




ing a GMM with M = 12 components fitted respectively

for pedestrians and vehicles, denoted as

z ∼ pgmm(z) =

M
∑

m=1

wm N (z | µm,Σm), (2)

where N (µ,Σ) is a multivariate Gaussian and wm is the

weight of component m. Examples of categorized trajecto-

ries from some GMM components are illustrated in Fig. 1b.

Pedestrians and vehicles from six different components are

plotted in different colors.

3.3. Generation of Prior Trajectories

Algorithm 1 Prior Trajectory Generation Function.

Input: N ▷ Number of agents

Input: C ▷ Optional auxiliary conditions

Output: x
(1:N)
pr ▷ Generated prior trajectories

1: function PRIORGEN(N , C)

2: for i← 1 to N do

3: z
(i)
C
∼ pgmm(· | C) ▷ Agent sampling

4: x
(i)
pr ← SPLINE(z

(i)
C
) ▷ Resampling

5: end for

6: return x
(1:N)
pr

7: end function

The algorithm for the generation of new agents dur-

ing simulations is illustrated in Algorithm 1. We start by

sampling pedestrians and vehicles from their correspond-

ing GMMs. Auxiliary conditions can be provided to insert

more control into the sampling process. For example, if one

wishes to sample agents from specific GMM components

(i.e. pedestrians or vehicles going in specific directions) in

some set C, then the GMM can be modified as

zC ∼ pgmm(z | C) =
∑

m∈C

ŵm N (z | µm,Σm), (3)

where ŵm = wm/
∑

n∈C
wn is the adjusted component

weight. This is exemplified in Sec. 4.2.

The sampled z can serve as good priors that provide

high-level control over agent motions. However, this is not

fine-grained enough due to the basic limitation that GMMs

take no consideration of agent interactions or other envi-

ronmental constraints. Sec. 3.4 describes a deep-learning-

based refinement approach.

Note that the sampling times of the way-points T (i)/K
are not uniform across different agents because their tra-

jectories may have drastically different time elapsed T (i).

Given that z also contains the position and velocity at both

ends, we fit the trajectory with Cubic Splines [32], obtaining

a piece-wise interpolating polynomial with time-continuous

acceleration. We then evaluate the polynomial with a fixed

time interval ∆t = 0.4s (2.5 FPS), obtaining a prior trajec-

tory xpr as inputs to deep-learning-based trajectory fore-

casting models.

Fig. 1c illustrates the prior trajectories of several pedes-

trians and vehicles. Their way-points are generated from

the GMM components shown in Fig. 1b, followed by inter-

polation as described above.

3.4. Deep­Learning­Based Trajectory Refinement

To model agent interactions and other latent patterns in their

motions, we adopt the TrajNet++ model [17], a DNN fea-

turing an LSTM and a grid-based pooling module that deals

with agent interactions. The model takes Lob = 8 steps

(3.2s) of past observations to predict Lpd = 12 steps (4.8s)

into the future. The model operates in a goal-supervised

manner, i.e. the agent positions at the end of the prediction

window are also provided to the model as auxiliary inputs.

The choice of Lob and Lpd in our dataset follows from pub-

lic benchmarks [18, 26, 27]. Sec. 5 presents more experi-

ments comparing different Lpd-s.

At each time-step t, we combine Lob steps of previous

trajectories from all agents in the scene as xob := x(tob)
(we use the sampled xpr in case of newly generated agents

with no past predictions), along with the temporal target lo-

cations (i.e. goals) of trajectories taken from xpr at the end

of the prediction window xtg := xpr(t+Lpd∆t) as model

inputs. The model then predicts

xpd := x(tpd) = DNN (xob,xtg) , (4)

with
{

tob = [t− (Lob − 1)∆t, . . . , t] ∈ R
Lob

tpd = [t+∆t, . . . , t+ Lpd∆t] ∈ R
Lpd

. (5)

The model iteratively takes previous predictions as in-

puts while being supervised by temporal target locations

taken from the priors. Fig. 1d shows the agent trajectories

refined from Fig. 1c. We also explored several other model

architectures and supervision schemes in Sec. 5.

3.5. Simulation Algorithm

The simulation algorithm is summarized in Algorithm 2.

It maintains a set of active agents Aac. At each iteration,

we (i) obtain the expected total number of agents Nt from

ptod, (ii) generate prior trajectories of new agents xpr from

pgmm accordingly, and (iii) add them into Aac. Then the

observations xob and target locations xtg of all agents are

sliced from Aac (as in Eq. (4)) to construct DNN inputs

and generate refined trajectories xpd, which are then con-

catenated to the historical data in Aac. Any agent whose

current position x
(i)
t := x(i)(t) reaches its expected desti-

nation x
(i)
T := x

(i)
pr (T (i)) will be considered to have exited

the intersection and removed from Aac.



