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ABSTRACT 

Recent experiments have shown that enzyme activity can preserved in harsh environments by 

complexing enzyme with polymer into a Protein-Polymer Hybrid (PPH). In a successful PPH, 

heteropolymer strands bind to the enzyme surface and restrain the folded protein without 

adversely affecting the binding and active sites. It is believed that hybridization is driven by non-

covalent interactions at the enzyme surface including hydrophobicity and electrostatics. Molecular 

modeling of these interactions is not practical at the all-atom scale due to the long timescales and 

large particle counts needed to characterize binding. Protein structure at the scale of amino acid 

residues is parsimoniously represented by a coarse-grained model in which one particle 

represents several atoms, significantly reducing the cost of simulation. In this study we present 

two coarse-grained enzyme models – lipase and dehalogenase – prepared using a top-down 

modeling strategy. We simulate each enzyme in aqueous solution and calculate statistics of 

protein surface features and shape descriptors. The values from the coarse-grained data are 
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compared with the same calculations performed on all-atom reference systems, revealing key 

similarities of surface chemistry at the two scales. Structural measures are calculated from the 

all-atom reference systems and compared with estimates from small-angle X-ray scattering 

(SAXS) experiments, with good agreement between the two. The described procedures of 

modeling and analysis comprise a framework for the development of coarse-grained models of 

protein surfaces with validation to experiment. 

 

Key Words: Proteins, Enzymes, Coarse-grained models, Martini, Lipase, Dehalogenase, small-

angle X-ray scattering 

 

1. INTRODUCTION 

Enzymes are proteins that act as biological catalysts. As they are naturally occurring, 

enzymes have several advantages over traditional industrial catalysts including high production 

efficiency, high substrate selectivity, and lower environmental impact [Chapman 2018]. They are 

used extensively in the areas of pharmaceuticals, food and beverage, and biofuel production 

[Chapman 2018]. Therefore, it is desirable to develop strategies for protein engineering which 

leverage enzyme function for industrial applications. 

Enzyme catalytic activity is sensitive to the structural conformation of the protein itself. 

Techniques for stabilizing protein structure by covalent conjugation are likely to induce 

conformational changes which must also be controlled, increasing the complexity of protein 

design strategies [Keefe 2012; Panganiban 2018].  

An alternative strategy is to induce stability via noncovalent adsorption of random 

heteropolymers to form protein polymer hybrids (PPHs) [Chapman 2019; Lancaster 2018; Pelegri-

O’Day 2014; Ko 2018; Kosuri 2022]. The PPH approach has demonstrated the capacity to retain 

high catalytic activity in stress environments [Panganiban 2018]. However, chemical theories to 
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guide polymer composition for targeted PPH formation are nascent. Robotic platforms have been 

demonstrated to characterize candidate combinations of enzymes and heteropolymers [Tamasi 

2022], potentially reducing the cost of developing viable PPH chemistries given a constrained 

polymer design space. However, this approach is still limited in the size of a candidate polymer 

library that may be thoroughly investigated, and therefore there is little reason to believe that 

experimental results will generalize between proteins. 

Computational models provide a means for exploration of a larger polymer design space 

with lower cost and higher precision than what is possible on the bench. Particle-based models 

coupled with Molecular Dynamics (MD) simulations enable investigation of the chemically-specific 

dynamics which govern the coassembly of active enzymes with adjunct polymers via surface 

adsorption. Analysis of the emergent physics from these MD simulations may significantly reduce 

the size of viable candidate libraries for experimental validation, or may allow further theoretical 

generalization of the PPH design task as a function of protein and polymer properties. 

The general dynamics by which biomacromolecules dock with synthetic monomers are 

inaccessible to all-atom MD simulations due to the large spatiotemporal scales of multicomponent 

assembly. Coarse-grained models overcome this limitation by judiciously grouping atoms to be 

represented instead by pseudo atoms, or coarse-grained beads. The coarse-grained 

representation therefore increases computational efficiency at the cost of increased uncertainty 

in atomic positions. 

Another key assumption in coarse-grained models of proteins is that the chosen scale of 

the coarse-grained beads will provide resolution of all relevant structural changes in a dynamical 

simulation. This assumption is encoded in protein models by choosing bead definitions which 

group atoms at a smaller scale than the proteinogenic amino acids, therefore preserving some 

intra-residue conformational flexibility. 

The validity of these assumptions cannot be tested via experimental methods. Hence, the 

models are calibrated via structural measurements which may be compared with corresponding 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.22.614383doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.22.614383
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

experimental results. A multiscale approach is adopted to validate the coarse-grained model. In 

the first step, structural calculations from a reference all-atom model are compared with data from 

X-ray diffraction (XRD) experiment. Small-angle X-ray scattering (SAXS) may be used to measure 

the structure function, S(q), and estimate the pair-distance distribution function (PDF) of an 

enzyme in aqueous solution, while the PDF may be calculated directly from MD trajectories. This 

step is followed by comparison of structural and surface features of the target coarse-grained 

model with the all-atom reference.  

Many biomolecular phenomena are assumed to be largely mediated by molecular 

interfaces, including the surfaces of individual molecules in solution. It is therefore assumed that 

surface composition would be a powerful predictor of PPH formation. While direct experimental 

determination of protein surfaces in solution is unfeasible, the validated all-atom reference model 

provides extensive data for comparison. For the validation of the secondary model – coarse-

grained versus all-atom – a set of structure and surface descriptors are selected to summarize 

the ensemble behavior of the enzyme models. 

