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presence of multiple extremal surfaces. Our proposal is based on computing the wave function
in the basis of fixed-area states and assuming a diagonal approximation for the Renyi entropy.
For Renyi index n > 1, our proposal agrees with the existing cosmic brane proposal for
holographic Renyi entropy. For n < 1, however, our proposal predicts a new phase with
leading order (in Newton’s constant ) corrections to the cosmic brane proposal, even far from
entanglement phase transitions and when bulk quantum corrections are unimportant. Recast
in terms of optimization over fixed-area states, the difference between the two proposals
can be understood to come from the order of optimization: for n < 1, the cosmic brane
proposal is a minimax prescription whereas our proposal is a maximin prescription. We
demonstrate the presence of such leading order corrections using illustrative examples. In
particular, our proposal reproduces existing results in the literature for the PSSY model
and high-energy eigenstates, providing a universal explanation for previously found leading
order corrections to the n < 1 Renyi entropies.
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1 Introduction

Entanglement plays a fundamental role in the emergence of spacetime in holographic theories of
quantum gravity [1]. The prime discovery establishing this connection is the Ryu-Takayanagi
(RT) formula [2-4] in the AdS/CFT correspondence [5]. It states that at leading order in
Newton’s constant G, we have

A (vr)
S(R) = 1.1
()= 208, (1)
where S(R) = —tr(prlogpgr) is the entanglement entropy of the density matrix for a

boundary subregion R, A represents the area, and g is the RT surface, the bulk extremal
surface anchored to R (and homologous to R) with minimal area. Quantum corrections
to this formula are well understood [6, 7] and play an important role in, e.g., black hole
evaporation [8-11].

The entanglement entropy belongs to a one-parameter family of Renyi entropies defined as

Su(R) = 5 i ~log tr (o). (1.2)

Another related one-parameter family is that of the refined Renyi entropies [12] defined as

Sn(R)> . (13)



The entanglement entropy arises in the n — 1 limit of either of these families. Both S, (R)
and S,,(R) measure the bipartite entanglement between R and its complementary subregion
R, and provide more detailed information than the entanglement entropy itself. An arbitrary
density matrix can be thought of as a thermal state for the modular Hamiltonian, p = e~ Hmod.
in which case the Renyi and refined Renyi entropies essentially probe the system at different
temperatures given by % Thus, it is of interest to understand the holographic dual of
the Renyi entropy and the refined Renyi entropy to obtain a fine grained understanding
of the entanglement spectrum.

The Renyi entropies at integer n can be computed using the replica trick in the boundary
CFT [13]. The insight of ref. [14], as we shall review in section 2.1, was to propose that the
corresponding dominant bulk gravitational saddle is replica symmetric. Then, quotienting the
bulk geometry by the replica symmetry, one obtains a geometry with an additional conical

: 2
defect of opening angle <%

anchored to dR. Such a conical defect could equivalently be
interpreted as being induced by the insertion of a “cosmic brane” of appropriate tension [12, 14].
This cosmic brane proposal provides an analytic continuation away from integer n, and the
RT formula follows from it in the limit n — 1. Moreover, it was shown in ref. [12] that the
refined Renyi entropy is then computed by the area of the cosmic brane in this new spacetime,
providing a generalization of the RT formula. Henceforth, we will refer to either of the above
proposals for Renyi entropy and refined Renyi entropy as the cosmic brane proposal.

In this paper, we will demonstrate that while the cosmic brane proposal is correct in
many situations, it can fail even at leading order (in G) in large regions of parameter space. In
particular, we will show that such corrections appear quite generically for Renyi index n < 1
in the presence of multiple extremal surfaces. Such corrections have previously been noticed
by refs. [15, 16] in the PSSY model of black hole evaporation [10]. Moreover, the results
of ref. [17] interpreted in a holographic context also imply such corrections for high-energy
eigenstates. We will present a modified cosmic brane proposal that provides a universal
explanation of such leading order corrections.

Our modified cosmic brane proposal is based on expanding the holographic state in a
basis of fixed-area states where the areas of all extremal surfaces homologous to R have
small fluctuations [18-20]. We review the decomposition of smooth holographic states into
a fixed-area basis in section 2.2, reformulating the cosmic brane proposal in this language.
In the presence of two extremal surfaces v, and 2, the cosmic brane proposal (ignoring
bulk quantum corrections) takes the form

1 (1—n)
g, >
1_?“122%’)5 15111% (nlogp(Al,Az)—l- e A1> n>1,

1 ) (I1—-n)
1 _nzrgg 15111% (nlogp(Al,Ag) + 4GAl> n < 1.

(1.4)

where the function being optimized is the contribution to the nth Renyi entropy from the
fixed-area saddle with areas Aj, As where the replica gluing is performed around ~;. Here
p (A1, Ag) is the probability distribution over areas of the extremal surfaces.

Fixed-area states provide a convenient basis for decomposing holographic entropy cal-
culations. Via their connection to random tensor networks [21], they allow us to use other
tools from quantum information theory to analyze holographic entanglement measures. This



connection has already been exploited to discover many new results for holography (see
e.g. refs. [15, 22-29]). Our findings in this paper provide another such example of taking
inspiration from random tensor networks to learn about quantum gravity.

In section 3, we use the wave function in the fixed-area basis and assume a diagonal
approximation to arrive at our modified cosmic brane proposal. In summary, our modified
cosmic brane proposal for the Renyi entropy (ignoring bulk quantum corrections) is

1 (1-mn) .
MC _
SY(R) = T ;1111%43(2 (nlogp(Al,Ag) + e min [Al,AQ]) ) (1.5)

To compare with the cosmic brane proposal (1.4), we rewrite (1.5) as

1 1—
1 _ 5 Jax max <”10gP(A1,A2) + ( 4Gn) Ai) n>1,
SRy =4 - R (1.6)

o 1 1-—
max min (n logp (A1, A2) + (n)A,) n < 1.

1 —n A1,As i=1,2 4G

Combining eq. (1.6) with eq. (1.3) also leads to a modified cosmic brane proposal for the
refined Renyi entropy,

i) 0
4G

where {i, Aj(n), A2(n)} is the location of the optimum in eq. (1.6) for a given value of n and

we have assumed a continuous probability distribution for eq. (1.7) to hold. We expect our

proposal eqgs. (1.6)—(1.7) to apply at leading order in G for arbitrary n when bulk quantum

corrections can be ignored. In some situations, it is also possible to understand bulk quantum

corrections as we will discuss in section 3.

We can now compare our proposal to the cosmic brane proposal. The key difference
between the two proposals eq. (1.4) and eq. (1.6) is the order of optimization. For n > 1,
we have two maximizations whose order can be swapped and thus the two proposals always
agree. On the other hand, for n < 1, the cosmic brane proposal is a minimax prescription
whereas the modified cosmic brane proposal is a maximin prescription. Thus, in general, we
can only conclude that SMC(R) < SY(R), but they need not agree.

