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Abstract

Transient dynamics pose unique challenges when dealing with predictions and man-

agement of ecological systems yet little headway has been made on understanding when

an ecological system might be in a transient state. As a start we consider a specific10

model, here focusing on a canonical model for anaerobic digestion. Through a series

of simplifications, we analyze the potential of the model for transient dynamics, and

the driving mechanisms. Using a stochastic analog of this model we create synthetic

ecological data. Thus, combining our understanding of the deterministic transient dy-

namics with the use of empirical dynamical modelling, we propose several new metrics15

to indicate when the synthetic time series is leaving transient state.

Keywords: Anaerobic Digestion, Transient Dynamics, Empirical Dynamical Modelling,
Dynamical Systems, Forecasting.

1 Introduction
Throughout the historical modelling literature an emphasis has been placed on asymp-20

totic, or terminal dynamics. However, a significant amount of recent literature suggests that
important information is lost by only studying the stationary dynamics. For these reasons
a growing focus has been placed on the study of transient dynamics. In this sense, transient
dynamics are any non-asymptotic dynamic that occurs on ecologically relevant timescales.
Several authors have introduced novel ideas and concepts towards the study of transient25

dynamics including classification of types of long transients (Hastings et al., 2018; Morozov
et al., 2020) and the mathematical classification of transient points (Liu and Magpantay,
2022). Much of this classification arises from the study of dynamical systems which help
gain deeper understanding of ecological systems from a mathematical perspective (Heggerud
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et al., 2020; Caswell and Neubert, 2005). Fortunately, the mathematical underpinnings are30

readily transferred to ecological systems and the theory greatly aids in other study areas
such as, stochastic systems (Reimer et al., 2021) and empirical studies (Tao et al., 2021;
Stott et al., 2010).

In this paper our goal is to use the current knowledge of transient dynamics from a
deterministic stand point to form predictions about transient behaviour in ecological time35

series. A potentially useful tool to accomplish this goal is the empirical dynamical modelling
(EDM) framework, and in particular the S-map (sequential locally weighted global linear
map). The S-map was popularized by Sugihara and colleagues to forecast variables from
a given ecological time series (Sugihara, 1994). Empirical dynamical modelling aims to
transform time series data into some reconstruction of a dynamical attractor that describes40

the behaviour of a particular dynamical system. Much of the theory involved in EDM is
mathematical in nature and stems from Takens work (Takens, 1981) in which he proposes
that the behaviour of the underlying dynamical system can be uncovered through a single
variable with delayed coordinates. That is, the behaviour of an entire dynamical system can
be recreated through the observations of a single variable. Moreover, if multi-dimensional45

time series are observed then the reconstruction becomes even more convincing, or potentially
requires less data (Munch et al., 2022; Munch et al., 2017; Perretti et al., 2013).

Since majority of the underlying theory involved in EDM is mathematical most of the
methods can be modified for various applications. For example, (Brias and Munch, 2021)
have used EDM to propose management strategies in multi-species systems, (Tsonis et al.,50

2015) have used the S-map to test if a system is highly non-linear or stochastic and (Wasser-
man et al., 2022) have used the S-map to determine the temporally changing interaction
strengths among competing fish species. Additionally, the EDM literature has led to many
interesting theoretical advances in ecological forecasting (Cenci et al., 2019), dealing with
missing data or nonuniform sampling times (Johnson and Munch, 2022), and stability of55

potential fixed points (Munch et al., 2022; Ushio et al., 2018). One particular application
that begs for further study is the use of EDM to give early warning signals of regime shifts or
abrupt changes in the dynamics as popularized in (Sche!er, 2020; Sche!er et al., 2009). For
example, (Rypdal and Sugihara, 2019) use EDM to predict the magnitude of dengue fever
outbreaks in San Juan, Puerto Rico by the predicting eigenvalues of sequentially computed60

Jacobians from EDM. However, many of these results predict a qualitative change in the
dynamics, such as a bifurcation point or a change in stability. Making similar predictions for
dynamics that change due to the inherent nature of system, i.e. no changes in parameters,
is an important next step towards understanding and managing ecological systems. In this
paper, we apply the EDM framework to predict a transition between transient dynamics and65

steady state dynamics. This work is novel as it provides predictions of transient dynamic
end times, which is yet to be done, and provides a new application of the EDM framework.
Furthermore, this work will help to advance the transient, theoretical ecology, and EDM
literature.

In our particular study we use anaerobic digestion (AD) as an example of an ecological70

system that is high dimensional, where data collection of many dimensions is feasible, that
also commonly exhibits transient dynamics. These aspects make AD a useful system for our
study, since the empirical dynamical modelling framework can benefit from high dimension-
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ality. Anaerobic digestion is the process by which bacteria break down simple substrates into
useful products, in the absence of oxygen. Applications of anaerobic digestion are diverse and75

expanding but typically include sewage/wastewater treatment and biogas production (Bat-
stone et al., 2002; Pan et al., 2019; Wang et al., 2021). Although the dynamics of AD are
quite complex (Batstone et al., 2002), several studies have been put forward to simplify the
system in an attempt to yield tractable mathematical models. This mathematical e!ort has
had an important impact in understanding AD and has led to advances in engineering, con-80

trol, and promising mitigation for the current climate emergency (Wade, 2020; Meadows et
al., 2019; Bornhöft et al., 2013). Although these papers have been pivotal in understanding
the dynamics of AD they neglect the study of any transient behaviour. In both the lab and
wastewater processes, transient dynamics are often observed (Calise et al., 2023; Alsharidi et
al., 2020), and can be important for understanding when certain controls should or should85

not be implemented to maintain the function of the AD systems. In this work, we o!er a
novel mechanistic explanation of the transient dynamics exhibited in AD systems.

In Section 2 we discuss the process of anaerobic digestion in more detail and propose
a system of ordinary di!erential equations to model it. We further make several simplify-
ing assumptions with justification. The resulting reduced model is then nondimensionalized90

leading to a separation of timescales. Analysis on both the fast and slow timescales is per-
formed in Section 3 to fully understand the potential dynamics and mechanisms driving these
dynamics. This deeper understanding of the dynamics, and in particular the understanding
of the transient dynamics becomes critical in Section 5 where we attempt to predict these
transient dynamics. In Section 4 a stochastic analog of the simplified AD model is given and95

used to create synthetic data to be used in the analysis of our method. Such an approach
can be beneficial for establishing a method using ecological time series data as we are able to
confer any results back to the underlying deterministic system (Cenci et al., 2019; Reimer et
al., 2021). In Section 5 we introduce the S-map, an empirical dynamical modelling method,
and use it to forecast variables from the generated synthetic data. These forecasts then100

lead to the production of error curves corresponding to the prediction error. Utilizing the
underlying dynamical systems theory involved in both the S-map and transient dynamics
we use these errors curves to create several metrics that predict when a transient dynamic
is ending. The use of such error curves also establishes a novel approach in understanding
the underlying dynamical properties of a time series. We then compare our predictions to105

our knowledge of the transient dynamics of the deterministic system to compare and assess
these methods. A general summary of the paper is given in Figure 1.

2 A model for anaerobic digestion
To start, we introduce a mechanistic model for anaerobic digestion of simple substrates

into useful biogas. The model will then be simplified and analyzed to gain in depth under-110

standing of the transient dynamics of the biological system.

