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ABSTRACT

The increasing threat of sea level rise due to climate change
necessitates a deeper understanding of ice sheet structures.
This study addresses the need for accurate ice sheet data in-
terpretation by introducing a suite of quantitative metrics de-
signed to validate ice sheet annotation techniques. Focusing
on both manual and automated methods, including ARESELP
and its modified version, MARESELP, we assess their ac-
curacy against expert annotations. Our methodology incor-
porates several computer vision metrics, traditionally under-
utilized in glaciological research, to evaluate the continuity
and connectivity of ice layer annotations. The results demon-
strate that while manual annotations provide invaluable ex-
pert insights, automated methods, particularly MARESELP,
improve layer continuity and alignment with expert labels.

Index Terms— Ice sheet annotation, quantitative metrics,
automated annotation techniques, ice sheet structure analysis

1. INTRODUCTION

The escalating sea level rise, propelled by the ongoing cli-
matic changes, underscores the vital need to understand the
fundamental structure of ice sheets [1]. Acquiring this un-
derstanding is essential for enhancing the accuracy of future
forecasts regarding the rise in sea levels, a topic of great con-
cern for both coastal communities and climate researchers [2].
However, extracting essential information from ice sheet data
is a substantial problem. The task is intricate and can be
accomplished using several methodologies, such as manual,
semi-automated, and fully automated procedures. Each of
these solutions necessitates a substantial dedication of time
and expertise from experts who meticulously annotate and as-
sess complex data sets [3].

Considering the intricate nature and importance of these
interpretations, validating ice sheet annotation methods be-
comes a vital element of glaciological research [4]. Errors
or omissions in annotation might result in significant inaccu-
racies in comprehending and predicting ice sheet dynamics.
In light of the crucial requirement for precision and depend-
ability, this study presents a collection of new quantitative
measurements. These measures aim to assess the accuracy
of ice sheet annotation techniques thoroughly, enhancing our
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comprehension of glacial dynamics and their impact on sea
level fluctuations. This study aims to leverage several metrics
from the computer vision domain that have received limited
attention in the existing literature. In addition, our work is
centered around the utilization of automated annotation ap-
proaches, specifically ARESELP [5] and a customized ver-
sion of ARESELP (e.g., MARESELP). These techniques are
then contrasted with the manual labeling method conducted
by a domain expert.

The evaluation and validation of layer-tracking perfor-
mance in ice sheets have been subjects of significant research
interest. A common approach to assessing the performance
of layer-tracking algorithms is the use of synthetic age-depth
profiles [6], which involves generating a synthetic age-depth
relationship using a one-dimensional Nye model. This model
is used to intersect picked isochrones with a known age-depth
profile, thereby assigning an age to each pick and propa-
gating this age-depth relationship across the ice sheet. The
concept of isochrone connectivity is proposed by [7]. The
metric assesses the degree of continuity and connectivity be-
tween detected ice layers, providing a quantitative measure
of the uncertainty inherent in the tracking process. In ad-
dition, the metric is invaluable in highlighting areas where
the interpretation consists of a high number of disconnected
isochrones, which may indicate sensitivity to low amplitude
signal anomalies.

2. MATERIAL AND METHOD

2.1. Radargram and Annotation Products

In this study, we harness the extensive data resources provided
by the Centre for Remote Sensing of Ice Sheets (CReSIS),
accessing a publicly available repository, to develop our an-
notation products. Our focus is concentrated on a selected
set of 100 radargrams, all sourced from various locations
across North Greenland. These radargrams, carefully cho-
sen for their diverse characteristics and representativeness,
include notable sequences such as 20120330 03 019-028,
20120404 01 004-011, 20120507 07 003-015, 20120508 04
002-018, 20120508 07 001-012, 20120508 07 015-023,

20120511 01 041-052, 20120511 01 061-067, and 20120516
01 080-091. Utilizing these specific radargrams, we embark

on a detailed process of generating annotations for the ice



sheets.

2.2. Layer-Tracking Performance Metrics

2.2.1. Isochrones connectivity [7]

This method meticulously evaluates both the connectivity and
continuity of the layers that have been identified. It achieves
this by quantifying three key aspects: the total number of
picked layers (#TL), the number of layers that are continu-
ous and uninterrupted (#CL), and the number of layers that
exhibit discontinuities or breaks (#DL). An effective layer
annotator is characterized by its ability to maximize con-
nectivity while minimizing discontinuity, thereby ensuring a
more accurate and cohesive representation of the layers.

Algorithm 1: Dip Estimation and Comparison
Require: maska, maskgt, window size
- Initialize dip maska and dip maskgt as zero
arrays with dimensions of maska and maskgt,
respectively.

for each point in maska and maskgt

- Select a window size.
- Compute transitions in the window.
- Calculate y and x differences of transitions.
- Compute angles using arctan2 of y and x

differences.
- Calculate average dip as mean of angles.
- Assign average dip to the corresponding point in

dip results.
end for
- Calculate Pearson correlation coefficient between
dip maska and dip maskgt.