In section 4, we provide sufficient conditions for an agreement between the two proposals.
The original cosmic brane proposal considered two candidate saddles, and each saddle is
smooth everywhere except that it has a cosmic brane at -; which sources a conical defect of
opening angle 27” We show that the two proposals agree whenever the cosmic brane sits at
the minimal surface, i.e., when A; < As_; (evaluated in the corresponding saddle). On the
other hand, it is possible that neither of the saddles satisfies this constraint. In such a case,
the optimum in eq. (1.6) may either be achieved by a subleading saddle in the cosmic brane
proposal or at the entanglement phase transition boundary A; = As, either of which results in
leading order corrections to the cosmic brane proposal. As we explain in more detail later, the
configurations at A; = As involve distributing the cosmic brane tension over both candidate
RT surfaces, and these new configurations were not considered in the cosmic brane proposal.

To illustrate the presence of such corrections, we work out the example of p(Aj, As)
being a Gaussian distribution in section 5. In the simplest such setting, we demonstrate



that the modified cosmic brane proposal agrees with the cosmic brane proposal for n > 1 as
expected, whereas leading order corrections arise for n < 1. The detailed analysis of Renyi
entropies in an arbitrary Gaussian distribution is provided in appendix A.

In section 6, we provide evidence for our proposal by reproducing existing results in
the literature for the holographic Renyi entropy. We focus on results where leading order
corrections (for n < 1) have been previously found using methods different from ours. We
compute the Renyi entropies at arbitrary n in the PSSY model in section 6.1 and in high-
energy eigenstates in section 6.2, precisely reproducing the known results in each of these
cases with our modified cosmic brane proposal.

We discuss various future directions in section 7. A particular application of the modified
cosmic brane proposal will be to compute the entanglement negativity in AdS/CFT, which
we analyze in an accompanying paper [30]. We also discuss the validity of our diagonal
approximation and the possibility of replica symmetry breaking.

2 Cosmic brane proposal

2.1 Review of the proposal

At integer n, the replica trick can be used to compute Renyi entropies for a subregion R in
the boundary CFT [13]. The replica trick involves computing tr (p%) in terms of a partition
function Z,, of the CFT involving n copies of the original system glued cyclically about OR.
By the AdS/CFT dictionary [31, 32|, in the saddle point approximation we have

Zn = exp (71 [gn]) ) (21)

where [ is the gravitational action and g, is a geometry that solves the equations of motion
and satisfies the asymptotic boundary conditions defined by the replica trick path integral.
In this paper, we will restrict to discussing Einstein gravity, but we expect our results to
generalize to higher-derivative theories using the ideas of refs. [20, 33]. At this point, we are
ignoring bulk quantum corrections and they will be discussed briefly in section 3.

Ref. [14] proposed that the dominant saddle g, respects the Z,, replica symmetry of
the boundary path integral that cyclically permutes the n boundary copies. This insight
allows one to quotient the bulk geometry by this Z,, symmetry and provides an analytic

continuation away from integer n, i.e., including the normalization factor we have

tr (pi) = exp (=n(I [ga] = I'[91])) , (2.2)

where §, is a solution to the equations of motion with a conical defect of opening angle

%’T anchored to OR in addition to satisfying the asymptotic boundary conditions defining

the original state.! Equivalently, this conical defect can be interpreted as arising from the

insertion of a cosmic brane of tension T, = 2=1 [14]. With this understanding, eq. (2.2)

provides a natural analytic continuation to non-integer values of n and defines the cosmic

brane proposal for the holographic Renyi entropy for arbitrary n at leading order in G, i.e.,
n

Sn(R) = —— (Ign] = I01]) . (2.3)

'The action I [§] excludes an explicit contribution from the conical defect [14].



In the limit n — 1, the cosmic brane becomes tensionless and the RT formula follows
from eq. (2.3).

It was proposed in ref. [12] that the refined Renyi entropy satisfies a natural generalization
of the RT formula. Using eq. (2.3), it was shown that

O A (’YR,n)

where vg , is the location of the cosmic brane of tension 7}, in the geometry gs,.

It is important to note that the naive cosmic brane proposal is already subtle for n < 1 in
the presence of multiple extremal surfaces that serve as candidate RT surfaces for subregion R.
When there are multiple extremal surfaces, at integer n one naturally picks the solution with
the least bulk action I [j,] and it is natural to extend this rule to the analytic continuation.
In the limit n — 17, this picks out the minimal area surface, resulting in the RT formula.

However, if we instead considered the limit n — 17, and if the naive cosmic brane
proposal still chooses the solution with the least action I [§,], it would pick out the maximal
area surface among the two candidates, leading to a physically unreasonable answer. Thus,
for n < 1, it is natural to insist that the cosmic brane proposal pick out the solution with the
largest action instead. With this rule, there is so far no obvious problem with the formula
and we will take this to define the cosmic brane proposal in the presence of multiple extremal
surfaces. Having said so, in this paper, we will demonstrate that even with this updated
rule, the cosmic brane proposal can have corrections at leading order in G in the presence
of multiple extremal surfaces.

2.2 Reformulation in terms of fixed-area states

Having discussed the cosmic brane proposal in terms of the gravitational path integral, we
will now reformulate it in terms of fixed-area states. This will prove convenient later to
compare with our modified proposal.

We start by considering a holographic state [1)) defined by a Euclidean path integral
construction in the boundary CFT. For our purpose, we will be interested in considering
a subregion R of the boundary such that there are multiple candidate RT surfaces in the
state [10). While we expect our formalism to go through in a straightforward manner for
more than two surfaces, it suffices for illustrative purposes to restrict to having two extremal
surfaces anchored to R (and homologous to R), labelled 7, and ~o.

Following refs. [22-24], we will decompose the state |¢) into an orthonormal basis of
fixed-area states | A1, A2) which, as we shall discuss, are states where the areas A, o of surfaces
~,2 are sharply peaked [18-20]. In this basis, we have

W)= > \/Me"‘”(“‘l’AQ) | A1, Ag) (2.5)

A1,A2

where we have explicitly separated out the phases (A1, As) so that p(Aj, Ay) is real and
can be interpreted as the probability distribution of the areas of the two extremal surfaces.

Smooth holographic states (such as |¢))) are defined by a path integral with asymptotic
boundary conditions. Their corresponding fixed-area states are defined by an identical path



Figure 1. (left): Cauchy slice of a geometry with subregion R chosen to be two disjoint intervals.
There are two candidate RT surfaces 1 (green) and v, (orange). (right): the fixed-area Euclidean
saddle has conical defects with opening angle ¢; 2 at the extremal surfaces ;2. The Cauchy slice is
marked in blue, the bulk region to be cut open to obtain a single copy of pr (A1, A2) is solid, and the
rest is dashed.

integral with an additional boundary condition that fixes the area of the RT surface to be a
specified value [18-20]. Doing so requires the opening angle to adjust in response and thus
generically introduces a conical defect at the surface.

