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Abstract

In multilingual environments, seamless language switching, in-
cluding code-switching (CS) within utterances, is essential for
real-time applications. Conventional Automatic Speech Recog-
nition (ASR) combined with language diarization requires post-
processing to synchronize language labels with recognized
words accurately, presenting a considerable challenge. In this
study, we introduce a multitask learning framework that syn-
chronizes Language Identification (LID) with ASR, utilizing a
neural transducer architecture. This auxiliary task integrates
both acoustic and lexical features to perform LID. Furthermore,
we use resulting language representation as an auxiliary input to
improve ASR. We demonstrate the efficacy of our proposed ap-
proach on conversational multilingual (Arabic, Spanish, Man-
darin) and CS (Spanish-English, Mandarin-English) test sets.
Index Terms: speech recognition, multilingual, language iden-
tification, neural network transducer

1. Introduction

Digital voice assistants have been widely deployed in recent
years, including in multilingual households. These systems are
expected to seamlessly switch between multiple languages in
real-time, including intrasentential language changes, a phe-
nomenon known as code-switching (CS), which is prevalent in
daily conversations [1]. This presents a unique challenge for
voice technologies, necessitating dynamic language switching
during interactions. Studies have demonstrated the crucial role
of spoken language identification (LID) alongside automatic
speech recognition (ASR), outperforming multilingual systems
lacking LID [2–8].

With the rise of deep learning, researchers have adopted
End-to-End (E2E) multilingual systems and proposed jointly
modeling ASR with LID by extending the vocabulary with lan-
guage tags [9–11]. This approach reduces the computational
overhead of an additional LID module while enhancing recog-
nition performance. However, subsequent studies have demon-
strated that decoupling ASR and LID tasks and training them
in a multitask fashion outperforms joint modeling of ASR and
LID with shared vocabulary [12–14]. Another approach to ad-
dress language switching is to utilize separate sub-models for
each language [15, 16]. However, as the number of languages
increases, this approach becomes computationally impractical.
Recently, in [17], researchers proposed multilingual ASR with
Attention based Encoder Decoder (AED) architectures. They
integrated self-conditioned Connectionist Temporal Classifica-
tion (CTC) as an additional language identification task within
intermediate encoder layers to condition subsequent layers on
intermediate predictions. However this approach focuses on
utterance level LID and is not suitable for streaming applica-

tions. Conversely, researchers have turned to the Recurrent
Neural Transducer (RNN-T) [18], a frame-synchronous E2E
model suitable for streaming, competitive with state-of-the-art
AED, and well-suited for on-device applications. Several stud-
ies have proposed leveraging RNN-T for multilingual speech
processing through joint ASR and LID modeling [9, 14, 15, 19,
20].

In the aforementioned studies, the LID is not associated
with words recognized by an ASR system, which is necessary
for real-time interaction with minimum latency. This requires
an additional module to merge ASR and LID results. To avoid
this overhead, we propose jointly performing LID synchronized
with the ASR output tokens. However, it has also been shown
that naively making the language labels a part of ASR lexicon
degrades streaming ASR performance [21, 22]. We therefore
adopt a multitask approach, augmenting ASR with an auxiliary
task that uses a separate encoder and joiner to predict language
labels. Unlike prior work that jointly learns ASR and LID pre-
dictions, our proposed approach ensures synchronization be-
tween token-level LID and ASR predictions. To achieve this
synchronization we utilize Hybrid Auto-regressive Transducer
(HAT) loss [23], which factors the distribution over blank versus
non-blank symbols. This separation facilitates the synchroniza-
tion of the two predictions through shared blank symbols [24–
26]. Recent studies on LID have demonstrated that combining
acoustic and lexical cues significantly enhances prediction ac-
curacy [27]. In our approach, the lexical predictor of RNN-T is
shared between ASR and LID, providing seamless integration
of acoustic and lexical features for the auxiliary LID task.

