero-
sion and orogen-to-basin routing systems (e.g.,
Reiners et al., 2005; Carrapa, 2010). We pres-
ent double-dated detrital zircon (U-Th)/He
thermochronology and time-temperature (¢-7)
history modeling from the Huaco section of
the Bermejo foreland basin (Fig. 1) that test
conflicting models of Paleogene plate coupling
and regimes, identify basin-bounding eastward
draining hinterland catchments, and quantify
the timing of Andean source unroofing. Detrital
zircon U-Pb age spectra and eastward paleo-
flow in these strata point to the High Andes and
Argentine Precordillera as sediment sources
(Fosdick et al., 2015, 2017). We differentiate
distinct detrital modes with unique #-7 histories
that document rapid syndepositional cooling of
detritus derived from the High Andes during the
latest Eocene—early Oligocene, indicating rock
unroofing during hinterland deformation. Our
findings highlight a novel modeling approach
of detrital thermochronology datasets that lever-
ages the shared basin subsidence history of mul-
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Figure 1. (A) Tectonic setting in the southern Central Andes. Bathymetry and topography are from GeoMapApp v.3.7.1. (https://www.geomapapp
.org; Ryan et al., 2009). (B) Geology at 30°S showing the Huaco section sample locality in the Bermejo Basin and thermochronology locali-
ties in the High Andes and Argentine Precordillera that exhibit Eocene cooling (orange circles with hatched pattern) or only Neogene cooling
(gray circles) from time-temperature history modeling (Fosdick et al., 2015; Lossada et al., 2017; Rodriguez et al. 2018; Mackaman-Lofland
et al., 2023). Sample RFO08 (this study) is from the Permian Patquia Formation. Geology after Furque et al. (2003), SERNAGEOMIN (2003), and
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Figure 2. (A) Detrital zircon U-Pb data from
the Huaco section of the Bermejo Basin in
the southern Central Andes (see Fig. 1 for
location) showing primarily Andean-derived
sediment and recycled Sierras Pampeanas
and Cuyania/Sunsas sources. (B) Zircon
U-Pb (published; see Supplemental Mate-
rial [see text footnote 1]) and (U-Th)/He
(ZHe; this study) data colored by U-Pb age
mode and source association (after Fosdick
et al., 2017). Diagonal line shows equivalent
U-Pb and (U-Th)/He ages indicative of rapid
cooling.

tiple detrital modes to resolve provenance and
t-T histories of upland sources.

METHODS AND RESULTS

(U-Th)/He thermochronology is based on
retention or diffusive loss of “He produced dur-
ing decay of radioactive U, Th, and Sm (e.g.,
Farley, 2002). In zircon, “He is lost via vol-
ume diffusion at ~50-200 °C, depending on
grain size, chemical zonation, radiation dam-
age, and cooling rate (e.g., Reiners et al., 2004;
Guenthner et al., 2013). We collected 73 zircon
(U-Th)/He (ZHe) dates from four Oligocene—
Miocene Bermejo Basin sandstone samples
that were dated previously by U-Pb laser abla-
tion—inductively coupled plasma—mass spec-
trometry (Fosdick et al., 2015, 2017; Val et al.,
2016). Zircon grains for ZHe analysis, extracted
from U-Pb mounts, were chosen from the seven
primary U-Pb age groups represented in pub-
lished detrital U-Pb age spectra: Andean Arc,
Choiyoi, Elqui-Colangiiil, Velasco, Famatin-
ian, Pampean, and Cuyania/Sunsds. Analytical
methods and data are provided in the Supple-
mental Material'.

Double-dated detrital zircon U-Pb and ZHe
analysis of the Bermejo Basin yields 565-16 Ma
ZHe dates (Fig. 2; Fig. S1 in the Supplemen-

'Supplemental Material. Methods and analyti-
cal data. Please visit https://doi.org/10.1130/GEOL
.S.25987918 to access the supplemental material;
contact editing @ geosociety.org with any questions.
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tal Material). Cenozoic Andean Arc zircons
exhibit 51-16 Ma ZHe dates that overlap with
their U-Pb crystallization ages. Permian—Trias-
sic Choiyoi Group zircons exhibit two distinc-
tive ZHe modes at 280-202 Ma (Choiyoi I) and
52-18 Ma (Choiyoi II). Zircons within the older
ZHe mode overlap with their U-Pb ages (Fig. 2).
The Carboniferous—Permian Elqui-Colangiiil
zircons display 581-87 Ma ZHe dates, with a
pronounced mode at 387-178 Ma. Latest Neo-
proterozoic—early Paleozoic zircons recycled
from Gondwanan orogens (Pampean, Famatin-
ian, Velasco) display 497-180 Ma ZHe dates,
with most dates 424-238 Ma. The Mesoprotero-
zoic Sunsas/Grenville zircons yield 422-285 Ma
ZHe dates.