In our case of interest, there are two such candidate surfaces, y; and ~». In general, 1
and -2 can be separately specified in a gauge invariant manner. For example, when R consists
of two intervals, we can specify them to be extremal surfaces of a given homotopy class, i.e.,
connected or disconnected with respect to R (see figure 1). In general, we will assume that
v1 is the outermost surface, closest to R. Thus, our fixed-area saddles will satisfy all the
asymptotic boundary conditions, satisfy the equations of motion everywhere away from ~;
and 72, and have areas A (v1) = A; and A (y2) = As. As noted earlier, in general, this will
introduce conical defects with opening angles ¢1 2 at ;2 as shown in figure 1.

The probability weights p (A1, A2) can then be computed using the gravitational path
integral. Namely, we have [23]

<'(/)|HA1,A2 |¢>
(¥ly) (2.6)

= exp (I [gzp] -1 [gAl,A2]) )

D (Al’ AQ) =

where II4, 4, is a projector onto areas (A1, A2), ga,,A, is the corresponding fixed-area saddle
and gy is the original, non-fixed area saddle for |¢)).

For states prepared by simple path integrals, we expect p (A1, A2) to be sufficiently smooth
and peaked at a single value of (A1, A2). Such states are compressible in the sense defined in
ref. [24]. Thus, although our discussion is amenable to the inclusion of incompressible states,
the corrections to the Renyi entropy that we will find are independent from those discovered
for the entanglement entropy of states with incompressible bulk matter.



Note that the above discussion can be extended to quantum extremal surfaces. Fixed-
area states can be defined in an analogous fashion for such surfaces. For classical extremal
surfaces, the extremality condition plays an important role in allowing the opening of a
conical defect at the location of the surface as required to fix the area. For quantum extremal
surfaces, quantum extremality plays the same role allowing the equations of motion to be
satisfied near the location of the defect due to a matter contribution that stabilizes the
classical non-extremality [34].

We are now ready to reformulate the cosmic brane proposal in terms of fixed-area states.

Definition 1. The cosmic brane proposal for the Renyi entropy is given by

1 _
max max (n logp (A1, As) + MAz> n>1,
SC(R) _ J 1 —ni=12 A4, 4G

1 (1-n)
. —nzril%% 15111% <nlogp(A1,A2) + 4GAZ) n < 1.

To see that eq. (2.7) is equivalent to the formulation of the cosmic brane proposal

(2.7)

reviewed in section 2.1, we can use eq. (2.6) to find the conditions for attaining the inner
maximum in eq. (2.7): e.g. for i = 1, we have

I [ga, A, 1—n

0A,  4nG’ (28)
oI [ga,,A,]
el =T T 2.

and the roles of A; and Ay are swapped for i = 2.

The action of the fixed-area saddle can be divided into two parts: a localized contribution
from the surfaces 71 2 and the remaining contribution from the rest of the spacetime away
from the surfaces [19]; i.e,

(¢1 —2m) 4y n (¢2 — 2m) Ap
871G &G
where we remind the reader that ¢; is the opening angle at surface +; and thus, the localized

I [gA1,A2] = Iaway [gAhAQ] + (2'10)

contributions arise from Ricci scalar delta functions due to the presence of conical defects at
~1,2. To take the derivative with respect to A;, we follow the argument of ref. [19] and note
that differentiating Iaway [94,,4,] With respect to ¢; gives —A;/87G, and thus its Legendre
transform I [ga, 4,] satisfies

ol [gA1>A2] . ¢ — 2

6Al &G

Using this, eq. (2.8) and eq. (2.9) imply that ¢; = 2% and ¢9 = 27. Again, by symmetry,
we have ¢1 = 27 and ¢9 = 27” for ¢ = 2. These are precisely the candidate saddles that one

(2.11)

obtains from the cosmic brane proposal, with eq. (2.8) indicating the presence of a cosmic
brane of tension T, at -;, as discussed in section 2.1. Finally, as discussed in section 2.1, the
maximization (minimization) over ¢ for n > 1 (n < 1) results in the optimum configuration
chosen in the cosmic brane proposal.

While we showed eq. (2.7) to be equivalent to the cosmic brane proposal for holographic
states prepared by a smooth gravitational path integral, eq. (2.7) can be taken as the definition
of the cosmic brane proposal for more general probability distributions over fixed-area states.



3 Modified cosmic brane proposal

To obtain our modified cosmic brane proposal, we will directly use the wave function in
the fixed-area basis to compute the Renyi entropy for subregion R. The density matrix
PR is given by

pr= Y o (An Az p (A, Ay PANAD A (1 (1 4y, A5) (4G, A}
A1, Ag, AlLAY

= > p(A1,A2) pr (A1, A3) + ODg,
A1,A2

(3.1)

where we have separated the diagonal part of eq. (3.1) (i.e., terms with A; = A} and Ay = A))
from the off-diagonal part, represented by ODp. The diagonal pieces pr (A1, As) are just
the density matrices for fixed-area states, which are given by cutting open the Euclidean
fixed-area saddle depicted in figure 1.

In AdS/CFT, it is well understood that any operator in the entanglement wedge, the
region between R and the RT surface g, can be measured by subregion R [35, 36]. Similarly,
operators in the complementary entanglement wedge can be measured by subregion R. In this
setup, the RT surface is either 41 or 9 depending on which one has minimal area. Irrespective
of which surface is the true RT surface, Ay is always measurable by R. Thus, we can ignore
any off-diagonal terms in eq. (3.1) where Ay # AJ since they vanish when performing the trace
over R [23, 24]. We can also ignore terms where A; # A} as long as A; < Aj for the same
reason. However, we cannot in general ignore off-diagonal terms where Ay # A} and A; > As.

Despite this, ref. [23] found reasonable results by assuming a diagonal approximation
for the moments of pg, i.e.,

tr(pg) = Y p(A1,A2)" tr (pr (A1, A2)"). (3.2)
A1,A

While this approximation can be justified for the entanglement entropy [24], there is no
similar justification that we can provide for the Renyi entropies in general. Nonetheless,
we will proceed by assuming this diagonal approximation. At leading order in G, we
will further assume that p(Aj, As2) is such that we can apply eq. (3.2) in the saddle point
approximation, i.e.,
tr (pR) ~ nax [p (A1, A2)" tr (pr (A1, A2)")], (3.3)
which generally only leads to log G’ corrections to the entropy compared to eq. (3.2).? Our
philosophy will be to derive our modified proposal under this assumption and provide evidence
for the assumption in section 6 by demonstrating agreement with known results in AdS/CFT,
derived using independent methods.
Note also that the diagonal terms considered in eq. (3.2) are precisely the ones with
replica-symmetric boundary conditions (viewing the area fixing constraint as a boundary
condition). As we note below, replica-symmetry breaking saddles can still contribute to

2Near entanglement phase transitions, it can lead to O (%) corrections to the entanglement entropy.



