
A Whole New Ball Game: A Primal Accelerated Method for Matrix Games and
Minimizing the Maximum of Smooth Functions

Yair Carmon∗ Arun Jambulapati† Yujia Jin‡ Aaron Sidford§

Abstract

We design algorithms for minimizing maxi2[n] fi(x) over a d-dimensional Euclidean or simplex domain. When

each fi is 1-Lipschitz and 1-smooth, our method computes an ✏-approximate solution using eO(n✏
�1/3

+ ✏
�2

)

gradient and function evaluations, and eO(n✏
�4/3

) additional runtime. For large n, our evaluation complexity is

optimal up to polylogarithmic factors. In the special case where each fi is linear—which corresponds to finding

a near-optimal primal strategy in a matrix game—our method finds an ✏-approximate solution in runtime

eO(n(d/✏)
2/3

+ nd+ d✏
�2

). For n > d and ✏ = 1/
p
n this improves over all existing first-order methods. When

additionally d = !(n
8/11

) our runtime also improves over all known interior point methods.

Our algorithm combines three novel primitives: (1) A dynamic data structure which enables e�cient

stochastic gradient estimation in small `2 or `1 balls. (2) A mirror descent algorithm tailored to our data

structure implementing an oracle which minimizes the objective over these balls. (3) A simple ball oracle

acceleration framework suitable for non-Euclidean geometry.

1 Introduction

Consider the optimization problem

(1.1) minimize
x2X

⇢
max
i2[n]

a>i x = max
y2�n

x>Ay

�
,

where X ⇢ Rd is closed and convex, �n is the probability simplex in n dimensions, and A 2 Rd⇥n has columns
a1, . . . , an. We consider two settings of X : (1) the `1 setting where X ✓ �n and we measure distance with the
1-norm, and (2) the `2 setting where X is a subset of the unit Euclidean ball and we measure distance with the
Euclidean norm. The first setting encompasses finding an optimal strategy for one side of a matrix game, which is
su�cient for linear programming [24, 1]. The second setting includes important problems in machine learning
and computational geometry: hard-margin support vector machines [41] and minimum enclosing and maximum
inscribed ball [21].

Due to its fundamental nature, many algorithms have been developed to solve (1.1). The frontier of the
best performing algorithms comprises e�ciently-implemented second-order interior point methods [22, 64] and
stochastic first-order methods [28, 21, 13]. We are interested in methods of the second type, which currently
obtain preferable runtimes as we fix the solution accuracy and let the problem dimensions n and d grow. The best
existing methods of this type jointly evolve the primal x and dual y variables via stochastic mirror descent; it not
clear if additional runtime improvements are possible with this approach.

In this work we adopt a di↵erent approach, and design a primal stochastic first-order method that evolves the
variable x by directly sampling from an (approximate) best-response distribution y at each step.1 Our method

∗
Tel Aviv University, ycarmon@tauex.tau.ac.il.

†
University of Washington, jmblpati@uw.edu.

‡
Stanford University, yujiajin@stanford.edu.

§
Stanford University, sidford@stanford.edu.
The “ball” in the title refers to ball oracle acceleration [14] at the heart of our results; no balls are placed into bins in this paper.

This paper is available as a preprint at https://arxiv.org/abs/2311.10886.
1
It is not clear whether our method can e�ciently extract the solution to the dual problem maximizey2�n minx2X x

>
Ay without

simply swapping the role of y and x. Nevertheless, in many applications finding an approximately-optimal x su�ces.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2311.10886

solves the more general problem

(1.2) minimize
x2X

8
<

:fmax(x) := max
i2[n]

fi(x) = max
y2�n

X

i2[n]

yifi(x)

9
=

;,

where f1, . . . , fn are convex, Lf -Lipschitz, and Lg-smooth with respect to the norm of interest. The problem (1.1)
corresponds to fi(x) = a>i x and Lg = 0.

Method fi,rfi evaluation
complexity

Additional runtime Simplex
guaran-
tees?

Subgradient method n
⇣

Lf

✏

⌘2
- 4

AGD on softmax [47] n
⇣

Lf

✏

⌘
- 4

“Thinking inside the ball” [16] n
⇣

Lf

✏

⌘2/3
+
p
n
⇣

Lf

✏

⌘
- 7

AGD on linearization [49, 16] n
⇣

Lg

✏

⌘1/2 p
nd(n+ d)

Lf

p
Lg

✏3/2
7

Proposed method n
⇣

Lg

✏

⌘1/3
+
⇣

Lf

✏

⌘2
n

L2
f

L2/3
g ✏4/3

4

Lower bound [16] n
⇣

Lg

✏

⌘1/3
+
p
n
⇣

Lg

✏

⌘1/2
N/A 7

Table 1. Complexity guarantees for solving the problem (1.2) to ✏ accuracy. Parameters n and d denote the

number of functions and domain dimensions, respectively, while Lf and Lg are the respective Lipschitz constants of

fi and rfi. Expressions in the table omit constant and polylogarithmic factors. We assume that each fi and rfi

evaluation takes time ⌦(d) so that the “additional runtime” column only includes terms that are not dominated by

d times the evaluation complexity. For simplicity, we also assume that ✏  Lg  L
2
f/✏. The final column indicates

whether the method has proven guarantees for the `1/simplex setting.

Method
Runtime for
general parameters

Runtime for
n > d and ✏ = 1p

n

Stochastic primal-dual [28, 21] (n+ d)✏�2 n2

Exact gradient primal-dual [45, 48] nd✏�1 n3/2d
Variance-reduced primal-dual [13] nd+

p
nd(n+ d)✏�1 n3/2d1/2

Proposed method nd+ n(d/✏)2/3 + d✏�2 n4/3d2/3

max{n, d}! n!

Interior point [resp., 22, 64] †
nd+min{n, d}5/2 nd+ d5/2

Table 2. Runtime bounds for solving the problem (1.1) to ✏ accuracy, omitting constant and polylogarithmic

factors. The bounds assume a unit Lipschitz constant, i.e., kaik⇤  1 for all i, where the dual norm k·k⇤ is the

1-norm in the `1 setting and the 2-norm ins the `2 setting.
†
To our knowledge the runtime bound nd+min{n, d}5/2

is proven only in the `1 setting.

Our methods builds upon previous work [16, 3, 11] that develop ball oracles which approximately minimize
fmax in a small ball around a reference point, and then apply ball oracle acceleration [14, 17] to globally minimize
the objective in a small number of ball oracle calls. These methods have two key shortcomings that prevent them
from providing better runtimes for matrix games: (1) the ball oracles they implement have too small ball radii and
(2) they do not apply to `1 geometry. This work overcomes the first shortcoming by designing data structures that,
using sketching and sampling techniques, maintain linear approximations of the functions {fi} which facilitate
e�cient gradient estimation at larger distance from the reference point. To overcome the second challenge we
redesign the ball oracle acceleration framework using a novel accelerated proximal point method formulation,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 1: A diagram of the main components of our algorithm and their location in the paper.

and implement an approximate non-Euclidean ball oracle using a careful mirror descent scheme that provides a
fine-grained control of the amount of iterate movement which our data structures require.

Tables 1 and 2 summarize the complexity guarantees of our method and compare them to prior work. We
measure complexity as either the runtime or the number of evaluations of fi(x) and rfi(x) (for some x 2 X

and i 2 [n]) required to produce x such that Efmax(x) � minx?2X fmax(x?)  ✏. For the problem (1.2) in the
regime where n is large (e.g., n � L2

f ✏
�2) we obtain the optimal evaluation complexity with a modest additional

computational cost due to our data structures, which becomes negligible as d grows. For problem (1.1), in the
regime d < min{✏�2, n✏2} (which implies d < n) our bounds improve on all previous first-order methods. This
regime includes ✏ = 1p

n
, which is standard for empirical risk minimization problems, where statistical errors

are typically also of order 1p
n
. Since we consider maximum (rather that mean) risk minimization, statistical

errors (if they exist) will likely be higher for the problems we study. Additionally, our runtime improves over
all known methods (including interior point methods) when n is not too much larger than d and ✏ lies in some

range, namely d < n < d3/2, ✏  1p
d
, and ✏ > max{ 1

d3/4 ,
n3/2

d11/4 ,
d1/2

n }. For ✏ = 1p
n
we improve over all methods

when n8/11 < d < n.
Our results also directly lead to an algorithm for finding the minimum Euclidean ball enclosing points

a1, . . . , an 2 Rd, a fundamental problem in computational geometry [58, 21]. Our algorithm finds an ✏-accurate
solution in eO(nd+ d/✏+ nd2/3✏�1/3) time, while the previous best known runtime obtained by first-order methods
is eO(nd+ nd1/2✏�1/2) [2, 15]. This is an improvement for a range of parameter values including n > 1/✏ > d.

Paper organization (see also Figure 1). In Section 1.1 we discuss related work. In Section 2 we provide a
detailed overview of our key technical contributions. Section 3 introduces the general notation and conventions of
the paper. In Section 4, we describe the main acceleration framework building on a ball-restricted proximal oracle,
followed by the implementation of restricted oracle in Section 5. In Section 6, we build the main data structure
used for `p-matrix-vector maintenance, which we then use to build an e�cient stochastic gradient estimator
in Section 7. In Section 8, we combine our developments and obtain guarantees for solving problem (1.2) and, as
special cases, problem (1.1) and minimum enclosing ball.

1.1 Related work. We now review several additional closely related lines of research.
Minimizing the maximum of linear functions. Research on algorithms for solving problems of the

form (1.1), particularly in the context of linear programming, has a long and celebrated history in computer
science [24]. The best existing methods fall on a spectrum of trade-o↵s between per-iteration cost and number
of iterations. At one end of the spectrum lie second-order, interior-point methods [33, 51], whose iterations are
expensive (usually requiring a linear system solution) but the number of iterations depends only logarithmically
on the desired accuracy ✏�1; recent years saw much progress at making the iterations of these methods more
e�cient [e.g., 39, 22, 60, 63, 64, 61, 32]. Next come first-order methods that use exact gradients [e.g., 47, 45, 48]
whose per-iteration cost is linear in the problem size, but whose iteration complexity typically scales as ✏�1.
Finally, at the other end of the spectrum are stochastic first-order methods [e.g., 28, 21] whose per iteration cost
is sublinear in the problem size—and sometimes even near-constant [15, 66]—but whose iteration complexity
typically scales as ✏�2. In addition, variance reduction techniques [e.g., 5, 13, 15, 56, 57] use a mix of exact and
stochastic gradient computation to obtain a faster rate of convergence in terms of ✏ while maintaining a sublinear
per-iteration cost.

It is possible to view our ball oracle approach as a hybrid of stochastic and exact gradient queries, though the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

way we leverage the exact gradient queries is quite di↵erent from variance reduction: we query exact gradients to
increase the e�ciency of nearby stochastic gradient estimates, while variance reduction methods seek to make
them more accurate. Carmon et al. [16] (discussed at length in the following section) combine a ball oracle and
variance reduction for minimizing the maximum of Lipschitz, slightly smooth functions. However, to do so they
rely on an “exponentiated softmax” technique that is not compatible with the larger balls we consider in this
paper. Enhancing our method using variance reduction is a promising direction for future work.

Minimizing the maximum of general convex functions. The general problem (1.2) has seen less research
than the matrix games problem (1.1). The exact-gradient first order methods mentioned above [e.g., 47, 45, 48]
also apply in the general case, and Nesterov [49, Section 2.3.1] shows how to reduce the general cases to a sequence
of matrix games. However, stochastic gradient methods typically exploit the matrix structure in (1.1) and do not
extend to the general case. Indeed, stochastic methods for the problem (1.2) typically have high variance gradient
estimators, leading to an iteration count that depends on the number of functions n [44, 54, 46, 11]. The work [16]
made significant progress in reducing the number of full-data passes required to solve the problem (1.2), and we
improve it further to obtain (for large n) the optimal number of data passes for smooth problems.

Accelerated approximate proximal point methods. The accelerated proximal point method [29, 53] is a
powerful and versatile building block for convex optimization algorithms, owing to the fact that the proximal point
operation admits several approximate solution criteria that preserve the accelerated rate of convergence [26, 40, 18].
In particular, the approximate solution notion due to Monteiro and Svaiter [43] has led to a plethora of accelerated
optimization methods [e.g., 27, 9, 31, 10, 8, 34] including the ball oracle acceleration framework [14, 16, 3, 11]
at the core of our algorithm. We contribute to this line of research by designing a new approximate accelerate
proximal point method that is suitable for non-Euclidean geometry and allows e�cient oracle implementation
using stochastic gradient methods; our technique also borrows the momentum damping technique from [17] for
improving the simplicity and e�ciency of the Monteiro-Svaiter method.

Our acceleration scheme also bears a strong resemblance to gradient sliding [35, 59, 36]: both techniques
e�ciently approximate the accelerated proximal point method by making use of both the averaged and final
iterates of stochastic gradient descent. Since our method is based on a simple approximation condition for an
exact proximal point problem, it provides insight into the e�cacy of this approach.

Data structures for optimization. Optimization algorithms often rely on data structures for leveraging
iterate sparsity and e�ciently computing projections [38, 55, 25, 15]. However, randomized data structures—such
as the matrix-vector maintainer we employ—are notoriously di�cult to use in the context of optimization, since the
iterative nature of the algorithm could make the sequence of data structure queries non-oblivious, thus invalidating
the data structure’s guarantees. We address this di�culty using rejection sampling, which ensures that the
distribution of consecutive queries is the same regardless of the data structure’s random state.

Our matrix-vector maintenance data structure is closely related to data structures designed in recent works on
e�cient interior point methods for linear programming [63, 62, 64], e.g., the “vector maintenance data structure”
in [63]. The interior point methods using these data structures also take care to ensure that their queries remain
oblivious, though not always via rejection sampling. Similar to our data structure, the ones in [63, 62, 64] also
maintain an approximation to the products of a sequence of query vector with a given matrix, and they use a linear
sketch similar to the one we use for the Euclidean case (but not the `1 case). Our data structure di↵ers in the
type of approximation maintained, the norms considered, and the assumptions on the query sequence. Moreover,
our technique of supporting a long query sequence by instantiating multiple simpler data structures at di↵erent
scales is well known [see, e.g., 4].

2 Technical overview

In this section we provide a detailed overview of our technical contribution. Section 2.1 describes the initial setup
proposed in [16, 3]. In Section 2.2 we explain how we use linear approximations and data structures to increase the
size of the ball for which we can implement an optimization oracle. Then, in Section 2.3 we explain how to extend
ball oracle acceleration to non-Euclidean geometry, in Section 2.4 we describe the ball oracle implementation, and
in Section 2.5 we put the components of our algorithm together and derive its complexity bounds.

2.1 Preliminaries. To begin the technical exposition, we first explain the key components of the “thinking
inside the ball” approach [16, 3] to solving the problem (1.2), which we build upon to obtain our results. The first

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

step at tackling the problem is the standard “softmax” trick of smoothing the maximum operation by considering

(2.3) fsmax(x) := max
y2�n

8
<

:
X

i2[n]

[yifi(x)� ✏0yi log yi]

9
=

; = ✏0 log

0

@
X

i2[n]

efi(x)/✏
0

1

A, with ✏0 =
✏

2 log n
,

which is a uniform ✏
2 -approximation to fmax and therefore minimizing it to accuracy ✏

2 solves the problem (1.2) to
accuracy ✏.