 Particle-based models typically comprise a choice of structural representation and a force 

field. Several popular strategies for the development of coarse-grained MD models of 

biomolecules have been developed, with a correspondent variety in their advantages and 

development costs [Banerjee 2024]. In bottom-up approaches, pseudo atoms represent specific 

constituent atoms and potential energy functions are derived using simulated all-atom data. Such 

derivation often is either the parameterization of specific functional forms, such as a Lennard-

Jones potential, or else a direct estimate of the potential energy surface via tabulated values. This 

approach to representation allows for arbitrarily high chemical specificity of the resulting model, 

with the coarse-grained force fields able to recapitulate the objective features such as the forces, 

entropy, or structures of the reference set. Parameterization utilizes techniques such as iterative 

Boltzmann inversion, force matching, relative entropy and inverse Monte Carlo [Reith 2003; Rühle 

2011; Lyubartsev 1995; Shell 2008]. Frameworks built using these techniques have been used to 
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resolve conformational behavior and self-assembly of biomolecules and biomimetics including 

peptides [Izvekov 2006, Carmichael 2012; Villa 2009; Hooten 2023; Banerjee 2022; Banerjee 

2023; Hooten 2025 [in preparation] ]. 

Bottom-up approaches typically require extensive amounts of chemically specific 

reference data, which puts a practical limit on model transferability. More recently, bottom-up 

coarse-grained models have been parameterized with machine-learned (ML) potentials 

[Durumeric 2023; Ruff 2015; Sahrmann 2023]. Depending on the architecture, some of these 

models are capable of implicitly including numerous many-body interactions, transcending one of 

the traditional engineering constraints in which many-body behavior is approximated using only 

two-body potentials. It remains an open question whether ML potentials can produce force fields 

which are transferable over large molecular design spaces – like general protein folding – if 

appropriate reference data is available [Durumeric 2023]. However, the data-intensive nature of 

the modern ML approach may not be suitable where a very large or even an open-ended design 

space is considered. 

Alternatively, models may be designed to target larger scale phenomena, and calibrated 

using data such as liquid-liquid partitioning or system free energy obtained from experiment or 

theory [Banerjee 2024; Mushnoori 2018; Mushnoori 2023; Aydin 2014; Aydin 2016; Chong 2016; 

Muthukumar 2015]. These models are based on methods classified as top-down approaches. 

Top-down models typically employ coarse-grained bead definitions and resolutions intended to 

express the general character of molecular structure while de-emphasizing specific chemical 

features of the atomistic representation. For example, the Martini coarse-grained framework has 

been applied to investigate self-assembly of biomolecular nanostructures including lipid bilayers 

[Marrink 2007; Marrink 2019] and large supramolecular assemblies of proteins and lipids [Reddy 

2016; Wang 2022], as well as to probe the binding and diffusion characteristics of small molecules 

in contact with membrane bilayers [Li 2018]. 
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For this study, coarse-grained models of proteins are developed using Martini 3 [Souza 

2021]. Martini is a popular framework for development of coarse-grained particle-based models 

of biomolecules and polymers. It provides a standard set of coarse-grained beads defining size, 

polarity, and ionic character, as well as a library of standard structures for the proteinogenic amino 

acids. Thus, Martini provides a good foundation for the bootstrapping of a variety of protein 

models. 

In this study, two enzyme systems, lipase and dehalogenase, are investigated using a 

combination of MD simulations at all-atom and coarse-grained resolutions, along with SAXS 

experiments on commercially available proteins for comparison. The all-atom MD simulations of 

proteins are performed using the CHARMM force field, chosen for its ability to recapitulate folded 

protein structure [Huang 2017]. Ensembles of all-atom MD simulations are compared to SAXS 

measurements via the unnormalized PDF and radius of gyration (Rg). Distributions of the gyration 

tensor parameters are calculated for simulated structures at all-atom and coarse-grained 

resolutions and the results are compared. Surface compositions are also calculated using the 

SURFMAP molecular cartography software at all-atom and coarse-grained resolutions and the 

results are compared. 

The salient features of the gross structure observed in experiment and expressed by Rg 

and PDF are captured in the all-atom model. While this indicates that the comparison of all-atom 

to SAXS is reasonable, the experimental preprocessing is found to be a critical step to control for 

the presence of excipients or other off-target species which may be present in the sample. 

Calculated shape and surface features fluctuate over similar ranges at both all-atom and coarse-

grained resolution, indicating qualitative agreement between the models. The surface 

composition of the all-atom and coarse-grained models is found to be similar in the distributions 

of characteristics of surface features, owing to the contributions of individual residues. 

Overall, the study demonstrates the feasibility of a multiscale validation design strategy 

for the preparation of coarse-grained models. A framework encompassing a process and a set of 
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benchmarks is presented for the development and validation of coarse-grained enzyme models 

using this multiscale approach. These findings open the door to new protein engineering design 

strategies based on enzyme surface features. 

 

2. METHODS 

2.1 All-Atom Molecular Dynamics Representation of Enzymes and Simulations 

All-atom MD simulations were performed using Gromacs 2021 [Abraham 2015; 

Berendsen 1995; Lindahl 2001; Van Der Spoel 2005] to provide appropriate reference data. A 

single protein molecule is simulated in a cubic box, with three-dimensional periodic boundary 

conditions using the CHARMM36m force field [Huang 2016]. CHARMM was chosen because it 

is parameterized to be suitable to study the dynamics of protein conformation, with attention given 

to globular proteins as well as intrinsically disordered proteins [Best 2012; Huang 2016]. The edge 

length of the simulation box is equal to the diameter of the molecule plus 3 nm, adhering to the 

minimum image convention to prevent self-interaction of atoms [Allen 2017a]. 

