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Safe Coverage for Heterogeneous Systems With
Limited Connectivity

Annalisa T. Taylor , Thomas A. Berrueta , Member, IEEE, Allison Pinosky ,
and Todd D. Murphey , Senior Member, IEEE

Abstract—Operating multi-robot teams of diverse agents is an
ongoing challenge for emergency deployments, where inter-agent
connectivity is rare and environments are unpredictable. Hetero-
geneous systems must be capable of adapting autonomously while
maintaining safety. Here, we develop an algorithm for heteroge-
neous decentralized multi-robot systems to independently manage
safety constraints with provable guarantees for safety and com-
munication in a coverage task. We demonstrate this algorithm
in settings where up to 100 agents navigate a simulated cluttered
environment with safety constraints that change as agents observe
hazards. Further, we show that the performance of a system with
a largely disconnected network is equivalent to a fully connected
communication network, suggesting that treating connectivity as a
constraint may be unnecessary with an appropriate control strat-
egy.

Index Terms—Distributed robot systems, robot safety.

I. INTRODUCTION

IN HIGH-RISK settings like disaster response, heteroge-
neous robotic systems must autonomously manage basic

functions while ensuring the safety of both themselves and by-
standers [1]. Inter-agent communication can be sporadic in these
environments and maintaining a connected communication net-
work is often infeasible [2], [3]. Therefore, control algorithms
for heterogeneous multi-robot systems in emergency applica-
tions must guarantee safety even in the case of predominantly
disconnected communication networks.

We develop an algorithm for heterogeneous, decentralized
multi-robot systems with limited connectivity to manage safety
constraints in coverage tasks, which are critical in disaster re-
sponse efforts such as search and rescue. To demonstrate this
method, we simulate a heterogeneous robotic system with up to
100 agents that must conform to safety constraints that change
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due to the observations of other agents. We provide guarantees
that agents using this controller stay safe with both static obsta-
cles and safety constraints that evolve over time. Additionally,
we explore the effects of both communication network topology
and degradation on system performance and safety when con-
nections are sparse and infrequent. To compensate for limited
communication networks, agents can plan actions to achieve
successful environmental coverage in a decentralized manner.
We prove that agents using this ergodic control algorithm are
guaranteed to communicate, even with different coverage ob-
jectives. Through an empirical study, we find, surprisingly, that
communication network connectivity does not determine task
success. We show that, even with small communication radii, the
performance of a system with a generally disconnected network
is equivalent to a fully connected communication network. Our
results indicate that intermittent and rarely connected networks
are sufficient for multi-robot systems to collaborate, demon-
strating that highly capable communication networks may not
be necessary for the success of multi-robot systems. The contri-
butions of this work are summarized below.

1) We develop an algorithm for decentralized safe ergodic
coverage for heterogeneous robotic collectives that en-
ables environmental coverage under stringent communi-
cation constraints. We simulate our algorithm for hetero-
geneous systems of up to 100 agents.

2) We provide a guarantee that agents using our algorithm
will be safe and ergodic with respect to a coverage task
and prove that agents will communicate.

3) We model communication between heterogeneous agents
with the modified two-ray path loss model, which includes
ground reflection and transmission altitude, to demon-
strate effective system coverage performance in real-world
environments.

II. RELATED WORK

A. Multi-Robot Coverage and Task Specifications

This work addresses the challenge of heterogeneous multi-
agent spatial coverage in safety-critical environments with un-
reliable communication, such as disaster response scenarios [4].
Coverage specifications such as temporal logic formulas [5], hi-
erarchical mixed-initiative specifications [6], and compositional
motion primitives [7] have been used for multi-agent control.
However, many of these methods require prespecifying agent
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trajectories, making them inadequate for dynamic environments.
Common coverage solutions, like cellular decomposition algo-
rithms, struggle with adaptation to changing conditions and risk
coverage gaps due to agent dropout [8], [9], [10]. Moreover, they
implicitly impose strict communication demands as agents must
communicate between cells for collaboration to occur.