Figure 2. (left): a permutation on n elements. (right): the corresponding fixed-area Euclidean saddle
that computes tr (pg (A1, A2)™) involves n copies of the original saddle (see figure 1) glued together
in a manner dictated by the permutation.

the diagonal terms and we shall include them in our analysis. The off-diagonal terms will
generically involve only replica-symmetry breaking saddles. In this sense, our assumption
of ignoring off-diagonal terms is weaker than the assumption of ref. [14]. In fact, at leading
order in G, one can instead directly assume eq. (3.3). Picking the dominant diagonal term is
similar to the assumption of ref. [14] which assumed that at integer n, the dominant saddle
in the Renyi entropy computation is replica-symmetric. The advantage of directly assuming
eq. (3.3) would be that perhaps one can prove it in other ways, e.g., by using properties of
the gravitational path integral. We will comment more on this in section 7. For now, we note
that the diagonal approximation, as well as the saddle point approximation to it, satisfies the
basic consistency check of being symmetric between the two systems, i.e, S, (R) = S, (}_2)

In order to compute eq. (3.3), we need to understand how to compute tr (p%) for a
fixed-area state. This was understood in detail in refs. [18-20] and we briefly review it
here. For integer n, tr (pg (A1, A2)") is a partition function with n copies of the original
system that are required to satisfy a fixed-area boundary condition at the extremal surfaces.
The saddles that compute tr (pr (A1, A2)") are given by cutting open the original fixed-area
geometry, taking n copies of it, and gluing them together in a manner corresponding to an
arbitrary permutation of n objects (see figure 2). For A; < Ag, the dominant such saddle
gn corresponds to the identity permutation, while for A; > As, g, corresponds to the cyclic
permutation. Momentarily ignoring bulk quantum corrections, the classical action for the
dominant saddle is given by [19]

Iga] = nl (1] + % min [Ar, As)] . (3.4)



At Ay = As, a class of replica symmetry breaking saddles becomes degenerate, but since
the degeneracy only contributes at subleading order, for our purpose we can continue using
eq. (3.4) even at A; = Ag. Accounting for normalization, at leading order, one obtains

tr(pr (A1, A2)") = exp (I [gn] + n1 [g1])

= exp (— n4;1 min [Aj, AQ]) .

(3.5)

While we derived eq. (3.5) for integer n, the result can be analytically continued to
arbitrary n in the obvious way. At (positive) integer n (as well as real n > 1), the minimization
over areas arises automatically from minimizing the action, although this action minimization
naively appears to turn into an area maximization for n < 1 as discussed in section 2.1.
Nevertheless, fixed-area states are good analogues of states in random tensor networks, and
in that context, eq. (3.5) is known to be correct even for n < 1.3 This explicit minimization
over areas is crucial for our proposal.

We can now combine eq. (3.5) with eq. (3.3) to compute the Renyi entropy at leading
order, leading to our main result.

Definition. The modified cosmic brane proposal for Renyi entropy is given by
1 1-—
[, nax max (TLIng(AlaAQ) + (4Gn)Ai> n>1,
SYC(R)y =4 - (3.6)

1 : (1-n)
T—n 51?% ln:l%ré (nlogp(Al,Ag) + 4GAQ) n<1.

Using eq. (3.6), one can also obtain the refined Renyi entropy eq. (1.3). Denoting
{i, A1(n), A3(n)} as the location where the optimum in eq. (3.6) is achieved at a given n,
we then have

SMC(R) = ziG . (3.7)

The simplest way of deriving eq. (3.7) is to assume p (Aj, A2) to be differentiable so that

the terms arising from n-derivatives acting on fli(n) cancel out due to stationarity. More
generally, eq. (3.7) can also be proved for continuous p (A4;, A2) using Danskin’s theorem
(see e.g. ref. [37]).

Note that eq. (3.7) is applicable within a given phase where Ag(n) changes continuously,
although it can jump discontinuously at phase boundaries. The Renyi entropy, on the other
hand, is typically continuous but not analytic at such phase boundaries.

We can now discuss the effect of bulk quantum corrections to our modified cosmic
brane proposal. In general, accounting for bulk quantum corrections is complicated since
the replica-symmetry breaking contributions need to be carefully summed over in order to
analytically continue in n. We will discuss this further in section 7.

A simple update to eq. (3.6) to include some bulk quantum corrections arises if we can
find a code subspace such that the bulk entropy contributions from the entanglement wedges

3An easy way to see this is to notice that the minimal cut in a tensor network puts a bound on the rank of
the density matrix, which is the exponential of the n = 0 Renyi entropy. Using monotonicity of Renyi entropy
as a function of n then constrains the Renyi entropies for n < 1 to be given by the minimal cut.

— 10 —



R

Figure 3. A bulk state with only bipartite entanglement between the relevant bulk regions. The
black lines connecting various regions represent Bell pairs of three different types labelled a, b and c.

corresponding to both 7 and ~, can be rewritten (at least approximately) as the expectation
values of commuting linear operators. If so, the bulk entropy terms can be simply absorbed
into a redefinition of the area operators, and we can derive eq. (3.6) using the new area
operators (assuming that replica-symmetry breaking contributions continue to be subleading).
A simple case where this can be done is when the bulk state is bipartitely entangled
at leading order in G as shown in figure 3. In this case, the leading order (in G) bulk
entropies can be absorbed into a redefinition of the area operators. The new area operators
commute and can be used to define a natural generalization of fixed-area states. Each such
fixed-area state contains three kinds of Bell pairs: a, b and ¢ as shown in figure 3. In such
a state, the original areas and the redefined areas are related by f—é — f—é + S, + 5. and
f—é — f—é + Sy + S¢, where S,, Sy, S. are the entropies of one half of the a, b, ¢ Bell pairs.
Using the new area operators, we then find our modified cosmic brane proposal eq. (3.6).

4 Comparing the two proposals

Having formulated both proposals in terms of an optimization over fixed-area geometries,
we can now compare them and see when they agree. For starters, the difference between
the proposals eq. (2.7) and eq. (3.6) is the order of optimizations. This leads us to the
following general comparison:

Theorem 1. Forn > 1, SMC(R) = SY(R). Forn < 1, SMC(R) < SC(R).

Proof. For n > 1, we have two maximizations whose order can always be swapped. Thus,
the two proposals agree in this case. For n < 1, the cosmic brane proposal is a minimax
prescription whereas the modified cosmic brane proposal is a maximin prescription. From
the well-known max-min inequality (see for instance ref. [38]), we obtain the required
inequality. O

— 11 —



We will now find sufficient conditions for the two proposals to agree for n < 1. The cosmic
brane proposal has two candidate saddles, each with a cosmic brane sitting at ;. We will find
that the two proposals agree as long as at least one of these saddles satisfies the constraint
that 7; is the minimal surface among 7; 2 (which we will refer to as the minimality constraint).

To do so, it is useful to establish some notation. Let f; = nlogp (A1, A2) + (1 — n)f—é for
i=1,2. Let A® = (Aﬁ“, AS)) be the location? that maximize f; subject to the minimality
constraint A; < As_;. Further define A = ([15”, flg)) to be the location that maximizes

f; without any constraint. In cases with multiple maxima, we simply choose A(® to be any
of the maximal locations, and choose A® to be A® if it satisfies the minimality constraint,
and if otherwise, choose it to be any of the allowed maximal locations. In the above notation,
all the locations depend on n, which we leave implicit in this section.