An initial lipase reference structure was derived from PDB [Berman 2000] structure 1OIL 

[Kim 1997]. Gromacs is used to transform the PDB structures to the native Gromacs structure 

format. Scripts with details of all Gromacs commands used are available on the public GitHub 

repository supporting this study [Hooten 2024]. Systems are solvated with 30,481 water 

molecules using the TIP3P explicit water model [Jorgensen 1983]. Charge neutralization is 

achieved by the inclusion of a single calcium cation which was present in the PDB structure along 

with 2 sodium cations. Details of system composition may be found in Table S1 in the Supporting 

Information file. 

Dehalogenase systems were created using an initial structure derived from PDB structure 

3RK4 [Lahoda 2014]. Systems are solvated with 23,166 water molecules. Charge is neutralized 
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by inclusion of a single chloride anion which was present in the PDB structure along with 18 

sodium cations. 

All-atom MD simulations were performed to explore the conformation of the biomolecule 

in aqueous solution. Detailed simulation parameters may be found in Table S2 in the Supporting 

Information file, as well as in the GitHub repository [Hooten 2024]. Solvated enzyme systems are 

first subject to steepest descent energy minimization until the maximum force falls below 1000 kJ 

mol-1 nm-1. Energy minimization is followed by an NVT equilibration step in which the atoms 

constituting the protein are restrained to allow relaxation of the solvent. Equilibration temperature 

is set to 300 K using the V-rescale thermostat with a stochastic term [Bussi 2007]. Electrostatic 

forces are calculated using the Particle Mesh Ewald (PME) method [Darden 1993] with a 1.0 nm 

cutoff. The system is simulated using the leapfrog integrator for a simulation spanning 1 ns, using 

a time step of 2 fs. 

In production simulations, the temperature is fixed at 300 K using the Nosé-Hoover 

thermostat [Nosé 1984; Hoover 1985], and the pressure is fixed at 1 bar using the Parrinello-

Rahman barostat [Parrinello 1981], both with a dispersion correction applied. Electrostatic forces 

are calculated using PME [Darden 1993] with a 1.0 nm cutoff. Dispersion forces are calculated 

using a 1.0 nm cutoff. Periodic boundaries are applied in the three directions. The box length is 

chosen such that the distance between any atom and the box boundary is greater than the cutoffs 

of the potential. The leapfrog integrator is used with a time step of 2 fs. Ten independent 

trajectories per enzyme sequence were simulated for durations spanning 500 ns, yielding 5 

microseconds of cumulative simulated time per sequence. Production simulations were 

performed using the Pittsburgh Supercomputing Center Bridges-2 cluster [Brown 2021; Towns 

2014]. 

Trajectories of all atoms were sampled at 2 ps intervals and subsequently resampled for 

analysis. For calculations of interatomic pair distances, trajectories including only the heavy (i.e., 

non-hydrogen) atoms were used. Each independent trajectory was sampled over its entire 500 
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ns duration at intervals of 50 ps, yielding 10,001 samples per trajectory and 100,010 samples per 

enzyme sequence. Root mean square fluctuation (RMSF), gyration tensor shape parameters, 

and surface properties were calculated from all-atom trajectories including only the heavy (non-

hydrogen) atoms of the enzyme. RMSF and the shape parameters are sampled from 400 to 500 

ns at intervals of 10 ps (which translates to 10,001 samples per independent trajectory, 100,010 

samples per ensemble). Surface properties are sampled over the same span but at intervals of 

10 ns (which translates to 11 samples per independent trajectory, 110 samples per ensemble). 

 

2.2 Coarse-grained Molecular Dynamics Representation of Enzymes and Simulations 

The configurational complexity of proteins, especially in high-resolution representations, 

means that deriving a force field which maintains a protein in a globular conformation remains an 

open problem. In coarse-grained representation of proteins, methods have been devised to 

systematically maintain tertiary structure in proteins by damping or constraining the pairwise 

interaction of atoms which are not covalently bonded [Banerjee 2024; Poma 2017; Tirion 1996; 

Bahar 1997]. 

One common strategy is to extend the typical bead-spring model with an auxiliary set of 

nonbonded pair interactions between nearest neighboring atoms within the protein which are 

parameterized to bias for native conformation, the so-called Go-like approach. Go-like models 

have the advantage of allowing unconstrained dynamics, although the use of many additional pair 

potentials may substantially increase the cost of computation [Poma 2017]. 

A popular alternative is to add unbreakable harmonic potentials to atoms whose pairwise 

distance falls within some target range, so that the covalently bonded structure of the protein is 

supplemented with further constraints on the relative motion of distant pairs of atoms, effectively 

maintaining its tertiary structure. A model which includes such a set of long-distance harmonic 

constraints is referred to as an elastic network model. Such elastic network models have been 
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used in computational investigations of proteins which probe the dynamics while maintaining a 

critical assumption that the protein is in its native structure. 

Some early applications of elastic network models of proteins apply force fields consisting 

only of an elastic network, while excluding both the more conventional Lennard-Jones type 

nonbonded interactions [Tirion 1996; Bahar 1997] and even excluding the explicit 

parameterization of the covalently bonded chain [Tirion 1996]. For example, coarse-grained 

models with elastic networks have been used to elucidate the dynamics entailing the binding of 

small-molecules in large proteins or protein complexes [Souza 2020; Gutiérrez-Fernández 2020; 

Coupland 2021; Pezeshkian 2023]. Other investigators have used coarse-grained models with 

elastic networks to examine membrane-binding processes, enabling the identification of particular 

regions of a protein which are involved in the initial association with the membrane [Synek 2021]. 