Our work is motivated by applications where agents must
cover unknown environments with sporadic communication.
Thus, we select a coverage algorithm that is robust to agent
dropout and does not rely on inter-agent connectivity. For this
reason, we use the ergodic control algorithm which generates
actions so that time spent in an area of a distribution is pro-
portional to its value in that area [11]. This allows the ergodic
controller to cover a given task distribution without an additional
metric to segment the coverage domain. Previously, we used an
ergodic control algorithm with a multi-robot system during ex-
perimental field tests where agents shared their trajectory history
to collaborate on coverage tasks [12], [13]. We extend prior work
with decentralized ergodic control to dynamic networks with
sparse connectivity. This improves the robustness of the control
architecture for communication constraints typical of real-world
conditions [12], [14].

B. Safety Specifications

Reachability analysis and reactive synthesis provide formal
guarantees for ensuring safety but face scalability issues with
increasing system states [15], [16]. Work in [17], [18] used
repulsive vector fields for safety with ergodic control, but relied
on a centralized controller and did not ensure agents’ safety
against various obstacle types. Here we employ control barrier
functions (CBFs) to express safety constraints, a formalism
compatible with optimal control frameworks. CBFs enforce the
forward invariance of sets in the evolution of agent dynam-
ics [19], confining the agent to a safe subset of its operation
domain. CBFs have been used for safety in diverse tasks such as
constraining the location of a robotic arm end-effector [20] and
avoiding collisions with experimentally-deployed agents [21].
Recent work explored the use of the ergodic control algo-
rithm with CBFs [22], [23]. We generalize this work to in-
clude heterogeneous multi-robot systems, and contribute the-
oretical guarantees on the safety and communication of the
agents in the system. Instead of assuming a connected com-
munication network, we examine the role of communication
topology and its effect on safety and performance. This is
an aspect of deploying multi-robot systems in safety critical
conditions that has yet to be explored for this class of coverage
algorithms.

III. PRELIMINARIES

A. Decentralized Ergodic Control

Next, we discuss the decentralized ergodic control algorithm
for coverage of spatial distributions for multi-robot systems [14].
To develop an optimal controller, we assume the system dy-
namics of N agents are in control-affine form, controllable and

independent:

ẋ = f(x) + g(x)u

=





f1(x1)
...

fN (xN )



+





g1(x1) . . . 0
...

. . .

0 gN (xN )



u (1)

where the state of a robotic agent at every point in time t ∈ R+ is
x(t) ∈ Rn and the control is u(t) ∈ [umin, umax] ⊂ Rm. Here,
f(x) : Rn → Rn and g(x) : Rn → Rn×m are vector fields for
the system’s free dynamics and response to control inputs. The
trajectories of the multi-agent system take the form x(t) =
[x1(t), . . . , xN (t)] ∈ RnN . The controller is a receding-horizon
optimal control algorithm that calculates actions in time for
agents over closed subsets of R+; we have t ∈ [ti, ti + τ ] for
some initial time ti corresponding to the ith sampling time and
time horizon τ > 0. We describe an agent’s dynamics as ergodic
if they satisfy Birkhoff’s point-wise ergodic theorem in the sense
of [24].

Definition 1: For a collective of N agents with system dy-
namics given by (1), we say their trajectories xi(·) : [0, t]→
Rn, ∀i ∈ {1, . . . , N} are ergodic with respect to a distribution
p over a task set T if

lim
t→∞

dt(x) = p̄(x) (2)

for all x ∈ T , where p̄(x) is the measure of a spherical
set B(x, ε) centered at x for some ε > 0 such that p̄(x) =∫
T p(y)1B(x,ε)(y)dy, and

dt(x) =
1

Nt

N∑

i=1

∫ t

0
1B(x,ε)(xi(τ))dτ (3)

is the fraction of time spent in B(x, ε).
The task set T is the set of all states in the coverage do-

main. The “task distribution” is a density over the states in T ,
which encodes the agents’ coverage objective (e.g., explore near
occluded areas in the domain). For an agent to be ergodic with
respect to a task distribution, the amount of time an agent spends
in a given region of space must be proportional to the measure of
that region. For clarity, sets are notated with calligraphic letters
in this work.