With this notation, we can rewrite the two proposals in the n < 1 case as

Claim. The cosmic brane proposal for n < 1 is given by

CRY = " in f, (AD)
S"(R)_l—ngi%f’(A ) (4.1)

Claim. The modified cosmic brane proposal for n <1 is given by

1 i
SO0 = 5wy (A%) (42

We will now determine sufficient conditions under which these proposals agree.

Lemma 1. Forn <1, if A = AM  then SY(R) = ﬁfl (A(l)). An analogous statement
holds with the roles of A and A@ reversed.

Proof.
f1 (A(l)) =fi (A(l)) =nlogp (Agl), Agl)) +(1- n)jg (4.3)
<nlogp (A", 48) + (1 - n)i% = /> (A®) (4.4)

< f,(A®), (4.5)

where the second line uses the fact that A™) by definition lies within the constrained domain
A < Ay, together with the fact that n < 1. The third line uses the fact that A®?) is the
unconstrained maximum of fy. Therefore, Sg (R) = ﬁ f (A(l)) due to the minimization
in eq. (4.1). O

Lemma 2. For n < 1, if A = AW then SMC(R) = ﬁfl (A(l)). An analogous
statement holds with the roles of A and A® reversed.

4Location refers to a point in the (A1, A2) parameter space.
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Proof.

fi (A(1)> =f (A(l)) (4.6)
>N (A(z)) =nlogp (A§2), Aég)) +(1- n)ig) (4.7)
> nlogp (AP, AP) + (- mA2 — p, (a®), 49

where the second line uses the fact that A1) is the unconstrained maximum of f;. The third
line uses the fact that A(® is constrained to lie within the domain Ay < Aq, in addition to
n < 1. Thus, we see that SMC(R) = - f1 (A(l)) since the maximization in the modified

cosmic brane proposal eq. (4.2) is achieved at A1), O

Lemma 3. If SMC(R) = SC(R), then A = A or A2 = A(2),

Proof. By definition, f; (A(i)) =f; <A(i)) implies that A® = A® Thus, we can instead
= 1 (AW) or f,(A®) = £, (A®). SMC(R) = SI(R)

implies that f;. (AGe)) = f; (A(MC)) where ic (iprc) is the index that achieves the
minimum (maximum) in eq. (4.1) (eq. (4.2)).

prove that either f; (A(l))

If ic = ipc, then we are done. If not, consider ic = 1 and iy;c = 2 without loss of
generality. Then we have f; (A(l)) = fo (A(2)). However, we also have

f2 (A(Z)) <h (A(z)) <h (A(l)) , (4.9)

where the first inequality is analogous to the one shown in (4.4) and the second inequality
follows from the definition of A1), Thus, equality must hold throughout and in particular,
fo (A(z)) = f1 (A(2)>, which in turn implies that A?) = AgQ). Thus, A®?) lies within

the constrained region defining A(). Hence, we have f; (A(z)) < fi (A(l)). However,
since ip;c = 2, we also have fo (A(z)) > f (A(l)). Combining this with the equality
fo <A(2)) =f1 <A(2)) obtained above, we have f; (A(l)) =f1 (A(2)). This implies that
f (A(l)) =fi (A(l)) as needed. O

Combining Lemma 1, Lemma 2 and Lemma 3, we immediately find the following necessary
and sufficient condition for the two proposals to agree:

Theorem 2. SMC(R) = SC(R) iff A® = A o A@ = A®@) e if either of the saddles
A® satisfies the minimality constraint A; < As_;.

Thus, we see that the two proposals agree as long as at least one of the candidate saddles
in the cosmic brane proposal satisfies the minimality constraint. This implies that the two
proposals can only disagree when neither of these saddles satisfies the minimality constraint.
In such a situation, the modified cosmic brane proposal will pick either a subleading saddle
(for the cosmic brane proposal) that satisfies the minimality constraint, or a diagonal saddle
A (D) that satisfies A; = As.> We will explore various controlled examples in section 5 and

SRelated boundary value dominance has shown up in similar analyses of logarithmic negativity [39, 40].
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section 6 where A(P) does indeed dominate for n < 1, resulting in leading order corrections
to the cosmic brane proposal. We expect this to be a generic feature for n < 1.

Before moving on, it is illuminating to discuss the geometry of the saddle A(P) to
contrast with the cosmic brane proposal in situations where the state is defined by a smooth
gravitational path integral. On the diagonal, we can write min [A;, Ay] = x A + (1 — z)As
for any x. Then, the maximizing conditions for the modified cosmic brane proposal are

ol [gA17A2] I(l - n)

0A,  4nG (4.10)
o1 {gA11A2] . (1 - m)(l - n)
Ay AnG ’ (4.11)

where we look for solutions that satisfy the constraint A; = Ao, thus providing enough
conditions to solve for z. The conditions eq. (4.10) and eq. (4.11) can be interpreted as
introducing cosmic branes with distributed tensions T, 1 = 2T}, and T, 2 = (1 — z)T,, at the
surfaces v; and o respectively. This is in contrast with the cosmic brane proposal where
the cosmic brane of tension 7T, lies at a single surface.

5 An illustrative example: Gaussian distribution

To illustrate how our modified cosmic brane proposal works, we consider the example of a
Gaussian probability distribution® over the areas such that

1
p(A142) = exp | ~3 (A= A0)- O (A - &) (51)
where A = (A;, A) as before, Ag = (A1,0, A2,0) represents the most likely area vector, and

C is the covariance matrix given by

2
C = ( o1 T0'10'2) ’ (52)

ro102 U%

where r € [—1,1]. In this section, we present the simplest case that illustrates our point: r =0
and 01 = 09 = 0. A complete analysis of the general case eq. (5.2) is relegated to appendix A.

For this setup, we can analytically compute the Renyi entropy using the modified
cosmic brane proposal eq. (3.6). There are three potential maxima that are relevant in the
computation: A, A(®) which represent the unconstrained maxima of fi, f as before, and
A D) which represents the maxima on the diagonal A; = As. Hereafter, we make the n
dependence in A® and AMP) explicit.