Next, we design an oracle that approximately minimizes fsmax in a ball of radius r around a query point
y 2 X . Roughly speaking, the implementation consists of stochastic gradient descent (SGD) with an unbiased
estimator for rfsmax(x) = Ei⇠efi(x)/✏0rfi(x). Naively computing the distribution proportional to efi(x)/✏

0
requires

n function/gradient evaluations, which is as expensive as computing rfsmax exactly. Instead, the estimator
proposed in [3] uses rejection sampling to e�ciently draw i ⇠ efi(x)/✏

0
, and then returns rfi(x). Given a query

point x and a reference point y, the rejection sampling operates by drawing i ⇠ ef̃i(x;y)/✏
0
, where f̃i(x; y) is an

approximation of fi(x) for x close to y, and then accepting with probability exp
�
(fi(x) � f̃i(x; y) � C)/✏0

�
for

C such that
��fi(x) � f̃i(x; y)

��  C for all kx � yk  r. For an approximation f̃i with C = O(✏0), this rejection

sampling routine returns a valid sample from ef(x)/✏
0
using an expected O(1) draws from ef̃i(x;y)/✏

0
. Asi et al. [3]

simply perform n evaluations to precompute f1(y), . . . , fn(y) and then take f̃i(x; y) = fi(y), for which C = Lfr by
the Lipschitz continuity of the fi. Taking r = ✏0/Lf ensures that each rfsmax estimation takes O(1) expected
additional evaluations. Thus, the overall expected evaluation complexity of minimizing fsmax inside a ball of radius
r = O(✏/Lf) is n+O(T), where the SGD iteration number T is sublinear in n.

Finally, we make e�cient use of the ball oracle to globally minimize fsmax. To this end, we rely on the ball
oracle acceleration technique proposed by Carmon et al. [14] and refined in [16, 3, 11, 17], which we further improve
in this work. The technique, a type of accelerated proximal point method [29, 53, 42] finds an ✏-accurate minimizer
in O(r�2/3 log(1/✏)) ball oracle calls. Combining these ingredients yields a gradient evaluation complexity bound
whose leading term in n is eO(nr�2/3) = eO(n(Lf/✏)2/3).

2.2 Increasing the ball size by linear approximation data structures.
Exact linear approximation. The main limitation of the softmax gradient estimation procedure described

above is that it only works for fairly small balls of radius eO(✏/Lf). To increase the ball size, we leverage smoothness
to build better function value approximations f̃i(x; y). As a starting point, consider the linear approximation

f̃ lin
i (x; y) := fi(y) + hrfi(y), x� yi .

When each fi is Lg-smooth (i.e., rfi is Lg-Lipschitz) then
��f(x) � f̃ lin

i (x; y)
��  1

2Lgkx � yk2 for all x and y.

Therefore, we may increase the ball radius r from ✏0/Lf to
p
✏0/Lg. Since computing f̃ lin

1 (·; y), . . . , f̃ lin
n (·; y) requires

only n function and gradient evaluations, substituting this improved approximation into the acceleration framework
described above yields a leading order evaluation complexity term of eO(nr�2/3) = eO(n(Lg/✏)1/3).

However, sampling i ⇠ ef̃
lin
i (x;y)/✏0 is computationally expensive, since exactly computing the inner products

hrf1(y), x� yi , . . . , hrfn(y), x� yi takes ⇥(nd) time. In some cases, including bilinear problems (1.1), this is as
expensive as calculating rfsmax exactly, undoing the e�ciency gains of rejection sampling using f̃ lin.

Matrix-vector estimation data structure. We address this challenge by replacing f̃ lin
i (x; y) with an

e�cient randomized approximation, denoted f̃ est
i (x; y), such that

��f̃ est
i (x; y)� f̃ lin

i (x; y)
��  ✏0 with high probability.

We construct matrix-vector estimation data structures that, after O(nd) preprocessing time, for query x and

reference y, compute {f̃ est
i (x; y)}i2[n] in time eO

⇣
n(Lfkx� yk/✏0)2

⌘
: in the `2 setting we achieve this using

CountSketch [19, 37], while in the `1 setting we simply approximate hrfi(y), x� yi by sampling entries of rfi(y)
from a distribution proportional to |x� y|, a technique similar to “sampling from the di↵erence” used for variance
reduction in matrix games [13].

From matrix-vector estimation to maintenance. If we were to implement the ball oracle using the
estimate described above, the additional runtime cost would be eO(n(Lfr/✏)

2T), where T is the SGD iteration count.
While independent of d, such runtime would have a large dependence on the desired accuracy ✏, again rendering
the approach unhelpful for matrix games. To further improve e�ciency, we design matrix-vector maintenance data

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

structures that allow evaluating f̃ est at a series of query points x1, . . . , xT with additional runtime

eO

0

@nd+ n

Lf

P
i2[T]kxi � xi�1k

✏0

!2
1

A .

As we explain in more detail below, we design a careful stochastic gradient method for which the queries satisfy
P

i2[T]kxi � xi�1k = eO(r), leading to the eO
⇣
r�2/3n(Lfr/✏)

2
⌘
= eO

⇣
nL2

f/L
2/3
g ✏4/3

⌘
additional runtime shown in

Table 1.
Our matrix-vector maintenance data structure solves the more general problem of approximately maintaining

the value of Ax for a suitably bounded matrix A 2 Rn⇥d and a changing x that is guaranteed not to move too
much. Specialized to our applications, this data structure essentially maintains approximations to hrfi(y), vi for
vectors v of di↵erent (exponentially spaced) distances from the current point. Given a new query x, the data
structure simply updates the v vectors and the approximations to hrfi(y), vi to preserve the exponentially space
distance invariant. This update is made e�cient by estimating the values of hrfi(y), vi for the update v in terms
of their di↵erence in value from the closest (to the query point) non-updated v and using a matrix-vector estimator.
Finally, the data structure outputs the approximation to hrfi(y), vi for the closest v.

By carefully choosing and reusing approximations to the hrfi(y), vji over time, we are able to guarantee the
claimed runtime bound. Essentially, we obtain a runtime for maintaining approximation over a whole sequence
of queries in essentially the same complexity a matrix-vector estimation data structure would naturally use for
answering one query whose distance form y is the sum of all query movements. We design our matrix-vector
maintenance data structure via a reduction to matrix-vector estimation, which; this more general framework could
be of utility in other geometries.

A note on obliviousness. Our use of e�cient randomized data structures hinges on a subtle yet crucial
property of our method: our data structure query sequences do not depend on its random state, and hence the
probabilistic approximation guarantees remain valid throughout. At first glance this might appear to be false,
since we use the output of the data structure to draw random indices that define the stochastic gradient estimate
and hence influence the next SGD iterate and data structure query point. However, due to rejection sampling, the
distribution of the rejection sampling output is proportional to ef(x)/✏

0
, without any dependence on the random

bits of the data structure.2

2.3 Accelerating entropy ball oracles. We now shift our focus to the ball oracle acceleration algorithm that

takes in an (approximate) radius-r ball oracle and returns an approximate minimizer in eO(r�2/3) oracle calls.
Here, the main challenge is extending the algorithm to support a non-Euclidean domain geometry. Specifically, the
di�culty lies in coming up with an approximate oracle notion that supports e�cient implementation via stochastic
gradient methods while still allowing acceleration.

Prior idealized scheme. To explain our developments, it is instructive to first consider idealized acceleration
schemes using exact ball oracles, and contrast the idealized scheme of prior work to the one proposed here.
Previous ball acceleration methods [14, 16, 3, 17]3 maintain a parameter sequence a1, . . . , aT and its running sums
At =

P
it ai, and construct an iterate sequence (xt, vt) according to

xt+1 = argmin
x2X :kx��t(vt)k2r

⇢
f(x) +

At+1

2a2t+1

kx� �t(vt)k
2
2

�
where �t(z) :=

At

At+1
xt +

at+1

At+1
z(2.4)

vt+1 = argmin
v2X

⇢
hrf(xt+1), vi+

1

2at+1
kv � vtk

2
2

�
.(2.5)

The step (2.4) calls a radius-r ball oracle with center point �t(vt), while the step (2.5) executes a mirror descent
iteration using the gradient of f at the output of the ball oracle. Proper setting of at ensures that for all t we have

2
More precisely, the distribution of the next iterate is the same for all possible random bits, except for a low-probability set of

random bits for which the approximation condition
��f̃est

i (x; y)� f̃
lin
i (x; y)

��  ✏
0
fails for some i 2 [n].

3
In order to ensure correctness, these ball acceleration methods must either choose at such that xt+1 has kxt+1 ��t(vt)k 2 [r/2, r)

(which necessitates a bisection to solve an implicit equation) or modify their iterates through a momentum damping scheme [17]. We

ignore this point throughout the overview, and use momentum damping in our full method.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

f(xt) � f(x?) 
kx0�x?k2

2�St

At
for some St � 0, and that after T = O

✓⇣
kx�x?k2

r

⌘2/3
log f(x0)�f(x?)

✏

◆
iterations

either AT �
kx0�x?k2

2
✏ or ST � kx0 � x?k

2
2.

To move to general norms, we use the standard technique of introducing a Bregman divergence Va(b) induced
by a 1-strongly-convex distance generating function, so that Va(b) �

1
2kb� ak2; in the Euclidean we simply have

Va(b) =
1
2ka� bk22, while for the simplex setting we use the KL divergence Va(b) =

P
i2[d] bi log

bi
ai

(see Section 3
for more details).

A straightforward generalization of the idealized method above exists, but is not conducive to approximation.
Such generalization consists of replacing k·k2 in step (2.4) with a general norm k·k, and replacing 1

2kv � vkk22

with Vvk(v) in step (2.5). It can be shown that f(xt)� f(x?)  ✏ after O

✓⇣
Vx0 (x?)

r

⌘2/3
log f(x0)�f(x?)

✏

◆
iterations.

However, it is not clear how to e�ciently approximate the non-Euclidean ball oracle computation in this method.
In particular, in order to approximate the step (2.5), Asi et al. [3] design a multilevel Monte Carlo (MLMC)
estimator that is nearly unbiased for the exact ball oracle output (2.4), and the analysis of this technique appears
to strongly rely on properties that are unique to the Euclidean norm.

New idealized scheme. To address this challenge, we redesign the acceleration method with Bregman
divergences and e�cient approximation in mind. Our new idealized method is

vt+1 = argmin
v2X :Vvt (v)

1
2⇢

2
t+1

{At+1f(�t(v)) + Vvt(v)} where ⇢t+1 :=
At+1

at+1
r(2.6)

xt+1 = �t(vt+1)(2.7)

and �t is as defined in (2.4). In the unconstrained Euclidean case (i.e., when X = Rd and the at sequence is such
that kxt+1��t(vt)k < r for all t), straightforward algebra shows that the old and new idealized schemes are exactly
equivalent. However, outside that setting—and particularly in the non-Euclidean case—the two methods produce

di↵erent iterates. Nonetheless, both methods enjoy the same O
��Vx0 (x?)

r

�2/3
log f(x0)�f(x?)

✏

�
iteration complexity

guarantee. Moreover, the constraint Vvt(v) 
1
2⇢

2
t+1 and the definition of ⇢t+1 implies that every feasible point v

in step (2.6) satisfies k�t(v)� �t(vt)k 
at+1

At+1
kv � vtk 

at+1

At+1
⇢t+1 = r. This justifies considering (2.6) a call to a

radius-r optimization oracle centered at �t(vt).
Defining the approximate ball oracle. We now briefly derive our approximation condition for step (2.6).

To lighten notation, let y := vt, let ⇢ := ⇢t+1, let h(v) := At+1f(�t(v)) and v? := vt+1 (i.e., the exact ball oracle
output). Note that v? is the global minimizer of H(v) := ht(v) + cVy(v), for some c � 1 which enforces the
constraint Vy(v) 

1
2⇢

2. Therefore, by convexity we have H(v?)�H(u)  �cVv?(u) for all u 2 X . Substituting
the definition of H and dividing through by c gives

(2.8)
h(v?)� h(u)

c
 Vy(u)� Vv?(u)� Vy(v?)  Vy(u)� Vv?(u)�

1

2
⇢2 {c>1} for all u 2 X ,

where the final inequality holds since Vy(v?) =
1
2⇢

2 when c > 1 due to complementary slackness.
To further relax the condition (2.8), we allow the approximate ball oracle to return two points z, w 2 X such

that h(z) replaces h(v?) and Vw(u) replaces Vv?(u). We further replace 1
2⇢

2
{c>1} with �⇢2 {c>2} for some �  1

2 ,
and we allow �⇢2 additive error for c  2. Finally, we allow randomization by requiring that bound holds only in
expectation. The resulting relaxed output condition is

(2.9) Eh(z)� h(u)

c
 E[Vy(u)� Vw(u)]� �⇢2E

⇥
{c>2} � {c2}

⇤
for all u 2 X .

In the acceleration framework, we approximate vt+1 with w, and xt+1 with �t(z), and show that the resulting
sequence still satisfies (up to constants) the same error bound as the exact proximal method. The key advantage of
the two-point approximation condition (2.9) is that SGD naturally achieves it, with z and w being the average and
final SGD iterates respectively. This “two outputs” property of SGD has been leveraged before in the literature
on gradient sliding methods in structured convex optimization [35, 59, 36]. It allows us to sidestep the need for
Multilevel Monte-Carlo [7, 3], which appears challenging to use in the non-Euclidean setting.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2.4 Implementing entropy-ball oracles. We now explain the key components in constructing an approximate
ball oracle meeting the condition (2.9) using our data structure-based gradient estimator. There are two main
challenges in designing this oracle. First, the inequality (2.9) needs to hold for all u 2 X rather than just in a
ball of radius ⇢ around y; this prevents us from using standard constrained optimization techniques. Second, our
matrix-vector maintenance data structure requires that the total movement in the SGD iterates sum to eO(⇢), a
guarantee which standard SGD does not provide. We explain our solution to each challenge in turn.

Implicitly-constrained SGD. To obtain a guarantee valid for any comparator point u 2 X , we approximately
find the Lagrange multiplier for the constraint Vy(v) 

1
2⇢

2 and apply unconstrained SGD, taking careful care to
show that its iterates nevertheless stay close to the reference point y. First, we perform bisection to find a Lagrange
multiplier � � 1 such that v� = argminv2X {h(v) + �Vy(v)} satisfies Vy(v�) 2 [↵2 ⇢

2, �
2 ⇢

2] for some ↵,� = e⇥(1),
where we use SGD to approximate Vy(v�). Second, having found a suitable �, we apply (unconstrained) SGD once
more to obtain the global guarantee (2.9) with c ⇡ �. However, removing the explicit ball constraint introduces
another di�culty: SGD could potentially query iterates outside the ball, where our gradient estimator is ine�cient.
To address this concern we use techniques introduced in [12, 30] to show that, with high probability, SGD never
leaves a ball of radius O(kv� � yk) around y. Since � satisfies Vy(v�) = O(⇢2), the SGD iterates remain (with high
probability) in the region where our gradient estimator is e�cient.

A relaxed triangle inequality of KL divergence. Before proceeding to the next challenge we highlight a
technical point of potential broader interest. To establish the correctness of the procedures described above, we
need to assume that the Bregman divergence satisfies a relaxed triangle inequality of the form

Va(b) + Vb(a)  ⌧
⇣
Ṽ (a, c) + Ṽ (c, b)

⌘
where Ṽ (x, y) = min{Vx(y), Vy(x)}

for all a, b, c 2 X . In the Euclidean case where Va(b) =
1
2ka� bk22, this holds for ⌧ = 4. However, when X is the

simplex and V is the KL divergence, this inequality is false for any ⌧ . Nevertheless we show that for a truncated
simplex �n

⌫ = {p 2 �n
| pi � ⌫ for all i}, the relaxed triangle inequality holds with ⌧ = O(log 1

⌫). This observation
is new to the best of our knowledge, and potentially of independent interest. The Lipschitz continuity of our
objective functions means that its optimal value in X and X \�n

⌫ di↵er by at most O(Lf⌫). Therefore, truncating

the simplex with ⌫ = poly(✏/Lf) allows us to use the relaxed triangle inequality with ⌧ = eO(1) without significantly
changing the solution quality.