Although the entire anaerobic digestions process is very complex, a series of simplifi-
cations lead to a tractable system of di!erential equations that holds similar qualitative
dynamics, mainly those that are transient in nature. Based on the simplifications in (Mead-
ows et al., 2019; Bornhöft et al., 2013) we consider 5 categorical variables to describe AD. We
assume that S1 represents compounds of simple substrates such as sugars, S2 represents the
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Study the transient dynamics of an

AD model

Use the well understood model to cre-

ate synthetic data

Use the generated error curves to pre-

dict when the system transitions from

transient to asymptotic behaviour.

Apply the S-map to the synthetic data

to create a series of forecasts and cor-

responding error curves.

Compare the time of transition from

the S-map prediction to the a priori

knowledge of transient dynamics of the

model to show the potential usefulness

of the S-map

Figure 1: Flowchart describing the overall process of formulating our method.

Simple
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Figure 2: Schematic of the simplified AD process describing model (2.2).

volatile fatty acids, and (S3) the concentration of pH reducing ammonia. Lastly, we track
bacterial concentrations that correspond to the bacteria that break down simple substrates
(X1) and the ones that break down VFAs into biogas (X2), respectively. X1 and X2 may be
referred to as acidogenic and methanogenic bacteria, respectively. Our model is then derived
from the following reaction equation.

y1S1
r1→↑ X1 + y2S2 + y4S3 + y5CO2,

y3S2
r2→↑ X2 + y6CO2 + y7CH4,

(2.1)

where r1 = µ1(S1)X1 and r2 = µ2(S2, S3)X2 are the reaction rates defined by the bacteria
growth rates and yi are the yield constants described in Table 1.

Inhibition dependent on the level of S3 is considered in (Meadows et al., 2019; Bornhöft
et al., 2013; Bernard et al., 2001), However, here assume that the inhibition of all reactions115

by ammonia (S3) is negligible. This argument can be supported in certain cases of anaer-
obic digestion and is deemed reasonable for our study (Chen et al., 2008). Thus, although
ammonia (S3) is still being produced, it has no e!ect on the systems dynamics and can be
ignored for our study. Furthermore, we assume that additional factors that may be inhibiting
methanogenesis are negligible. Additionally, by considering the reaction (2.1) in a chemostat120

setting, where the simple substrate ,S1, is continuously being added we arrive at the follow
model:
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parameter definition units

D Chemostat Dilution rate d→1

S0 Concentration of S1 input g/L

y1 Yield constant (degradation) (g[S1]/g[X1])

y2 Yield constant (production) (mmol[S2]/g[X1])

y3 Yield constant (consumption) (mmol[S2]/g[X2])

y4 Yield constant (production) (mmol[S3]/g[X2])

k1 decay rate d→1

k2 decay rate d→1

H1 h.s.c for S1 degradation g/L

H2 h.s.c for S2 consumption mmol/L

µ1,max Max acidogenic biomass growth rate d→1

µ2,max Max methanogenic biomass growth rate d→1

*h.s.c stands for half saturation constant

Table 1: Parameters and their definitions for reaction (2.1) and resulting di!erential equation (2.2)






Ṡ1 = D(S0 → S1)→ y1
µ1,maxS1

H1+S1
X1,

Ṡ2 = →DS2 + y2
µ1,maxS1

H1+S1
X1 → y3

µ2,maxS2

H2+S2
X2,

Ẋ1 = →DX1 → k1X1 +
µ1,maxS1

H1+S1
X1,

Ẋ2 = →DX2 → k2X2 +
µ2,maxS2

H2+S2
X2,

(2.2)

with growth rates

µ1(S1) =
µ1,maxS1

H1 + S1
, (2.3)

and

µ2(S2) =
µ2,maxS2

H2 + S2
. (2.4)

This system now has four state variables and is hence slightly more simplified. Further-125

more, a schematic is shown in Figure 2 describing the simplified AD process. The parameters
and their definitions are given in Table 1. Certain qualitative aspects of the dynamics are
undoubtedly lost when inhibition is neglected, however transient dynamics still occur and
are qualitatively similar indicating that inhibition is not the important factor for studying
transient dynamics, which is the main focus of this paper.130

2.1 Nondimensional model

Next, we perform a nondimensionalization of system (2.2). The nondimensionalization
allows for a clearer understanding of which parameters are of particular interest and may
be regarded as perturbation parameters. Additionally, the nondimensionalization reduces
the number of model parameters and re-scales all state variables to be closer in magnitude135
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while maintaining all qualitative properties of the original model. The nondimensionalization
process of (2.2) used in this manuscript is given in AppendixA which ultimately leads to the
following non-dimensional model.






u̇ = ω→ εu→ ϑ u

1+u
x,

v̇ = →εv + u

1+u
x→ v

1+v
y,

ẋ = →εx→ ϖ1x+ u

1+u
x,

ẏ = →ε(1 + ϖ2)y + εϱ v

1+v
y.

(2.5)

A summary of the dimensionless parameters is given in table 2 and sample dynamics of140

model (2.5) are given in Figure 3 in blue for two sets of parameter values. A few assumptions
are made about the dimensional parameters which results in a further simplified dimension-
less model. First, we assume that the chemostat is slowly being diluted, i.e. the dilution rate,
D, is very small but that the input concentration, S0 is high. These are easily controllable
parameters in the lab setting, readily justifying these assumptions. We further assume that145

the generational timescale of the acidogens, X1 (x) is small, thus both the growth rate, µ1,
and the decay rate, k1, are relatively large but similar in magnitude. We further assume
that the methanogens, X2 (y), have a small decay rate, k2. It is typical that the acidogenic
process is faster moving than the methanogenic process and thus we argue that these as-
sumptions are reasonable. These assumptions lead us to the following conclusions about the150

nondimensional parameters and system. First, since D is small, and µ1 is large the nondi-
mensional parameter, ε = D

µ1
is small and is considered a perturbation parameter that, as

we will show, leads to a separation of timescales. Secondly, since S0 is large we argue that
the parameter ω = εS0/H1 is of a comparable order. Finally, given our assumptions about
k1 and k2 the parameters ϖ1 = k1/µ1 and ϖ2 = k2/D are also of comparable order. For the155

remainder of this paper the parameter values for models 2.5 are set to the values given in
Tables 2 unless otherwise noted. The values are chosen to be biologically reasonable, but
also so that transient dynamics are exhibited.

parameter definition value

ε D/µ1 ↓ 1

ω S0D/H1µ1 0.001-6

ϑ y1/cH1 0.336

ϖ1 k1/µ1 0.1

ϖ2 k2/D 0.0667

ϱ µ2/D 4.27

Table 2: Dimensionless variables and parameters for system (2.5).

3 Fast-slow dynamics of the anaerobic digestion model
160

We now discuss in detail how the small parameter ε leads us to a separation of timescales
and eventually allows for the understanding of the transient dynamics. First, system (2.5)
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Figure 3: Two sample simulations of model (2.5)(blue) and its stochastic extension outlined in Section

4.1(orange). Parameter values are given in Table 2 with ω = 6 (left) and ω = 0.001 (right).

is represented as the classical fast slow system as follows

ẋ = f(x, y; ε), (3.1)

ẏ = εg(x, y; ε), (3.2)

where x is a vector representing the slow variables, and y the fast. By utilizing the geometric
singular perturbation theory we assume the fast dynamics of y occur on the timescale ς and
the slow dynamics of x occur on the timescale s = ες . These assumptions allow us to
approximate the dynamics of (2.5) by assuming that the system can be broken down into
two simpler subsystems. Furthermore, the dynamics of y on the slow timescale are restricted165

to a manifold defined by g(x, y; 0) = 0 while x is treated as a constant of the fast timescale.
Fortunately, the theory provided Neil Fenichel allows us assert that the dynamics of the
approximation is a reasonable representation of the full system (Fenichel, 1979; Hek, 2010).