The maximizing conditions for the modified cosmic brane proposal then become a
condition on the gradient

n—1
Viegp = (476G> , (5.3)

SWhile it is physically reasonable to restrict the area distribution to be supported only on the domain
A1, Az > 0, we will work in regimes far from these boundaries. For instance, we will see this to be the case as
long as Ai,0, A2,0 > "—GZ Thus, the extension of the probability distribution to negative areas will not affect
our discussion. For concreteness, one could also truncate the distribution to the positive area domain, which
does not affect any of our calculations at leading order.
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Figure 4. The locus of maxima computing the Renyi entropy using the modified cosmic brane
proposal is shown as a function of n (solid red and orange lines), with the extremes n — oo and n — 0
labelled. Level sets of constant probability are circles (blue) with center at (A, A2,0). The cosmic
brane saddle for i = 1 (red) exits the allowed domain for n < n, as depicted by the dashed red line.
The cosmic brane saddle for ¢ = 2 (dashed green) is always in the disallowed region in the above setup.

for A and

Vlogp = <n91> , (5.4)

anG

for A(). Solving eq. (5.3) and eq. (5.4) we obtain

- n—1[c?
AV @) =Ag— —— ( ) , (5.5)

4Gn \ 0
~ (2) _ _ n—1 0
AP (n) = Ay~ = (02> . (5.6)

We will refer to phases where the above peaks dominate as Phase 1 and Phase 2 respectively.
The Renyi entropy and refined Renyi entropy in these phases are given by

A (1 —n)o? ~ A (1 —n)o?
(1) — 210 (1) _ 410
S (R) 4G + 32nG2 S (R) 4G + 16nG? ’ (5:7)
A (1 —n)o? ~ A (1 —n)o?
) — 220 (2) _ 420
S = 5a T amer S ) = 545+ Tonc? (5:8)
Similarly, solving for the location of the diagonal peak A(P)(n), we obtain
Ajg+ A —1)o?
AP () = AP () = A0t A0 (12 DT, (5.9

2 InG
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Ajp A1

) ’

Figure 5. The Renyi entropy (left) and refined Renyi entropy (right) computed by the modified
cosmic brane proposal at a fixed generic value of n < 1 is shown as a function of A; o holding all other
parameters fixed, along with the answer predicted by the cosmic brane proposal. The three phases (1,
2 and D) arising as we move across the entanglement phase transition are labelled.

The phase where the diagonal peak dominates will henceforth be called Phase D. In Phase
D, the Renyi entropy and refined Renyi entropy are given by

_ Aot Ao 7 (Ado)*  (n—1)o? 3(D)

B o Al,O + A270 B (n — 1)0’2
8G 4(n —1)o? 64nG? " B

8G 32nG?
(5.10)

S{PI(R) (R)

where AAg := Az — A1p.

Having computed the Renyi entropy at each of the candidate peaks, we can now discuss
which phases dominate. Without loss of generality, consider the case where Ag lies in the
domain A;o < Azo. Then, it is easy to see that for n < 1, the saddle at AM (n) exits
the allowed domain at a critical value

1
N I+ % , (5.11)
where AAyg = Ay g — A1p > 0 and thus, n. € [0, 1]. It is also easy to see from eq. (5.6) that
the saddle at A(®(n) is not allowed for any n < 1. Thus, the maximum is achieved at the
diagonal peak A(D)(n) for n < ny. The locus of maxima computing the Renyi entropy at
different values of n are shown in figure 4.

Note that the existence of these corrections to the cosmic brane proposal does not rely
on being close to an entanglement phase transition, although the nearer we are to a phase
transition, the corrections to the cosmic brane proposal arise closer to n = 1. For illustration,
in figure 5, we depict the different phases that arise for a fixed generic value of n < 1 as we
increase Aj o across an entanglement phase transition, holding everything else fixed. The
Renyi entropy at n < 1 is given by

—n 0'2
M(R) A1 < Agpg — %7

—n)o? —n)o?
Su(R) = S\ (R) Avg € [Agg — Ui, Ago + U501 (5.12)

—nN 0'2
D(R) Ao > Agp + Hine
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Figure 6. (left): the PSSY model involves a JT black hole coupled to EOW branes. The k flavours
of the branes are entangled with R. The two (quantum) extremal surfaces are ; (orange) and the
horizon 9 (blue). (right): the non-zero region of the distribution p (s, s) represented in terms of
variables (s, s) for the three different phases (labelled). The locations of the saddles 3" (n) = s; and
5(2)(n) = s, are marked for reference, assuming n < 1.

and the refined Renyi entropy follows the same pattern of phases. The results are plotted in
figure 5. Since o = O(v/G) for gravitational states prepared by a smooth path integral, it
is clear from this example that there is an O(1) window of areas around the entanglement
phase transition, where there are O (é) corrections to the cosmic brane proposal.

While we only discussed the simplest example where we can observe leading order
corrections to the cosmic brane proposal, the results for an arbitrary Gaussian are discussed
in detail in appendix A.

Before moving on, we note that while this was a toy example, any smooth distribution
can be approximated by a Gaussian near its peak. This was used to analyze the entanglement
entropy in ref. [23], since it is universally a good approximation near n = 1. Similarly
for us, while the details of the distribution will become important as the saddles move
away from the peak, the results of this section are applicable in general (not necessarily
Gaussian) states for n =~ 1.

6 Agreement with known results

We will now provide evidence for our proposal by demonstrating consistency with known
results for the Renyi entropy. In section 6.1 and section 6.2, we apply our formalism to two
settings where previous results for the Renyi entropies exist even for n < 1: that of the PSSY
model and high energy eigenstates, respectively. In each of these cases, large corrections to
the Renyi entropy were found for n < 1 and we shall reproduce this using our formalism. By
showing consistency with these results, we provide evidence for our modified cosmic brane
proposal which we derived by assuming a diagonal approximation.

6.1 PSSY model

The PSSY model is a model of an evaporating black hole in JT gravity coupled to end-of-the-
world (EOW) branes [10]. The EOW branes have k flavours that are maximally entangled
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with an auxiliary radiation system R (see figure 6). The Renyi entropy was computed in
ref. [16], with large corrections found for n < 1 (see also ref. [15]). Here, we show that our
proposal reproduces the Renyi entropies precisely.

We will first need to review some basic facts about the model. The partition function
of JT gravity with an asymptotic boundary of renormalized length 5 and an EOW brane
is given by [10]

Z(8) = /0 " ds p(s)y(s), (6.1)

where p(s) is the density of states and y(s) is the Boltzmann weight associated to the
thermal spectrum at inverse temperature 5. For our analysis, we will work in the simplifying
limit where the tension of the branes is chosen to be large. We then have p(s) ~ eSo+27s
and y(s) ~ e=B5*/2 The remaining free parameters in the theory are k, So and S. The
parameter Sy will be taken to be large in order to suppress higher genus corrections. Then, the
semiclassical limit is controlled by § which can be rescaled to SG to restore the dependence
on Newton’s constant.

The candidate RT surfaces for subregion R are 4; and v, shown in figure 6.7 To be
precise, v1 is the trivial surface but includes a bulk contribution from the semiclassical
entanglement between R and the EOW branes. Since the bulk entanglement is bipartite, we
can follow the discussion in section 3 to include bulk quantum corrections. The bulk state
already has a flat spectrum, and thus all we need to do is add a contribution of log k& to the
area operator at this surface, thus giving us f—é = log k. The surface =5 is the horizon of the
black hole with area As and, in this theory, f—é is interpreted as the value of the dilaton. To
compare with the notation of ref. [16], it will be convenient to parametrize the areas using
(sk,s) where logk = Sy + 2ms, and f—é = Sy + 2ms.