Next, we use a metric on ergodicity to compare the statistics
of agent trajectories with a task distribution over the coverage
space [24]. This metric is evaluated in the space of spatial Fourier
coefficients. The Fourier coefficients for the statistics of the
trajectory x(t) are ck = 1

τ

∫ ti+τ
ti

F̃k(x(t))dt, where F̃k(x(t)) =
1
N

∑
j Fk(xj(t)) and Fk(x) are cosine basis functions [14]. We

also require a Fourier representation of the task distribution given
by φk =

∫
T φ(x)Fk(x)dx where φ(x) is the measure of the

agents’ task set T ⊂ Rn at x. With these representations, we
write an ergodic metric:

E(x(t)) =
∑

k∈Nn

Λk (ck − φk)
2 (4)
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Fig. 1. Results with 100 agents. (a) The decentralized heterogeneous multi-robot system covers an environment with obstacles. (b) Two snapshots of the robots’
trajectories at the beginning and end of a trial. Air vehicles (scouting agents), cover the environment unrestricted while ground vehicles (delivery agents) must
stay in the area that scouting agents have observed. Delivery agents must avoid obstacles as they cover their expanding safe area. (c) The ergodic metric (coverage
task cost) decreases over the trial length. Delivery agents’ cost decreases slower and remains higher as they are restricted to the safe parts of the domain, but both
minimize the ergodic metric. (d) The delivery agents’ safety metric stays above zero (does not violate safety constraints). The safety metric is related to the distance
from intersecting with the closest unsafe area.

where Λk is a normalization coefficient ensuring the well-
posedness of (4). With a method for provably generating ergodic
coverage, we turn to safety.

B. Control Barrier Functions

The definition of safety in this work is determined by the prop-
erties of CBFs, which confine a dynamical system to the interior
of a “safe set” through the property of forward invariance: any
system starting in a safe set cannot reach the exterior of that
set [19]. We define the safe set S as follows:

Definition 2: Given a set G ⊂ Rn and a continuously differ-
entiable function h : G → R, the safe set S is a superlevel set
such that

S = {x ∈ G : h(x) ≥ 0}

δS = {x ∈ G : h(x) = 0}

Int(S) = {x ∈ G : h(x) > 0} (5)

where δS is the boundary of set S and Int(S) is the interior of
setS . WhenS is compact and forward invariant for the dynamics
in (1), we say the system is safe with respect to S . We now define
the CBF h(x) in terms of the forward invariance of S [19].

Definition 3: If S ⊂ A ⊂ Rn is the superlevel set of a con-
tinuously differentiable function h : A→ R, then h is a control
barrier function for the dynamics in 1 if there exists a class K∞
function α(·) such that

Lfh(x) + Lgh(x)u ≥ −α(h(x)) (6)

for all x ∈ A. Lf and Lg are the Lie derivatives of h(x) with
respect to f and g from (1).

C. Problem Setup

For the remainder of the letter, we consider a heterogeneous
robot system with two distinct groups of agents. Each uses a
decentralized ergodic controller with CBFs for safety. Consistent
with the structure of disaster relief operations, we use air and
ground vehicles as our two agent types (Fig. 1). Air vehicles are
designed to scout and map affected areas while ground vehicles

deliver heavy supplies. Therefore, we refer to the air and ground
vehicles as “scouting” and “delivery” agents respectively. Due
to their different capabilities and sensors, each agent type has
distinct safe sets, with scouting agents being more capable and
fewer in number. As a result, we assume that the scouting agents’
safe area encompasses the delivery agents’ safe area. This allows
the scouting agents to observe which areas of the environment
are safe for delivery agents. Lastly, scouting agents broadcast the
coordinates of environmental hazards in a radius around their
position, enabling delivery agents to update their safe sets when
they come close enough to receive messages. Delivery agents
consider areas unsafe by default until they receive updates from
scouting agents which gradually expands their safe sets, though
static obstacles are always inaccessible.

IV. GUARANTEES ON SAFETY AND COMMUNICATION

In this section, we provide formal guarantees on the safety
of the system described in Section III-C and prove that our
controller ensures inter-agent communication. Our proofs ad-
dress three distinct sources of heterogeneity. First, the two
groups of agents may have different dynamics (e.g., ground
vs. air vehicles). Second, scouting agents influence delivery
agents: scouting agents send information about safe and unsafe
regions of the task domain to delivery agents, but not vice versa.
Third, agents can have different task distributions (i.e., different
coverage objectives φ(x)). To keep track of these differences,
in what follows we let AS represent a set of scouting agents
and AD a set of delivery agents. While both groups of agents
share the same task setT , their different safety requirements will
result in different safe task sets. We will refer to the intersection
of an agent’s task set with its safe set as its “effective” task set.