3.1 Slow dynamics

For the slow dynamics we first perform a change of variables given by s = ες . Here s170

represents slow time, where ς is the fast timescale. Letting ε ↑ 0 gives the first governing
di!erential-algebraic system of the dynamics of the slow time scales given by






0 = ω→ ϑ u

1+u
x,

0 = u

1+u
x→ v

1+v
y,

0 = →ϖ1x+ u

1+u
x,

y↑ = →(1 + ϖ2)y + ϱ v

1+v
y,

(3.3)

where the ↑ refers to the derivative with respect to s. Note that the solution to the alge-
braic component is dependent on y. Thus, dynamically the solution for u, v and x on the175

slow timescale will change as the value of y changes as to satisfy the algebraic constraint.
Eventually a steady state in all variables is achieved.
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3.2 Fast dynamics

The fast dynamics occur on the timescale given by ς . Again, by letting ε ↑ 0 we arrive
at the following reduced system of equations describing the fast dynamics180






u̇ = ω→ ϑ u

1+u
x,

v̇ = u

1+u
x→ v

1+v
y,

ẋ = →ϖ1x+ u

1+u
x,

ẏ = 0.

(3.4)

In the first order approximation of the fast system, y acts as a constant. Thus, we can analyze
this subsystem using the classical methods. It is easy to show that only one equilibrium,

(u↓, v↓, x↓) = (
ϖ1

1→ ϖ1
,

ω

ϑy → ω
,

ω

ϑϖ1
), (3.5)

exists for system (3.4) and that the eigenvalues of the linearized system around (u↓, v↓, x↓)185

are given in Equation B.1. Furthermore, it is shown in Appendix B that these eigenvalues
have negative real parts for our chosen parameter ranges and imply that (u↓, v↓, x↓) is a
stable equilibrium of the fast subsystem.

3.3 Transient dynamics of the fast system

Although the fast-slow analysis in the above two sections is useful in understanding the190

overall dynamics of the system, many aspects of the transient dynamics are still uncovered.
That is, up to this point we only understand what the critical manifold looks like and how
the dynamics change on the critical manifold. With respect to transient dynamics, the
way the critical manifold is approached is often interesting and helps to better explain the
mechanisms driving transient dynamics. In this light we further analyze the fast subsystem195

motivating the results shown in later sections.

We begin with the fast subsystems (3.4), and assume that all of our initial conditions are
relatively small, except perhaps y. This assumption allows us to, for only a short amount
of time, claim that many of the terms in (3.4) are negligible, or in the very least, do not
contribute to the qualitative transient dynamics that initially occur. This further implies200

that for a small amount of initial time the transient dynamics are mainly governed by the
following:






u̇ = ω

v̇ = 0,

ẋ = 0,

ẏ = 0.

(3.6)

Assuming ω is relatively large we expect to see an abrupt increase in u, initially. Note that
the transient dynamics are approximated by (3.6) until u becomes large enough that the205

terms u

1+u
x are no longer negligible. Conveniently, this time is computed from the solution

to the simple equation, i.e. for small initial conditions, u(ς) = u0 + ως . Now, since the
initial growth of u is fast we define a time, ς1, such that for ς > ς1,

u

1+u
↔ 1 and for
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Figure 4: The comparison of the approximation of the transient dynamics described in Section 3.3 to the

numerical simulation is shown here. The approximation is given with the dashed curves and the critical

times are given on the time axis.

ς < ς1 the dynamics are approximated by system (3.6). Furthermore, ς1 can be computed
as ς1 = (utol → u0)/ω, where utol is the value of u such that u

1+u
↔ 1 within a given error210

tolerance.

For large u the system is now able to respond by producing acidogens at a significant rate
and then in turn producing VFA’s. In other words, for ς immediately larger than ς1, x and
v are still small but are now increasing. Thus, our system can be thought to be governed by:






u̇ = ω→ ϑx

v̇ = x→ v

1+v
y,

ẋ = (1→ ϖ1)x,

ẏ = 0.

(3.7)215

for ς1 < ς < ς2, where ς2 is the point that u stops increasing and the assumption that
u

1+u
↔ 1 is no longer reasonable.

Again, the time ς2 is computed explicitly as the point in time that u is no longer in-
creasing, i.e. ω → ϑx = 0. Thus, by solving the decoupled approximate system we compute

ς2 = ln
(

ω

εx0

)
+ ς1. Finally, for ς > ς2 all of our previous approximations become unreason-220

able and we assume that the dynamics are governed by the original fast subsystem (3.4).
Since we understand the dynamics for the ς < ς2 it is easy to deduce that for time ς > ς2
the dynamics will monotonically approach equilibrium values.

In summary, for 0 < ς < ς1 the dynamics are approximated by (3.6), for ς1 ↗ ς ↗ ς2
the dynamics are approximated by (3.7) and for ς > ς2 the dynamics are monotonically225

approaching equilibrium governed by (3.4). Figure 4 shows the comparison of the above
approximation of our dynamics to the full system in which we show that the approximation
is qualitatively su”cient for understanding the transient dynamics.
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4 Synthetic data
In this section we create a stochastic analog of system 2.2 to produce a number of synthetic230

time series. We then treat these time series as synthetic ecological data which will be used
to give our main result in Section 5. Additionally, using the knowledge of the deterministic
system (2.5) gained in Section 3.3 we numerically compute the time in which the transient
dynamic ends for each time series. Furthermore, the dynamics of the nondimensional model
(2.5) are equivalent to the dynamics of the original model (2.5) through a scaling of the state235

variables discussed in Appendix A.

4.1 Creation of synthetic data

Here we create the stochastic analog of system (2.2) to produce synthetic data for later
analysis. In doing so we assume that each growth or death/conversion process has some
inherent noise associated to it. We do not consider additional noise in the data sampling,240

although this is no doubt a great concern for ecological applications.

We generate our synthetic data in the following fashion following the ideas within (Reimer
et al., 2021). First, we assume that there is a core process for each state variable described
by the following system:






dµ

dt
= D(S0 → S1)→ y1

µ1,maxS1

H1+S1
X1,

dϑ

dt
= →DS2 + y2

µ1,maxS1

H1+S1
X1 → y3

µ2,maxS2

H2+S2
X2,

dϑ

dt
= →DX1 → k1X1 +

µ1,maxS1

H1+S1
X1,

dϖ

dt
= →DX2 → k2X2 +

µ2,maxS2

H2+S2
X2.

(4.1)

We then assume that the true change of our state variables is the summation of the245

change described by the core process plus a unique multiplicative stochastic process. Thus,
the true change of the state variable is given by






dS1 = dµ+ dWS1 ,

dS2 = dφ + dWS1 ,

dX1 = d↼+ dWX1 ,

dX2 = d↽ + dWX2 ,

(4.2)

where the following probability density function, defined similarly for all, describes the
stochastic process and ensures numerical positivity and a nonzero probability of extinction250

in finite time:

p(dWx(t) = w|x(t)) =






N(w|0, ϖ2x(t)2dt) x(t) + w > 0,

#(→ 1
ϱ

↔
dt
) x(t) + w = 0,

0 x(t) + w < 0.