In order to apply the modified cosmic brane proposal to compute the Renyi entropy,
the remaining ingredient is the probability distribution over areas, which we can obtain
using our discussion in section 2.2. The distribution p (sg, s) has support only in a small
window around a definite value of sy, since the semiclassical entanglement spectrum is flat. In
order to compute the s-dependent part of p(sg, s), we can evaluate the action of a saddle
with fixed s and use eq. (2.6). This is straightforward since eq. (6.1) already includes the
contribution from all values of s and we simply need to project it to a given value of s.
Thus the s-dependent part of p (sg,s) is

p
p(sn,) xexp =5 (5= s0)?). (62)
This is a Gaussian peaked at s = s1, which is the n = 1 value of s,, := i—g (not to be confused
with si). We depict this distribution for different values of s in figure 6.
We can now apply the modified cosmic brane proposal for the Renyi entropy, which
takes the form

Sp (R) = 1 i — max (—W + (1 —n) (So + 27 min [sg, s])) : (6.3)

"Note that these are really quantum extremal surfaces, but we refer to them as RT surfaces for simplicity.
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> log k log k

Figure 7. The Renyi entropy (left) and refined Renyi entropy (right) computed by the modified
cosmic brane proposal at a generic value of n < 1 is shown as a function of log k£ holding all other

parameters fixed, along with the answer predicted by the cosmic brane proposal. The three phases (1,
D and 2) arising as we move across the entanglement phase transition are labelled.

As discussed before, there are three potential maxima which in this case are given by
5D (n) = s, 53 (n) = s,, s (n) = sy, (6.4)

where we have used notation analogous to our previous examples to represent the possible
phases and as before, the maxima are only allowed if they lie within the correct domain.

We can now divide our analysis into two cases: n > 1 and n < 1.

n > 1. For n > 1, we obtain two phases, Phase 1 and Phase 2 respectively, i.e.,

log k s < E (14 %
Su(R) = F) , (6.5)

So+2 (1+41)  s>35(1+1)

which results from a discontinuous jump in the global maxima from 31 to 52 at s, =
% (1 + %) Correspondingly, the refined Renyi entropy is given by

log k sk<%(1+%)

Sn(R) = (6.6)

, .
SO+% Sk>%(1+%)
As expected, this is consistent with the cosmic brane proposal since Phase D never appears.

n < 1. Forn < 1, we obtain all three phases, Phase 1, Phase D, and Phase 2 respectively, i.e.,

log k Sk < 51
Qﬂsk_nﬂsi_27r2n
Sn(R) =4 8o+ ——" Sk € [s1, ) (6.7)
So-i-z%z(l—i—%) Sp > Sp
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A1

Figure 8. (left): the holographic dual of a high energy eigenstate is a black hole geometry in the
exterior. We are probing it in a limit where the black hole (shaded black) is large and reaches close
to the boundary. The subregion R which has two candidate RT surfaces v; (green) and o (orange)
which mostly hug the horizon. (right): the non-zero region of the distribution p (A;, 4s).

which results from a continuous shift in the global maxima from 51 to s(?) at s, = s; and
from s(P) to 52 at s, = s,,. Correspondingly, the refined Renyi entropy is given by

~ log k Sk < Sp
Sn(R) = , . (6.8)
So + % SL > Sp,

Both of these results are plotted in figure 7 to contrast with the cosmic brane proposal.
These are precisely the results obtained by ref. [16] and we have reproduced them using
the modified cosmic brane proposal.

6.2 High energy eigenstates

We now consider high energy eigenstates of a single boundary holographic CFT. The
holographic dual of such states is a black hole geometry in the exterior. In particular, we
will be interested in the thermodynamic limit where the black hole is large and reaches close
to the boundary as shown in figure 8.

Such a setup was studied for general chaotic theories in ref. [17] and was then studied in
a holographic context in ref. [22]. Here, we will apply the entanglement spectrum proposed
in ref. [17] to holographic CFTs. Their proposal was that for subregion R,

[ dE; ¢Smin(P1) [e—S(E) eSmax(El)} n

tr (pf) = e=S(B) [ dE, ¢Suin(BD) ¢Sua(B1)

(6.9)

where Spin(max) (£1) = min(max) [S1 (E1), 52 (E — F1)] and Si, Se are the thermodynamic
entropies of subregions R, R at a given subsystem energy.
For a holographic theory, we can suggestively rewrite eq. (6.9) as

r (o) ~ /dA1 Ay 5 (E — By — Es) (B, Es)" exp ((1 ~ 1) min [fé, féD . (6.10)
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where we have defined p (E1, Ey) = e~ 5(E)S1(F1)S2(E2)

:1% and So(FE9) ~ 4% since the geometry is approximately that of a large black hole in the

. Moreover, we have used Si(E;) ~

exterior, identical to the thermal state. In the thermodynamic limit, the areas of the RT
surfaces are dominated by the volume-law term that comes from the portion hugging the
horizon, purely determined by the subsystem energy.® Since the area increases monotonically
with energy, we have inverted this relation to implicitly express the subsystem energies
E; and Fj as functions of the areas A; and As. The ¢ function in eq. (6.10) should be
understood as a sharply peaked window function controlling the width of the microcanonical
ensemble to obtain a semiclassical spacetime. With this understanding, we can read off
the probability distribution,

p (A1, A2) =P (E1(A1), Ba(A2)) 0 (B — Er (A1) — E2(Ag)), (6.11)

which is supported on a codimension-1 region in the (A;, A3) parameter space as shown in
figure 8. In doing so, we have ignored any subleading contributions from the Jacobian as
well as the window function. Note that it should also be possible to derive the probability
distribution directly from the gravitational path integral using the techniques of ref. [22].

With this understanding, eq. (6.9) in the saddle point approximation is equivalent to
our diagonal approximation eq. (3.3). Consequently, our modified cosmic brane proposal
which follows from eq. (3.3) leads to identical results for the Renyi entropies obtained in
ref. [17]. In particular, the leading order corrections to the n < 1 Renyi entropy seen in
ref. [17] can be explained by our proposal.

7 Discussion

To summarize, we have offered a modified cosmic brane proposal to compute Renyi entropies
in holographic systems that should be interpreted as an update to the Lewkowycz-Maldacena
proposal [14]. Our modified proposal reproduces all previously known results for the holo-
graphic Renyi entropy: it always agrees with the cosmic brane proposal for n > 1 and explains
leading order corrections to the n < 1 Renyi entropy found in various situations. We now
comment on various aspects of our work and possible future directions.

A basic point we would like to emphasize here is that while we discussed RT surfaces in
the paper, all of our results should naturally apply to HRT surfaces [4] in time-dependent
settings as well. Notably, the surfaces v; and 5 are spacelike separated and thus, their areas
can be simultaneously fixed even in time dependent situations.

An important future direction is to understand whether the off-diagonal terms in eq. (3.1)
can be shown to be negligible in general. An example of the contribution of such a term is
depicted in figure 9. It would be interesting to apply gravitational path integral arguments
analogous to those in ref. [41] to prove that replica-symmetry breaking terms are indeed
subleading. We expect that this would provide a general justification for the Lewkowycz-
Maldacena assumption. We leave this analysis for future work.