Further details regarding applications and analysis of elastic network models are reviewed in 

reference [Togashi 2018]. 

Although the strength of the harmonic bond may be tuned to modulate the flexibility of the 

system, an elastic network model fundamentally limits system dynamics and therefore may not 

be suitable for applications where conformational changes are of interest. A coarse-graining 

framework with an elastic network, which employs all-atom configurations as a reference, will use 

a highly constrained network. The configurations sampled using a coarse-grained model with an 

elastic network should hypothetically mimic corresponding configurations sampled using all-atom 

models, thereby providing an optimal benchmark for comparison between the two resolutions. 

Hence, this study adopts a coarse-graining framework based upon the Martini and elastic network 

models.  

In this study, the tertiary structure of the protein is maintained by overlaying an elastic 

network of pseudobonds upon the coarse-grained representation of the molecule. The network 

adds a harmonic potential between all coarse-grained bead pairs at distance between 0 and 0.9 

nm with a bond strength of 500 kJ mol-1 nm-2. The coarse-grained Martini 3 force field (version 
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3.0.0 parameter set [Souza 2021]) was used to represent the amino acids and capture their 

mutual interactions.  

Explicit solvent, coarse-grained MD simulations of a single protein molecule solvated in 

water were performed. For each independent trajectory, an all-atom configuration is transformed 

to a coarse-grained configuration using the Martinize2 program [Kroon 2022] to provide an initial 

structure. The coarse-grained MD simulations are initialized by using a box length that 

corresponds to the one from the coarse-grain-mapped all-atom reference configuration. Figure 1 

shows schematic images of lipase and dehalogenase, contrasting their all-atom and coarse-

grained representations and visualizing the modeled elastic networks. 

Prior to solvation, the coarse-grained representations of the enzyme systems in vacuum 

are subject to steepest descent energy minimization until the maximum force falls below 1000 kJ 

mol-1 nm-1. The systems are then solvated and subject to a second round of energy minimization. 

Each system is then subject to a three-part equilibration routine. First, the enzyme is restrained 

and 2,000 steps of NVT simulation are performed using a time step of 5 fs. Next, the restraints 

are removed and an additional 25,000 steps of NVT are performed using a time step of 2 fs. Then 

a pressure correction is applied and the system is simulated for 10,000 steps of NPT at a time 

step of 10 fs. The reasoning underlying the extended routine is to first allow the solvent to relax, 

then allow the enzyme to adjust to local solvent changes before slowly accelerating dynamics. All 

equilibration simulations use the leapfrog integrator. The temperature is maintained at 300 K via 

the V-rescale thermostat with a stochastic term [Bussi 2007]. Calculations of electrostatic 

interactions use PME with a cutoff of 1.0 nm. During NPT equilibration, pressure is maintained at 

1 bar using the Berendsen barostat [Berendsen 1984]. 

In production simulations, the temperature is fixed at 300 K using the Nosé-Hoover 

thermostat, and the pressure is fixed at 1 bar using the Parrinello-Rahman barostat, both with a 

dispersion correction applied. The electrostatic interactions are calculated using PME with a 1.1 

nm cutoff. The dispersion forces are calculated with a 1.1 nm cutoff. The cubic simulation box has 
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periodic boundaries. The leapfrog integrator is used with a simulation step of 20 fs. Ten 

independent coarse-grained trajectories per enzyme sequence were simulated for 25 million 

iterations, yielding 250 million total steps or 5 microseconds of cumulative simulated time per 

sequence. 

Trajectories of all pseudoatoms were sampled at 2 ps intervals and subsequently 

resampled for analysis. RMSF was calculated from coarse-grained trajectories including only the 

backbone beads of the protein sampled from 100 to 500 ns at intervals of 40 ps (which translates 

to 10,001 samples per independent trajectory, 100,010 samples per ensemble). Gyration tensor 

shape parameters and surface properties were calculated from coarse-grained trajectories 

including all coarse-grained beads in the protein. Shape parameters are sampled from 100 to 500 

ns nominal simulation time at intervals of 40 ps (which translates to 10,001 samples per 

independent trajectory, 100,010 samples per ensemble). Surface properties were sampled over 

the same time span but at intervals of 40 ns (which translates to 11 samples per seed, 110 

samples per ensemble). 
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Figure 1. Molecular visualizations comparing coarse-grained and all-atom representations. Upper 

panels (a) and (b) show contrast between individual particle counts at each resolution, in models 

of lipase and dehalogenase, respectively. The tortuous purple line traces the alpha carbons of 

the all-atom backbone, with close analogy to the backbone beads in the coarse-grained 

representation. Yellow spheres represent the other non-hydrogen atoms of the all-atom 

representations, where hydrogen atoms constitute roughly half of the total number of atoms in 

each protein. Red spheres represent the coarse-grained beads, excluding the backbone beads. 

Lower panels (c) and (d) show the bond structure of the coarse-grained representations. Green 
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lines represent the bonds between coarse-grained beads, blue lines represent the auxiliary 

pseudobonds of the elastic network. 

 

2.3 Characterization of Structure of Enzymes 

Pair-distance Distribution Function:  

The PDF, P(r), is a measure of the distances between heavy atoms within an enzyme or 

protein. This quantity may be calculated directly from simulation data [Allen 2017; Allen 2017b]. 