Controlling the sum of query movement sizes. Next, we address the challenge introduced by our
matrix-vector maintenance data structure. This data structure enables us to generate stochastic gradients for
SGD at a computational cost proportional to the sum of distances between consecutive SGD queries. For standard
SGD using T iterations, this sum is ⌦(

p
T), resulting in a bad complexity bound. To address this, we employ a

variant of SGD due to Cutkosky [23] which enables much tighter control over total query movement. This variant
applies mirror descent updates on the gradient estimated on the running average of its iterates, computing

wt+1 = argmin
w2X

⇢
hG(xt), wi+

1

⌘
Vwt(w)

�
,

where ⌘ is a step size, G is the gradient estimator, and xt =
1
t

P
it wi =

t�1
t xt�1 +

1
twt. Therefore, we haveP

tT kxt � xt�1k =
P

tT
1
t kwt � xt�1k. Since we guarantee that kwt � w0k = O(⇢) for all t  T with high

probability, we have kwt � xtk = O(⇢) as well. This implies the movement bound
P

tT
1
t kwt � xtk = O(⇢ log T)

that is su�cient for our purposes.

2.5 Putting it all together. Having described our main algorithmic ingredients, we now briefly derive the
runtime bounds shown in Tables 1 and 2.

Acceleration framework setup. We begin by considering our accelerated proximal point method applied
on the function fsmax. We stop the method at the first time T in which AT = ⌦(✏�1), where its potential analysis
guarantees Efsmax(xT) � fsmax(x?) = O(✏). Roughly speaking, our algorithm sets the at sequence such that
at+1

At
= e⇥(r2/3) is constant for all iterations. We show that with an appropriate damping scheme, our algorithm

will either grow At+1 by a multiplicative 1 + e⇥(r2/3) factor or decrease a nonnegative potential function with
initial value 1 by e⇥(r2/3): this implies that AT exceeds the stopping threshold in T = eO(r�2/3) steps.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Our setting of at means that

⇢t =
At

at
r = e⇥(r1/3)

is also constant for all the iterations. At step t we apply our approximate ball oracle on ht(v) = At+1fsmax(�t(v)).
Noting that the Jacobian of �t is

at+1

At+1
I, we have rht(v) = at+1rfsmax(�t(v)) by the chain rule. Therefore, to

estimate rht(v) we simply apply our estimator for rfsmax at the point �t(v) and multiply the resulting vector by
at+1. Since our estimates for rfsmax are always of the form rfi(�t(v)) for some i 2 [N], they are bounded by Lf .
The gradients estimates for ht are therefore bounded by

� = at+1Lf = eO
⇣
r2/3At+1Lf

⌘
= eO

✓
r2/3

✏
Lf

◆
,

where the last transition holds since At = O(✏�1) for all iterations before stopping.
Iteration and evaluation complexity. Next, we bound the iteration count of all ball oracle calls and the

total gradient evaluation complexity. For a function h with stochastic gradients bounded by � and target movement
⇢, the approximate ball oracle requires eO(�2/⇢2) iterations; the complexity of finding a point that is eO(⇢) away
from the optimum of a 1-strongly-convex function using stochastic gradients bounded by �. Substituting the above

bounds for � and ⇢, the iteration complexity per oracle call is eO
⇣
r2/3L2

f ✏
�2
⌘
. For each ball oracle call we require

n individual function and gradient evaluations to set up the data structure, and (for r = eO(
p
✏/Lg)) an additional

eO(1) gradient evaluations per step with high probability, giving eO(n+ r2/3L2
f ✏

�2) evaluations overall. Since the

expected number of ball oracle calls is eO(r�2/3), with constant probability the total evaluation complexity is
eO
⇣
nr�2/3 + L2

f ✏
�2
⌘
.

Runtime complexity. To account for the runtime complexity of our method, we make the simplifying
assumption that each function/gradient evaluation takes ⌦(d) time. In this case, the only term not subsumed
by the function/gradient evaluation cost comes from the matrix-vector maintenance” data structure. Our oracle
implementation makes sequences of queries to our rfsmax estimator, whose total movement is eO(r). Therefore, the

additional runtime of a single oracle call is eO
⇣
nL2

fr
2/✏2

⌘
, and for the whole algorithm the cost is eO

⇣
nL2

fr
4/3/✏2

⌘
.

Choosing the ball radius r. Finally, we discuss the optimal choice of the parameter r. For general
problems (1.2) with Lg > 0, a simple strategy is to choose the highest value of r for which the linear approximation

is su�ciently accurate, i.e, e⇥(
p
✏/Lg). This yields the complexity bounds in Table 1. However, when Lg is very

small it is more computationally e�cient to choose a smaller value of r. Letting T = ⌦(d) denote the runtime of
an individual function/gradient evaluation, the value of r that minimizes the runtime terms nT r�2/3 +nr4/3L2

f/✏
2

is r = ✏
p
T /Lf , and the minimal value is n(T Lf/✏)2/3. For Lg < L2

f/T ✏ this optimal r is permissible (i.e., smaller

than
p
✏/Lg), and the total runtime of the method is eO

✓
n
⇣

T Lf

✏

⌘2/3
+ T

⇣
Lf

✏

⌘2
◆
. In particular, for matrix games

(where T = ⇥(d) and Lg = 0) we obtain the runtimes listed in Table 2.

3 Notation and conventions

General. We use X to denote a general closed convex set. We use �d := {x 2 Rd, x � 0,
P

i xi = 1} to
denote the simplex, �d

⌫ := {x 2 �d, x � ⌫1} to denote the truncated simplex, and Bd := {x 2 Rd, kxk2  1} to
denote the unit Euclidean ball. We denote the binary indicator of event E by {E}.

Vector, matrix and norm. We use k · k to denote a general norm on X and k · k⇤ = supkxk1 hx, ·i to

denote its dual norm on the dual space X
⇤. For any vector v 2 Rd and p � 1 we denote the `p norm by

kvkp :=
⇣P

i2[d] |vi|
p
⌘1/p

with kvk1 = maxi2[d] |vi|. For any p � 1 we let p⇤ = (1� 1
p)

�1 be such that k·kp⇤ is dual

to k·kp. For any matrix A 2 Rn⇥d, we write Aij for the (i, j) entry, Ai: for the i-th row as a row vector, and A:j

for the j-th column as a column vector. Given p, q � 1, we write the matrix norm kAkp!q := maxv2Rd,v 6=0
kAvkq

kvkp
.

Functions. We work with convex, di↵erentiable functions f on domain X throughout the paper. We say a
function f is Lf -Lipschitz with respect to k ·k if and only if |f(x)�f(y)|  Lfkx�yk for all x, y 2 X . A function f
is Lg-smooth with respect to k · k if and only if krf(x)�rf(y)k⇤  Lgkx� yk for all x, y 2 X . A convex function

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

f is µ-strongly convex with respect to k ·k if and only if for any x, y 2 X , f(x)�f(y)�hrf(y), x� yi � µ
2 kx�yk2.

We call a random point x an ✏-optimal minimizer of f in expectation if Ef(x)�minx02X f(x0)  ✏.
Bregman divergences. Given a distance-generating function (dgf) ' : X ! R, we define its induced Bregman

divergence V r
x (y) := '(y)� '(x)� hr'(x), y � xi, and drop the superscript ' when clear from context. Within

the paper, for Euclidean space equipped with k · k2, we use '(x) = 1
2kxk

2 and its induced Bregman divergence
is Vx(y) =

1
2kx � yk22, which is 1-strongly convex in k · k2. For the simplex (or a closed convex subset thereof)

equipped with k · k1, we use '(x) =
P

i xi log xi and its induced Bregman divergence is the Kullback–Leibler (KL)
divergence Vx(y) =

P
i yi log(yi/xi), which is 1-strongly convex in k · k1 by Pinsker’s inequality.

Runtime. To simplify the presentation of our runtime bounds we use the following conventions throughout.
We assume that the number of non-zero elements in matrix A 2 Rd⇥n, denoted nnz(A), satisfies nnz(A) = ⌦(d+n).
This holds for any matrix without empty rows or columns. In similar vein, we assume that the number of non-zero
elements in any vector x satisfies nnz(x) = ⌦(1).

We also assume that we are working in a computational model in which can pre-process any vector v 2 Rn

in O(n) time and then be able to sample index i with probability proportional to |vi| in O(1) time, e.g., as in
[65]. If these costs are larger by multiplicative polylogarithmic factors then our final runtimes similarly grow by
multiplicative polylogarithmic factors.

Throughout the paper, we use eO, e⌦ and e⇥ to hide poly-logarithmic factors in problem parameters, e.g.
dimension, smoothness, Lipschitz constant, domain size, and desired accuracy ✏ and probability factor 1/�.

4 Non-Euclidean ball oracle acceleration

In this section, we describe our main acceleration framework leveraging a non-Euclidean ball oracle. The main
result proved in this section is the following.

Theorem 4.1. Let f : X ! R be a convex function which supports a gradient oracle G with kG(x)k⇤  G for all
x 2 X . For some E0, R > 0, let x0, v0 2 X satisfy f(x0)� f(x?)  E0 and Vv0(x?)  R2, where x? is a minimizer
of f . For any ball radius r  R, oracle approximation parameter � < 1/2, and error tolerance ✏ > 0, Algorithm 1
has the following guarantees:

• The algorithm outputs a point xT such that E [f(xT)]� f(x?)  ✏.

• The algorithm terminates after O(��1/3R2/3r�2/3 log(E0/✏)) iterations in expectation.

• Each iteration of the algorithm performs O(1) arithmetic operations on elements of X and makes a single
call to a ball-restricted proximal oracle (Definition 4.1 below) with parameter ⇢ = ⇥

�
��1/3R2/3r1/3

�
for a

convex function ht that supports a gradient estimator Gt with kGt(x)k⇤ = O
⇣

�1/3r2/3R4/3

✏ G log(E0/✏)
⌘
.

Our result in this section follows the outline in Section 2.3. Algorithm 1 chooses parameter sequences A0
t, at

and in each iteration calls an oracle that attempts to solve the optimization problem

(4.10) minimize
Vvt (z)⇢2

{ht(z) + Vvt(v)}, where ht(z) = A0
t+1f(�t(z)) and �t(z) =

At

A0
t+1

xt +
at+1

A0
t+1

z.

We consider an approximate oracle that relaxes the exact solution to (4.10) in three critical ways:

• We allow the oracle to return a parameter c, which corresponds to the Lagrange multiplier on the domain
constraint,

• We let the oracle return two points—each used for a di↵erent purpose in our final algorithm,

• We allow the oracle’s output guarantee to hold in expectation and to tolerate some additive error.

Formally, we define this relaxed oracle as follows.

Definition 4.1. (Ball-restricted proximal oracle) Let h : X ! R be a convex function with gradient
estimator G. A (⇢, �, cmax)-restricted proximal oracle takes as input G, center point y 2 X and points z, w 2 X

and a scalar c 2 [1, cmax] satisfying

(4.11) E

h(z)� h(u)

c

�
 E [Vy(u)� Vw(u)]� �E

⇥
{c�2} � {c<2}

⇤
⇢2.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

We note that our analysis only needs the oracle parameter cmax to be finite, since its only use is verifying a
condition of the optional stopping theorem. We therefore omit it for Theorem 4.1 and the subsequent lemmas
used to prove it, and argue that it is indeed finite for our oracle implementations.

We now describe a final component of Algorithm 1 that is omitted from the outline in Section 2.3: momentum
damping. This mechanism, introduced in recent work on optimal methods for Monteiro-Svaiter acceleration [17],
handles the fact the sequence ct of regularization terms varies over time which introduces subtlety to the selection
of a suitable sequence at. Given the outputs zt+1, wt+1, ct+1 from the oracle in an iteration, we set vt+1 = wt+1

and x0
t+1 = �t(zt+1). However, instead of returning xt+1 = x0

t+1 for the next iteration, we actually set

xt+1 =
1

ct+1
x0
t+1 +

ct+1 � 1

ct+1
xt and At+1 = At +

at+1

ct+1
.

To provide intuition for this, we consider the cases where ct+1 ⇡ 1 and ct+1 � 1. In the former case, the Lagrange
multiplier on the domain constraint of eq. (4.10) is nearly inactive: thus our output xt+1 ⇡ x0

t+1 makes good
progress. On the other hand, if ct+1 � 1 then the ball constraint on the proximal step is extremely active. In this
case, we are unable to conclude that x0

t+1 has good function error: we set xt+1 ⇡ xt and At+1 ⇡ At to prevent x0
t+1

from destabilizing the algorithm. However, we show that ct+1 being very large implies that a natural potential
function significantly decreases: this ‘’‘win-win situation” enables us to guarantee progress regardless of the actual
range of ct+1.

Algorithm 1: Generalized ball acceleration framework

Input: Convex function f with gradient estimator G
Input: O, a (⇢, �, cmax)-ball restricted proximal oracle
Input: Parameters r,R, E0, ✏ > 0
Input: Input points x0, v0 2 Rn satisfying f(x0)� f(x?)  E0, Vv0(x?)  R2

1 A0 = R2

E0

2 while At <
40R2 log(80E0/✏)

✏ do

3 at+1 =
�p

�r/R
�2/3

At and A0
t+1 = At + at+1

4 �t(z) =
At

A0
t+1

xt +
at+1

A0
t+1

z and ⇢ =
A0

t+1

at+1
r =

✓
1 +

⇣
Rp
�r

⌘2/3
◆
r . ⇢ is constant across iterations

5 ht(z) := A0
t+1f (�t(z)) . kx� yk  ⇢ implies k�t(x)� �t(y)k  at+1

A0
t+1

⇢ = r

6 Gt(z) = at+1G(�t(z)) . Gt is a stochastic gradient estimator for ht

7 zt+1, vt+1, ct+1 = O(Gt, vt, ⇢)

8 xt+1 = 1
ct+1

�t(zt+1) +
ct+1�1
ct+1

xt

9 At+1 = ct+1�1
ct+1

At +
1

ct+1
A0

t+1 = At +
at+1

ct+1

10 t = t+ 1

Return: xt

We begin the analysis by proving a potential decrease bound.

Lemma 4.1. (Potential decrease) Consider an execution of Algorithm 1. Let x? 2 X be a minimizer of f
and for each iteration t let

Et := f(xt)� f(x?) and Dt := Vvt(x?) .

Let Pt := AtEt +Dt where At is defined on line 9. Then for any t � 0

E [Pt+1]  Pt � �E
⇥

{ct+1�2} � {ct+1<2}
⇤
⇢2.

where the expectation is taken over the choice of randomness in a single iteration.

Proof. By the guarantee of the ball-restricted proximal oracle O, we have

E

ht(zt+1)� ht(u)

ct+1

�
 E

⇥
Vvt(u)� Vvt+1(u)

⇤
� �E

⇥
{ct+1�2} � {ct+1<2}

⇤
⇢2

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

We will bound the left-hand side of this inequality. First, observe that for any choice of ct+1, zt+1,

ht(zt+1)� ht(u)

ct+1
�

A0
t+1f(�t(zt+1))�Atf(xt)� at+1f(u)

ct+1

=

✓
A0

t+1

ct+1
f(�t(zt+1)) +At

ct+1 � 1

ct+1
f(xt)

◆
�Atf(xt)�

at+1

ct+1
f(u)

� At+1f(xt+1)�Atf(xt)�
at+1

ct+1
f(u)

= At+1Et+1 �AtEt.

where the inequalities follow from the convexity of f . Substituting this in yields

E [At+1Et+1 �AtEt]  E [Dt �Dt+1]� �E
⇥

{ct+1�2} � {ct+1<2}
⇤
⇢2.

and rearranging gives the claim.

Iterating this potential decrease lemma gives a full complexity bound.

Lemma 4.2. Let xT be the output of the above algorithm. We have

E [f(xT)� f(x?)]  ✏.