Our contributions include: 1) introducing an auxiliary LID
module that combines acoustic and lexical features to im-
prove performance, 2) enabling word-synchronous LID with-
out ASR performance degradation, 3) improving a multilingual
ASR system by feeding the LID representation back to ASR,
and 4) releasing our code through the open-source icefall
toolkit1. We empirically demonstrate a 10% relative improve-
ment in mixed error rate (MER) on code-mixed utterances
in a Mandarin-English CS data set, without compromising
word/character error rate (W/CER) on single-language utter-
ances in Arabic, Spanish and Mandarin data sets. We present
ablation studies on the Mandarin-English CS data to assess the
contribution of each model component on ASR performance.

2. Proposed Approach

Language identification with multilingual ASR is more valu-
able when associated with recognized words. Therefore, the
goal is to identify speech words and their corresponding lan-
guage labels simultaneously. However, synchronizing the lan-

1https://github.com/k2-fsa/icefall
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guage identification labels with automatic speech recognition
(ASR) predictions requires accurately aligning the number of
predictions and their positions. To address this challenge, we
propose a multitask learning approach with sharing the blank
label between ASR and LID tasks to facilitate synchronization,
as detailed in Section 2.2.

2.1. ASR with HAT transducer

In standard ASR, the input to the system X 2 RT⇥F , consti-
tutes a T -long sequence of F -dimensional acoustic features and
the objective is to predict y = (y1, . . . , yU ) 2 VU , a transcript
of, say, graphemes or word-pieces of length U . Discriminative
training is achieved by minimizing the negative log likelihood
L = � logP (y|X). Transducers achieve this by marginalizing
over the set of all alignments a 2 V̄T+U as following:

P (y|X) =
X

a2B�1(y)

P (a|X) (1)

where V̄ = V [ {�}, � is a blank label and B : V̄T+U ! VU

is the deterministic mapping from an alignment a to the subse-
quence y of its non-blank symbols. Transducers parameterize
P (a|X) with an encoder, a prediction network, and a joiner,
as shown in the “ASR” branch in Figure 1. The encoder maps
X to a representation sequence f asr

1:t, t 2 {1, . . . , T + U}, the
predictor transforms y sequentially into gasr

1:u, u 2 {1, . . . , U},
and the joiner combines f asr

1:t and gasr
1:u to generate logits zasrt,u

whose softmax is the posterior distribution of at (over V̄), i.e.

P (y|X) =
X

a2B�1(Y )

T+UY

t=1

P (at|fasr
1:t , gasr1:u(t))

=
X

a2B�1(Y )

T+UY

t=1

softmax(zasrt,u(t))

(2)

where u(t) 2 {1, · · · , U} denotes the index in the label se-
quence at time t. The negative log of the quantity in (2) is
known as the transducer loss.

In this work, we adopt the Hybrid Auto Regressive Trans-
ducer (HAT) [23], which first factorizes the distribution of at

over blank versus all non-blanks, and models it via a Bernoulli
distribution. The posterior probability of non-emission bt,u is
computed from the logit zt,u[0] via sigmoid activation �, as

bt,u := P (at = �|f1:t, g1:u) = �(zt,u[0]), (3)

and the softmax is applied to the remaining non-blank logits
zt,u[1 : U ] to compute the distribution over lexical tokens con-
ditioned on at being non-blank, as

P (at = yu|f1:t, g1:u) = (1� bt,u) · softmax(zt,u[1 :]) (4)

2.2. Joint ASR and LID multitask learning

The problem of jointly learning ASR and LID from acous-
tic features X can be formulated as estimating the conditional
probability P (ỹ|X), where ỹ = {(y1, l1), . . . , (yu, lu)} repre-
sents a tuple of ASR and LID labels. Given that our proposed
approach models LID using an auxiliary encoder with a sepa-
rate output space, P (ỹ|X) can be decomposed into P asr(y|X)
and P lid(l|X). In our approach, the prediction of LID la-
bels depends on both acoustic and preceding lexical features:
P lid(l|X) =

Q
i P (li|y1:i�1,X). We extend the HAT frame-

work to incorporate an additional LID task by including an aux-
iliary LID transducer, as depicted in Figure 1. The LID encoder
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Figure 1: Illustration of proposed multitask ASR and LID archi-
tecture.

receives intermediate representations hn from the nth layer of
the ASR encoder, producing f lid

1:t. The LID joiner, Joinerlid(·),
combines f lid

1:t and gasr
1:u to produce the LID logits zlid

t,u. The
model calculates the LID probabilities as follows:

zlid
t,u = Joinerlid(f

lid
1:t,g

asr
1:u)