The PDF may be estimated at different scales by means of XRD techniques, with SAXS used for 

long interatomic distances (>10 Å) and wide-angle x-ray scattering (WAXS) for short distances 

(<10 Å). Here we will confine ourselves to PDFs obtained from SAXS data. 

Shape Characterization, Gyration Tensor Parameters:  

The structure of a protein is the fundamental determinant of its function. In this study, 

shape descriptors derived from the gyration tensor S, given by equation (1), are used to 

characterize the structure of the simulated enzymes. The gyration tensor captures the mass 

distribution of a set of particles, and its associated shape descriptors have been demonstrated as 

a means of distinguishing the sphericity and compactness in a variety of coarse-grained 

representations of polymers and proteins [Arkin and Janke 2013; Wang 2012]. 

 The three shape descriptors that are computed are invariants determined from the 

gyration tensor, as given by equations (2) to (4). The Rg is a measure of the rotational inertia, 

which is correlated with chain length in globular proteins [Dima 2004]. The relative shape 

anisotropy (κ2) measures the shape symmetry, ranging from 0 for highly symmetric objects to 1/4 

for a square planar array of particles to 1 for linear or rod-like arrangement of particles. The 

asphericity (b) measures the deviation from spherical symmetry, which equals zero for spherically 

symmetric objects (including spheres and tetrahedrons), or greater than zero otherwise 
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[Theodorou 1985]. Implementations of these calculations may be found in the public GitHub 

repository [Hooten 2024]. 

 

 

Equations 1 thru 4. Definition of the gyration tensor S, and definitions of its invariant shape 

descriptors Rg, κ2, and b. 

 

2.4 Methods - X-ray Diffraction Measurements 

2.4.1 Materials 

Burkholderia cepacia (formerly Pseudomonas cepacia) lipase, an extensively studied 

lipase, was used in these experiments. Crude lipase (Amano, Sigma Aldrich; MW 33 kDa) that 

was purchased was found to contain < 1 wt. % of lipase, the rest being a stabilizer (starch; 

Cassava dextrin 100-250 kDa, private communication, Sigma Aldrich; confirmed by Fourier 

Transform Infrared Spectroscopy, FTIR). This lipase was purified using the methods described in 

the literature [Bornscheuer 1994; Hedrich 1991], and was concentrated by using ultrafiltration spin 

columns [Luić 2001]. The concentrations were measured using a Nanodrop instrument. Purity of 

the enzyme was confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.22.614383doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.22.614383
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

PAGE) analysis. Activity was measured using 4-Nitrophenyl Butyrate (PNB) substrates (Sigma-

Aldrich). 

Haloalkane dehalogenase (DhaA31) enzyme was prepared following Ref(ChemBioChem 

2017, 18, 2000–2006) with several modifications. DhaA31 was overexpressed in competent cells 

of the E. coli BL21 strain, which were transformed with a pET29b+ vector containing the DhaA31 

gene (Twist Biosciences) with a C-terminal 6xHis-tag. The transformed cell line was grown in 500 

ml of ZY auto-induction media with a 5 mL preculture at 37°C for 3 hours until the optical density 

reached 1.8–2. The temperature was then lowered to 18°C after 3h, and further incubated at 18C 

for 21 hours. Cells were collected via centrifugation at 5000 rpm for 40 minutes and resuspended 

in 35 mL of wash buffer (50 mM Na2HPO4, 500 mM NaCl, 30 mM imidazole, pH 7.4). 40 μL of 1 

M PMSF, lysozyme, and DNase (final concentrations of ~2 mg/mL and ~0.2 mg/mL, respectively) 

were added to the resuspension. The resuspended cells were lysed via sonication on ice, and the 

lysate was centrifuged at 70,000 rpm for 40 minutes. The DhaA31 enzyme containing 6xHis-tag 

was purified using Ni-NTA columns (Qiagen) and eluted with 8 mL of elution buffer (50 mM 

Na2HPO4, 500 mM NaCl, 500 mM imidazole, pH 7.4). The eluate was dialysed against 0.1 M 

phosphate buffer (pH 7.4) to remove the excess imidazole. Enzyme purity was analyzed by SDS-

PAGE (see Supporting Information, Figure S4 for SDS-PAGE data) and characterized by mass 

spectrometry (see Supporting Information, Figure S5 for mass spectrometry data). The enzyme 

concentration was measured using a NanoDrop (DS-11+, DeNovix). The yield of the enzyme was 

157 mg/L. Enzyme activity was measured following Ref (ChemBioChem 2017, 18, 2000–2006) 

with 1-chlorobutane as the substrate. 

 

2.4.2 Small-Angle X-ray Scattering 

SAXS experiments were conducted at beamline 16-ID for Life Science X-ray Scattering 

(LiX; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY). 
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SAXS data were collected with 15.14 keV X-rays and three Pilatus 1M detectors collected 

over a q range of 0.005-3.13 Å-1. Background subtraction was done using the buffer scattering 

obtained after every three samples, and by scaling to the water peak at q = 2 Å-1. Data at q values 

of 0.005-0.25 Å-1 was used for further analysis. The data were analyzed in BioXTAS RAW 2.1 

with ATSAS 3.0.4 to determine the Rg by Guinier analysis. Pair-distance distribution function, P(r), 

was obtained by indirect Fourier transform with GNOM [Hopkins 2017; Hopkins 2020; Hopkins 

2018; Manalastas-Cantos 2021; Franke 2017]. Bead model reconstructions using a dummy atom 

model were created with the collected SAXS data as input. These models were generated using 

the DAMMIN program in the ATSAS 3.0.4 software package assuming a single-phase object 

[Svergun 1999]. a file that was fed into DAMMIN for final refinement in slow mode using default 

parameters to improve model fitting [Volkov 2003]. 