(4.3)

Furthermore, N(w|µ, ϖ2) is the probability density function (pdf) of the normal distribution
and #(x→µ

ϱ
) is its cumulative distribution function. Note that the variances of the pdf of

the stochastic noise terms in (4.2) are dependent on state variables and are thus equivalent255
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to multiplicative noise. Moreover, this conditional probability density function ensures that
when the state variables are large, the stochastic process represents the typical Brownian
motion with multiplicative noise. However, when the state variables become small there is
nonzero probability that the population becomes zero and collapses with a zero probability
that it becomes negative.260

We produce several realizations of the stochastic dynamics governed by system (4.2) for
uniformly distributed random initial conditions with the following restrictions: S1(0) ↘ (0, 1),
S2(0) ↘ (0, 1), X1(0) ↘ (0, 0.5), and X2(0) ↘ (0, 1). These stochastic simulations are then
treated as our synthetic ecological data for future analysis and several time series data are
plotted in Figure 5 as an example for the state variable S1. Furthermore, the stochastic265

analog is presented in conjunction with the dynamics of the deterministic model in Figure
3. The parameter values chosen for the simulations are given in Appendix C.1. The goal
of this work is to develop a method to detect the transition from transient dynamic to the
exponential decay towards the equilibrium. Although the exponential decay could still be
considered a transient dynamic, we argue that it is of less interest as this type of dynamic270

is dominated by linear terms and exhibits no non-linear behaviour. Initial conditions that
are close to the equilibrium approach the equilibrium in a simple exponential decay (i.e. a
linear dynamic). We intentionally chose initial conditions that are su”ciently far from the
equilibrium point so that a non-linear transient dynamic occurs. Additionally, as discussed
in Section 3 small initial conditions are assumed for our deterministic study of transient275

dynamics of the model.

4.2 Transients in the synthetic data

Based on our a priori study of the transients of the deterministic model (2.5) we can
determine at which time the transient phase of our synthetic time series ends. To this
end, we assume that once the dynamics are near the equilibrium value computed from280

the deterministic model that our transients end. As a simplification we assume that the
transients of interest are observed in the state variable S1. Thus, we assume the transients
end when S1 begins to approach the equilibrium point. That is, when the synthetic data,
given by the sequence S1(t1), ..., S1(ti), ...S1(tn) where ti is an ordered sequence, shows the
distance between S1 and S↓

1 is small we claim the transient has ended. Thus, the time the285

transient dynamics end, denoted as tk,end, is given by the smallest value of ti that satisfies
|S1(ti) → S↓

1 | < ⇀eq. Note that for the parameter values used (See table 3 in Appendix C.1)
S↓
1 = 4.49. For noisier time series we assume allow ⇀eq to be larger. The exact values we

chose for ⇀eq are described in Appendix C.2. Now, for each synthetic time series generated we
can compute, with reasonably high confidence, the time (tk,end) the transient dynamics end.290

In Figure 5 we show a sample of the transient dynamics with random initial conditions as
described above. The large dots represent the point in time in which our measure indicates
the transient dynamics end. Our overall goal is to predict these points using only the synthetic

data assuming no prior knowledge of the dynamics.

5 Predicting the end of a transient dynamic295

In this section we introduce the empirical dynamical modelling tool, the S-map, and
utilize its properties to predict the end of a transient dynamic in our synthetic time series
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Figure 5: Samples of synthetic data given by system (4.2). The large dots are labelled at time tk,end for

each realization to represent the computed time in which transients end. These time series were generated

using ε = 0.65, ”t = 0.01 with all other parameters as in Table 3.

data. We discuss this new method and apply to two di!erent scenarios of time series data;
a control time series, and historic time series data.

5.1 S-map introduction300

Here we use a method of forecasting called sequentially computed Jacobian coe”cients,
or the S-map for short. The S-map forecasts an ecological variable from a given historical
or control time series. The S-map uses training data to describe a dynamical attractor
which is then used to form a prediction from a point in state space. Furthermore, data
points from the time series are weighted accordingly to their proximity from the point of
prediction. In particular, the S-map is used to forecast a variable p time units from time
t↓. That is, it obtains a prediction for the value of the target variable Y (t↓ + p) from
using some training time series with k data points. The time series may contain multiple
observations and is given the notation: {D(ti)} where D(ti) is an E dimensional vector
consisting of system variables, or a vector containing our data for time ti. The vector D
may also contain embedded data if higher dimensionality is desired. For example, the data
vector at time ti may be written as D(ti) = (d1(ti), d2(ti), ..., dE(ti)). In our particular case
D(ti) = (S1(ti), S2(ti), X1(ti), X2(ti)). We assume that the time series data is given at regular
intervals with no missing points such that ti+1 = ti + p for all i. In ecological monitoring
this is rarely the case, however one can use one of several imputation methods to produce
an approximate and regular time series and is not the focus of this paper. Furthermore,
the target variable Y is the forecasted value of a variable contained in D. Without loss
of generality, we assume that we are interested in predicting the variable d↓(t) which is an
element of the vector D (Y is the forecast of d↓). The forecast is given by first assigning
weights to each of the k training data points based on its distance to the target point in the
attractor manifold and is completely irrespective of time. That is,

wi = exp

(
→⇁≃D(ti)→D(t↓)≃

d̄

)
, (5.1)
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where ⇁ = 5 is the measure of nonlinearity, d̄ is the average distance from point D(t↓) given
as

d̄ =
1

n

k∑

j=i

≃D(tj)→D(t↓)≃, (5.2)

and ≃ · ≃ is the Euclidean norm. Now the forecast mapping is given by

Y (t↓ + p) =
E∑

j=1

Cj · dj(t↓), (5.3)

where the vector C = (C1, C2, ..., CE) is the solution to the linear equation

B = A · C. (5.4)

The matrices A and B represent the weighted state space vectors and the weighted future
value of the target variable, respectively. In general, we define

Aij = widj(ti) and Bi = wid↓(ti+1), (5.5)

where d↓ is the target variable.

Although the S-map is typically used for forecasting it can be utilized in many fashions.
In this paper we show that based on the error of the forecasts we can gain insight as to the
dynamics of our system. In particular, we argue that a forecast with higher error implies
that the time series in not near its attractor, were as a forecast with lower error implies that305

the forecasting is being made on, or near the attractor. In this light one can say that a
high forecasting error indicates a transient state, or transition from a transient state, based
on our knowledge of the transient dynamics obtained in the previous section and general
dynamical systems theory.