P lid(lu|X) = P (lu|f lid
1:t,g

asr
1:u)

= (1� blid
t,u) · softmax(zlid

t,u[1 :])

(5)

where blid
t,u = �(zlid

t,u[0]). To synchronize blank emissions be-
tween the ASR and LID branches, we reuse the blank logit pre-
dicted by the LID in the ASR as follows:

zasr
t,u = [zlid

t,u[0], z
asr
t,u[1 :]] (6)

To allow ASR dependency on language features the LID rep-
resentations are fed into the ASR system and combined within
the ASR joiner, Joinerasr(·), as follows:

zasr
t,u = Joinerasr(f

asr
1:t, f

lid
1:t,g

asr
1:u)

P asr(yu|X) = P (yu|f asr
1:t, f

lid
1:t,g

asr
1:u)

= (1� blid
t,u) · softmax(zasr

t,u)

(7)

The model is optimized using a multi-task learning objective
that combines the ASR loss Lasr

hat and the LID loss Llid
hat:

L = (1� ↵lid)Lasr
hat + ↵lidLlid

hat (8)

where ↵lid is the interpolation weight. For ASR and LID
branches we utilize a pruned version of the HAT loss similar
to pruned RNN-T [28].

3. Experimental Setup

Data: We demonstrate the effectiveness of our proposed
method through evaluations in two distinct scenarios: code-
switching, utilizing the Mandarin-English SEAME dataset [29],
and multilingual, using three conversational datasets, Fisher-
CallHome Spanish [30], IWSLT22 Tunisian [31], and BOLT
Mandarin [32]. Detailed statistics for these datasets are pre-
sented in Table 1. The Fisher dataset includes approximately 15
hours of code-switching data for training and 2 hours for test-
ing, which we prepared following [33].
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Table 1: Statistics for the multilingual and code switching (CS)
ASR corpora.

Corpus Lang
#Hours

Train Dev Test

Multilingual

Fisher/Callhome sp 186.3 9.3 4.5/1.8
Tunisian ar 161.0 6.3 3.6
BOLT zh 110.6 8.5 8.5

CS SEAME zh-en 96.5 5.2 4 / 7.5

Data pre-processing: We use Lhotse [34] toolkit for speech
data preparation. All audios are augmented with speed pertur-
bations (0.9, 1.0 and 1.1) and transformed into 80-dimensional
feature frames extracted on 25ms frames with frame shift of
10ms. Additionally, we augment the features using on-the-fly
SpecAugment [35]. For the monolingual datasets we use a
shared BPE vocabulary of size 5000 and for Seame we com-
bine 2622 Mandarin characters with 1378 English BPE units.
Models: The ASR encoders are based on Zipformer architec-
ture [36]. We conduct all experiments by customizing the Icefall
toolkit 2. For all experiments the ASR encoder consisting of 6
blocks with numbers of attention heads for each block are set
to {4, 4, 4, 8, 4, 4}, feed forward dimensions are set to {512,
768, 1024, 1024, 1024, 768}, and convolution kernel sizes are
set to {31, 31, 15, 15, 15, 31}. For the LID branch, the en-
coder consists of 3 blocks with numbers of attention heads for
each block are set to {2, 4, 2}, feed forward dimensions are
set to {256,256,256} and convolution kernel sizes are set to
{31,15,31}. In each attention head for both encoders, the query
dimension and value dimension are set to 32 and 12, respec-
tively. The stateless prediction network implemented using a
single 256-dim Conv1D layer with kernel size of 2. Our training
configuration utilizes ScaledAdam optimizer [36] with a learn-
ing rate of 0.045 warmed up for 5K iterations, and the interpo-
lation weight ↵lid in Eq. (8), that provided best performance,
is 0.3. The model size without the LID branch is 30M parame-
ters and with LID branch is 35M parameters. All models were
trained for 25 epochs using 4 Titan RTX GPUs with batch size
of 500 seconds.
Evaluation: During decoding, we employ a beam search with
beam of size 10. Evaluation is performed on SEAME test sets,
measuring mixed error-rate (MER) that considers word-level
English and character-level Mandarin. We also report WER on
monolingual English and CER on monolingual Mandarin sub-
sets. We test the significance in the WER improvements us-
ing Matched-Pair Sentence Segment Word Error (MAPSSWE)
introduced by [37], with a significance level of p = 5%. In
addition, for LID performance we report the F1 score.