In addition, the algorithm performs at most

18

✓
R
p
�r

◆2/3

log

✓
80E0
✏

◆

iterations in expectation, where each iteration calls a ball-restricted proximal oracle (Definition 4.1).

Proof. Let T denote the (random) iteration where the algorithm returns xT , i.e., the first T for which

AT �
40R2 log(80E0/✏)

✏ . Define the random process

Qt = Pt +
tX

i=1

�
�

{ci�2} � {ci<2}
�
⇢2.

We recall that

At+1 = At +
at+1

ct+1
= At

1 +

1

ct+1

✓p
�r

R

◆2/3
!

=) At+1 � At exp

1

2ct+1

✓p
�r

R

◆2/3
!
.(4.12)

As ct+1  cmax by the definition of the ball-restricted proximal oracle, we observe that with probability 1

At � A0 exp

1

2cmax

✓p
�r

R

◆2/3

t

!
.

As we terminate when AT �
40R2 log(80E0/✏)

✏ , this implies that T is finite with probability 1. Lemma 4.1 implies
that Qt is a supermartingale and therefore, by the optional stopping theorem, we have

(4.13) E [QT]  Q0  2R2.

Now define

T1 =
TX

i=1

{ci�2} and T2 =
TX

i=1

{ci<2}.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

By definition, we have T = T1 + T2 and

QT = PT + �⇢2(T1 � T2).

Now for any iteration with ct+1 < 2, eq. (4.12) implies

At+1 � At exp

1

4

✓p
�r

R

◆2/3
!

=) AT � A0 exp

T2

4

✓p
�r

R

◆2/3
!
.

As AT�1 < 40R2 log(80E0/✏)
✏ and AT 

�
1 + (

p
�r/R)2/3

�
AT�1 < 80R2 log(80E0/✏)

✏ , this implies that with probability
1

80R2 log(80E0/✏)

✏
�

R2

E0
exp

1

4

✓p
�r

R

◆2/3

T2

!
=) T2  4

✓
R
p
�r

◆2/3

log

✓
80E0 log(80E0/✏)

✏

◆

 8

✓
R
p
�r

◆2/3

log

✓
80E0
✏

◆

where the last inequality follows from ↵ log↵  ↵2 for any ↵ > 0. This implies

(4.14) E
⇥
PT + �⇢2T1

⇤
= E[QT + �⇢2T2]  2R2 + 8�⇢2

✓
R
p
�r

◆2/3

log

✓
80E0
✏

◆

where the inequality follows from the above bound on T2 and eq. (4.13). Now, note that

⇢ =

1 +

✓
R
p
�r

◆2/3
!
r <

2R2/3r1/3

�1/3

as r < R. Substituting this into eq. (4.14), we obtain

40R2 log(80E0/✏)

✏
E [f(xT)� f(x?)]  E [ATET]

 E
⇥
PT + �⇢2T1

⇤
 2R2 + 8�⇢2

✓
R
p
�r

◆2/3

log

✓
80E0
✏

◆

 2R2 + 32R2 log

✓
80E0
✏

◆
 34R2 log

✓
80E0
✏

◆

and therefore E [f(xT)� f(x?)]  ✏. In addition, eq. (4.14) also yields

E[T1] 
2R2

�⇢2
+ 4

✓
R
p
�r

◆2/3

log

✓
80E0 log(80E0/✏)

✏

◆


2�2/3R2

�R4/3r2/3
+ 8

✓
R
p
�r

◆2/3

log

✓
80E0
✏

◆
 10

✓
R
p
�r

◆2/3

log

✓
80E0
✏

◆
.

Thus, the expected number of iterations of the method satisfies

E[T] = E[T2] + E[T1]  18

✓
R
p
�r

◆2/3

log

✓
80E0
✏

◆
.

We combine these facts to prove Theorem 4.1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Proof of Theorem 4.1. Lemma 4.2 implies the first two items in Theorem 4.1. For the third item, we observe that
the only nontrivial step of the while loop is on line 7, which performs a single call to O with gradient estimator Gt

and parameter ⇢ = O(r1/3R2/3). Any t prior to terminating has At = O
⇣

R2 log(E0/✏)
✏

⌘
. Thus, for any x 2 X

kGt(x)k⇤ = at+1kG(�t(x))k⇤ 

✓p
�r

R

◆2/3

AtG

= O

✓
�1/3 r2/3

R2/3
·
R2 log(E0/✏)

✏
G

◆
= O

✓
�1/3R4/3r2/3 log(E0/✏)

✏
G

◆
.

5 Ball oracle implementation

In this section, we develop Algorithm 2 which implements a ball-restricted proximal introduced in Definition 4.1 in
the previous section. The algorithm combines last-iterate proximal mirror descent (LI-MD, Algorithm 3) with
a careful bisection procedure (�-Bisection in Algorithm 2). For high-level description of the algorithm, see
Section 2.4.

Let us briefly describe Algorithms 2 and 3. The �-Bisection procedure tries (with high probability) eO(1)
values of � and finds one for which u?

� = argminx2X h(x) + �Vy(x) satisfies Vy(u?
�) =

e⇥(⇢2). Using this � we
call Algorithm 3 once again to obtain random outputs z, w independent of the random bits that produce �. By
properly choosing the step sizes and number of iterations, we argue that the results satisfy the restricted proximal
ball oracle condition (4.11).

Our algorithm has additional properties that enable e�cient gradient estimation for the problems we study.
First, all iterations stay within a radius-⇢ norm ball centered at y, as LI-MD aborts whenever going outside the
radius. This enables e�ciently sampling from softmax distribution using linear approximation and rejection
sampling, see Section 7. Second, due to the “last-iterate” mechanism (which performs iterate averaging before
the stochastic gradient queries), the total movement of iterates throughout Algorithm 2 is also bounded by eO(⇢).
This movement bound is used for bounding the runtime when querying the data structure that we designed
in Algorithm 4 for constructing G.

The formal guarantees of our algorithm require the following notion of ⌧ -triangle inequality for Bregman
divergences.

Definition 5.1. (⌧ -triangle inequality) For any ⌧ � 1, a domain X and Bregman divergence V satisfy a
⌧ -triangle inequality, for all x, y, z 2 X ,

(5.15) Vx(z) + Vz(x)  ⌧(min{Vx(y), Vy(x)}+min{Vy(z), Vz(y)}).

With this definition in hand, we state the main guarantees of Algorithm 2.

Theorem 5.1. Let X be a closed convex set, let h : X ! R be a convex function with gradient estimator G that
satisfies kG(x)k⇤  � with probability 1, and let X and V satisfy a ⌧ � 4 triangle inequality (Definition 5.1) as well
as maxx,y2X Vx(y)  R2. Let T̂k to be the number of iterations in the k’th call to LI-MD. Then, for any radius

⇢ > 0, center point y 2 X , for error probability �  ⇢2

214(
p
2R�+3R2)⌧5 , the following holds:

1. Algorithm 2 implements a (⇢, �, cmax) restricted proximal oracle for function h, with � = 1
213⌧5 and

cmax = 32⌧�
⇢ . That is, the outputs z, w and c of Algorithm 2 satisfy

(5.16) Eh(z)� h(u)

c
 E[Vy(u)� Vw(u)]�

1

213⌧5
E
�

{c�2} � {c<2}
�
⇢2 for all u 2 X

and c  32⌧�
⇢ with probability 1.

2. With probability 1, the queries x(k)
1 , . . . , x(k)

T̂k
that Algorithm 3 makes to G when called in the k’th iteration of

Algorithm 2 satisfy

kx(k)
t � yk  ⇢ for all t  T̂k and k  K.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2: Projection-free ball oracle implementation O(G, y, ⇢)

Input: Objective h : X ! R with gradient estimator G, center point y 2 X , radius ⇢
Parameters: Gradient bound �, 1-strongly-convex dgf ' and associated Bregman divergence V , triangle

inequality factor ⌧

Parameters: constant C = 66 · 212, error probability �  ⇢2

214(
p
2R�+R2)⌧5

1 � �-Bisection(G, y, ⇢), �0 �, ⌘ ⇢2�
C·log(16/�0)·⌧5�2 , T

4⌧
⌘�

2 (z, w,OutOfBound) LI-MD(G,', y, ⇢,�, ⌘, T)
3 return z, w and c = �+ 1

⌘T

4 function �-Bisection(G, y, ⇢)

5 Set �max = 16⌧�
⇢ , �0 = �min = 1, ⌘0 = ⇢2�min

C·log(16/�)·⌧5�2 , T0 = 4⌧
⌘0�min

and Kmax =
l
log 9600⌧3�3

⇢3

m
+ 1

6 (z(0), w(0),OutOfBound(0)) LI-MD(G,', y, ⇢,�0, ⌘0, T0)

7 if Vy(z(0)) <
⇢2

64⌧ then return �min

8 for k = 1, . . . ,Kmax do

9 �k = 1
2 (�max + �min), �k = �

8k2 , an ⌘k = ⇢2�k

C·log(16/�k)·⌧5�2 . satisfying

C log 16
�k

⌘k�
2

�k
=

⇢2

⌧5

10 Tk = 4⌧
⌘k�k

. satisfying
2

�k⌘kTk
=

1
2⌧

11 (z(k), w(k),OutOfBound(k)) LI-MD(G,', y, ⇢,�k, ⌘k, Tk)

12 if OutOfBound
(k) or Vy(z(k)) >

⇢2

64⌧ then �min = �k

13 else if Vy(z(k)) <
⇢2

256⌧3 then �max = �k

14 else return �k

15 return �Kmax. the probability of reaching this line is less than �/2

Algorithm 3: Last-iterate proximal mirror descent LI-MD(G,', y, ⇢,�, ⌘, T)

Input: Objective function h : X ! R with gradient estimator G, 1-strongly-convex dgf ' (and associated
Bregman divergence V), center point y 2 X , radius ⇢, regularization parameter � � 0, step size ⌘,
iteration budget T

1 Set w0 = x0 = y
2 Set OutOfBound = False . monitor if iterations go out of ⇢-radius from center y

3 for t = 1, . . . , T do
4 xt =

1
t

Pt�1
i=0 wi =

t�1
t xt�1 +

1
twt�1

5 if kxt � yk � ⇢ then OutOfBound = True break
6 ĝt = G(xt) . gt := E[ĝt | xt] 2 @h(xt)

7 wt = argminw2X
�
⌘[hĝt, wi+ �Vy(w)] + Vwt�1(w)

8 w̃T = argmaxv2X

⇢⌧PT
t=1 r'(wt)+ 1

�⌘r'(wT)

T+ 1
�⌘

, v

�
� '(v)

�
= r'⇤

✓PT
t=1 r'(wt)+ 1

�⌘r'(wT)

T+ 1
�⌘

◆

9 if OutOfBound = False then return xT , w̃T , OutOfBound = False.

10 z = y + ⇢ xt�y
kxt�yk. Arbitrarily selecting a point with distance ⇢ from y

11 return z, z, OutOfBound = True . return arbitrary point if outside radius ⇢

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

3. With probability 1, the sequences {x(k)
1 , . . . , x(k)

T̂k
}
K
k=0 defined above satisfy

KX

k=0

T̂kX

t=1

kx(k)
t � x(k)

t�1k  ⇢ · 2Kmax log
4C log(16K2

max/�)⌧
6�2

⇢2
,

where Kmax = dlog 9600⌧3�3

⇢3 e+ 1.

4. Algorithm 2 makes at most O
⇣

�2

⇢2 · ⌧6
⇣
log 1

� + log log ⌧�
⇢

⌘
· log ⌧�

⇢

⌘
calls to G and the same number of

mirror-descent steps.

The remainder of this section is organized as follows. First, in Section 5.1 we give two examples of Bregman
divergences satisfying the ⌧ -triangle inequality and calculate the particular values of ⌧ in di↵erence cases. Then we
analyze Algorithm 3 and the �-Bisection procedure in Sections 5.2 and 5.3, respectively. Finally, in Section 5.4
we combine those results to prove the main proposition of the section.

5.1 Divergences satisfying ⌧ -triangle inequality. Throughout the paper we mainly consider two divergences,
Vx(y) =

1
2kx � yk2 for the ball setup and Vx(y) =

P
i2[d] yi log(yi/xi) for the simplex setup. In this section we

show both divergences satisfy ⌧ -triangle inequality with ⌧ = e⇥(1).

Example 5.1. (Euclidean setup with `2-norm-squared) Any X ✓ Rd and Vx(y) = 1
2kx � yk22, satisfy a

⌧ -triangle inequality with ⌧ = 4.

Example 5.2. (Truncated simplex setup with KL-divergence) For any ⌫ 2 (0, 1/4], the simplex �d
⌫ :=

{x 2 �d, x � ⌫1} and KL-divergence Vx(y) =
P

i2[d] yi log
yi

xi
satisfy a ⌧ -triangle inequality with ⌧ = 6 log(⌫�1).

Example 5.1 is an immediate consequence of the standard triangle inequality, but Example 5.2 is less obvious
and stems from the following connection between KL-divergence to squared Hellinger distance.

Lemma 5.1. Given ⌫ 2 (0, 1/4] and any x, y 2 �d
⌫ , consider the KL-divergence Vx(y) =

P
i2[d] yi log

yi

xi
and

squared Hellinger distance H2(x, y) = 1
2k
p
x�
p
yk2. Then

Vx(y) + Vy(x) 
�
6 log 1

⌫

�
H2(x, y).

Proof. We have

Vx(y) + Vy(x) =
X

i2[d]

(yi � xi) log
yi
xi

=
1

2

X

i2[d]

f

✓
yi
xi

◆
(
p
yi �

p
xi)

2 , where f(t) =
2(t� 1) log t

(
p
t� 1)2

.

The lemma follows from noting that maxt2[⌫,1/⌫] f(t) =
2(1

⌫ �1) log 1
⌫⇣p

1
⌫ �1

⌘2  6 log 1
⌫ .

Proof of Example 5.2. We first use the AM-GM inequality of Hellinger distance, which gives 2H2(x, z)+2H2(z, y) �
H2(x, y), and consequently we have

min(Vx(z), Vz(x)) + min(Vy(z), Vz(y))
(i)
� 2H2(x, z) + 2H2(z, y) � H2(x, y)

(ii)
�

1

6 log(⌫�1)
(Vx(y) + Vy(x)).

Here we use (i) the well-established inequality Vx(z) � 2H2(x, z) (see, e.g. Reiss [50]), and (ii) the inequality
shown in Lemma 5.1. This proves the desired claim.

We remark that any divergence V satisfying the ⌧ -triangle inequality on X is also symmetric in its arguments
up to factor ⌧ , formally stated as follows.

Corollary 5.1. For any closed convex set X and some Bregman divergence V on X satisfying a ⌧ -triangle
inequality, then 1

⌧ Vx(y)  Vy(x)  ⌧Vx(y).

Proof. We can apply the definition of ⌧ -triangle inequality with z = y to get that min{Vx(y), Vy(x)} +
min{Vy(y), Vy(y)} �

1
⌧ (Vx(y) + Vy(x)) �

1
⌧ Vx(y), which implies the first inequality. The second inequality

follows by symmetry.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5.2 Analysis of Algorithm 3. In this section, we provide the main analysis and guarantees for LI-MD (Algo-
rithm 3). The first lemma is a deterministic error bound for last-iterate proximal mirror descent. Throughout the
analysis we use

H�(x) := h(x) + �Vy(x) and u?
� := argmin

x2X
H�(x)

for the regularized objective function and its minimizer, respectively.

Lemma 5.2. Let X be a closed convex set, and h : X ! R be a convex function with gradient estimator G that
satisfies kG(x)k⇤  � with probability 1, and let y 2 X and � � 0. The iterates of Algorithm 3 satisfy, for all
u 2 X ,

(5.17) H�(xT)�H�(u)  �
�

T

TX

t=1

Vwt (u) +
Vy (u)� VwT (u)

⌘T
+

⌘

2
�2 +

1

T

TX

t=1

hgt � ĝt, wt�1 � ui .