A. Safe Coverage

With ergodic control algorithms, safety violations are in-
evitable if any unsafe region of the agents’ task set has a non-zero
measure. Therefore, we need a different method to construct
safety guarantees. Here, we show that a system in the form of
(1) will be safe and ergodic using our algorithm. When the task
set is connected and contained in the interior of the safe set,
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agents using an ergodic controller are guaranteed to be safe and
ergodic if the system is initialized in a non-zero measure set of
the task set. However, the safe area is often unknown a priori or
changes over time and the task may not be contained in the safe
set. The forward invariance of the safe set prevents a safe ergodic
controller from generating trajectories that optimize the ergodic
metric over the task set asymptotically. Instead, we show that
agents can be safe and ergodic with respect to an effective task
set contained in the safe area.

Next, we define safe sets and task sets for both agent types.
For delivery agents, the static set of safe areas in the environment
is SE,D (in Fig. 1(a), this would be the rocks and lakes that are
permanently inaccessible). Areas unobserved by the scouting
agents are unsafe by default. Let BS(t) = B(xS(t), rc) be the
set of points around scouting agent trajectories xS(t)with radius
rc. Choose rc such that it contains the states reachable by an
agent with locally Lipschitz dynamics in some dt to ensure that
the union of sets BS(t) is connected for all t. Then, we define

CS(t) =
{
BS(t) xD(t) ∈ BS(t)

∅ else

where ∅ is the empty set and xD(t) are the delivery agents’
trajectories. The delivery agents’ safe set at time t will be

SD(t) =

[
t⋃

i=0

CS(i)
]
∩ SE,D. (7)

SinceSD(t) evolves according to xS(t), scouting agents specify
the safe area of the task set for delivery agents based on their
observations and SD(t) grows over time. We next define an
effective task set for the delivery agents,

T D
eff (t) = T ∩ SD(t), ∀t. (8)

The scouting agents’ safe set is SS with effective task set

T S
eff = T ∩ SS . (9)

We now establish that all delivery agents will converge to the
same effective task set. To do this, scouting and delivery agents
must be sufficiently close at the same time for the delivery
agents’ to update their safe set. We say agents will “cross paths”
when they come within rc of one another.

Lemma 1: Given that the trajectories xD(t) and xS(t) of the
joint, decentralized system, are each independently ergodic with
respect to T D

eff (t) and T S
eff , the limit of the delivery agents’

effective task set is the following:

lim
t→∞

T D
eff (t) = T S

eff ∩ SE,D (10)

Proof: First, note that according to its definition, T D
eff (t) only

updates in time when xD(t) and xS(t) cross paths at some time
t′, which occurs at discrete intervals in time. In between these
intervals, xD(t) is ergodic with respect to T D

eff (t
′), and xD(t)

is guaranteed to visit every non-zero measure set of T D
eff (t

′) as
t→∞. Next, take [xS(t), xD(t)] to be the states of the joint
system. Given each system is independently ergodic, the joint
system will be ergodic with respect to the product measure
of T S

eff × T D
eff (t

′) [25], specifically implying that xS(t) and

xD(t) are guaranteed to be within rc of each other as t→∞.
Therefore, the set T D

eff (t
′) will update an infinite number of

times. Moreover, when xD(t) and xS(t) communicate at time
t′, T D

eff (t) ⊆ T D
eff (t

′), with equality once xS(t) have detected
all safe states (guaranteed by the ergodicity of xS(t)). !