Inverse thermal history modeling explores
plausible #-T histories that are compatible with
measured analytical data and prescribed geo-
logic constraints (Ketcham, 2005; Murray et al.,
2022; Ketcham, 2024). We used HeFTy 2.0 soft-
ware (Ketcham, 2024) to model the #-T histories
of four detrital “U-Pb-ZHe modes,” defined here
by coupled U-Pb and ZHe data (Fig. 2), from
the lower Oligocene Vallecito Formation (Fig.
S3). These four modes represent zircons with
sources originating in the Andes (Elqui-Co-
langiiil, Choiyoi I, Choiyoi II, and Andean Arc)
and specifically test the connections between
High Andes cooling and inferred source exhu-
mation (Fig. 3A; Fig. S3). The Vallecito For-
mation represents early foredeep sedimentation
and flexural subsidence during Andean growth
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Figure 3. (A) Interpretive framework for modeling detrital zircon U-Pb-ZHe modes [ZHe—(U-Th)/He]. (B) HeFTy (software; Ketcham, 2024)
Model 3 inversion results for the High Andes U-Pb-ZHe detrital modes from the Vallecito Formation (Fm.) (sample CS06 in Figure 1C) showing
distinct time-temperature (#-T) histories of the Elqui-Colangiiil, Choiyoi, and Andean Arc zircons. Gray dashed line shows basin subsidence
data from Fosdick et al. (2017). acc.—acceptable. (C) Measured ZHe and apatite (U-Th)/He (AHe) dates (large circles) versus modeled dates

(small circles) generated from HeFTy t-T paths (see Supplemental Material [see text footnote 1]).

(Jordan et al., 2001; Fosdick et al., 2017). For
detrital samples with double-dated zircon U-Pb
and ZHe data sets, we employed an approach
for modeling distinct U-Pb-ZHe modes that
leverages their shared burial history, with the
assumption that each mode comprises detritus
from upland sources with similar #-T histories.

We conducted three inverse thermal his-
tory models for each detrital mode with a pro-
gressively more tightly defined Bermejo Basin
post-depositional heating constraint to show
the combined improvement on inversion results
when using the shared basin history of detrital

680

modes. Model 1 uses a broad basin reheating
box spanning depositional age to recent. Model
2 incorporates constraints from basin subsidence
history (Fosdick et al., 2017). Model 3, our pre-
ferred model, discussed below, is further refined
by restricted post-depositional reheating condi-
tions required by thermochronologic data for
all four U-Pb-ZHe modes (Fig. 3). All models
also incorporate published apatite (U-Th)/He
(AHe) data (Fosdick et al., 2015) that constrain
post-depositional burial and exhumation. Mod-
eling details are provided in the Supplemental
Material.

Model 3 inverse #-T history results of the
Elqui-Colangiiil mode indicate cooling from
initial conditions at ca. 300-280 Ma followed
by residence below 120 °C prior to deposition
at the surface (Fig. 3). Between 280 Ma and
38 Ma, some paths remain near surface condi-
tions, while paths that underwent a lower mag-
nitude of early cooling exhibit a second phase
of cooling from <120 °C toward the surface.
Modeling results from the two Choiyoi modes
capture distinct source #-T histories with rapid
Permian-Triassic (Choiyoi I) or Eocene (Choi-
yoi II) cooling (Fig. 3). The Andean Arc mode
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fault (see location in Fig. 1B) and erosion of Eocene-cooled Choiyoi Group (Fig. 1B) rocks.
Additional sediment sources include volcanic rocks related to Eocene Bocatoma magmatism
and Late Paleozoic intrusives and recycled sources in low-lying piedmont hills.

yields #T paths that indicate rapid cooling to
surface conditions.

All detrital modes allow for post-deposi-
tional reheating of the Vallecito Formation as
constrained by both ZHe and AHe dates (Figs.
S4-S7). Given the well-established subsidence
history within the Bermejo Basin (Jordan et al.,
2001; Fosdick et al., 2017), we narrowed this
range of basin #-T histories by using constraint
boxes that impose the observed foreland-type
subsidence history with an accelerating rate
of burial heating during increased subsidence.
Basin #-T histories inverted from all modes yield
peak basin heating to an average of 95-110 °C
at ca. 1615 Ma (Fig. S7).

Leveraging Basin History to Quantify
Source Exhumation

Thermal history modeling of multiple detri-
tal U-Pb-ZHe modes provides a powerful tool
to quantify source #-T histories (Fig. 3; Figs.
S6-S8). In the Bermejo Basin, the four mod-
eled modes require post-depositional reheat-
ing, although the timing and extent of heating
are variable among modes. Remarkably, the
region of overlapping reheating #-7 path seg-
ments, particularly the more restrictive results
from the Andean Arc mode, form a unique ther-
mochronometric constraint during shared basin
evolution (Fig. S7). We use this result to refine
the range of plausible #-T histories for all age
modes (Fig. 3). By requiring the #-T paths of
detrital modes to conform to the same well-con-
strained basin history, the broad range of source
t-T path segments are reduced. Notably for the
Choiyoi-II mode, a more restrictive basin his-
tory results in more tightly controlled cooling
histories that suggest rapid late Eocene cooling
and short thermochronologic lag times; i.e., the
difference between detrital thermochronologic
closure age and depositional age of the sample
(Fig. S8). In cases where the basin subsidence
is unknown, the overlapping results that satisfy
all modes may serve as a powerful guide for
defining the basin #-T history.