Proof. At iteration t 2 [T], the optimality condition for each iteration of Line 7 gives, for any u 2 X ,

⌦
⌘ĝt + ⌘�rVy(wt) +rVwt�1(wt), wt � u

↵
 0,

which by rearranging terms implies

hĝt + �rVy(wt), wt � ui 
1

⌘

⌦
�rVwt�1(wt), wt � u

↵
=

1

⌘

�
Vwt�1(u)� Vwt(u)� Vwt�1(wt)

�
,(5.18)

where we use the three-point equality following the definition of Bregman divergence for the last equality.
Now, for the terms on the LHS of (5.18), by applying three-point equality again,

�hrVy(wt), wt � ui = � (Vwt(u) + Vy(wt)� Vy(u)) .(5.19)

By rearranging terms

(5.20)

hĝt, wt � ui = hĝt, wt � wt�1i+ hgt, wt�1 � ui+ hĝt � gt, wtc�1 � ui

(i)
= hĝt, wt � wt�1i+ hgt, txt � (t� 1)xt�1 � ui+ hĝt � gt, wt�1 � ui

(ii)
� �

⌘

2
kĝtk

2
⇤ �

1

2⌘
kwt � wt�1k

2 + (t� 1) (h(xt)� h(xt�1)) + (h(xt)� h(u)) + hĝt � gt, wt�1 � ui

(iii)
� �

⌘

2
kĝtk

2
⇤ �

1

⌘
Vwt�1(wt) + (t� 1) (h(xt)� h(xt�1)) + (h(xt)� h(u)) + hĝt � gt, wt�1 � ui .

Here we use (i) the relation that txt = (t� 1)xt�1 + wt�1, (ii) the AM-GM inequality and convexity of h, and
(iii) the 1-strong-convexity of the distance generating function.

Plugging Equations (5.19) and (5.20) back into Equation (5.18) and rearranging terms,

t(h(xt)� h(u))� (t� 1)(h(xt�1)� h(u))

 � (Vy(u)� Vwt(u)� Vy(wt)) +
1

⌘

�
Vwt�1(u)� Vwt(u)� Vwt�1(wt)

�

+
⌘

2
kĝtk

2
⇤ +

1

⌘
Vwt�1(wt) + hgt � ĝt, wt�1 � ui

 � (Vy(u)� Vwt(u)� Vy(wt)) +
1

⌘

�
Vwt�1(u)� Vwt(u)

�
+

⌘

2
�2 + hgt � ĝt, wt�1 � ui .

Here for the last inequality we use kĝtk⇤  � by definition of the gradient estimator.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Averaging over t 2 [T], we have for any u 2 X ,

h(xT)� h(u) �Vy(u)�
�

T

X

t2[T]

Vwt(u)�
�

T

X

t2[T]

Vy(wt)

+
1

⌘T
(Vy(u)� VwT (u)) +

⌘

2
�2 +

1

T

X

t2[T]

hgt � ĝt, wt�1 � ui ,

�Vy(u)�
�

T

X

t2[T]

Vwt(u)� �Vy(xT)

+
1

⌘T
(Vy(u)� VwT (u)) +

⌘

2
�2 +

1

T

X

t2[T]

hgt � ĝt, wt�1 � ui ,

where the last inequality is due to the convexity of Vy(·), Vy(w0) = 0 and xT = 1
T

PT�1
t=0 wt so that

1
T

P
t2[T] Vy(wt) �

1
T

PT�1
t=0 Vy(wt) � Vy(xT). Rearranging terms concludes the proof.

Combining with ⌧ -triangle inequality of divergence V , we can get the following in-expectation progress
guarantee (5.21).

Corollary 5.2. In the setting of Theorem 5.1, the outputs z, w and OutOfBound of Algorithm 3 satisfy

(5.21)

Eh(z)� h(u) 

✓
�+

1

⌘T

◆
E[Vy(u)� Vw(u)] + ⌘�2

�

✓
�

⌧
�

1

⌘T

◆
EVy(u

?
�)

+

✓
p
2R�+

✓
�+

1

⌘T

◆
R2

◆
P(OutOfBound = True).

Proof. We first consider an alternative “imaginary” algorithm which continues even if OutOfBound becomes True
(i.e., we go outside of radius-⇢ ball) and deterministically terminate after T iterations, outputting xT , w̃T . For such
an “imaginary” algorithm we have E[hgt � ĝt, wt�1 � ui |wt�1, xt�1] = 0, thus by taking expectation on Lemma 5.2,

Eh(xT)� h(u)  E
✓

�+
1

⌘T

◆
Vy(u)�

✓
�

T

X

t2[T]

Vwt(u) +
1

⌘T
VwT (u)

◆
+

⌘

2
�2
� �Vy(xT)

�
.(5.22)

Standard tools from convex analysis imply that '⇤ (the dual function of '), and its induced Bregman divergence
V '⇤

a (a0) = '⇤(a0)� '⇤(a)� hr'⇤(a), a0 � ai satisfy

Va(b) = V '⇤

r'(b)(r'(a))

for any a, a0 2 X
⇤ [52]. Now,

�

T

X

t2[T]

Vwt(u) +
1

⌘T
VwT (u)

(i)
=

�

T

X

t2[T]

V '⇤

r'(u)(r'(wt)) +
1

⌘T
V '⇤

r'(u)(r'(wT))

(ii)
�

✓
�+

1

⌘T

◆
· V '⇤

r'(u)

�
T

P
t2[T]r'(wt) +

1
⌘Tr'(wT)

�+ 1
⌘T

!

(iii)
=

✓
�+

1

⌘T

◆
V '⇤

r'(u)(r'(w̃T)) =

✓
�+

1

⌘T

◆
Vw̃T (u).

Here we use (i) the equality Va(b) = V '⇤

r'(b)(r'(a)), (ii) the convexity of Vx(·) and (iii) the definition of w̃T as

in line 8 of Algorithm 3. Plugging this back into Equation (5.22) proves the expected guarantee for the “imaginary”
algorithm:

Eh(xT)� h(u) 

✓
�+

1

⌘T

◆
E[Vy(u)� Vw̃T (u)] +

⌘

2
�2
� �EVy(xT).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Further, applying strong convexity of H�, we have H�(xT) � H�(u?
�) � �Vu?

�
(xT). Combining it

with Equation (5.17) (where we choose u = u?
�), we have

�Vu?
�
(xT) 

Vy(u?
�)

⌘T
+

⌘

2
�2 +

1

T

X

t2[T]

hgt � ĝt, wt�1 � ui .

Taking expectation yields,

�EVu?
�
(xT) 

Vy(u?
�)

⌘T
+

⌘

2
�2.(5.23)

By the ⌧ -triangle inequality, we also have

�

⌧
Vy(u

?
�)  �Vy(xT) + �Vu?

�
(xT).(5.24)

Combining Equations (5.23) and (5.24) we have

�

⌧
Vy(u

?
�)  �EVy(xT) +

Vy(u?
�)

⌘T
+

⌘

2
�2 =) � �EVy(xT)  �

✓
�

⌧
�

1

⌘T

◆
Vy(u

?
�) +

⌘

2
�2.

Plugging this back into Equation (5.21) proves the following guarantee for the output xT , w̃T of the “imaginary”
algorithm.

(5.25) Eh(xT)� h(u) 

✓
�+

1

⌘T

◆
E[Vy(u)� Vw̃T (u)] + ⌘�2

�

✓
�

⌧
�

1

⌘T

◆
EVy(u

?
�).

Now considering the original algorithm, the iterates will behave exactly the same when OutOfBound = False

for all iterations. When OutOfBound = True the actual algorithm returns an arbitrary point xt incurs a loss
bounded by h(xt)� h(xT) + (�+ 1

⌘T)Vxt(u) 
p
2R�+ (�+ 1

⌘T)R
2. Thus, we have for the claimed bound for the

actual algorithm’s output iterates z, w, i.e.,

Eh(z)� h(u) 

✓
�+

1

⌘T

◆
E[Vy(u)� Vw(u)] + ⌘�2

�

✓
�

⌧
�

1

⌘T

◆
EVy(u

?
�)� �EVy(xT)

+

✓
p
2R�+

✓
�+

1

⌘T

◆
R2

◆
P(OutOfBound = True).

Next, we bound the term
PT

t=1 hgt � ĝt, wt�1 � ui on the RHS of Equation (5.17) using concentration of
measure. This is formally stated in the next lemma; we defer its proof to the end of this subsection.

Lemma 5.3. In the setting of Lemma 5.2, for any �, " 2 (0, 1) and u 2 X , we have

(5.26) P

E(�) :=

(
max
1tT

�����

tX

i=1

hĝi � gi, wi�1 � ui

�����  � max
0i<T

kwi � uk

r
32T log

2

�

)!
� 1� �.

Combining Equation (5.17) in Lemma 5.2 with the concentration guarantees in Lemma 5.3, we show the
iteration {wt}t2[T] and xT stay relatively close to the true optimizer u?

� in the following.

Lemma 5.4. In the setting of Lemma 5.2 and Lemma 5.3, let u?
� := argminx2X H�(x). For any � 2 (0, 1) and

T � 1, when event E(�) happens,

max
0tT

Vwt(u
?
�)  2Vy(u

?
�) +

✓
65 log

2

�

◆
⌘2�2T

and

�Vu?
�
(xT) 

2Vy(u?
�)

⌘T
+

✓
66 log

2

�

◆
⌘�2.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. For the first inequality, we follow Equation (5.17), due to H�(xT)�H�(u?
�) � 0 and the non-negativity of

Bregman divergences, we have

VwT (u
?
�)  Vy(u

?
�) +

⌘2

2
�2T + ⌘

X

t2[T]

hgt � ĝt, wt�1 � u?
�i .

Applying the same argument for all t 2 [T] gives

Vwt(u
?
�)  Vy(u

?
�) +

⌘2

2
�2t+ ⌘

X

i2[t]

hgi � ĝi, wi�1 � u?
�i , for all t 2 [T].

Applying Lemma 5.3 with u = u?
�, we have under the event E(�),

(5.27)

max
t2[T]

Vwt(u
?
�)  Vy(u

?
�) +

⌘2

2
�2T + ⌘max

t2[T]

������

X

i2[t]

hgi � ĝi, wi�1 � u?
�i

������

 Vy(u
?
�) +

⌘2

2
�2T + ⌘� max

0tT
kwt � u?

�k

r
8T log

2

�
(i)
 Vy(u

?
�) +

⌘2

2
�2T + ⌘2�2

· (32T log
2

�
) + max

0tT

1

4
kwt � u?

�k
2

(ii)
 Vy(u

?
�) +

✓
65

2
log

2

�

◆
⌘2�2T + max

0tT

1

2
Vwt(u

?
�).

Here we use (i) the AM-GM inequality and (ii) the strong convexity of Bregman divergence by definition. Note the
RHS in Equation (5.27) also upper bounds Vw0(u

?
�) since w0 = y in the initialization of Algorithm 3. Combining

these together and rearranging terms,

max
0tT

Vwt(u
?
�)  2Vy(u

?
�) +

✓
65 log

2

�

◆
⌘2�2T,

thus proving the first inequality.
For the second inequality, we note by strong convexity, H�(xT) � H�(u?

�) � �Vu?
�
(xT), plugging this

back into Equation (5.17) and again using non-negativity of Bregman divergences and similar arguments
following Lemma 5.3, we have when event E(�) happens,

�Vu?
�
(xT) 

Vy(u?
�)

⌘T
+

⌘

2
�2 +

1

T

X

t2[T]

hgt � ĝt, wt�1 � u?
�i


Vy(u?

�)

⌘T
+

⌘

2
�2 +

1

T
� max

0iT
kwi � u?

�k

r
32T log

2

�
(i)


Vy(u?
�)

⌘T
+

⌘

2
�2 + 32

✓
log

2

�

◆
⌘�2 +

1

2⌘T
max
0iT

Vwi(u
?
�)

(ii)


2Vy(u?
�)

⌘T
+ 65

✓
log

2

�

◆
⌘�2.

Here we use the Cauchy-Schwarz inequality for (i) and the first inequality proven for (ii). This concludes the
proof for the second inequality.

We use Lemma 5.4 to control the possibility of LI-MD going out of bounds when u?
� is not too far from the

center point y.

Lemma 5.5. In the setting of Lemma 5.4, if Vy(u?
�) 

⇢2

16 and for some � 2 (0, 1) we have
�
log 2

�

�
⌘2�2T  ⇢2

65·16
then the event E(�) implies that OutOfBound = False.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. We have OutOfBound = False if and only if maxtT kxt � yk  ⇢. To derive a su�cient condition for this
inequality we upper bound maxtT kxt � yk as follows:

max
tT
kxt � yk

(i)
 max

t<T
kwt � yk  ku?

� � yk+max
t<T
kwt � u?

�k
(ii)


q
2Vy(u?

�) +
q
2max

t<T
Vwt(u

?
�),

where (i) follows by convexity and the definition of xt as the averaging of w0, . . . , wt�1, and (ii) follows from the
1-strong-convexity of the distance generating function.

Next, we apply Lemma 5.4 and the assumption
�
log 2

�

�
⌘2�2T  ⇢2

65·16 to obtain that E(�) implies

max
t<T

Vwt(u
?
�)  2Vy(u

?
�) +

⇢2

16
.

Substituting Vy(u?
�) 

⇢2

16 and combining the above displays yields

max
tT
kxt � yk 

⇢
p
8
+

r
⇢2

4
+

⇢2

8
 ⇢

as required.

Finally, the next lemma bounds the total movement of iterations {xt}t2[T]:

Lemma 5.6. In the setting of Lemma 5.2, we have, for any u 2 X ,

(5.28)
TX

t=1

kxt � xt�1k  2(log T + 1) max
0tT

kwt � uk.

Proof. By definition of xt, we have xt � xt�1 = 1
t (wt�1 � xt�1), consequently by triangle inequality we have

TX

t=1

kxt � xt�1k =
X

t2[T]

1

t
kwt�1 � xt�1k 

X

t2[T]

1

t
kwt�1 � uk+

X

t2[T�1]

1

t
kxt�1 � uk.

We proceed to bound the two terms on the RHS respectively. For the first term,

X

t2[T]

1

t
kwt�1 � uk 

0

@
X

t2[T]

1

t

1

A max
0tT�1

kwt � uk  (log T + 1) max
0tT

kwt � uk.

For the second term,

X

t2[T]

1

t
kxt�1 � uk 

0

@
X

t2[T]

1

t

1

A max
0tT�1

kxt � uk
(?)
 (log T + 1) max

0tT
kwt � uk,

where we also use convexity of the norm function k · k and the fact that xt�1 = 1
t�1

Pt�2
i=0 wi for (?). Summing the

two terms proves the claimed bound.

Proof of Lemma 5.3. We consider the random variable Xi := 1
2�max0ji�1 kwj�uk hgi � ĝi, wi�1 � ui and the

filtration Fi�1 := �(x0, w0, x1, w1, · · · , wi�1, xi). Note we have E[Xi|Fi�1] = 0 and additionally |Xi| 
kgi�ĝik⇤

2�  1
with probability 1. Thus, applying Blackwell’s inequality (cf. Blackwell [6] Theorem 1), we have for any a, b > 0,

P

0

@9 t 2 [T],

����
X

i2[t]

Xi

����  a+ bt

1

A  2e�2ab.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Replacing a =
p
T log(2/�)/2, b =

p
log(2/�)/2T , with probability 1� �, we have for all t 2 [T],

����
X

i2[t]

Xi

���� 
p
T log(2/�)/2 +

p
log(2/�)/2T · t 

p
2T log(2/�).