Lipase measurements were carried out in potassium phosphate pH 7.4 at concentrations 

from 0.8 to 2.4 mg/mL. The P(r) data used here was obtained from a 1.2 mg/mL solution. 

Dehalogenase measurements were carried out in potassium phosphate buffer (pH ~ 7.5) at 8.2, 

3.9 and 0.9 mg/ml concentration. P(r) data used here was generated using the data from the 8.2 

mg/mL solution. 

3. Results and Discussion 

3.1 Comparison of Results from All-Atom Trajectories and X-ray Diffraction 

Measurements 

 

 

 

The Rg from various sources of both the proteins are listed in Table 1. The measured Rg 

of lipase is 22.4 Å. The only structural data available in the literature for psuedomonas cepacia 
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lipase gives the dimensions of the globular dimensions derived from the crystal structure as 30 x 

40 x 50 Å (Kyeong Kyu Kim et al. Structure 1997, Vol 5 173-185), from which the Rg can be 

calculated to be 19.1 Å. The large SAXS can be attributed to the hydration shell around the 

proteins. 

 

 

Table 1. Radii of gyration in Å of simulated and experimental systems. Averages reported for 

simulated values. * Lipase XRD value is calculated from PDB structure 1OIL. 

 

The measured Rg of DhaA31 is 23.7 Å. There is no structural data available in the literature 

with which to compare with the results reported in this study. One report with SAXS data from 

DhaA115 finds a much smaller Rg than the corresponding result reported in this study (18.3 Å), 

but shows a scattering curve with features similar to ours [Markova 2020].  

Figure 3 shows the pair-distance distribution function (PDF), P(r), derived from SAXS data 

for both lipase and DhaA31. Overlaid on these are curves calculated from all-atom data for both 

lipase and dehalogenase for comparison. It can be seen that the all-atom calculated distributions 

and the SAXS distributions typically achieve their peak values at a distance of around 24 Å. The 

majority of the distribution mass is typically concentrated in a segment with a nearly Gaussian 

shape, which is typical of globular macromolecules and indicates the presence of a well-

established monomeric form of each enzyme system. The all-atom distribution also includes 

several spikes at short distances, from 1 to 5 Å, indicating the presence of regular structural units 

of consistent length, e.g., the length of the repeating peptide bond. 

The maximum distances (Dmax) found in the calculated monomeric structures are 60 Å for 

lipase and 50 Å for DhaA31. Dmax could not be accurately determined from experimental data 
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because of the long tails. The tails at larger distances indicate the presence of some extended 

conformation or some oligomeric species. The secondary peak at 60 Å, weak in lipase and strong 

in Dehalogenase is most likely due to the presence of dimers. Such dimers have been postulated 

both for lipases [Rios 2018] and for dehalogenases [Ridder 1999; de Jong 2003]. Despite the 

presence of the dimeric species, it can be seen there is a very good agreement between the 

calculated and measured Dmax values with lipase in which the dimer’s contribution is weak; it is 

difficult to assess this with DhaA31 because of the large contribution to the intensity from the 

dimers. Calculations using simple models with dimers constructed as spheres in contact indeed 

show that the extra shoulder and larger Dmax seen in the experimental data can be attributed to 

some dimers present in the solution (SI, Figure S7). While the crystallographic structure of 

DhaA31 (PDB:3RK4) reports the protein as a monomer, dimeric species have been reported in 

the literature for other haloalkane dehalogenase variants: DhaA115 Type 1 (PDB:6TY7), 

DhaA115 Type 2 (PDB: 6XT8), and DhaA177 (PDB:6XTC) [Markova 2021]. The existence of 

domain-swapped dehalogenase dimers in solution has also been confirmed experimentally by 

SAXS and cross-linking coupled mass spectrometry (XL-MS) data [Markova 2021]. Furthermore, 

a dimeric form was also observed in the crystal structure of a closely related DhaA variant 

(PDB:4KAF) [RCSB Protein Data Bank 2024]. These observations suggest that a significant 

amount of dimer may exist in the solution and contribute to the observed peak in the PDF. 

The almost complete overlap of the PDFs of the two enzymes reflects the similarity 

between the dominant monomeric species of the two enzymes. The molecular weights of the two 

enzymes are very similar (33128 Da for lipase and 34189 Da for DhaA31), and both enzymes 

have similar architecture: they belong to the α/β-hydrolase fold family, and have two domains - a 

Rossman-fold domain with a pattern of alternating alpha helices and beta strands forming a 

parallel β-sheet, and a majority helical lid domain, as shown in Figure 2. The active site is situated 

at the domain-domain interface with a similar spatial positioning of the catalytic triad residues 
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[Nardini 1999]. This conserved topology means that on average residue pair distances are likely 

to be similarly distributed resulting in similar PDFs. 

 

Figure 2. (a) 3D structure, and (b) topology diagram of the haloalkane dehalogenase DhaA31 

(PDB:3RK4). The lid domain is shown in red and the Rossman fold domain is shown in green. α 

Helices and β strands belonging to the ‘Rossman’ fold domain (lid domain) are represented by 

green (red) rectangles and green (red) arrows, respectively. The location and identity of the 
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catalytic triad is indicated by blue dots. Both the (c) 3D structure and (d) topology diagram of the 

lipase (PDB:1OIL) are highly similar to the dehalogenase.  