Rapid Late Eocene Exhumation in the High
Andes at 30°S

Double-dating zircon U-Pb-ZHe data from
the early Oligocene—Miocene basin infill indi-
cate a mixing of sediment sources character-
ized by variable exhumation histories. Elqui-
Colangiiil grains in the Vallecito Formation
exhibit ZHe dates and source #-T histories
comparable to Elqui-Colangiiil detrital zircon
ZHe dates recycled from the Carboniferous—
Permian Agua Negra and Patquia Formations
(Fig. 1; Table S2; Fosdick et al., 2015; Mack-
aman-Lofland et al., 2023). Similarly, Choiyoi
I grains record Permian—Triassic cooling that
suggests their source is either the Choiyoi Group
rocks or recycled strata. These findings are con-
sistent with reworking of relict orogen low-lying
piedmont sources (Fig. 4).

In contrast, the Choiyoi II mode exhibits
onset of rapid cooling at ca. 38—-35 Ma, requir-
ing rapid cooling through the ZHe closure
window to surface conditions by ca. 32.6 Ma
(Fig. 4). We propose that the Choiyoi II mode
was sourced from the High Andes or similar
intrusions in the Colangiiil Range, suggesting
early Oligocene drainage connectivity between
the Bermejo foreland and the hinterland (Fig. 4).
These findings are consistent with structural and
thermochronological evidence from the Guanta
Plutonic Complex (Fig. 1) that indicate rapid
cooling and exhumation of the High Andes
during a late Eocene (ca. 40-35 Ma) shorten-
ing along the Punilla-La Plata thrust (Lossada
etal., 2017; Rodriguez et al., 2018; Mackaman-
Lofland et al., 2023). Based on similar crystal-
lization ages and thermal histories, we contend
that the Guanta Plutonic Complex and nearby
Choiyoi Group (Pankhurst et al., 1996; Mar-
tin et al., 1999) are viable sources for Choiyoi
II zircons. Using the #-T inversion results for
onset of cooling—which are guided by diffusion
kinetics and geologic constraints—we compute
thermochronologic lag times of ~2-5 m.y. for
the Choiyoi II mode, suggesting rapid source
unroofing. The High Andes were a locus of arc
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magmatism for hundreds of millions of years
(e.g., Haschke et al., 2006), and thermal effects
from Cenozoic magmatism on Choiyoi II ZHe
sources cannot be fully ruled out. However,
given the sparse extent of mapped intrusions
of this age (Coira et al., 1982; Murillo et al.,
2017) and a well-documented structural and
thermal record, we suggest minimal reheating
of hinterland Choiyoi II sources from Eocene
intrusions. Localized arc-derived sources to
the Vallecito Formation include volcanic rocks
related to Eocene Bocatoma magmatism (Bis-
sig et al., 2001).

Growing evidence of late Eocene shorten-
ing, exhumation, and retroarc sedimentation in
the Central Andes at 30°S suggests a phase of
Andean construction (Giambiagi et al., 2022)
that was contemporaneous with orogenic wedge
development farther north in the Puna Plateau
(Fig. 1) where substantial shortening took place
in the early Cenozoic, consistent with develop-
ment of high elevation as early as late Eocene
time (DeCelles et al., 2015; Quade et al., 2015;
Henriquez et al., 2023). Absolute constraints on
Cenozoic paleotopography at 30°S are absent;
however, our results point to a drainage divide
located west of the Punilla—La Plata fault by
ca. 33 Ma (Fig. 4). Proximal foredeep deposits
associated with early Cenozoic shortening were
largely removed by subsequent Neogene thrust-
belt propagation in the western Frontal Cordil-
lera and Argentine Precordillera.

CONCLUSIONS

Our thermal history modeling of coupled
detrital zircon U-Pb and ZHe dates from the Ber-
mejo Basin document distinct sediment sources
within the High Andes. Modeling results from
Permian-Triassic Choiyoi Group zircons (Choi-
yoi II) in the Vallecito Formation document rapid
late Eocene cooling, indicating a short lag time
between ZHe cooling and deposition. This work
is consistent with structural and thermochrono-
logical evidence from the High Andes that sug-
gests rapid cooling of the Choiyoi Group during
late Eocene shortening along the Punilla—La Plata
fault (Lossada et al., 2017; Rodriguez et al., 2018;
Mackaman-Lofland et al., 2023). Our findings
are difficult to reconcile with a neutral Paleogene
stress-state model (Horton and Fuentes, 2016),
and instead suggest an active phase of shortening,
exhumation, and sediment routing to the distal
foreland at 30°S in late Eocene—early Oligocene
time. Improved knowledge of the timing and
duration of erosion and deformation is important
to evaluate models of Andean cyclicity (DeCelles
et al., 2015) and evolutionary stages of orogenic
wedge growth (Giambiagi et al., 2022; Ronemus
et al., 2024). As double-dating detrital thermo-
chronology capabilities expand (e.g., Horne et al.,
2016), a modeling approach for discrete detrital
U-Pb-ZHe modes may prove a powerful tool to
better resolve source-to-sink -7 histories.
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