Return Correlation coefficient ρ.

2.2.2. Vision-based Metrics

• Pixel accuracy
It quantitatively evaluates the accuracy of two binary
masks by comparing them pixel by pixel. The cal-
culation is the sum of all matching pixels divided by
the total number of pixels in one of the masks. It is
formally specified as Acc. =

∑N
i (maska

i ==maskgt
i )

N ,
where maskai and maskgti correspond to the values of
the ith pixel in the respective masks (i.e., ARESELP
mask and ground truth mask), N is the total number
pixels in the mask, and

∑N
i (maskai == maskgti )

represents the sum of pixels where the two masks have
identical values (either both pixels are 1 or both are 0).

• Pearson’s correlation of dip estimation
It measures the similarity between the dip datasets ob-
tained from two binary masks. The dip of each mask

is estimated by calculating the dip angle for each pixel
within a specified window size, and averaging the an-
gles derived from transitions in the binary data [8]. Al-
gorithm 1 shows a pseudocode of the metric calcula-
tion.

• Structural similarity index (SSIM) [9]
It assesses the similarity between two binary masks. It
considers changes in texture, providing a more percep-
tually relevant assessment of layer annotation similarity
compared to simpler metrics like mean squared error.
Algorithm 2 shows a pseudocode for calculating SSIM.

Algorithm 2: Structural Similarity Index Calcula-
tion

Require: maska, maskgt

- Define parameters: window size, constants (C1 and
C2) for stabilizing division with weak
denominators.

- Initialize the SSIM map as a zero array with
dimensions based on window size.

for each overlapping window in maska and maskgt.
- Extract corresponding windows from maska and
maskgt.
- Calculate mean, variance, and covariance for

these windows.
- Calculate y and x differences of transitions.
- Compute angles using arctan2 of y and x

differences.
- Compute SSIM for the current window:

SSIM(window) = (2µxµy+C1)(2σxy+C2)
(µ2

x+µ2
y+C1)(σ2

x+σ2
y+C2)

- Update SSIM map with computed SSIM value
for the current window.

end for
- Calculate the mean SSIM over the entire image for
the final SSIM value.

Return Final SSIM value.

• Recall IoU (IoUr)
The Recall Intersection over Union (IoU) metric is
a method used to evaluate the accuracy of binary
masks, specifically focusing on the overlap between
a predicted mask (maska) and a ground truth mask
(maskgt). It calculates the ratio of the overlapping
area (where both masks agree on positive pixels) to
the total area covered by the ground truth mask, pro-
viding a measure of recall or how well the predicted
mask captures the relevant areas of the ground truth.
Algorithm 3 shows a pseudocode implementation of
this metric.

• Layer-by-layer Recall IoU (IoU l
r)

It calculates the average recall for layer-by-layer com-
parison in binary masks. It first computes the IoU for



Algorithm 3: Recall Intersection over Union Calcu-
lation

Require: maska, maskgt

- Compute the overlap as the sum of element-wise
logical AND between maska and maskgt.

- Compute the total number of positive pixels in
maskgt.

- Calculate Recall IoU as the ratio of overlap to the
total layers in maskgt.

Recall IoU = Overlap
Total Layers in maskgt .

Return Recall IoU.

each pair of layers between two masks. Then, it selects
layer pairs with IoU scores above the average and cal-
culates the recall for these pairs, which measures the
proportion of actual positive samples (i.e., true layer
matches) that are correctly identified. The average re-
call across these selected layers provides a metric for
the overall accuracy of the layer identification in the
masks. Algorithm 4 shows the outline for calculating
layer-by-layer recall IoU metric.

Algorithm 4: Layer-by-Layer Recall IoU Calcula-
tion

Require: iou scores, maska, maskgt

- Initialize an empty list for recalls.
- Compute average IoU from iou scores.
- Select layer pairs from iou scores with IoU greater
than or equal to the average IoU.

for each selected layer pair (i,j) in selected pairs
- Extract corresponding layers from maska and
maskgt

- Compute recall for the layer pair
- Append recall to recalls list

end for
- Compute average recall from the recalls list
Return average recall

Table 1. The mean quantitative score (+− standard deviation)
of all the layer annotation techniques, such as manual ap-
proach by the expert, ARESELP, and MARESELP in terms
of isochrones connectivity.