 

 

 

 

Figure 3. Pair distance distribution function P(r) comparing SAXS measurements and values 

calculated from all-atom simulation for lipase and dehalogenase. 

 

3.2 RMSF - Comparison of Results from Coarse-grained, All-Atom Trajectories and X-ray 

Diffraction Measurements 

Figure 5 shows ensemble average residue-wise RMSF values calculated from all-atom 

and coarse-grained simulations, along with temperature factor values from the associated PDB 

structure. There is qualitative agreement between the scales as to which residues along the chain 

length experience high RMSF values, corresponding to the mobility or flexibility of the protein at 

that location. 
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3.3 Gyration Tensor - Comparison of Results from All-atom and Coarse-grained 

Trajectories 

Gyration tensor parameter distributions are shown in Figure 4 and summarized in Table 

2. In dehalogenase, the sampled ranges for all parameters are very similar between all-atom and 

coarse-grained. The Rg in both cases matches well with the XRD experiment, indicating that the 

overall mass distribution of the simulated molecules is reasonable. The Rg distributions are 

unimodal and highly symmetrical, centered close to 1.8 nm. The width of the main peaks of the 

all-atom and coarse-grained distributions are also quite similar, suggesting that the structure of 

the molecule undergoes a similar scale of fluctuation in each model. Values of the anisotropy and 

asphericity parameters are slightly higher for all-atom trajectories than the coarse-grained 

trajectories. Such a deviation may be due to a loss in the distinction of characteristic structures 

within the coarse-grained model owing to its reduced resolution, although values for both the all-

atom and coarse-grained models indicate a high degree of sphericity and spherical symmetry. 

 The all-atom model of lipase shows a much broader and asymmetrical distribution of Rg, 

with the major peak centered around 1.97 nm, compared to 1.89 nm in the coarse-grained model. 

A minor peak in the all-atom distribution at 2.05 nm represents a small number of configurations 

which vary significantly from those seen in the majority of the sampled ensemble. As with 

dehalogenase, the widths of the main peaks in the lipase parameter distributions are similar 

between all-atom and coarse-grained trajectories. Likewise, the lipase values for anisotropy and 

asphericity indicate high spherical symmetry. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.22.614383doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.22.614383
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

Table 2. Gyration tensor parameter calculations for models of Lipase and Dehalogenase at all-

atom and coarse-grained resolution. For all-atom representations, only heavy atoms are included 

in the calculations. All beads are considered in the coarse-grained representations. 

 

 

Figure 4. Ensemble distributions of gyration tensor shape parameters. (a) Rg; (b) b; (c) κ2. 

 

 

 

Figure 5. Ensemble average of residue-wise RMSF for all-atom and coarse-grained 

representations of lipase (left) and dehalogenase (right). Temperature factor data from reference 

PDB structures are shown as green dotted lines, scaled arbitrarily for visual comparison. 
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3.4 Surface Chemistry - Comparison of Results from All-Atom and Coarse-grained 

Trajectories  

This study aims to develop a framework for coarse-grained models of enzymes which 

reproduce their surface chemistry. Therefore, a method is required that quantifies the surface 

chemistry of enzymes. To this end, the SURFMAP software [Schweke 2022; I2bc/surfmap 

(Github) 2024] is used to calculate surface characteristics such as electrostatic potential, 

hydrophobicity, and circular variance of the coarse-grained representations of the enzymes. 

3.4.1 Calculated Surface Properties:  

SURFMAP takes a model of a protein as input and calculates chemical properties on its 

surface. First, the target property is calculated at the scale of atoms or residues. A point cloud 

located 3 Å from the surface of the protein is then calculated using the MSMS software [Sanner 

1996]. Each point in this surface-approximating cloud takes on the value of the property of interest 

calculated for the nearest atom in the protein model. The locations of the cloud points are 

expressed in polar coordinates with the protein center of mass as the origin, creating the basis 

for a spherical representation. The corresponding property values are then mapped onto a 2D 

equal-area projection of the spherical surface. This projection uses bins of interval 5 degrees, and 

the value of the property associated with each bin is the average of the points in the bin. 

 The surface properties calculated for this study are electrostatic potential, hydrophobicity, 

and circular variance. SURFMAP utilizes the APBS software [Jurrus 2018] to calculate atom-wise 

(or pseudoatom-wise) electrostatic potentials, with charge values reported in units of kT/e. For 

electrostatics at the coarse-grained scale, the user must include a custom PQR file [Dolinsky 

2004; PQR molecular structure format 2024] in the input which details pseudoatom configuration 

and electrostatic charge, which is accomplished using custom codes available in the GitHub 

repository [Hooten 2024]. Hydrophobicity is calculated in the Kyte-Doolittle scale [Kyte 1982], in 

which the amino acid residues are assigned index values from -4.5 for most hydrophilic to +4.5 
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for most hydrophobic. Circular variance (CV) [Mezei 2003] is calculated residue-wise. The CV at 

a target point is calculated by considering its location relative to the set of points nearby, and may 

be considered a measure of how near the target point is to the center of the set. CV values range 

from 0 for exterior points (as in surface protrusions) to 1 for interior points (as in cavities), with the 

range near 0.5 corresponding to a theoretical surface from which protrusions or cavities extend.  