5.2 Prediction of transients from synthetic data310

We now use the S-map to forecast the dynamics based on the synthetic data. We consider
two practical situations in which data would be gathered. The first case is that of a single
time series in which only historical data is available, similar to monitoring data. The second
case is when an entire control time series exists, as common in the lab setting or where an
entire experiment/observation has been done previously. The key di!erence is that in the
first case, we use a number of historical data points from the same time series to train the
S-map forecast, whereas in the second case we use a single control time series in its entirety
to train the S-map forecast for a di!erent time series. We then use the S-map to create
prediction error curves, absolute error, or absolute relative error. The absolute error curve
is computed as the absolute di!erence between the S-map prediction and the actual value of
the time series at time ti given as

Rabs(ti) = |Y (ti)→ d↓(ti)|. (5.6)

The absolute relative error is computed as the absolute error relative to the values of the
time series

Rrel(ti) = |Y (ti)→ d↓(ti)

d↓(ti)
|. (5.7)
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Since absolute relative error can be sensitive for small predicted values and absolute error
can be sensitive for larger predicted values, we consider both error measures for complete-
ness although generally absolute relative error is deemed to be a better measure. We further
argue that the transient dynamic ends if either the absolute error becomes lower than some
predetermined threshold ⇀a, or when the absolute relative error becomes greater than some315

predetermined threshold ⇀r. Due to the S-maps decreased prediction error near an equilib-
rium (see Figure 6a) we argue that the first point in time the absolute error becomes less that
⇀r indicates the beginning of the equilibrium phase, and thus the end of the transient. On the
other hand, when using absolute relative error, the S-maps prediction error will ‘spike’ when
the dynamics transition from the transient phase to the equilibrium phase (See Figure 6b).320

Hence, the first point in time the absolute relative error is greater than ⇀r corresponds to the
end of the transient dynamics. The choice of ⇀a and ⇀r is dependent on the level of noise in
the system, the values of the state variables in equilibrium and the degree of non-linearity
in the dynamics. Thus, in this study we do not focus on how to choose these thresholds,
but rather show that there is range of thresholds in which the end of the transient can be325

reasonably predicted.

We furthermore consider two types of synthetic time series data in which we use for our
predictions: monitoring data, and control data. In the case of monitoring data, we assume
that we have a single synthetic time series in which we do not know the outcome of the
dynamics. We use previous data points of the monitored synthetic time series to train the330

S-map for forecasting. In the case of control data, we assume that we have one entirely
realized synthetic time series that is used to train the S-map. The S-map then uses the
control time series to forecast from a single observation of an entirely separate synthetic
time series, or experiment.

Finally, to compare the values of the predicted transient end time to the transient end335

time computed from the knowledge of the underlying deterministic system, as in Section
4.2 we use the coe”cient of determination and the Pearson’s correlation coe”cient. In
particular, we compute the coe”cient of determination (R2) with respect to the line y = x
and not the standard line of best fit. Thus, in this case a value of R2 = 1 suggests that
the S-map perfectly predicts the computed transient end time, whereas decreasing values340

indicate poorer predictions. The Pearson correlation coe”cient gives a measure of how
well correlated our predicted transient end times and the computed times are. In this
sense, a Pearson correlation coe”cient equal to one suggests that the S-map prediction
and the computed transient end time of each time series are perfectly correlated, but does
not necessarily suggest the prediction is good. That is, high correlation could mean our345

prediction consistently under predicts, or over predicts the computed transient end time.
However, these results are still useful in evaluating our methods.

5.2.1 Monitoring data

We first consider the scenario where we are dealing with a single time series, similar
to monitoring data. For the given time series, we assume that the data points are equally350

spaced in time (i.e. ti → ti→1 = $t, for all i), and that the previous h time points are used
to train the S-map in order to make the forecast. For example, we wish to forecast from
the current point, tj. To obtain Y (tj + $t) we use the data vectors D(tj→h), ..., D(tj→1) as
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Figure 6: Errors of prediction as a function of time. (a): A plot of the smoothed absolute error as a function

of time for 10 sample time series. The point in which the error stays below a threshold corresponds to the

end of the transient. (b): A plot of the smoothed absolute relative error as a function of time for 10 sample

time series. The point in which the error is above some threshold and is also a local maximum corresponds

to the end of the transient dynamic. Both use the parameter values h = 20, ”t = 0.1, and ε = 0.1

the training data for the S-map forecast. Here, Y (tj + $t) is the forecast of S1 and each
data vector contains the information D(ti) = (S1(ti), S2(ti), X1(ti), X2(ti)). If j < h then we355

use every historical point in the time series. We forecast every reasonable time point in a
similar fashion, thus ending up with forecasts, based only on historical time points for each
time t2, ...tk. For each forecast, we compute the absolute error and the absolute relative
error as given in equations (5.6) and (5.7), respectively. In this sense, we have created new
time series, representing the respective errors, that will be used to make conclusions about360

the transient dynamics. To fully utilize these created error curves, we smooth out some of
the fluctuations by computing the Gaussian weighted moving average over a fixed number
of previous values. The results of the smoothing are plotted in Figure 6 for 10 sample time
series.

We consider ten di!erent noise levels (ϖ as in (4.3)) and for each noise level generate one365

thousand time series. To show the utility of this method we do not always use the entire time
series to make forecasts. That is, to explore how sparseness of data influence our methods
outcome we consider di!erent values for the time step between data points used ($t), and
the maximum number of historical data points used to train the forecast (h). For example,
we extract a subset of data points from the original time series to create our synthetic data370

where ti → ti→1 = $t. Furthermore, to make the forecast from time tj to time tj + $t the
S-map is trained on the previous h data points in the synthetic time series, i.e tj→h...tj→1 (if
j ↗ h we use all previous time points). For each synthetic time series we generate smoothed
error curves that represent the absolute error and the absolute relative error between the
forecast and the true value of the synthetic time series. We then use the generated error375

curves, as in Figure 6, to predict the point in time the transients end denoted t̃k,end.

We argue that when the absolute error, as plotted in Figure 6a, is less than a certain
predetermined tolerance, ⇀a, the dynamics are not transient and are su”ciently near some
attractor. The prediction is made for several values of ⇀a for each time series.

Moreover, we make similar predictions using the absolute relative error as shown in Figure380
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6b. However, when using the absolute relative error curve to predict the end of transient
phase, merely predetermining a threshold is not su”cient because the S-map yields smaller
values of absolute relative error while in the transient phase, and only increases when the
dynamics leave the transient phase. This is due to the idea that the transient dynamic can
be viewed as weak, or temporary, attraction to some region in state space that is eventually385

overpowered by another attractor (Hastings et al., 2018). While the dynamics are near this
transient attractor the absolute relative error is low. Thus, when using absolute relative
error the S-map can highlight this transient attractor, resulting in a lower prediction error.
The absolute error cannot capture this transient attractor as well due its limited complexity
and sensitivity to larger numbers. However, as the dynamics leave the transient phase the390

prediction error should increase until the dynamics become near an attractor again. This
transition from one attractor to another corresponds to a spike in the absolute relative error
as seen in Figure 6b. Using this knowledge, we can predict the end of the transient phase.
We claim that the transient ends once the absolute relative error become larger than some
threshold value, ⇀r, and is a local maximum of the error curve.395

The accuracy of the prediction for 1000 synthetic time series over ten di!erent noise
levels (ϖ), fifteen di!erent error tolerances (⇀a and ⇀r), four di!erent step lengths ($t), and
four di!erent numbers of historical data points used for training (h) are given in Figures
7, 8, 13, and 14. Figures 7 and 8 use the coe”cient of determination (R2) as the measure
of prediction accuracy using the absolute and absolute relative errors, respectively. Figures400

13 and 14 use Pearson’s correlation coe”cient as a measure of prediction accuracy using
the absolute and absolute relative errors, respectively. Additional details regarding the
proportion of successfully made predictions, (i.e. instances where the error tolerances are
not passed result in failed predictions) and sample scatter plots of predicted vs. computed
transient end times are given in Appendix D.405

Using this approach, we note that in some cases the absolute relative error will not exceed
⇀r, or the absolute error will not be less than ⇀a, thus our methods will not yield a prediction.
However, as shown in Figure 18 and 17 we see that there are large regions in both the noise
level and error tolerances for which predictions are made successfully.