Algorithm 2 Simulation Algorithm.

Require: ptod, pgmm ▷ Distributions

Require: ∆t ▷ Simulation interval

1: Aac ← ∅ ▷ Set of active agents

2: loop

3: t← t+∆t ▷ Generate new agents

4: Nt ∼ ptod(· | t)
5: if |Aac| < Nt then

6: N ← Nt − |Aac|
7: xpr ← PRIORGEN(N, C)
8: Aac ← Aac ∪ xpr

9: end if

10: xob,xtg ← SLICE(t,Aac, Lob, Lpd)
11: xpd ← DNN(xob,xtg) ▷ DNN refinement

12: for x(i) in Aac do

13: x(i) ← CONCAT(x(i),x
(i)
pd )

14: if

∥

∥

∥
x
(i)
t − x

(i)
T

∥

∥

∥
< ϵ then ▷ Check status

15: Aac ← Aac \ x
(i)

16: end if

17: end for

18: end loop

4. Experiments

4.1. Dataset and Evaluations

The collected data from the intersection were organized to

fit different purposes. For object detection and tracking, 13k

annotated images were collected sporadically over 5 years

from a high-elevation camera overlooking the intersection.

The fine-tuned YOLOv8 obtained 91.6 mAP for pedestrians

and 98.7 mAP for vehicles, respectively.

For trajectory forecasting, tracked objects were collected

for over 30 days containing time and bounding-box loca-

tions for 510k pedestrians and 250k vehicles. We uni-

formly sample 10k of 20-frame (8s) scenes and 10k of 40-

frame (16s) scenes for trajectory forecasting model training

and evaluation. Additionally, complete trajectories of 176k

pedestrians and 215k vehicles were extracted from the col-

lected data for the statistical analysis described in Sec. 3.2.

We trained trajectory forecasting models on the 20-frame

scenes (with Lob = 8, Lpd = 12) using smooth-L1 loss

and adopted common performance metrics of Average-

Displacement-Error (ADE, the RMSE between the predic-

tions and ground-truths over all agents at all time-steps) and

Final-Displacement-Error (FDE, the RMSE over all agents

evaluated only at the last time-step of the prediction win-

dow) [17]. The models were trained on the standard scenes

and evaluated in an iterative prediction scheme (described in

Sec. 3.4) on the extended scenes to resemble the workflow

during actual simulations. TrajNet++ with way-point su-

pervision achieved the most desirable performance of 1.65

Models Lpd Goal ADE / FDE (m) FPS

LSTM 12 - 2.34 / 4.25 288

LSTM 32 - 1.25 / 3.77 355

Trajectron++ 12 - 1.43 / 3.63 5

Trajectron++ 32 - 2.13 / 4.96 5

TrajNet++ 12 Wpts. 1.65 / 0.36 20

TrajNet++ 12 Dest. 1.92 / 0.51 20

TrajNet++ 32 Dest. 0.59 / 1.21 29

Table 1. Comparison of model performances on the 40-frame

(16s) scenes on an NVIDIA A100. All models take Lob = 8

frames (3.2s) of inputs. Some of them predict iteratively (Lpd =

12), others predict in one-shot (Lpd = 32).

ADE and 0.36 FDE, measured in meters. Experiments on

different model architectures and configurations are pro-

vided in Sec. 5.

4.2. Controlled Simulation

The proposed simulation system can coarsely control agent

trajectories with Eq. (3) in terms of where they enter and

exit the intersection as well as a prior trajectory to follow.

In Fig. 3a we purposefully sample south-bound pedestrians

and left-turning vehicles whose prior trajectories meet at the

middle of the crosswalk (the red ellipse), to see whether

the trajectory forecasting model will correctly react to this

situation.

As illustrated in Fig. 3b, the trajectory forecasting model

forces both the vehicle and the crowd of pedestrians to slow

down and deviate from their prior trajectories (denoted by

the dashed red lines) to avoid a collision. This is a com-

mon practice that respects social norms and is expected to

be observed in real-world scenarios.

4.3. Autonomous Simulation

Without inserting auxiliary conditions or other human con-

trol, the simulator is able to run autonomously and mimic

different agent densities following Eq. (1) and spatial loca-

tions following Eq. (2).

5. Simulation Quality

5.1. Outliers

Adopting conditional generative models for trajectory cate-

gorization allows for the identification of outliers in the col-

lected trajectories by calculating their likelihoods (Eq. (2)).