4. Results

4.1. Multilingual ASR

In this part, we examine the impact of multitask training on
ASR with an auxiliary LID task where the models are trained
on multilingual conversational data from Table 2. Our HAT im-
plementation with Zipformer is based on the pruned transducer,
described in Section (2.2), therefore, we first explore the impact
of using HAT blank factorization. It can be observed from the
first two rows that, apart from Bolt, which experiences a relative

2https://github.com/k2-fsa/icefall

Table 2: Comparative analysis of WER/CER results for models
trained on multilingual data. †: denotes a statistically signifi-
cant difference (p < 0.05) compared to the HAT baseline. The
number following HAT specifies the layer from which ASR rep-
resentations are provided as input to LID.

Model
Tunisian Fisher Fisher-CS Callhome Bolt

WER WER WER WER CER

RNN-T 42.1 18.4 27.7 29.9 25.3
HAT(Baseline) 42.0 18.4 27.8 29.7 23.2†
HAT(1) + LID 41.8 18.4 26.8 30.0 23.0
HAT(6) + LID 42.0 18.5 27.7 30.1 23.2
HAT(3) + LID 41.7 18.3 26.8† 29.9 22.4†

improvement of 8.3% in CER with HAT, the results are con-
sistent. Notably, introducing the auxiliary LID task alongside
blank synchronization does not compromise ASR performance,
instead offering a relative improvement of about 3.6% across
both Fisher code-switching (CS) and Bolt datasets. We found
that using representations from the third ASR encoder block as
input to the LID encoder is most effective. Observing that the
majority of this improvement is seen in the code-switching sub-
set (Fisher-CS), we conduct further investigations on the stan-
dard CS SEAME dataset, as detailed in Section (4.2).

4.2. Ablations of multitask approach components

To better understand the effectiveness of our technique, we con-
ducted analysis across different languages as shown in Table 3.
We begin by assessing the impact of adding an auxiliary branch
with transducer loss to Zipformer (HAT-Seg), tasked with pre-
dicting blank/non-blank states, effectively serving as an align-
ment predictor. This approach resulted in up to a 6.7% rel-
ative improvement in the MER, underscoring the importance
of alignment prediction as an auxiliary task. Subsequently, we
explored the impact of auxiliary branch tasked with predict-
ing LIDs using Connectionist Temporal Classification (HAT-

LID CTC) and HAT objectives (HAT-LID HAT) (see rows 3
and 4). Our analysis indicate that multitask learning with both
CTC and HAT losses leads to improvements compared to the
HAT baseline. Notably, LID with HAT surpasses LID with
CTC, achieving a relative improvement of up to 2.8% in MER.
Additionally, enriching ASR joiner with LID representations
(HAT-LID+R) yields further relative improvements reaching
up to 2% in MER. The overall relative improvement of our pro-
posed HAT-LID+R approach compared to the HAT baseline,

Table 3: Comparative analysis of CER/WER/MER results for
models trained on SEAME data. HAT-LID+R: Multitask HAT
with LID representation passed to ASR. HAT-Seg: auxiliary
branch used to predict alignments with single label. † and ††:
Denotes statistically significant difference (p < 0.05) compared
to HAT and compared to CTC respectively.

Model
Dev-Man Dev-Sge

CER-MAN WER-EN MER CER-MAN WER-EN MER

HAT (baseline) 18.5 36.5 22.0 34.7 28.5 29.9
HAT-Seg 17.8† 34.5† 20.9† 28.1† 32.5 27.9†
HAT-LID (CTC) 18.0 34.8 21.0 28.4 32.2 27.6
HAT-LID (HAT) 16.9†† 34.4 20.4†† 27.4†† 32.1 27.2

HAT-LID+R 16.7†† 34.0†† 20.0†† 26.8†† 32.0 26.9††
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Figure 2: Relative change in insertions, deletions and substitu-
tions on SEAME dataset (Dev-Man, Dev-Sge). HAT-Seg: LID
branch with single label to predict alignments. HAT-LID+R:
proposed multitask architecture with LID encoder representa-
tion passed to ASR.