Now applying Lemma 5 of Ivgi et al. [30] with ai = 2�max0ji�1 kwj � uk and bi = Xi, we have

����
X

i2[t]

hgi � ĝi, wi�1 � ui

����  4� max
0it�1

kwi � uk · max
1it

����
X

j2[i]

Xj

����

 � max
0iT�1

kwi � uk

r
32T log

2

�
for all t 2 [T].

Taking maximum over all t 2 [T] gives the desired claim.

5.3 Analysis of �-Bisection. In this section, we prove the correctness and bound the number of iterations
for �-Bisection in Algorithm 2. We use Ek(�) to denote the probabilistic event described in Lemma 5.3 with
parameter � when calling LI-MD(G, y, ⇢,�k, ⌘k, Tk), which according to that lemma happens with probability at
least 1� �. In the next lemma, we first show that if the stopping criterion of the binary search holds for some k
and �k, then with high probability the value of Vy

�
u?
�k

�
is ⇥(⇢2/poly(⌧)).

Lemma 5.7. Assume X and V satisfy a ⌧ -triangle inequality. For �k 2 (0, 1), under the event Ek(�k/8), at

iteration k of Algorithm 2 the call to LI-MD outputs z(k) such that if Vy(z(k)) 
⇢2

64⌧ then Vy(u?
�k
)  ⇢2

16 and if

Vy(z(k)) �
⇢2

256⌧3 then Vy(u?
�k
) � ⇢2

1024⌧4 .

Proof. We begin by noting that Vy(z(k)) 
⇢2

64⌧ implies that kz(k)�yk < ⇢ and therefore that OutOfBound(k) = False

and z(k) = x(k)
Tk

, i.e., the last iterate of LI-MD. This allows us to apply Lemma 5.4 to bound, in the event Ek(�k/8),

Vu?
�k
(z(k)) 

2Vy(u?
�k
)

�k⌘kTk
+

✓
66 log

16

�k

◆
⌘k
�k

�2


1

2⌧
Vy(u

?
�k
) +

⇢2

1024⌧4
.

To upper bound Vy(u?
�k
) we use the ⌧ -triangle inequality, Vy(z(k)) 

⇢2

64⌧ and the bound on Vu?
�k
(z(k)) to write

Vy(u
?
�k
)  ⌧

⇣
Vy(z

(k)) + Vu?
�k
(z(k))

⌘


⇢2

36
+

1

2
Vy(u

?
�k
) +

⇢2

1024
.

Rearranging yields Vy(u?
�k
)  ⇢2

16 as required.

To lower bound Vy(u?
�k
) we combine the ⌧ -triangle with the assumed lower bound on Vy(z(k)),

Vy(u
?
�k
) �

1

⌧
Vy(z

(k))� Vu?
�k
(z(k)) �

1

⌧
Vy(z

(k))�
⇢2

1024⌧4
�

1

2⌧
Vy(u

?
�k
) �

⇢2

512⌧4
� Vy(u

?
�k
)

=) Vy(u
?
�k
) �

⇢2

1024⌧4
.

The next lemma shows that there exists a nontrivial range of � values for which the binary search will terminate
with high probability. Here by overloading notations we let E�(�) to denote the probablistic event in Lemma 5.3
with parameter � when calling LI-MD(G, y, ⇢,�, ⌘, T) with ⌘ and T chosen as in �-Bisection.

Lemma 5.8. Assume X and V satisfy a ⌧ -triangle inequality with ⌧ � 4. For � 2 (0, 1) let ⌘  ⇢2�
66·1024·log(16/�)⌧5�2

and T = 4⌧
⌘� . Then under event E�(�/8) the output z of LI-MD(G, y, ⇢,�, ⌘, T) satisfies if Vy(u?

�) 
⇢2

100⌧2 then

Vy(z) 
⇢2

64⌧ and if Vy(u?
�) �

⇢2

120⌧2 then Vy(z) �
⇢2

256⌧3 .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. We begin by noting that by Lemma 5.5 the assumption Vy(u?
�) 

⇢2

48⌧2 , the event E�(�/8), and the choice
of ⌘ implies that OutOfBound = False. Therefore, as in the proof of Lemma 5.7 above, we may use Lemma 5.4 and
conclude that

Vu?
�
(z) 

2Vy(u?
�)

�⌘T
+

✓
66 log

2

�

◆
⌘

�
�2


1

2⌧
Vy(u

?
�) +

⇢2

1024⌧4
.

By the ⌧ -triangle inequality,

Vy(z)  ⌧
�
Vy(u

?
�) + Vu?

�
(z)

�


3

2
⌧Vy(u

?
�) +

⇢2

1024⌧3
 ⇢2

✓
3⌧

2
·

1

100⌧2
+

1

1024⌧4

◆


⇢2

64⌧
.

Applying the ⌧ -triangle inequality in the other direction gives

Vy(z) �
1

⌧
Vy(u

?
�)� Vu?

�
(z) �

1

2⌧
Vy(u

?
�)�

⇢2

1024⌧4
� ⇢2

✓
1

2⌧
·

1

120⌧2
�

1

1024 · 4⌧3

◆
�

⇢2

256⌧3
.

The next lemma justifies the choice of the upper bisection limit �max.

Lemma 5.9. (Upper bisection limit) Let h : X ! R be convex and, for some y 2 X , let H�(x) := h(x)+�Vy(x)
with 1-strongly-convex Vy(·) and u?

� := argminx2X H�(x). If h is �-Lipschitz then for any � � 0,

(5.29) Vy(u
?
�) 

�2

2�2
.

Consequently, for �max = 16⌧�
⇢ we have Vy(u?

�max
) < ⇢2

100⌧2 .

Proof. We may assume that u?
� is in the interior of X , since otherwise Vy(u?

�) = Vy(u?
�0) for some �0

� � such
that for all �00 > �0 the point u?

�00 is in the interior of X , and we may apply the following considerations to
�00
�0 instead. We further assume without loss of generality that h and ' are di↵erentiable, as otherwise we may

unifromly approximate them with convex di↵erentiable functions via Moreau envelopes.
These assumptions imply that

0 = rH�(u
?
�) = rh(u

?
�) + �rVy(u

?
�).

Hence, the fact that h is �-Lipschitz implies that

krVy(u
?
�)k⇤ =

1

�
krh(u?

�)k⇤ 
�

�
.

Finally, the 1-strong-convexity of x 7! Vy(x) and the fact that its minimal value of 0 is obtained at y implies that

Vy(u
?
�) = Vy(u

?
�)� Vy(y) 

1

2
krVy(u

?
�)k

2
⇤ 

�2

2�2

as required.

The next lemma justifies the lower bisection limit �min.

Lemma 5.10. (Lower bisection limit) Let �min = �0 = 1 and u?
�min

:= argminx2X H�min(x) and assume that

X and V satisfy a ⌧ -triangle inequality with ⌧ � 4. Under the event E0(�/8), if Vy(z(0)) 
⇢2

64⌧ then Vy(u?
�min

)  ⇢2

16

and if Vy(z(0)) �
⇢2

64⌧ then Vy(u?
�min

) � ⇢2

120⌧2 .

Proof. Immediate from Lemmas 5.7 and 5.8.

Finally, we bound the Lipschitz constant of � 7! Vy(u?
�) and apply the above lemmas to conclude that

�-Bisection returns a valid points within eO(1) iterations.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Proposition 5.1. In the setting of Theorem 5.1, under the event \Kmax
k=0 Ek(�k/8), with Kmax = dlog2

9600⌧2�3

⇢3 e+1,

which happens with probabiltiy at least 1� �
2 , the �-Bisection procedure in Algorithm 2 successfully returns at

iteration K < Kmax a value �K such that Vy(u?
�K

)  ⇢2

16 and, if K � 1, also Vy(u?
�K

) � ⇢2

1024⌧4 .

Proof. We begin by noting that P
⇣
\
Kmax
k=0 Ek(�k/8)

⌘
� 1� �

2 by Lemma 5.3 and the union bound.

Next, Lemma 5.10 establishes the claims of the proposition in the edge case we return with K = 0.
Moving on to the main case we return with K � 1. If also K < Kmax then Lemma 5.7 guarantees that the

claim Vy(u?
�K

) 2
⇥ ⇢2

1024⌧4 ,
⇢2

16

⇤
holds. It therefore remains to argue that the bisection does indeed terminate in

less than Kmax steps. Let �0,�00
2 (�min,�max] satisfy Vy(u?

�0) = ⇢2

100⌧2 and Vy(u?
�00) = ⇢2

120⌧2 . By Lemmas 5.8

to 5.10, when \Kmax
k=0 Ek(�k/8) holds then [�0,�00] ✓ [�min,�max] is an invariant of the bisection and moreover the

bisection terminates if we query �K 2 [�0,�00]. Since the bisection the search interval at every step, it must return
in log2

�max��min
�00��0 steps. We have �max � �min 

16⌧�
⇢ , so to conclude the proof we need only lower bound �00

� �0.
To do so, we write

⇢2

600⌧2
= Vy(u

?
�0)� Vy(u

?
�00) =

Z �0

�=�00
(Vy(u

?
�))

0d� =

Z �0

�=�00
hrVy(u

?
�),r�u

?
�i d�

(i)
= �

Z �0

�=�00

D
rVy(u

?
�),

�
r

2h(u?
�) + �r2Vy(u

?
�)
��1
rVy(u

?
�)
E
d�

(ii)
 (�00

� �0)
�2

(�0)3
 (�00

� �0)�2.

Here for (i) we use rh(u?
�) + �rVy(u?

�) = 0 for all � 2 [�0,�00], which implies r�u?
� = �(r2h(u?

�) +
r

2Vy(u?
�))

�1
rVy(u?

�) by taking derivatives with respect to � and rearranging terms (we assume here that
h and r are twice di↵erentiable; this is again without loss of generality due to smoothing arguments). For (ii)

we reuse krVy(u?
�)k 

�
� from the proof of Lemma 5.9. The above display implies that �00

� �0
�

⇢2

600⌧2�2 and

therefore our choice of Kmax guarantees that log2
�max��min

�00��0 < Kmax, concluding the proof.

5.4 Proof of Theorem 5.1.

Proof. We prove each part of the proposition in turn.
For part 1, let K  Kmax be the final iteration of �-Bisection and let �K be its output. Recall

from Corollary 5.2 that, for � = �K , input parameters ⌘ = ⇢2�
C·log(16/�)⌧5�2 , T = 4⌧

⌘� , the outputs of LI-MD

satisfy

E�h(z)� h(u) 

✓
�+

1

⌘T

◆
�[Vy(u)� Vw(u)] + ⌘�2

�

✓
�

⌧
�

1

⌘T

◆
Vy(u

?
�)

+

✓
p
2R�+

✓
�+

1

⌘T

◆
R2

◆
P�(OutOfBound = True),

where E� and P� denote conditional expectation over random variable � = �K .
Dividing both sides by c = �+ (⌘T)�1

� 1 and taking total expectation we have

Eh(z)� h(u)

c

 E[Vy(u)� Vw(u)] + E
"
⌘

�
�2
�

�
⌧ �

�
4⌧

�+ �
4⌧

Vy(u
?
�) +

 p
2R�

�+ (⌘T)�1
+R2

!
P�(OutOfBound = True)

#

 E[Vy(u)� Vw(u)] +
⇢2

C log(16/�)⌧5
�

3

5⌧
EVy(u

?
�) + (

p
2R�+R2)P(OutOfBound = True).(5.30)

Proposition 5.1 implies that Vy(u?
�) �

⇢2

1024⌧4 {� 6=�min} holds with probability at least 1� �
2 . Therefore, since

Bregman divergences are nonnegative,

EVy(u
?
�) �

✓
1�

�

2

◆
⇢2

1024⌧4 {� 6=�min} �
⇢2

211⌧4 {� 6=�min}.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

By our choices of ⌘ and T , Lemma 5.5 tells us that Vy(u?
�) 

⇢2

16 and E�(�/8) imply that OutOfBound = False.
Therefore,

P�(OutOfBound = True)  P�(¬E�(�/8)) + n
Vy(u?

�)>
⇢2

16

o 
�

8
+ n

Vy(u?
�)>

⇢2

16

o,

where the final inequality used Lemma 5.3. Taking expectation and invoking Proposition 5.1 again, we find that

P(OutOfBound = True) 
�

8
+ P

✓
Vy(u

?
�) >

⇢2

16

◆


�

8
+

�

2
 �.

Substituting the bounds on EVy(u?
�) and P(OutOfBound = True) into Equation (5.30), noting that c � 2 only

when � 6= �min and recalling that �  ⇢2

214(
p
2R�+R2)⌧5 , we obtain the required ball-restricted proximal oracle

bound (5.16). Additionally, we note for all possible choices of returned c it satisfies c  2�max = 32⌧�
⇢ with

probability 1, giving the claimed value of cmax.
Part 2 of the proposition is immediate from the definition of LI-MD, which always outputs points with distane

at most ⇢ from y.

For part 3 we use Lemma 5.6 with u = u?
�, which gives for all k  K that

P
t2[T̂k]

kx(k)
t � x(k)

t�1k  2 log(2Tk)⇢.
Summing these bounds gives

KX

k=0

X

t2[T̂k]

kx(k)
t � x(k)

t�1k  2
KX

k=0

log(2T̂k)⇢  2⇢Kmax log
4C log(16K2

max/�)⌧
6�2

⇢2
.

Finally, part 4 follows from the setting of the Tk and Kmax, since the total number of gradient queries and

mirror descent steps is at most
⇣PKmax

k=0 Tk

⌘
.

6 Matrix-vector maintenance data structures

In this section we formally define an `p-matrix-vector maintenance data structures (abbreviated MVMp) and
provide e�cient algorithms for them for p 2 {1, 2}. An MVMp approximates the sequence {Axt} to additive ✏
error in `1, as long as the sum of the `p norm of the movements �t = xt+1 � xt does not exceed a given bound
R. The data structure is formally defined below in Definition 6.1; for a brief description of these data structures
and how they fit into our overall method, see Section 2.2. In the definition of an MVMp, and throughout this
section, for any p � 1 we let p⇤ � 1 be such that 1

p + 1
p⇤ = 1; if p = 1 then p⇤ =1. Furthermore, for any matrix

A 2 Rn⇥d with rows a1, . . . , an 2 Rd and p � 1 we let

kAkp!1 := sup
x2Rn,kxkp=1

kAxk1 = max
i2[n]
kaikp⇤ .

Definition 6.1. (Matrix-vector maintenance) We call a data structure an `p-matrix-vector maintenance
data structure (MVMp) if it supports the following operations:

• init(A 2 Rn⇥d, x0 2 Rd, R 2 R>0, ✏ 2 R>0): initializes the data structure with a matrix A with kAkp!1  1,
initial point x0, movement range R, and accuracy ✏  R/2.4 Sets t 0.

• query(�t 2 Rd): sets xt+1 xt +�t, and t t+ 1 and then outputs yt 2 Rn (or the coordinates which
changed from the previous output if that is cheaper) with kyt �Axtk1  ✏ provided that

P
i2[t]k�ikp  R.

Our main results for designing MVMp’s are encapsulated in the following theorem.

Theorem 6.1. (Matrix-vector maintenance) For both p = 1 and p = 2 and any � > 0, there is a MVMp

(Definition 6.1) that implements init and T query operations with probability 1�� (against an oblivious adversary)
in total time

O

0

@
X

t2[T]

nnz(�t) +

✓
nnz(A) logp�1

✓
R

✏

◆
+ d ·

R

✏

◆
logp�1

✓
nR

✏�

◆
+ n

✓
R

✏

◆2

log

✓
nR

✏�

◆1

A .

4
This can always be obtained by initializing the algorithm with a smaller value of ✏ or a larger value of R.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

The runtime in Theorem 6.1 is nearly linear in input size nnz(A)+
P

t2[T] nnz(�t) with an additive eO(d(R/✏))

and eO(n(R/✏)2) terms. When A is dense and R does not depend on T , this runtime considerably improves on the
⌦(ndT) cost of naively implementing the data structure by computing Axt exactly for each t 2 [T].