With these definitions and the safety properties discussed in
Section III, Lemma 1 provides the only extra information needed
to collect these formal properties into the following theorem. We
know that AS and AD are constrained by CBFs which confine
agents to safe sets SS and SD(t) at every point in time. We
assume that all agents in these sets are initialized in non-zero
measure sets of the spatial domain. By definition, the exteriors
of T S

eff and T D
eff (t) are zero. Then, agents in AS are safe and

forward invariant in T S
eff for all x ∈ Int(SS), and agents in AD

are guaranteed to be safe and forward invariant in T D
eff (t) for

all x ∈ Int(SD(t)), ∀t. From Lemma 1, we know that T D
eff (t)

converges to T S
eff ∩ SE,D as t→∞. Then, delivery agents will

be ergodic with respect to T S
eff ∩ SE,D, and scouting agents will

be ergodic with respect to T S
eff , resulting in the theorem below.

Theorem 1: Let AS and AD be sets of scouting and delivery
agents, each with ergodic optimal controllers as in (4). Addi-
tionally, let T S

eff and T D
eff (t) be their respective task sets. Then,

AS and AD will be safe with respect to the safe sets SS and
SD(t) for all t and ergodic with respect to the task sets T S

eff and
T S
eff ∩ SE,D as t→∞.
Note that the topology of the task set is key. If the task set

is connected all pairs of points are reachable and the ergodic
metric can be minimized. This assumption can be relaxed if all
connected components of the task set contain at least one agent
in their interior at initialization.

B. Communication

For multi-robot systems, communication between agents en-
ables decentralization of objectives. In this case, communication
is essential to the success of both groups of agents: if agents do
not periodically communicate their trajectory histories within
their group, the assumptions of decentralized ergodic control
are violated and task success is jeopardized. We now prove that
any two in-group agents using the decentralized ergodic control
algorithm are guaranteed to communicate if their paths cross (or
their communication radii, rc, are greater than zero).

Again, the analysis of scouting agents is simpler because
SS is not time-varying. Therefore we can rely on their ergod-
icity to asymptotically guarantee that their paths will cross.
Heterogeneity presents a challenge for the analysis of delivery
agents, whose effective task sets are time-varying. However,
we know that delivery agents are asymptotically ergodic with
respect to the same limiting effective task set, so we can guar-
antee that their paths will cross asymptotically, ensuring their
communication.

Theorem 2: For any rc > 0, let {a1, a2} ⊂ AS and
{a3, a4} ⊂ AD be any pair of optimal ergodic agents (as in (4))
with respect to the measures of T S

eff and T D
eff (t), respectively.

Then, agent {a1, a2} are asymptotically guaranteed to com-
municate as t→∞. Additionally, {a3, a4} are asymptotically
guaranteed to communicate as t→∞.
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Proof: For any pair of agents to communicate, they must be
simultaneously co-located (up to rc) at some point in time. Let
{a1, a2} ⊂ AS with agent states x1(t), x2(t) ∈ T ∀t be inde-
pendently ergodic with respect to the same task set, T S

eff . Then,
the joint system, with states [x1(t), x2(t)], is ergodic with respect
to the Cartesian productT S

eff × T S
eff and agents will cross paths.

Next, agents {a3, a4} ⊂ AD with states x3(t), x4(t) ∈ T ∀t are
independently ergodic with respect to T D

eff (t), which varies
in time. Per Lemma 1, we know that T D

eff (t) converges to
T S
eff ∩ SE,D as t→∞. By construction, scouting agents are

capable of efficient ergodic coverage and |T S
eff ∩ SE,D| is fi-

nite. Thus we assume the limit of T D
eff (t) converges in finite

time. Then, agents a3, a4 with joint states [x3(t), x4(t)] will
be ergodic with respect to T S

eff ∩ SE,D × T S
eff ∩ SE,D. This

guarantees their trajectories will cross paths and that they will
communicate. !

V. SAFE DECENTRALIZED ERGODIC COVERAGE

Coverage of unknown environments is common in disaster
response and requires adaptable control strategies. Maps of an
area before a disaster may be outdated while aftershocks or
flooding may cause ongoing harm. This informs our use of
adaptive safety constraints and coverage specifications.