5.2.2 Control data410

To understand the potential applicability of our method we now assume that a single
’control’ time series exists in its entirety to act as the S-map training data set. In contrast,
in the previous section we used only historical data from a single time series to make the
prediction. Here we use an entire time series to make the prediction given the current state
of a completely di!erent time series, but with assumed identical model parameters.415

We compute the S-map prediction as follows. First we establish our control synthetic
time series denoted by Dc(t1), ..., Dc(tn), where Dc(ti) = (Sc

1(ti), S
c

2(ti), X
c

1(ti), X
c

2(ti)) for all
i. This control time series is the same for all forecasts at each noise level. Again, once
we establish the variable we are predicting we proceed with the calculation of Y (tj + $t)
for all tj ↘ {t1...tn→1}. For each tj the S-map is trained using the control time series,420

Dc, and we assume that a vector of the current state of our system is given as D(tj) =
(S1(tj), S2(tj), X1(tj), X2(tj)). Here, Y (tj + $t) is the forecast of S1. To this end, every
forecast is made using the same trained data set, unlike in the previous section. As before,
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Figure 7: Prediction accuracy comparing the computed transient end to the S-map forecasted transient

end time based on the absolute error curves. The heat map represents the value of R2
relative to the line

y = x. Each panel corresponds to a fixed number of historical points used to train the forecast (h) and a

fixed time step between data points (”t). The y-axis of each panel represents the noise level of the simulated

synthetic time series (ε), and the x-axis represents the error tolerance threshold (ϑa).

we generate 1000 time series for each noise level ϖ, with random initial conditions as described
in Section 4.1. Again, we take a subset of each time series to create the synthetic time series425

such that the synthetic data points are spaced by $t time units. We then predict Y (tj +$t)
for all j in the sequence and for each synthetic time series using the S-map trained on an
entire single control time series. Each prediction Y (t↓ + p) is compared against the true
value from the synthetic time series. From this, we compute the relative absolute error curve
described in equation (5.7). The error curves here are similar in nature to what is shown430

in Figure 6 and are not shown. As before, we use the same threshold ⇀r and predict that
the transient dynamic ends when the absolute relative error is larger than ⇀r for the first
time and represents a local maximum of the absolute relative error curve. To measure of
the accuracy of our predictions we give the coe”cient of determination, R2, relative to the
line y = x in Figure 9. Here, R2 is a function of noise level (ϖ) and error threshold ⇀r. Also,435

in Figure 9 we provide this measure four di!erent time steps ($t) in the data to represent
varying sparseness of the data. Furthermore, to complement the results in Figure 9 we show,
in the Appendix D, a similar heat map for the Pearson’s correlation coe”cient (Figure 19), a
sample scatter plot to comparing predicted to computed transient end times (Figure 20), and
heat map showing the proportion of synthetic time series where a prediction was successfully440

made (Figure 21)
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Figure 8: Prediction accuracy comparing the computed transient end to the S-map forecasted transient

end time based on the absolute relative error. The heat map represents the value of R2
relative to the

line y = x. Each panel corresponds to a fixed number of historical points used to train the forecast (h)
and a fixed time step between data points (”t). The y-axis of each panel represents the noise level of the

simulated synthetic time series (ε), and the x-axis represents the error tolerance threshold (ϑr).

6 Discussion
Recent studies have emphasized the importance of transient dynamics for ecology. Much

of the scientific literature on transient dynamics revolves around interesting mathematical
arguments. In particular, the classification of types of transient dynamics (Hastings et445

al., 2018; Morozov et al., 2020), the study of tipping points and regime shifts, and early
warning signals all build on concepts from dynamical systems. In parallel, many e!orts have
focused on predicting a change in dynamics due to bifurcations from parameter changes or
perturbations, with critical slowing down theory playing a prominent role (Boettiger et al.,
2013; Sche!er et al., 2009; May, 1977; Sche!er et al., 2001; Dakos et al., 2019). In more detail,450

critical slowing down is the phenomenon that as a system approaches a bifurcation point,
or a tipping point, it recovers from perturbations slower. For example, these perturbations
could be the natural perturbations of an ecological system and, due to the slow response
of the system, critical slowing down would then be signalled by an increased dependence of
the future state on the previous state (i.e auto-correlation) (Sche!er et al., 2009). Moreover,455

even deep learning methods have been established to predict tipping points and even provide
details regarding the dynamics beyond the transitions (Bury et al., 2021). However, each
of these methods revolve around the assumption that the critical transition occurs due to
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Figure 9: Prediction accuracy comparing the computed transient end to the S-map forecasted transient

end time based on the absolute relative error. The heat map represents the value of R2
relative to the

line y = x. Each panel corresponds to a fixed time step (”t) used in the control data to train the forecast.

The y-axis of each panel represents the noise level of the simulated synthetic time series (ε), and the x-axis

represents the error tolerance threshold (ϑr).
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Figure 10: General workflow of how we use synthetic data to predict when a time series leaves the transient

state.
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tipping points, or something akin to a bifurcation. Using such methods to predict transitions
due to reasons other than reaching a bifurcation point or critical transition can lead to460

incorrect results since the prediction relies on statistical patterns than can also emerge from
abrupt large fluctuations (Boettiger and Hastings, 2012). Furthermore, few studies have
focused on predicting transient dynamics when the underlying deterministic process and
parameters are not changing in time. In this paper, we o!er a novel study of interpreting and
predicting dynamical changes caused by transients, rather than bifurcations, using ecological465

data and the concepts involved with empirical dynamical modelling. An important area of
future work would be to establish comparable methods that can predict these transitions
spurred on by either tipping points or transients.

Due to the complexity of the problem, we begin with a specific ecological system rather
than starting with a general approach. The specific system we focused on, anaerobic di-470

gestion, is an important process for waste water treatment, biogas production and shows
promising advances for dealing with the current climate emergency. Additionally, AD is bio-
logically well studied, the focus of many mathematical modelling studies, a high dimensional
system, and is well known to exhibit transient behaviour as shown in our model 2.5. For
these reasons we deemed AD a good specific system to begin with. However, AD is a highly475

complex process and the original formulation of our model, the ADM1 model (Batstone et

al., 2002) would consist of 32 state variables making modelling the entire process a di”cult
task. Through a series of simplifications and idealizations the complex ADM1 model is re-
duced to the model studied here (Meadows et al., 2019; Bornhöft et al., 2013). Moreover,
simplifications such as nondimensionalization and fast-slow analysis enabled us to uncover480

the main drivers of the transient dynamics of this particular model as shown in Figure 4. In
general, the analytic study of transient dynamics in AD systems is important to understand
the driving mechanisms and we have o!ered novel insights in that regard. These insights
lead to the main results of this paper presented in Section 5. Given the knowledge of the
system gained in Section 3, we were then able to develop tools to predict when the transient485

phase of the dynamics will end. Using knowledge of the transient dynamics we formulated
several metrics based on the prediction errors of the empirical dynamical modelling tool, the
S-map. We argued that prediction error is relatively low when the dynamics are on, or near
an attractor or region in state space that is regularly observed. Thus, when the prediction
error is high, we concluded that the dynamics are not near an attractor and assume the490

dynamics are in a transient state. A work flow of this method is presented in Figure 10.
This relation of such error curves to the underlying dynamical properties of time series is a
novel application of EDM and could be led to further insights in future studies.