Typical 2D projections showing the surface distribution of electrostatic potential in the all-

atom and coarse-grained representations of lipase are shown in Figure 6, illustrating the effect of 

particle count on the diffuseness of charged surface patches. The scale and resolution of contours 

in the maps of circular variance and hydrophobicity agree well between all-atom and coarse-

grained scales, owing to the fact that these properties are calculated by residue at both scales 

(additional representative maps of of surface features may be found in the Supporting Information, 

Figure S3). The hydrophobic maps of all-atom and coarse-grained representations of lipase are 

largely similar, with values ranging from -4.5 to 4.5 in the Kyte-Doolittle hydrophobicity scale. The 

data underlying the maps in Figure 6 may be parsed directly to estimate the proportion of the 

enzyme surface for which properties fall within a range of interest. For example, the section of the 

surface area that exhibits positive hydrophobicity can be computed as it is a potentially useful 

property for distinguishing the surface adsorption propensity of a protein. 

3.4.2 Surface Property Results:  

Calculated distributions of the surface properties are shown in Figure 7 and summarized 

in Table 3. The electrostatic potential on the surface of the all-atom representation of lipase ranges 

from -9 to +5, while the coarse-grained model samples a much larger range from -47 to +26. 

Similar behavior is observed for dehalogenase, where the potential in the all-atom model ranges 

from -13 to +7 and in the coarse-grained model from -41 to +26. The areas of the extreme 

electrostatic potential on the surface of the simulated enzymes are more sharply localized in the 

coarse-grained representation than in the all-atom representation, as can be seen in Figure 6 and 
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Figure S3. This difference is due to the effective ‘size’ of the coarse-grained beads. The effect is 

that the bulk of the surface tends more closely to 0 potential, but renders the extreme values as 

a few small, disjoint spots in contrast to their more gradual distribution in the all-atom 

representation. 

The distribution of surface potentials in the lipase coarse-grained model deviates slightly 

from the all-atom reference, showing a slight left skewness. Mean surface potential in lipase is -

1.29 in all-atom compared with -1.92 in coarse-grained. In the dehalogenase models the mean is 

-2.5 in all-atom and -5.7 in coarse-grained. 

In all-atom models of both lipase and dehalogenase the hydrophobicity distribution has its 

highest peak at -3.5, with a much higher peak in dehalogenase than in lipase. This value indicates 

high hydrophilicity and corresponds in the Kyte-Doolittle scale to aspartic acid, glutamic acid, 

asparagine, and glutamine. It can be seen in Figure 8 that although ASN and GLN are slightly 

more common on the surface of lipase than of dehalogenase, dehalogenase has a much greater 

surface presence of ASP and GLU than lipase. The coarse-grained model of dehalogenase 

qualitatively matches all-atom almost perfectly, with a slight shift in the mass of the distribution 

from highly hydrophilic to zero hydrophobicity. The lipase coarse-grained distribution also has an 

attenuated -3.5 peak compared to all-atom, but in this case, it is associated with an erroneous 

increase in high hydrophobicity values between 2 and 4. This is very likely due to the higher 

frequency surface exposure of PHE and VAL in the lipase coarse-grained model compared to its 

all-atom counterpart, as can be seen in Figure 8. 

 Circular variance distributions are remarkably similar among the two enzyme systems as 

well as their two modeled resolutions. These distributions are once again unimodal and highly 

symmetrical with an average value of 0.56 in all four ensembles.  
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Figure 6. Typical projections of surface distribution of electrostatic potential for all-atom and 

coarse-grained models of lipase. Panel (a) shows a trajectory frame of the all-atom representation 

of lipase in which positively charged residues on the surface are labeled in blue, and negatively 

charged residues in red. Panel (b) shows the associated SURFMAP output for electrostatic 

potential. Panels (c) and (d) show the same frame as it has been mapped to coarse-grained 

representation, with its associated SURFMAP calculation 
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Figure 7. Ensemble histograms of surface property values. (a) Hydrophobicity index ranges from 

most hydrophilic at -4.5 to most hydrophobic at +4.5. (b) Electrostatic potentials in units of kT/e. 

(c) Circular variance values range from 0 for points of local surface protrusion to 1 for local 

concavity.  

 

 

Table 3. Summary of calculated surface property values. 
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Figure 8. Mean proportion of amino acid residues on the surface of simulated enzymes as a 

function of amino acids, for all-atom vs coarse-grained representations, with ensemble standard 

error. Groups are indicated for residues with a positive hydropathy value on the Kyte-Doolittle 

scale and for the charged residues. 

4. Conclusions 

In this study, two enzyme systems, lipase and dehalogenase, were developed at all-atom 

and coarse-grained resolution which were validated using SAXS measurements and the structure 

of corresponding proteins in solution. Values of Rg determined via SAXS fall close to the ranges 

calculated from simulated MD trajectories, indicating similar mass distributions. In addition, the 

mode of the experimentally determined PDF agrees well with values from simulations, suggesting 

the globular and monomeric form of the simulated proteins are in agreement with the experimental 

sample.  

Distributions of the gyration tensor shape parameter values qualitatively agree between 

the coarse-grained and all-atom models and show a similar scale of fluctuation between 

resolutions. The calculated distributions are also visually distinctive for the different enzyme 

systems, a feature likely to be important for future development of the analytical framework. 

Likewise, the surfaces calculated using a molecular cartography approach were similar 

between the all-atom and coarse-grained resolutions, and distinctive between the enzymes. The 
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frequencies at which specific residues occur on the surface of the modeled proteins show that the 

surface of the coarse-grained model very closely approximates the surface composition of the all-

atom reference. 

The protocols developed here for the development of coarse-grained models of enzymes 

and their validation using experimental measurements lay the foundation of a framework which 

can be used for future efforts in the high-throughput development of such models. These models 

can be employed to guide experimental efforts towards the stabilization of structure-function 

relations of protein sequences via stabilization by heteropolymers. 
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