In Fig. 3c, we show the outliers in pedestrians whose log-

likelihoods are more than 20 times of standard deviations

away from the dataset mean. Some of these outliers show a

pedestrian making a turn-around; others show a pedestrian

staying still in one location for an exceptionally long period

of time.





training the model with Lpd = 12 (4.8s) and taking previ-

ous outputs as new inputs, vs. directly training the model to

predict in one-shot with Lpd = 32 (12.8s). The results are

given in Tab. 1. For TrajNet++, Wpts. denotes way-point

supervision and Dest. destination supervision, as opposed

to LSTM and Trajectron++ using no supervisions.

By comparison, the destination-supervised TrajNet++

model achieved the lowest ADE of 0.59, while the way-

point supervised version had a higher ADE but the low-

est FDE of 0.36. Higher FPS was generally obtained un-

der larger Lpd due to fewer operations beyond model in-

ference (e.g. data preparation). Considering the aforemen-

tioned complexities of choosing appropriate Lpd and apply-

ing destination supervision in practice, it is thus reasonable

to use way-point supervision with shorter Lpd = 12 during

actual applications, giving our chosen model for the exper-

iments in Sec. 4.

6. Conclusion and Future Work

In this study, we propose a data-driven methodology for

simulating the movement (trajectories) of agents within an

intersection in a metropolis. We show that trajectory fore-

casting models are able to realistically govern agent motions

under proper supervision by the statistical priors. The Tra-

jNet++ model with way-point supervision was able strike a

balance between the length of the prediction window and

overall simulation quality by performing the predictions it-

eratively, achieving an FDE of 0.36 under controlled exper-

iments. However, we note that the presented models were

trained and evaluated within a single traffic intersection,

raising reasonable concerns on potential overfitting since

traffic conditions may vary drastically across different loca-

tions. More comprehensive evaluation is needed to address

the issue.

Future work will include (a) evaluation of alternative tra-

jectory forecasting architectures and configurations, (b) in-

corporation of a larger number of intersections and more

diverse traffic scenarios for better generalization, (c) ex-

ploration of other potential cases of agent interactions un-

der controlled simulation, and (d) investigations on how to

connect broader aspects of applications (e.g. collision alert,

traffic light control, and more efficient deployment). We in-

tend to incorporate the model with graphics engines where

we can reconstruct the traffic scenarios of the intersection

in the digital world.

Acknowledgements

This work was supported in part by NSF grant CNS-

1827923 and EEC-2133516, NSF grant CNS-2038984 and

corresponding support from the Federal Highway Adminis-

tration (FHA), NSF grant CNS-2148128 and by funds from

federal agency and industry partners as specified in the Re-

silient & Intelligent NextG Systems (RINGS) program, and

ARO grant W911NF2210031.

References

[1] Nir Aharon, Roy Orfaig, and Ben-Zion Bobrovsky. BoT-

SORT: Robust associations multi-pedestrian tracking. 2

[2] Mourad Ahmane, Abdeljalil Abbas-Turki, Florent Perronnet,

Jia Wu, Abdellah El Moudni, Jocelyn Buisson, and Renan

Zeo. Modeling and controlling an isolated urban intersection

based on cooperative vehicles. 28:44–62. 2

[3] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,

Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-

cial LSTM: Human trajectory prediction in crowded spaces.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2

[4] Bani Anvari. A mathematical model for driver and pedestrian

interaction in shared space environments. Publisher: [object

Object]. 2

[5] Apratim Bhattacharyya, Michael Hanselmann, Mario Fritz,

Bernt Schiele, and Christoph-Nikolas Straehle. Conditional

flow variational autoencoders for structured sequence predic-

tion. 2

[6] Seongjin Choi, Jiwon Kim, and Hwasoo Yeo. Traj-

GAIL: Generating Urban Vehicle Trajectories using Gen-

erative Adversarial Imitation Learning. Transportation Re-

search Part C: Emerging Technologies, 128:103091, 2021.

arXiv:2007.14189 [cs, stat]. 2

[7] D Chowdhury. Statistical physics of vehicular traffic and

some related systems. 329(4):199–329. 1

[8] Longchao Da and Hua Wei. CrowdGAIL: A spatiotempo-

ral aware method for agent navigation. Electronic Research

Archive, 31(2):1134–1146, 2023. 2

[9] Mohamed Debbagh. Learning structured output representa-

tions from attributes using deep conditional generative mod-

els. 2

[10] Sergey Dorokhin, Alexander Artemov, Dmitry Likhachev,

Alexey Novikov, and Evgeniy Starkov. Traffic simulation:

an analytical review. 918(1):012058. 1

[11] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi

Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp,

Charles Qi, Yin Zhou, Zoey Yang, Aurelien Chouard, Pei

Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley,

Jonathon Shlens, and Dragomir Anguelov. Large scale in-

teractive motion forecasting for autonomous driving : The

waymo open motion dataset. 2

[12] Lan Feng, Mohammadhossein Bahari, Kaouther Mes-
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