Our results suggest that the prediction of transient end times is possible using the em-
pirical dynamical modelling framework. In Figure 7 we show that for smaller step sizes,495

and intermediate numbers of data points used to train the S-map good predictions can be
made. However, we notice that for larger step sizes the accuracy is decreased, regardless
of the number of data points trained on. This is not a surprising result, as larger time
steps often correspond to larger prediction errors, or noise. However, increasing the num-
ber of data points used to train the method is noted to not increase the performance of500

the method, especially for larger step sizes. This is likely due to the over representation
of trajectories that do not inform a shift in dynamics. That is, more points are used to
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train the model that do not correspond to significant changes in the dynamics biasing the
prediction against transitions. This keeps the error high past the point the steady state is
reached or decreases the error while the dynamics are on the transient attractor. This claim505

is also supported by the correlation plots shown in Figures 13 and 15 with the consistent
scattered under estimation and slight over estimation of transient end times. Figures 8 and
9 suggest that the absolute relative is more useful at predicting transient end times as it
provides larger ranges of high R2 values. However, in certain cases this metric falls short in
that the absolute relative error may not exceed the prescribed error threshold ⇀r resulting510

in a failed prediction. However, even though this is a limitation, Figures 18 and 21 show a
reasonable range for which predictions are made successfully. Additionally, certain trends
in these figures bring useful insight. The low R2 values in Figure 8 for h = 5, $ = 0.05
suggest that intermediate numbers of historical data points can result in poorer predictions
due to the over representation of local data points. Also, the slight bimodality with respect515

to ⇀r observed in Figure 9 suggest that intermediate error thresholds decrease the prediction
accuracy. This is likely explained by the inherent non-linearities in the error curves which
lead to spikes that do not represent the spike at the end of the transient. These spikes can
exceed the error threshold for intermediate thresholds, even though there may be a larger
spike at a later time corresponding to the true transient end time.520

In this work, we argue that the end of the transient dynamic is signalled by certain
thresholds, ⇀a, or ⇀r. In particular, we argue that the transient dynamics end when the
absolute error is low, signalling the dynamics are near the equilibrium, or when the absolute
relative error spikes, suggesting the dynamics are quickly approaching the equilibrium. As
it stands, these definitions are well suited for establishing a method of predicting the end of525

transient dynamics but how to select specific values of each threshold has not been linked to
any biological reasoning and are only argued from a mathematical perspective. This is an
unfortunate gap in this work, however our results do suggest that accurate predictions can
be made for a relatively large range of thresholds suggesting that future applications of this
method are certainly possible. Moreover, the way we define the end of transient was based530

on our knowledge of the deterministic dynamics and could be defined in other ways, such as
when the dynamics begin to return to (or stop moving away from) the equilibrium point, or
when the first di!erence of the dynamics get close to zero. However, regardless of how we
define the end of the transient we conjecture that the accuracy of our predictions will not
change due to the flexibility of the S-map and the general relationships between prediction535

error and proximity to attractors. Another aspect not studied in this work is the proximity
of initial conditions to the equilibrium. Here, we chose only random initial conditions such
that a nonlinear transient dynamic is exhibited (i.e, not just a decay towards equilibrium).
For initial conditions near the equilibrium point our methods could still predict when the
dynamics become within a certain range of the equilibrium or suggest that no transient540

dynamic occurs. This is not a limitation of the method, as dynamics that start near an
equilibrium could be argued to not exhibit any transient dynamic at all. Hence, to focus on
predicting the end of nonlinear transient dynamics we restrict our initial conditions to be
su”ciently small and far away from the equilibrium point

In future studies, the use of embedded coordinates (Takens, 1981; Munch et al., 2022) and545

a rigorous study of the dimensionality of such systems would be useful to improve e”ciency
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in data collection of transient systems and to uncover insights regarding transient dynamics
in existing time series data that have limited dimension and quality. In particular, this work
could be extended to the study of the entire complex ADM1 model(Batstone et al., 2002)
in order to predict the transient behaviour of a single monitored variable. The requirements550

of this extension are minimal seeking only monitoring data for those variables of interests.
However, the confidence of obtained results would depend on the frequency in which those
variables are obtained as described here by the parameter $t and h.

In general, the importance of understanding transient dynamics from ecological data is
manifested in the timing of management decisions (Francis et al., 2021). In particular, ma-555

nipulation of an ecological system can often alter the transient dynamics, but understanding
these alterations poses certain additional challenges. For example, increased noise can either
induce or destroy long transient dynamics (Reimer et al., 2021) and perturbations can cause
larger than anticipated population changes (Holt, 2008). Thus, we o!er methods to help
confirm whether or not a system is in its transient state before ecological intervention is560

implemented in hopes to limit undesirable outcomes.

This work continues to build the tools and frameworks required to deeply understand
transient phenomena in ecology. In particular, the overall concept of this work is to develop
tools analogous to early warning signs for bifurcations (Boettiger et al., 2013). That is, based
on ecological time series and mathematical intuition we have proposed a rigorous, repeatable565

method of predicting the end of a transient phase. Although the end of the transient could be
visually or computationally recognized by observing the time series in its entirety the work
presented here gives a reproducible and consistent method to ascertain the end of a transient
dynamic. Furthermore, this method does not require the observation of a time series in its
entirety rather, only historical data or a full control time series is required. However, the570

method is limited to predicting when a known transient dynamic will end via an approach
to a stable attractor or the repulsion from a pseudo attractor (i.e. ghost attractor or saddle
node), and is not capable of predicting whether or not a transient dynamic will occur in
general.

Even though we focused on AD for many keys reasons and presented these methods and575

concepts in a relatively simple specific ecological system with synthetic data, this work can be
extended to understand transient dynamics in ecological systems where either the ecological
data contains more noise or has a less obvious transient dynamic. Additionally, systems
known to exhibit unrepeated transient behaviour, such as algal blooms (Heggerud et al.,
2020), coral reefs, (Norstrom et al., 2009), fish abundances, (White et al., 2013), and food-580

web interactions (Tekwa et al., 2022), could have been the focus of this study and could
furthermore be ecological systems where our methods are applied. Thus, this work is an
important stepping stone towards understanding transients in ecological data, monitoring,
and more complex systems.
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Appendix A Nondimensionalization
To nondimensionalize system (2.2) We begin by making the following substitutions of

nondimensional variables

ς = µ1t, u = aS1, v = bS2, x = cX1, y = dX2, (A.1)

and determine the appropriate values for a, b, c, and d later to best separate timescales. The715

system becomes,






u̇ = D

µ1
(aS0 → u)→ y1a

c

u

aH1+u
x,

v̇ = → D

µ1
v + y2b

c

u

aH1+u
x→ y3µ2b

µ1d

v

bH2+v
y,

ẋ = → 1
µ1
(D + k1)x+ u

aH1+u
x,

ẏ = → 1
µ1
(D + k2)y +

µ2

µ1

v

bH2+v
y.

(A.2)

Letting a = 1/H1, b = 1/H2 then yields






u̇ = D

µ1
(S0/H1 → u)→ y1

cH1

u

1+u
x,

v̇ = → D

µ1
v + y2

cH2

u

1+u
x→ y3µ2

µ1dH2

v

1+v
y,

ẋ = → 1
µ1
(D + k1)x+ u

1+u
x,

ẏ = → 1
µ1
(D + k2)y +

µ2

µ1

v

1+v
y.