A. Simulation Setup

The simulated system implements the setup from
Section III-C, where delivery agents’ safe areas depend on
scouting agents’ observations. Each agent type has a distinct
task distribution: scouting agents cover the full domain,
while delivery agents focus on areas near buildings seen
in Fig. 1 to deliver supplies. This is represented as a 2-D
spatial distribution over the coverage domain states, noted
as φ(x) in Section III-A. Despite different safety constraints
and objectives, both agent types generate trajectories using
the controller described in Section III-A with an additional
safety optimizer. Agents account for obstacles in a small radius
from their position, meaning the safety optimization only
affects the agents’ trajectories when obstacles are detected.
This optimization applies domain boundary conditions for all
agents, but environmental debris restricts only delivery agents.
Coordinates of unsafe areas are updated in every control loop,
using OpenCV for image processing to generate CBFs. When
modeling dynamic communication networks, we determine
connectivity first with a distance only criterion and later using
the modified two-ray path loss model [26], [27]. More detail
can be found in Algorithm 1. The problem setup presented here
also applies to results Section VI.

B. Scalability

To simulate 50–100 agents in parallel, we used an Intel
Xeon(R) Platinum 8380 CPU at 2.30 GHz × 160 server with
4TB RAM and 500 GB of disk memory running Ubuntu 18.04
and ROS Melodic. We also confirmed that our algorithm runs in
real-time on a laptop as indicated by tests where a single agent
runs in a 40 agent environment using 20% of the laptop’s CPU

Algorithm 1: Safety-Constrained Ergodic Control.
1: Initialize Agent j: type label l ∈ {AS , AD}, initial

state xj(0), dynamics ẋj , target distribution φk,j ,
trajectory history ck,j , safe set Sj , barrier functions
hj(xj), time horizon τ , received message
Mr = (lr, ck,r, Sr)

2: while task ongoing do
3: Calculate uerg,j = ErgCtrl(xj(t), ẋj ,φk,j , ck,j , τ)
4: Update hj(xj) = CtrlBarrFun(Sj , xj(t)) ◃Safety
5: Minimize ||uerg,j − usafe,j || subject to hj(xj)
6: Apply control usafe,j

7: Broadcast (lj , ck,j , Sj) ◃Communication
8: Mr ← (lr, ck,r, Sr) = Listen()
9: if Mr received then

10: if lj is AD then Sj ← Sj ∪ Sr end if
11: if lj is same as lr then store ck,r end if
12: Average ck,j and stored ck,rs
13: end if
14: end while

and 1GB of RAM. The laptop’s GPU was not utilized. The server
simulated experimental conditions by creating independent in-
stances for each agent, running their algorithms simultaneously,
simulating the environment, and modeling the communication
network for the agents all on one machine. Notably, this does
not reflect the requirements of individual agents in a distributed
hardware implementation. In this case, an agent would manage
its own computations and communication locally, reducing the
overall memory demands. The above test could be executed on
the field test hardware from [12], [13].

C. Results: Coverage With 100 Agents

Fig. 1 shows results with 100 agents covering the cluttered
environment described above, with 30 scouting agents and 70
delivery agents. Scouting agents freely cover the environment
and broadcast safe areas to the delivery agents. At the start of
the trial, each delivery agent is confined to a small area around
its initial position. As scouting agents cover the environment,
the area that they have observed (in this case, an area within a
specified radius around each trajectory point) is communicated
as safe or unsafe to the delivery agents, expanding the safe areas
of the map, shown in Fig. 1(a). The delivery group navigates the
irregular and dynamically growing safe space while maintaining
safety (Fig. 1(c)). Simultaneously, the scouting group provides
persistent coverage of the entire environment. The coverage cost
of the delivery group is expected to stay higher than the scouting
group, Fig. 1(b), because the delivery group cannot reach the
permanently unsafe areas of the map (e.g., inside obstacles).

D. Results: Static Network Topologies

For simplicity, we consider a 10 agent collective with static,
connected communication networks. We investigate four stan-
dard communication topologies: a star, two distinct clusters, a
chain, and a fully connected network. Each stays connected
during the coverage task as in Fig. 2(a). The nodes of the
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Fig. 2. Comparing static communication topologies. (a) We test four standard
communication graphs. Edges indicate communication. Delivery agents obey
safety constraints from scouting agents’ observations. (b) (upper) Average
coverage cost (ergodic metric) over 10 simulation runs, with randomized initial
conditions for 10 agents. Performance depends on communication topology,
with the fully connected network performing best. Delivery agents still minimize
the ergodic metric. Scouting agents show nearly equivalent performance between
cases. (lower) The system stays safe.