Our data structures have similar runtime complexity for both p = 1 and p = 2 (up to additional logarithmic
factors for p = 2), but potentially much smaller memory complexity for p = 2. As developed in the rest of this
section, our data structure for p = 1 needs to store the entire input matrix A. In contrast, our data structure
when p = 2 requires eO(d+ n(R/✏)2) space after initialization, which can be sublinear in nnz(A).

Approach and section organization. We prove Theorem 6.1 in two steps. First, in Section 6.1, we
consider the simpler problem of designing a data structure which supports preprocessing A and then outputting
`1 estimates for Ax for a single query x, under no movement bound assumptions. We call such a data structures
an `p-matrix-vector estimation data structure (abbreviated MVEp), and provide e�cient implementations for
p 2 {1, 2}. Our MVEp when p = 2 is then based on linear sketching and our data structure when p = 1 is based
on random sampling.

Second, in Section 6.2 we provide a general reduction from designing a MVMp to designing MVEp’s. In
particular, we provide an MVMp which carefully uses O(log(R/✏)) copies of an MVEp with di↵erent accuracy
parameters. We use these MVEp’s approximately maintain Axref

1 , . . . , Axref
k for k = O(log(R/✏)) reference points

xref
1 , . . . , xref

k . By carefully updating these reference points when the movement is su�cient and using our MVEp’s,
we prove Theorem 6.1.

Our runtimes for MVMp’s for p 2 {1, 2}, i.e., Theorem 6.1, are ultimately the same as the cost of initializing
our MVEp’s and performing a single query for a vector that has `p-norm at most R (up to logarithmic factors). In
other words, even though an MVMp needs to answer many queries, the computational cost we obtain is comparable
to answering a single query to a vector that has `p distance R from the initial point.

6.1 Matrix-vector estimation. We now formally define an MVMp data structure (Definition 6.2) and e�ciently
implement it for p 2 {1, 2}.

Definition 6.2. (Matrix-vector estimation) We call a data structure an `p-matrix-vector estimation data
structure (MVEp) if it supports the following operations (against an oblivious adversary):

• init(A 2 Rn⇥d, ✏ 2 R>0, � > 0): initialize the data structure with matrix A, accuracy parameter ✏, and
failure probability � > 0.

• query(x 2 Rd): outputs y 2 Rn such that ky �Axk1  ✏kAkp!1kxkp holds with probability at least 1� �
(for just this query).

Theorem 6.2. (`2-matrix-vector estimation) There is a MVE2 (Definition 6.2) that implements init(A, ✏, �)
for in time O((nnz(A) + d) log(n/�)) and subsequent query(x) operations in time O((nnz(x) + n✏�2) log(n/�)).

Proof. Our data structure is a natural application of CountSketch matrices [19]. We use that, from the literature on
CountSketch matrices (see e.g., [19, 37]), there exists a distribution, M, on matrices in Rs⇥d for s = O(✏�2 log(n/�)
that have the following properties:

• Q ⇠M can be computed in O(d log(n/�)) time and each column of Q has at most O(log(n/�))) non-zero
entries.

• There is a procedure decodeQ that given any input Qx and Qy for Q ⇠M drawn independently of x, y 2 Rd

outputs ↵ = decodeQ(Qx,Qy) with |↵� hx, yi |  ✏kxk2kyk2 in O(✏�2 log(n/�)) time with probability at
least 1� (�/n).

To implement init our data structure draws Q ⇠M and then computes yi = QA>
i: for all i 2 [n]. To implement

query(x) our data structure then outputs v 2 Rn with each vi = decodeQ(yi, Qx).
To see that our data structure is a MVE2 note that |vi �

⌦
A>

i: , x
↵
|  ✏kA>

i: k2kxk2 with probability at least
1� (�/n) by the properties of Q. Since kA>

i: k2  kAk2!1 for all i 2 [n] by applying union bound for this event
for all i 2 [n] we have the desired bound that kv �Axk1  ✏kAk2!1kxk2 with probability at least 1� �.

To bound the algorithm’s runtime, first note that computing Qx for any vector x can be implemented in
O(nnz(x) log(n/�)) just by considering the O(log(n/�))-sparse column of Q for each non-zero entry of x. The

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

runtime for init follows immediately from this and the time to compute Q. The runtime for query(·) then follows
by first computing Qx in time O(nnz(x) log(n/�)) and then considering the cost of n-invocations of decodeQ(·, ·).

Theorem 6.3. (`1-matrix-vector estimation) For p = 1 there is a MVE1 data structure (Definition 6.2)
that implements init(A, ✏, �) for A 2 Rn⇥d in time O(nnz(A)) and query(x) in time O(nnz(x) + n✏�2 log(n/�)).5

Proof. Our data structure is a straightforward application random sampling and a Cherno↵ bound. For any
a, x 2 Rd we let sample(a, x) be a procedure that outputs independent, random X 2 R by picking i 2 [d] with
probability proportional to |xi| and then outputting kxk1aj sign(xj), i.e., for any j 2 [n]

P(X = kxk1aj sign(xj)) =
|xj |

kxk1
, where sign(t) :=

8
><

>:

1 if t > 0

0 if t = 0

�1 if t < 0

.

By design, E[X] = ha, xi and by a Cherno↵ bound [see, e.g., 20] we have that for su�ciently large T =
O(✏�2 log(n/�)) and ↵ = 1

T

P
t2[T] sample(a, x) it is the case that |↵� ha, xi |  ✏kak1kxk1 with probability at

least 1 � (�/n). To implement init our data structure simply saves A, ✏, and R. To implement query(x) the
data structure then outputs v 2 Rn with each vi =

1
T

P
t2[T] sample(A

>
i: , x).

To see that our data structure is a MVE1 note that |vi � ha, xi |  ✏kA>
i: k1kxk1 with probability at least

1� (�/n) by the properties of Q. Since kA>
i: k1  kAk1!1 for all i 2 [n] by applying union bound for this event

for all i 2 [n] we have the desired bound that kv �Axk1  ✏kAk1!1kxk1 with probability at least 1� �.
To bound the algorithm’s runtime, first note that, as discussed in Section 3, we assumed that we are in a

computation model where can process the vector |x| in O(nnz(x)) time to support sampling i / |xi| in time O(1).
Leveraging this, we have that with O(nnz(x))) time spent all subsequent sample(·) operations can be performed
in O(1). Since there are nT = O(n✏�2 log(n/�)) sample operations the data structure has the desired running
time.

6.2 From estimation to maintenance. Now that we have established e�cient MVEp’s for p = 2 (Theorem 6.2)
and p = 1 (Theorem 6.3), here we use these data structures to prove our main result on MVMp’s (Theorem 6.1).

We provide a general reduction from MVMp to MVEp. In particular, we provide a MVMp in Algorithm 4
that uses k = O(log(R/✏)) MVEp’s for di↵erent accuracy parameters. In Theorem 6.4 we prove that for any
such implementation and choice of input parameters ↵ 2 �k, Algorithm 4 is indeed a MVMp and we analyze its
runtime. We then prove Theorem 6.1 by setting ↵, using our MVEp implementations and applying an additional
runtime improvement technique.

Designing and analyzing the data structure. Before providing these results and wrapping up the section,
here we provide some additional intuition and information regarding Algorithm 4. In addition to the standard
input for a MVMp and � > 0, the data structure is specified by k MVEp’s and parameters ↵ 2 �k. In init(·), the
data structure initializes each MVEp —denoted D1, . . . , Dk—and stores k+2 reference vectors xref

0 , . . . , xref
k+1 2 Rd

all initialized to x0 as well as yref0 , . . . , yrefk+1 2 Rn all initialized to Ax0. The data structure maintains the invariant
that xref

0 = xt and kxref
i � xref

i�1kp  ✏ · 2i�2 for all 1  i  k + 1. It uses this invariant to e�ciently maintain that
yrefi ⇡ Axref

i . It then holds that, at any given time, yref1 is a valid response to query(·).
The challenge in designing and analyzing Algorithm 4 is then to maintain these invariants, bound the error

in setting yref1 to be the response to query(·), and analyzing the runtime. Maintaining that xref
0 = xt and

kxref
i � xref

i�1kp  ✏ · 2i�2 is straightforward; after each query(·) we simply set xref
0 = xt and then update xref

i = xt

all i 2 [j] for the smallest j for which this su�ces to preserve the invariant. Due to the choice of 2i�2 and the bound
on how much the xt can change, it is straightforward to show that xref

i for i � 1 changes at most O((R/✏)2�i)
times via this procedure. Furthermore, to update yrefi for all such i 2 [j] we simply estimate A(xi � xi+1) using
Di.query(·) and add this estimate to yrefi+1. For appropriate choice of accuracies in the Di (adjusted by the ↵i)
we show this algorithm works as desired. Further, by choosing ↵ and the accuracies, we get a tradeo↵ between
the cost of each Di.query(·) and the number of times it is invoked. Putting these pieces together and carefully
reasoning about computational costs then yields our result.

5
Each init can actually be implement in time O(0), i.e., no initialization is required, provided that looking up entries A and the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 4: `p matrix-vector maintenance meta-data structure

Input: Parameter p � 1, � > 0, and ↵ 2 �k

1 State: A 2 Rn⇥d, x0 2 Rd, R 2 R>0, ✏ 2 R>0, � > 0
2 State: Current vector xt 2 Rd, count t 2 R�0, and parameter k 2 Z>0

3 State: `p matrix-vector estimation data structures, D1, . . . , Dk // see Definition 6.2

4 State: Reference vectors xref
0 , . . . , xref

k+1 2 Rd and yref0 , . . . , yrefk+1 2 Rn
// kxref

i � x
ref
i�1kp  ✏ · 2i�2

5 function init(A 2 Rn⇥d, x0 2 Rd, R 2 R>0, ✏ 2 R>0)
6 Save A, x0, R, and ✏ as part of data structure’s state
7 t 0 and k dlog2(dR/✏e)e+ 1
8 xref

i x0 and yrefi Ax0 for all i 2 {0} [[k + 1]
9 Set ✏i ↵i2�i and call Di.init(A, ✏i, �̄) for �̄ �✏/R and all i 2 [k]

10 function query(�t 2 Rd)
11 xt+1 xt +�t and xref

0 xt+1 and then t t+ 1
12 Let j be the minimum i 2 [k + 1] such that kxt � xref

i kp  ✏ · 2i�2

13 for i 2 {j � 1, . . . , 1} do xref
i xref

0 and then yrefi Di.query(xref
i � xref

i+1) + yrefi+1

14 return yref1

Theorem 6.4. (Reducing Matrix Vector Maintenance to Estimation) Algorithm 4 is an `p-matrix-
vector maintenance data structure (Definition 6.1). If the runtime for each Di.init(A, ✏i, �i) is Tinit(i) and
the runtime for each subsequent Di.query(·) is Tquery(i) then Algorithm 4 can implement init and T query
operations in total time

O

0

@nnz(A) + d ·
R

✏
+

X

t2[T]

nnz(�t) +
X

i2[k]

✓
Tinit(i) +

R

✏ · 2i
· [Tquery(i)]

◆1

A .

Proof. We begin by showing that kxt � xref
k+1kp  ✏ · 2k�1 in each execution of Line 12 and therefore the j on

Line 12 is well-defined. To see this, note that in each execution of Line 12 we have

(6.31) kxt � x0kp =

����
X

i2[t]

(xi � xi�1)

����
p



X

i2[t]

kxi � xi�1kp =
X

i2[t]

k�ikp  R .

Since ✏ · 2k�1
� ✏ · 2log2(R/✏) = R so long as xref

k+1 = x0 then kxt � xref
k+1kp  ✏ · 2k�1. However, xref

k+1 = x0 is set in
init and then never updated (since i  k is on Line 13) and the claim follows.

Leveraging that j is well-defined on Line 12, we show that before and after each call to query(·),
kxref

i � xref
i�1kp  ✏ · 2i�2 for all i 2 [k]. This invariant holds after init as each xref

i is initially set to x0.
Next, suppose the invariant holds before a call query(·). xref

i are only changed on Line 13 and for i  j � 1,
in which case they are set to xref

0 . However, kxref
0 � xref

j kp  ✏ · 2j�2 by the definition of j (Line 13) and that

j is well-defined. Therefore, after the call to query(·) the invariant holds since kxref
j�1 � xref

j k  ✏ · 2j�2 and

kxref
i � xref

i+1k = 0  ✏ · 2i�2 for all i 2 [j � 2].
Next, we show that for all i 2 [k], throughout the use of Algorithm 4 as an MVMp, Di.query(·) is called

on Line 13 at most R✏�12�(i�2) times. Whenever Di.query(·) is called on Line 13 it must be the case that
kxt � xref

i kp > ✏ · 2i�2 (as otherwise j  i by the definition of j on Line 12). Let v0, ..., vL denote the sequence of
di↵erent xref

i vectors set on Line 13 (where v0 = xref
0); we have just argued that kv` � v`�1kp > ✏ · 2i�2 for ` 2 [L].

Further, since the v` are a subsequence of the xt, triangle inequality implies that

R �
X

t2[T]

kxt � xt�1kp �

X

`2[L]

kv` � v`�1kp > L · ✏ · 2i�2 .

values of ✏ and R can all be performed in O(1) during query(·).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Since Di.query(·) is invoked L times, the claim follows.
Leveraging the previous properties, we next establish that with probability at least 1� � before and after each

call to query(·), we have that kyrefi �Axref
i k1 

Pk�1
j=i

↵i✏
2 

✏
2 for all i 2 [k + 1]. By the preceding paragraph,

we know that the total umber of matrix-vector estimation queries on Line 13 is at most

X

i2[k]

R

✏ · 2i�2


R

2✏

1X

i=0

1

2i
=

R

2✏
.

Further, by the definition of a MVEp (Definition 6.2) and by the union bound with probability at least
1� (�̄R/(2✏)) � 1� � every call to Di.query(xref

0 � xref
i+1) on Line 13 outputs a vector zi where

kzi �A(xref
i � xref

i+1)k1  ✏ikAkp!1kx
ref
i � xref

i+1k1 
✏

2
· ↵i

where we used the definition of ✏i, that kAkp!1  1 by assumption and that kxref
i � xref

i+1k  ✏ · 2i�1 in the
last inequality. Consequently, with probability 1� �, before and after each call to query(·) we have that for all
i 2 [k � 1],

kyrefi �Axref
i kp  kzi �A(xref

i � xref
i+1)kp + ky

ref
i+1 �Axref

i+1kp 
✏ · ↵i

2
+ kyrefi+1 �Axref

i+1kp .

The claim then follows by induction and the facts that kyrefk+1 � Axref
k+1k = 0 (they are never changed after

initialization) and R✏�12�(k�2) < 1.
We now have everything necessary to prove that Algorithm 4 is a MVMp (Definition 6.1). Note that with

probability 1�� after each call to query(·) we have argued that kyrefi �Axref
i kp 

✏
2 and that kyref0 �y

ref
1 kp  ✏ ·2�1.

Consequently,

kyref1 �Axtkp = kyref1 �Axref
0 kp  ky

ref
1 �Axref

1 kp + kA(xref
1 � xref

0)kp 
✏

2
+ kAkp!1kx

ref
1 � xref

0 kp  ✏ .