(A.3)

Finally, taking c = y2/H2, d = y3µ2/µ1H2, ε = D/µ1,ω = εS0/H1,ϑ = y1/cH1, ϖ1 =720

k1/µ1, ϖ2 = k2/D, ϱ = µ2/D we arrive at the simplified nondimensional system:






u̇ = ω→ εu→ ϑ u

1+u
x,

v̇ = →εv + u

1+u
x→ v

1+v
y,

ẋ = →εx→ ϖ1x+ u

1+u
x,

ẏ = →ε(1 + ϖ2)y + εϱ v

1+v
y.

(A.4)

Appendix B Stability of fast system
(3.4) and that the eigenvalues of the linearized system around (u↓, v↓, x↓) are given by
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(a) (b)

Figure 12: Simulations of the fast system (3.4): (a) shows the dynamics of the stable node with ω = 1 and

y0 = 4. (b) shows the dynamics of the stable spiral with ω = 0.001 and y = 0.01. In both figures ϖ = 4.27,
ε1 = 0.1, and ϱ = 0.336. Further note that ϱy(0)→ ω > 0 is a biological restriction for the equilibrium.

λ1,2,3 =





↔
ω (ϱ1→1)

(⇐
ω→2ωϱ1+ωϱ1

2→4ϱ1
2→

↔
ωϱ1+

↔
ω

)

2ϱ1

→ (ω→ε y)2

ε2 y

→
↔
ω (ϱ1→1)

(⇐
ω→2ωϱ1+ωϱ1

2→4ϱ1
2+

↔
ωϱ1→

↔
ω

)

2ϱ1




. (B.1)

Clearly, λ2 < 0 while the real parts of λ1 and λ3 are plotted in Figure 11 to show that the725

real parts of each eigenvalue are negative for our chosen parameter range. Note that the
plot of Re(λ3) shows an obvious cusp. When the curve describing this cusp is projected into
the ω, ϖ1 plane it represents the curve in which λ3 goes from being purely real to having
non-zero imaginary parts. Thus, this cusp corresponds to a transition between stable node
and a stable spiral. Furthermore, some samples of the fast dynamics are shown in Figure730

12 indicating this di!erence in dynamical behaviour (i.e. oscillatory, vs non-oscillatory) that
corresponds to the two di!erent qualitative aspects of the equilibrium.

Figure 11: Plots of real parts of ς1 (left) and ς3 (right) as functions of ε1 and ω. The functions are given

in (B.1).
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Appendix C Parameters

C.1 Generating synthetic data

To create the synthetic data we simulate model (4.2) with parameter values given in table735

3

parameter definition value

D Chemostat Dilution rate 0.055

S0 Concentration of S1 input 700

y1 Yield constant (degradation) 42.14

y2 Yield constant (production) 116.5

y3 Yield constant (consumption) 268

k1 decay rate 0.1

k2 decay rate 0.001

H1 h.s.c for S1 degradation 10

H2 h.s.c for S2 consumption 9.28

µ1,max Max acidogenic biomass growth rate 0.5

µ2,max Max methanogenic biomass growth rate 0.0064

ϖ Noise level of stochastic simulation 0.0005-5

h Number of historical data points to train S-map forecast 2-20

$t time step of a given synthetic time series 0.05-1

⇀a, ⇀r Error tolerance thresholds 10→3 → 102

Table 3: Parameters, their definitions and values used to generate synthetic data in Section 4

C.2 Transient end times in the synthetic data

From the analysis of deterministic model we have a good understanding that the transient
dynamics end when the solution approaches the equilibrium point. Thus, in Section 4.2 we
claimed that, using our a priori knowledge that the transient dynamics end when |S1(ti) →740

S↓
1 | < ⇀eq. For each time series, we assume a noise level, ϖ, when producing our synthetic

time series. In this, we chose ⇀eq = ϖ + 2. The values for ϖ range from 0.0005 to 5, and are
given on the y-axis in each panel of Figures 7,8 and 9.

Appendix D Predicted transient end times
For both the monitoring and control data case we compute R2, as shown in Figures 7, 8,

and 9 , as follows

R2 = 1→
n∑

k=1

(tk,end → t̃k,end)2

(t̃k,end →¯̃tend)2
, (D.1)

where tk,end is the computed transient end time, as in Section 4.2, t̃k,end is the predicted745

transient end time using our method outlined in Section 5.2, and¯̃tend is the mean of t̃k,end.

Figure 13 and 14 show the heat map of Pearson’s correlation coe”cient for the various
levels of noise, error tolerance, and sparsity of data using absolute and relative error, re-
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Figure 13: Prediction accuracy comparing the computed transient end to the S-map forecasted transient

end time based on the absolute error curves. The heat map represents the value of Pearson’s correlation

coe#cient. Each panel corresponds to a fixed number of historical points used to train the forecast (h) and a

fixed time step between data points (”t). The y-axis of each panel represents the noise level of the simulated

synthetic time series (ε), and the x-axis represents the error tolerance threshold (ϑa).

spectively. Additionally, sample correlation scatter plots are given in Figures 15 and 16 to
complement Figures 7 and 8, respectively. The scatter plots correspond to the noise level750

and error tolerance that give the highest R2 value from each panel under the condition that
the method was able to predict a transient end time for more than half of the generated time
series. Additionally, since some generated error curves remain either above or below our
error thresholds, ⇀a and ⇀r, respectively, we show in Figures 17 and 18 the proportional of
time series the method was able to produce a prediction to complement the results regarding755

R2 and the Pearson’s correlation coe”cient.
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Figure 14: Prediction accuracy comparing the computed transient end to the S-map forecasted transient

end time based on the absolute relative error curves. The heat map represents the value of Pearson’s

correlation coe#cient. Each panel corresponds to a fixed number of historical points used to train the forecast

(h) and a fixed time step between data points (”t). The y-axis of each panel represents the noise level of

the simulated synthetic time series (ε), and the x-axis represents the error tolerance threshold (ϑr).
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Figure 15: A sample scatter plot from each panel in Figure 7 with the maximum value of R2
such that our

method yielded a prediction for more than half of the synthetic time series.
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Figure 16: A sample scatter plot from each panel in Figure 8 with the maximum value of R2
such that our

method yielded a prediction for more than half of the synthetic time series.
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Figure 17: The proportion of generated synthetic time series in which our S-map method, using absolute

error, successfully made a prediction of the end of the transient dynamics is shown by the heat map. This

Figure complements Figures 7 and 13.
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Figure 18: The proportion of generated synthetic time series in which our S-map method, using absolute

relative error, successfully made a prediction of the end of the transient dynamics is shown by the heat map.

This Figure complements Figures 8 and 14.
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Figure 19: Prediction accuracy comparing the computed transient end to the S-map forecasted transient

end time based on the absolute relative error curves. The heat map represents the value of Pearson’s

correlation coe#cient. Each panel corresponds to a fixed time step (”t) used in the control data to train

the forecast. The y-axis of each panel represents the noise level of the simulated synthetic time series (ε),
and the x-axis represents the error tolerance threshold (ϑr).
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Figure 20: A sample scatter plot from each panel in Figure 9 with the maximum value of R2
such that our

method yielded a prediction for more than half of the synthetic time series.
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Figure 21: The proportion of generated synthetic time series in which our S-map method, using absolute

relative error, successfully made a prediction of the end of the transient dynamics is shown by the heat map.

This Figure complements Figures 9 and 19.
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