Method #CL ↑ #DL ↓ #TL ↑
Manual 7.63+−6.75 144.03+−58.75 151.66+−59.99
ARESELP [5] 15.16+−8.48 39.11+−12.74 54.27+−17.02
MARESELP 21.89+−9.55 56.03+−20.60 77.92+−25.57

3. RESULT AND DISCUSSION

The implementation of all metrics is readily accessible online
to ensure reproducibility and facilitate further research. Ta-
ble 1 provides a comprehensive comparison of different layer
annotation techniques - manual annotation by experts, ARE-
SELP, and MARESELP - focusing on their performance in
terms of isochrone connectivity. The metrics used for this
comparison include the number of continuous layers (#CL),
the number of broken layers (#DL), and the total number
of layers (#TL), where a higher number of continuous lay-
ers and a higher total number of layers are desirable, while a
lower number of broken layers is preferred. The manual ap-
proach, traditionally considered the gold standard due to its
reliance on expert interpretation, shows a moderate number
of continuous layers but a significantly high number of broken
layers, resulting in a total layer count (#TL) of 151.6+−59.99.
This indicates the inherent challenges in manual annotation,
where maintaining continuity across layers can be difficult,
leading to a higher incidence of broken layers. In contrast, the
ARESELP method shows a marked improvement in the num-
ber of continuous layers, more than double that of the manual
approach. Notably, it also exhibits a substantial reduction in
the number of broken layers, suggesting that this automated
technique is more effective in maintaining layer continuity.
The total number of layers identified by ARESELP is lower
than that identified by the manual method, which may indi-
cate a more selective layer identification process. MARE-
SELP further advances these improvements, registering the
highest number of continuous layers and a moderate num-
ber of broken layers, resulting in a total layer count (#TL)
of 77.92+− 25.57. This suggests that MARESELP not only
excels in identifying continuous layers but also strikes a bal-
ance in total layer detection, possibly offering a more nuanced
and accurate representation of isochrones compared to the
other methods. In summary, while the manual approach pro-
vides a substantial number of total layers, its high number of
broken layers highlights the challenges of manual interpreta-
tion. ARESELP and MARESELP, on the other hand, demon-
strate their strengths in automated layer annotation, particu-
larly in maintaining layer continuity, as evidenced by their
higher #CL and lower #DL scores. This evolution from
manual to automated techniques underscores the potential of
automatic approaches to enhance the accuracy and efficiency
of ice sheet annotation.

In addition, Table 2 compares two automated annotation
techniques, ARESELP and MARESELP, based on their per-
formance in several vision-based metrics compared to expert
labels (ground truth). These metrics include the Pearson
correlation coefficient of the dip estimation (ρ), Structural
Similarity Index (SSIM ), Pixel Accuracy (Acc.), and Recall
Intersection over Union for both global (IoUr) and layer-by-
layer (IoU l

r) comparisons. The results demonstrate that while
both ARESELP and MARESELP exhibit high accuracy and a



Table 2. The average quantitative score (+− standard deviation) derived from all pairwise comparisons between the expert labels
(ground truth) and the automatic annotation techniques, specifically ARESELP and MARESELP, using vision-based metrics.

Method ρ ↑ SSIM ↑ Acc. ↑ IoUr ↑ IoU l
r ↑

ARESELP [5] 0.527+−0.190 0.822+−0.059 0.973+−0.010 0.633+−0.185 0.313+−0.125
MARESELP 0.547+−0.184 0.827+−0.056 0.974+−0.009 0.692+−0.154 0.325+−0.120

strong structural resemblance to expert annotations, MARE-
SELP shows a marginally better performance in aligning with
expert labels, particularly in terms of IoU metrics. This indi-
cates that MARESELP may offer a more refined and precise
annotation than ARESELP, especially in complex layer-by-
layer assessments. The superiority of MARESELP in terms
of IoU metrics is particularly noteworthy, as it reflects a
greater efficacy in capturing both the general and detailed
aspects of ice sheet layers as annotated by experts However,
annotation products from automatic approaches need to be
further assessed, particularly when dealing with ”hallucinated
layers”- annotations that do not exist in the underlying radar
imagery.

4. CONCLUSION

This study presents various quantitative metrics to validate the
performance of ice sheet annotation techniques, specifically
manual, ARESELP, and MARESELP. Our analysis reveals
that while manual annotation provides valuable expert insight,
it struggles with layer continuity, a challenge effectively mit-
igated by automated methods. ARESELP shows marked im-
provement in maintaining layer continuity, and MARESELP
further excels by achieving the highest number of continu-
ous layers and a balanced total layer count. With respect
to vision-based metrics, MARESELP marginally outperforms
ARESELP, especially in IoU measures, indicating its closer
alignment with expert annotations. These findings highlight
the potential of automated annotation techniques in enhanc-
ing the accuracy and efficiency of ice sheet analysis, which
is crucial for understanding ice dynamics and their impact on
sea level changes in the context of climate research.
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