8For this discussion, we are subtracting out the divergent area contribution coming from the near boundary
region, which is subleading in the thermodynamic limit where we take the volume large while keeping the
cutoff finite.
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Figure 9. A replica-symmetry breaking contribution to tr(p%) (for n = 3) that arises from the
off-diagonal terms in eq. (3.1). The Euclidean saddle is built up from constituent fixed-area saddles
and has conical defects (coloured circles) at the extremal surfaces. The surface 7, is identified and
thus has a unique area, whereas the surfaces v, have different areas in different copies.

Another important future direction is to understand bulk quantum corrections more
generally, especially to O(1). As discussed in section 3, for a bipartitely entangled state,
the bulk entropy simply modifies the definition of area and in this case, we know that
the effect of replica-symmetry breaking terms is subleading. For a general bulk state, if
we ignore replica-symmetry breaking contributions then eq. (3.5), including bulk quantum

corrections, becomes

tr (pr (A1, A2)") = exp (=1 [gn] +n1 [g1])

C[TA A
= exp <(1 — 1) min LLCIJ + Sn.bulk (V1) é + Sn,bulk('72)]) ,

where Sy, pulk(7:) represents the bulk Renyi entropy for the entanglement wedge defined by ~;

(7.1)

in the fixed-area state |A1, A2) defined by the gravitational path integral. Using the diagonal
approximation eq. (3.2), now including bulk quantum corrections, we get:

SYC(R) = 1 tog | 3 (p<A1,A2>"exp[<1—n>,rgnn(gwn,bulk(w))})]. (7.2

1—n A i=1,2

It is important in this case to use the diagonal approximation eq. (3.2) instead of the saddle
point approximation eq. (3.3) since there are O(log G) corrections when we drop the sum. It
would be interesting in the future to analyze the bulk quantum corrections and see if the
assumptions of diagonal approximation and replica symmetry that enter eq. (7.2) are valid.

Another interesting aspect to be explored is the invariance of the Renyi entropies under
bulk renormalization group (RG) flow [42].” In particular, for n < 1, we have seen that
the diagonal saddle with A1 = A, can dominate even for such smooth states. Such a
saddle generically corresponds to conical defect opening angles different from 2{ at the
extremal surfaces. While one abstractly expects invariance under bulk RG flow in this case
as well, the details would require carefully defining the area operator with a UV cutoff and
understanding how it evolves under RG flow. It will be interesting to understand this in
more detail in the future.

9See refs. [43-45] for some discussion of this issue.
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A Detailed analysis of the Gaussian example

We will now analyze the Gaussian distribution example of section 5 more exhaustively. We
remind the reader that the probability distribution over the areas is

(A= A0 C7 (A= 4. (A1)

1
p (A1, Az) = exp [—2

where A = (A1, Az), Ag = (A1, A2) represents the area vector at the peak of the distri-
bution, and C is the covariance matrix given by

2
C = ( (o8] 7‘0’10’2)’ (AQ)

ro102 0%

where r € [—1,1].
The maxima AM (n) and A®)(n) are given by

2
~ (1) _ . n—1 01
A (n) AO 4Gn <T0102> ’ (AS)
X (2) _ . n—1 ro102
AP (n) = Ao - "= ( 03 ) . (A.4)

If these saddles dominate, then the corresponding Renyi entropies are given by

Ay (1—n)o}

(1) -
A (1—mn)o3
(2) _ A20 2
S (R) = 200 + 5500 (A.6)

and the corresponding refined Renyi entropies are given by

. ALO (1 — n)a%

G(1) —
~ A (1—n)o?
2)(py — 20 2
Sy (R) TR (A.8)
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Finally, we have the candidate peak at AMP)(n), given by

A go2(02 —r01) N Aspoi(or —roa) (1 —n)(1 —r?)oiol
o2 o2 4nGo? ’

AP = AP = (A.9)

2

where 02 = 0} + 03 — 2ro102 > 0. The Renyi entropies in the diagonal phase are given by

2Gn(AAg)?
n—1

N + AQ@O’% + Al,OJ% J%U%(n — ].) (7'2 — 1)

4Go? 32G2no? ’
(A.10)

o102 (A1, + Azp)

SSLD) () = 4Go?

where AAg = Az — Aj o, and the corresponding refined Renyi entropies are

_ Ay go2(02 —r0) n Aspoi(oy —rog)  (1—n)(1— r?)oios
4Go? 4Go? 16nG202

SPY(R) (A.11)

With these expressions in hand, we can now analyze the different possible cases. Without
loss of generality, consider the case where Ay lies in the domain A; < As. The qualitatively
different cases that we can consider are shown in the flowchart in figure 10.

Case (a). When r < Z!, there is a transition from Phase 1 to Phase D at a critical value

n e [0,1] given by

(1) _ 1

o1(o1—ro2)
On the other hand, if 8AAyG < Ao? where Ao? = 03 — o7, then there is a transition from
Phase 1 to Phase 2 at a critical value ni, > 1 given by

5 1
Ny = m. (A13)
Ao?

In summary, we have
SPR) n>.
Sn(R) = Sél)(R) ne [nil),ﬁ*] . (A.14)
7(1D) (R) n e [O,ngkl)]

Case (b). When r < ZL but 8AA4,G > Ao?, then the transition from Phase 1 to Phase
2 no longer happens since n, < 0. Thus, we have

r(Ll) (R) n > ng)
Su(R) = . A5
o PR neonl] )

Case (c). This is an interesting case where we can potentially lose the saddle A1) (n) at
a critical value nil) > 1. However, as long as 8AA¢G < Ac?, there is a transition to the
saddle A®)(n) which starts dominating at n = @i, € [1, ng)} before the Phase 1 saddle is
lost. No transitions happen at n < 1. Thus, we have

1) .
Su(R) = {S” (B) nel0m] (A.16)

SP(R) n >,
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Ao <Az

Y& 2

o1 < 09 related by symmetry

§e© L0

01 02
r< — r< —
092 01

£

similar to (a)

AA
M<1

Aoc?
I,

.
%

(¢) (d)

Figure 10. The flowchart of all the qualitatively different cases is depicted. The schematic location
on the (A;, Ay) plane of the dominant saddle as a function of n is shown for each case with A (n)
(red), A® (n) (blue), and AMP)(n) (green). Dotted black lines indicate a discontinuous jump in
the peak.

’
.
’
.
’
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Case (d). In this case, there are no transitions and we have Phase 1 for all values of
n € [0,00].

Case (e). If ro; > o (note that this requires o1 > o2 since r < 1), then we have two

transitions. At n = ng) < 1, there is a transition from Phase 1 to Phase D. Then, at
(2 (1)

another critical value n = ny”’ < ny’ given by
(2) _ 1
e ™ = 1_ _4GAA;, (A.17)

o2(o2—r01)

there is a continuous transition from Phase D to Phase 2. Thus, we have
st (R) n>nd
SuR) =S R) nen® nlM]. (A.18)
ARy nelo,n?
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