communication graphs (Fig. 2(a)) are color coded to reflect the
heterogeneous makeup of the system: brown for scouting agents,
green for delivery agents. Fig. 2(b) shows the ergodic metric over
10 runs of the simulation with randomized initial conditions for
each agent. System performance varies with topology, with the
fully connected network performing the best. However, all cases
show successful minimization of the ergodic metric. Note that
scouting agents show nearly equivalent coverage performance
between cases so their coverage cost averages overlap. As ex-
pected, the system did not violate any barrier functions through-
out the trials, confirming that safety is maintained with different
network topologies while the ergodic metric is minimized.

VI. SAFE COVERAGE WITH LIMITED COMMUNICATION

Designing robotic systems to depend on local information
is key for emergency deployment, as reliable communication
networks are often unrealistic [28]. Theorem 2 proved that
communication is an inevitable consequence of decentralized
ergodic control. To study the effect of limited (but guaranteed)
communication on system performance, we explore dynamic
communication network topologies for a coverage task. The
simulation setup from Section V-A applies here.

A. Results: Distance-Based Dynamic Networks

We consider a dynamic communication network in a 50
agent system where agents share their trajectory history when
they are within a specified distance from each other. We first
explore distance-based communication, chosen to approximate

real-world environments in which signals decay as transmitters
and receivers move further apart. Here agents can broadcast
and receive information in a limited area around their positions.
Scouting and delivery agents are both subject to these commu-
nication constraints with the size of the communication radius
held constant between air-air, air-ground, and ground-ground
communication. For this set of results, the altitude of the scouting
agents was not considered when calculating the communication
distance.

Given this communication model, we performed an empirical
study of performance under varying communication radii. These
radii were defined as a percentage of the domain width (here
a finite, square domain from zero to one). A communication
radius of 5% corresponds to a radius of 0.05 if the domain side
length is one. Therefore the communication area for each agent is
0.052π

12 = 0.00785 . If two agents are placed uniformly randomly
in the domain the probability that they would communicate is
0.0157. The results in Fig. 3(b)–(d) are the average of ten trials
for each communication radius, with agents having uniformly
random initial positions over the safe area in each trial. The
communication graphs for the 5% and 100% cases are shown
in Fig. 3(a). Our empirical study indicates that the 5% range
case, though sparsely connected (Fig. 3(a), left), leads to similar
coverage performance to the fully connected 100% range case
(Fig. 3(a), right). This can be seen in the agents’ average cov-
erage cost (Fig. 3(b)), which for communication radii as low as
5% of the domain size converged to the performance of the fully
connected network.

We used two measures of graph connectivity to assess the
effect of different communication radii: graph density and al-
gebraic connectivity. Many algorithms for multi-robot systems
use spectral properties and density based metrics to assess
connectedness of communication graphs [29]. Graph density is
the ratio of current edges to the total possible number of edges
in a graph, an average of which is shown in Fig. 3(b). Despite
having close to 1% of the possible edges in the graph, the 5%
communication radius performed as well as the 100% case, with
the maximum amount of edges. The algebraic connectivity of the
collective indicates that the 5% radius resulted in communication
topologies that were disconnected throughout the entirety of the
trial. We show the change in average coverage performance and
algebraic connectivity with eight different communication radii
in Fig. 3(d). As performance steeply increases, the algebraic
connectivity stays at zero (i.e., the graph is disconnected for these
trials). As performance levels off, the algebraic connectivity
is positive and increasing, thus the communication graph is
increasingly connected as the communication radius grows.