are 9% and 10% in MER for Dev-Man and Dev-Sge, respec-
tively. A closer inspection across individual languages reveals
that the most gains predominantly emanate from the embedded
languages (English in Dev-Man and Mandarin in Dev-Sge). To
better understand where our model improves, we analyze the
relative change in various error types (insertions, deletions and
substitutions) compared to the HAT baseline as illustrated in
Figure 2. We observe a consistent trend, with the most signifi-
cant relative improvements occurring in deletions, followed by
substitutions. Notably, the inclusion of LID labels (HAT-LID)
improves substitutions, owing in part to more accurate language
prediction. This hypothesis is explored further in Section 4.3.
Moreover, leveraging the auxiliary LID encoder representation
(HAT-LID+R) yields further improvements in both deletions
and substitutions.

4.3. LID results on CS data

In this section, we analyze the improvements resulting from
more accurate language identification predictions. We examine
the improvements in the F1 scores on SEAME dataset, as de-
tailed in Table 4. Our analysis reveals negligible improvements
in languages identification when employing an auxiliary branch
to predict blank vs non-blanks (HAT-Seg) compared to baseline
HAT. Notably, employing both CTC and HAT as auxiliary tasks
to predict language labels alongside blanks (see rows 3 and 4)

Table 4: Comparative analysis of LID F1 scores for models
trained on SEAME data. HAT-Seg: LID branch with single
label to predict alignments. HAT-LID+R: Multitask HAT with
LID encoder representation passed from LID branch to ASR.

Model
DevMan DevSge

F1-MAN F1-EN F1 F1-MAN F1-EN F1

HAT (baseline) 0.946 0.876 0.926 0.902 0.909 0.905
HAT-Seg 0.948 0.878 0.927 0.901 0.910 0.905

HAT-LID (CTC) 0.948 0.879 0.928 0.898 0.907 0.904
HAT-LID (HAT) 0.950 0.885 0.930 0.905 0.910 0.907

HAT-LID+R 0.952 0.888 0.932 0.908 0.912 0.909

Figure 3: MER with different amount of hours of code switching
SEAME data. HAT-LID+R: proposed multitask HAT with LID
encoder representation passed to ASR.

results in improvements in LID performance compared to the
baseline with HAT surpassing CTC. This indicates that the inte-
gration of acoustic and linguistic features effectively improves
LID performance. Finally, leveraging the auxiliary LID encoder
representation (HAT-LID+R) yields further gains in language
identification performance. This results in overall relative re-
duction of 8.1% and 4.2% in complement of F1 scores for Dev-
Man and Dev-Sge, respectively, when compared to the HAT
baseline.

4.4. Data size effect on performance

In this section, we investigate the impact of the amount of code-
switched (CS) training data on the performance of our proposed
multitask ASR system with LID, compared to the baseline HAT.
Figure 3 presents the WER for different volumes of training
data in hours (10 hours, 30 hours, 50 hours, 96 hours). Inter-
estingly, we observe significant improvement of up to 19% in
relative MER with 10 hours, which then gradually decreases to
⇡ 10% in relative MER as the volume of training data increases
to its full size. This pattern suggests that our approach is more
robust than the baseline when CS data is scarce, but the magni-
tude of improvement decreases as the amount of data grows.

5. Conclusion

In this paper, we introduce a multitask learning approach that
integrates multilingual ASR with language identification (LID),
based on a neural transducer, suitable for real-time interac-
tions. The proposed approach synchronizes token-level predic-
tions between between ASR and LID through blank sharing.
This method significantly improves ASR performance on code-
switching data without compromising the accuracy on multilin-
gual data with single-language utterances. Our analysis high-
lights that the inclusion of an auxiliary task in the ASR pri-
marily enhances deletion corrections, which is closely linked to
speech activity detection, followed by improvement in substi-
tutions. Further investigation shows that the error reduction in
substitutions are partly due to improvements in LID accuracy.
Moreover, we show that combining acoustic and linguistic fea-
tures boosts LID performance. In the future, we would like to
investigate the potential of this approach in processing long-
form content taking into account historical context to further
refine our model’s capabilities.
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