B. Results: Modified Two-Ray Path Loss Model

Next, we use the same 50 agent system whose communication
network is now governed by the modified two-ray path loss
model, an altitude and distance inclusive model suitable for
communication between air and ground agents [26]. To simulate
radio communication with our system, we used the Python
package UAVradio [27], a comprehensive tool for modeling air-
ground and air-air communications which contains several well
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Fig. 3. Coverage performance with a dynamic communication network. (a) Communication networks with 50 agents at the end of two trials. Edges denote
communication. A 5% range means an agent’s communication radius is 5% of the side length of the square coverage domain. (b) Average graph density over 10
trials for ten radii. Graph density measures sparsity of the network. The largest range enables all agents to communicate at all times. (c) Average coverage cost
(ergodic metric) of 10 trials of delivery agents. All curves, except the 0.1% case, show the ergodic metric can be minimized. Curves from the 5% to 100% (fully
connected) show approximately equivalent coverage performance. Notably, the 5% case has an order of magnitude less connections in its communication network
when compared to the fully connected case. (d) As coverage performance changes rapidly, algebraic connectivity stays at zero (disconnected graph). As coverage
performance levels off, algebraic connectivity shows the graph connectivity increases as the communication range grows. Error bars show standard deviation. Here,
coverage is independent of connectivity for a wide range of communication radii.

established models. We account for transmission frequency, path
loss, and both air and ground agent communication altitude with
ground reflection. The scouting agents are at an altitude of 60 m,
taken from the air vehicles used after Hurricane Harvey [30],
while the delivery agents have an antenna height of 1m. For radio
specifications we reference the Digi X-Bee S2C data sheet [31].
Our radio transmits at 1 dBm and 2.4 GHz with a receiver
sensitivity of −100 dBm over a coverage area of 6.25 km2. To
determine if agents can communicate, we take the difference of
the modified two-ray path loss and transmission power to find the
received power. If the received power is greater than the receiver
sensitivity, the two agents will communicate, subject to noise.
We test several path loss exponents, factors that reflect path
loss in different environments. We use path loss exponents that
were determined experimentally [27] with additional extreme
values to test our algorithm with higher loss than commonly
documented. The model adds normally distributed zero mean
noise with unit variance.

Results using the two-ray model are shown in Fig. 4 for 13
path loss exponents. The labeled path loss exponents in Fig. 4(a)
were experimentally determined for various environments [32],
[33], [34], [35], [36]. We see a similar pattern to Fig. 3: the
system performs comparably in high and low loss environments.
In Fig. 4(a), the coverage performance of the system increases
while the algebraic connectivity shows that the network is dis-
connected on average. Once the algebraic connectivity begins
to increase, coverage performance stays constant. The findings
here and in Section VI-A suggest that maintaining a connected
network may not be the most effective method to increase cover-
age performance for dynamic communication networks. Future
algorithms for heterogeneous robots may consider reducing the
importance of maintaining connected networks, instead focusing
on an agent’s ability to act autonomously with local infrequent
communication.

Fig. 4. Modified two-ray path loss model. (a) We show algebraic connectivity
and coverage performance with varying path loss exponent. Error bars show
standard deviation. We show communication networks for a 50 agent system for
two path loss exponents at the end of a trial. The labeled exponents are determined
experimentally. Algebraic connectivity increases only after performance levels
out. Here, we find coverage performance and connectivity are unrelated in a
critical regime. (b) Average coverage cost (ergodic metric) over 10 trials of
delivery agents. All cases result in minimization of the ergodic metric except
the highest loss case.

Work in [37] provides a possible explanation for the similar
coverage results between low and high communication capa-
bility. That work used a voter model for a swarm consensus
problem. The authors found fewer connections between agents
improved the ability of a swarm to respond to new information
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because the collective acted with an informed minority after
communication. This effect was discussed for a more general
set of complex systems such as vehicle traffic, social dynamics,
and evolutionary adaptation in [38], referred to as the “slower
is faster” effect. Here, the high number of interactions with a
larger communication radius may lead to a choke point at which
the agents run out of bandwidth to both receive and act on new
information. This type of scalability challenge may appear in
future hardware experiments.

VII. CONCLUSION

We presented an algorithm enabling heterogeneous multi-
agent systems to manage safety constraints with limited com-
munication. We updated safety constraints with evolving CBFs
and provided guarantees on communication and safe coverage.
We provided simulations for multi-agent teams with different
tasks and capabilities, showing that a system with a limited
communication range can perform as effectively as a fully
connected communication network. This work is a step towards
adaptable control architectures for heterogeneous robots to work
autonomously in extreme conditions. Future work will extend
theoretical results to find minimal communication requirements
for successful coverage in resource-limited environments.
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