To complete the proof, we need to bound the data structure’s runtime. Note that init can be implemented in
time O(nnz(A) +

P
i2[k] Tinit(i)) by simply performing the operations (and saving multiple copies of vectors and

matrices with pointers as needed). Next, note that changes to xt, xref
0 , and xref

0 � xref
1 due to xref

0 changing can
be computed in O(

P
t2[T] nnz(�t)) time. With this, it is possible to keep track of the changes to kxref

0 � xref
1 kp

due to xref
0 changing in O(

P
t2[T] nnz(�t)) time as well. Whenever j > 1 in Line 12, if we spend O(dj) time to

implement Line 12 and O(d) plus the Di.query(·) costs in each iteration of Line 13 then the total additional cost
of query(·) over all invocations is

O

0

@d+ k +
X

i2[k]


R

✏ · 2i
· [Tquery(i)] + d

�1

A = O

0

@d ·

⇠
R

✏

⇡
+ k +

X

i2[k]

✓
R

✏ · 2i
· [Tquery(i)]

◆1

A .

provided that only changes to the output of query(·) are reported.

We conclude the section by proving Theorem 6.1, the main result that we use in other sections.

Proof of Theorem 6.1. Apply Theorem 6.4 using Theorem 6.2 and Theorem 6.3 respectively. Using these algorithms
for all i 2 [k]

Tinit(i) = O

✓
(nnz(A) + d) logp�1

✓
nR

✏�

◆◆
and Tquery(i) = O

✓
d logp�1

✓
nR

✏�

◆
+ n✏�2

i log

✓
nR

✏�

◆◆
.

Next, to optimize the contribution of the ✏i terms to to the final runtime, pick ↵i / 2i/3, i.e. ↵i = 2i/3/(
P

j2[k] 2
j/3).

Using that ✏i = 2�i↵i this yields that

X

i2[k]

1

2i
·
1

✏2i
=

X

i2[k]

2i

↵2
i

=

0

@
X

i2[k]

2i/3

1

A
3

=

✓
2(k+1)/3

� 1

21/3 � 1

◆3

= O(2k) = O

✓
R

✏

◆

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

where in the last step we used the definition of k. Combining with the facts that
P

i2[k]
R
✏2i = O(R✏) and

k = O(log(R/✏)) yields that

X

i2[k]

Tinit(i) = O

✓
(nnz(A) + d) logp�1

✓
nR

✏�

◆
log

✓
R

✏

◆◆
and

X

i2[k]

R

✏ · 2i
· [Tquery(i)] = O

d ·

R

✏
logp�1

✓
nR

✏�

◆
+ n

✓
R

✏

◆2

log

✓
nR

✏�

◆!
.

The result for p = 2 then follows via Theorem 6.4 and the log(R/✏) = O(R/✏).
To obtain the result for p = 1 we proceed identically and add one further improvement on the algorithm’s

implementation. In the case of p = 1 that rather spending O(nnz(A) log(R/✏)) time in each Di.init(·) we can
simply save the matrix once and use it for each Di. This removes the logarithmic factors on the nnz(A) terms in
the runtime for p = 1 and yields the desire result.

Even though we only use Algorithm 4 to prove Theorem 6.1 and in turn only apply Theorem 6.1 in a restricted
set of settings, we provide the more general algorithm and analysis as it may be useful in additional settings. In
particular, we allowed ↵ to be a parameter because if we were in a setting where the runtime of each Di.query(·)
had a di↵erent dependence on ✏, e.g., ✏�1 rather than ✏�2, then other configurations of ↵ might be preferable, e.g.,
uniform with ↵i =

1
k . The particular choice of ↵i / 2i/3 in the proof of Theorem 6.1 improves over ↵i =

1
k by

logarithmic factors.
Note that, with more careful analysis, it may be possible to improve the dependence on d in Theorem 6.1,

potentially at the cost of additional logarithmic factors. The current dependence arises by accounting for at least d
time whenever j > 1 on Line 12. However, in the case that �t are sparse one could instead maintain the di↵erence
from xt to each xref

i and seek faster implementations of Di.query(·) provided that the input changes sparsely. We
do not pursue such an improvement for simplicity and since the term proportional to d does not a↵ect our final
runtimes.

7 E�cient gradient estimation via matrix-vector maintenance

In this section, build upon the data structures developed in the previous section to provide an e�cient stochastic
gradient oracle for the “softmax” approximation of the original objective. Recall that the “softmax” of functions
f1, . . . , fn is

fsmax(x) = ✏0 log

0

@
X

i2[n]

exp

✓
fi(x)

✏0

◆1

A ,

and rfsmax(x) =
X

i2[n]

pi(x)rfi(x) where pi(x) =
exp(fi(x)/✏0)P

i2[n] exp(fi(x)/✏
0)
.

Throughout this section we assume that each fi is Lg-smooth and Lf -Lipschitz.
Algorithm 5 provides an unbiased estimator of rfsmax(x) by leveraging a matrix-vector maintenance data

structure M. The algorithm takes as input a sequence of query points x1, . . . , xT that satisfies kxt � x0k  r
and

P
tT kxt � xt�1k  r0 for r, r0 > 0 such that 1

2Lgr2  ✏0. It outputs a sequence of vectors G(x1), . . . ,G(xT)
such that (informally) E[G(xt) | M, x1, . . . , xt] = rfsmax(xt) for all t  T with high probability. To compute
these estimates the algorithm requires, with high probability, eO(n+ T) individual function value and gradient
calculations, as well as eO

�
(n+ T)d+ d(Lfr0/✏0) + n(Lfr0/✏0)2

�
additional runtime. We state this guarantee in

full detail in the following.

Theorem 7.1. (Softmax gradient estimator) Let p 2 {1, 2} and let {fi}i2[n] be Lg-smooth and Lf -Lipschitz
with respect to k·kp. For all t 2 [T] assume that input xt to Algorithm 5 is a (deterministic) function of the
previous outputs G(x1), . . . ,G(xt�1), and that kxt � x0kp  r and

P
tT kxt � xt�1k  r0 hold for parameters

r, r0 > 0 such that 1
2Lgr2  ✏0 and ✏0  Lfr0/2. Let Ft be the filtration induced by all the random bits Algorithm 5

draws up to iteration t and all those that may be used by M. Then for any error tolerance � 2 (0, 1) there exists
event E such that the following hold:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 5: Softmax gradient estimator

Input: {fi}i2[n], query sequence {xt}tT such that xt is a function of the previous outputs
G(x1), . . . ,G(xt�1) (i.e., x0 and x1 do not depend on any outputs).

Parameters: Softmax tolerance ✏0, movement bound r0, Lipschitz constant Lf , error tolerate � 2 (0, 1),
`p-matrix-vector maintenance data structure M.

1 Call M.init(A, 0, r0, ✏0

Lf
, �
2) where A = [1

Lf
rfi(x0)>]i2[n]

2 for t = 1, 2, · · · , T do
3 yt Lf · M.query(xt � xt�1) . maintain vector yt ⇡ LfA(xt � x0) = [hrfi(x0), xt � x0i]i2[n]

4 accepted False

5 while not accepted do

6 Draw i ⇠ exp
⇣

fi(x0)+[yt]i
✏0

⌘

7 With probability min
n
exp

⇣
fi(xt)�fi(x0)�[yt]i

✏0 � 2
⌘
, 1
o

8 yield it = i and G(xt) = rfit(xt)
9 accepted True

• We have P(E) � 1� �.

• When E holds we have E[G(xt) | Ft�1] = rfsmax(xt) for all t 2 [T].

• When E holds, Algorithm 5 makes O(n + T log(1/�)) queries of the form {fi(x),rfi(x)}, and requires
additional runtime

O

T

✓
d+ log

✓
1

�

◆◆
+

✓
nd logp�1

✓
Lfr0

✏0

◆
+ d

✓
Lfr0

✏0

◆◆
logp�1

✓
nLfr0

✏0�

◆
+ n

✓
Lfr0

✏0

◆2

log
nLfr0

✏0�

!
.

• With probability 1 we have kG(xt)kp?  Lf , where p⇤ is such that 1
p + 1

p⇤ = 1.

Proof. We prove the theorem by coupling Algorithm 5 to an “alternative” algorithm that uses M in a strictly
oblivious manner, and produces a potentially di↵erent sequence of indices i01, . . . , i

0
T , queries x

0
2, . . . , x

0
T and matrix-

vector estimates y0t = Lf · M.query(x0
t � x0

t�1). The alternative algorithm proceeds exactly like Algorithm 5,
except at every iteration it tests whether

(7.32) max
i2[n]

���[y0t]i � hrfi(x0), x
0
t � x0i

��� = Lf

��� 1
Lf

y0t �A(x0
t � x0)

���
1
 ✏0

holds. As long as this condition holds, the algorithm produces i0t using rejection sampling as in Algorithm 5
(and with the same random bits). If at any t  T the condition fails, the algorithm proceeds to directly draw
i0t ⇠ efi(x

0
t)/✏

0
at all subsequent iterations, ignoring the values of y0t. Thus, both algorithms produce identical

outputs G(x0
t) = G(xt) leading to identical queries x0

t = xt whenever Equation (7.32) holds for all t 2 [T].
For the alternative algorithm we have i0t ⇠ efi(x

0
t)/✏

0
for all t 2 [T], regardless of randomness in M. To see

this, note that by smoothness of the fi we have

����
fi(x0

t)� fi(x0)� hrfi(x0), x0
t � x0i

✏0

���� 
1
2Lgr2

✏0
 1

for all i 2 [n], by our assumptions that kx0
t � x0kp  r and 1

2Lgr2  ✏0. Consequently, when Equation (7.32) holds
we have ����

fi(x0
t)� fi(x0)� [y0t]i

✏0

����  1 +

����
hrfi(x0), x0

t � x0i � [y0t]i
✏0

����  2

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

for all i 2 [n]. Therefore, exp
⇣

fi(x
0
t)�fi(x0)�[y0

t]i
✏0 � 2

⌘
 1 and (by standard analysis of rejection sampling) we have

P(i0t = i) / exp
⇣

fi(x0)+[y0
t]i

✏0

⌘
· exp

⇣
fi(x

0
t)�fi(x0)�[y0

t]i
✏0

⌘
= efi(x

0
t)/✏

0
. As a consequence, the alternative algorithm’s

outputs satisfy E
⇥
G(x0

t)
�� F 0

t�1

⇤
= rfsmax(x0

t) for all t  T by definition of the softmax function.
Since the alternative algorithm’s queries are oblivious to the data structure’s randomness, we may apply6

Theorem 6.1 to conclude that, with probability at least 1� �
2 we have

��� 1
Lf

y0t �A(x0
t � x0)

���
1


✏0

Lf
for all t  T ,

implying that the condition (7.32) holds for all t  T and therefore both algorithms produce identical outputs.
This defines a probability � 1� �

2 event under which E[G(xt) | Ft�1] = rfsmax(xt) for all t  T , giving the first
part of the theorem.

For the second part of the theorem, we note that smoothness and the condition (7.32) also imply that the

rejection probability exp
⇣

fi(x
0
t)�fi(x0)�[y0

t]i
✏0 � 2

⌘
� e�4. Therefore, the expected number of rejection sampling

steps in the alternative algorithm is O(1). By standard Cherno↵ bounds [see, e.g., 20], with probability at least
1� �

2 the alternative algorithms makes O(T log 1
�) rejection sampling steps throughout. Thus, by a union bound

we have that with probability 1� �, Algorithm 5 and the alternative algorithm are identical, with each making
O(T log 1

�) rejection sampling steps. Each rejection sampling step costs O(1) function and gradient evaluations,
and to construct the matrix A we require n additional evaluations. Additionally, given the computational model
of this paper, with O(n) preprocessing we can implement each random sampling of i in O(1) time as discussed in
Section 3. Altogether, this brings the overall cost to O(n+ T log 1

�) and the bound on additional runtime follows
immediately from Theorem 6.1.

Finally, the third part of the theorem is immediate from noting that G(xt) = rfit(xt) for some it 2 [n] and
therefore kG(xt)kp⇤  Lf by the Lipschitz continuity of the fi.

8 Runtime bounds

We now put together the pieces constructed in the previous sections to obtain runtime bounds for minimizing the
maximum of convex functions. In Section 8.1 we study general convex functions, in Section 8.2 we specialize our
results to linear functions, and in Section 8.3 we specialize them further to the problem of finding a minimum
enclosing ball.

8.1 General convex functions. Recall the problem

(8.33) minimize
x2X

8
<

:fmax(x) := max
y2�n

X

i2[n]

yifi(x)

9
=

;.

We consider the problem in two di↵erent settings, which we call the ball setup or the simplex setup, formally
defined as follows.

Definition 8.1. (Ball setup) In the ball setup, the norm k·k is the Euclidean norm k·k2, the domain X is a
closed and convex subset of the unit Euclidean ball Bd = {x 2 Rd

| kxk2  1}, and the Bregman divergence is
Vx(y) =

1
2ky � xk22. Furthermore, we let X⌫ := X for all ⌫ � 0.

Definition 8.2. (Simplex setup) In the simplex setup, the norm k·k is the 1-norm k·k1, the domain X is a
closed and convex subset of the probability simplex �d = {x 2 Rd

�0 |
P

i2[d] xi = 1}, and the Bregman divergence is
Vx(y) =

P
i2[d] yi log

yi

xi
. Furthermore, we let X⌫ := {x 2 X | xi � ⌫, 8i 2 [d]} for all ⌫ � 0.

We introduce the set X⌫ in the definitions above in order to satisfy the ⌧ -triangle in the simplex setup;
see Definition 5.1 and Example 5.2.

The following is our main result concerning the complexity of solving the problem (8.33).

Theorem 8.1. Consider the problem (8.33) in either the ball or simplex setups (Definitions 8.1 and 8.2,
respectively), where each function fi is convex, Lf -Lipschitz, and Lg-smooth with respect to k·k. Let ✏ > 0,

6
The matrix A satisfies kAkp!1  1 since krfi(x0)kp⇤  Lf for all i 2 [n] by the Lipschitz continuity assumption.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

let ⌫ = ✏
4dLf

, and for initial point x0 2 X⌫ let maxx2X⌫ Vx0(x) 
1
2R

2. Then, Algorithm 1 with parameters

r 
q

✏
Lg logn , R, E0 = LfR, accuracy ✏

8 , ball oracle implementation Algorithm 2 and gradient oracle

implementation in Algorithm 5, return a point x such that

Efmax(x)� min
x?2X

fmax(x?)  ✏.

Let Teval be the time to compute fi(x),rfi(x) for any x 2 X and i 2 [n], and let Tmd be the time to
compute a mirror descent step of the form argminz2X⌫

{hg, zi+ �Vy(z) + Vx(z)} for any g 2 Rd and x, y 2 X . For

✏  min
n
LgR2, L2

f/Lg

o
and r = min

⇢q
✏

Lg logn ,
✏
p
Teval+d
Lf

�
with probability at least 9

10 , the algorithm has runtime

(8.34) eO

n(Teval + d)

✓
LgR2

✏

◆1/3

+ n

✓
(Teval + d)LfR

✏

◆2/3

+ (Teval + Tmd + d)

✓
LfR

✏

◆2
!
.

Proof. We establish the theorem in four steps: reducing the objective to softmax on a truncated domain, describing
the gradient oracle implementation, arguing the correctness of our methods, and finally bounding the runtime.

Reduction. We claim it su�ces to solve to ✏/4 additive error the problem

(8.35) minimize
x2X⌫

fsmax(x) where fsmax(x) = ✏0 log

0

@
X

i2[n]

exp

✓
fi(x)

✏0

◆1

A , ✏0 =
✏

2 log n
, ⌫ =

✏

4dLf
.

To see the claim is true, note we have |fsmax(x)� fmax(x)|  ✏/2 for all x 2 X and

min
x2X

fmax(x)  min
x2X⌫

fmax(x)  min
x2X

fmax(x) + ✏/4

due to Lf -Lipschitz continuity of f . Consequently, for any x̃ that is an ✏/4 approximate optimizer of the true
minimizer of (8.35), we have

fsmax(x̃)  min
x2X⌫

fsmax(x) + ✏/4  min
x2X⌫

fmax(x) + ✏/2 + ✏/4  min
x2X

fmax(x) + ✏/4 + ✏/2 + ✏/4.

This proves such x̃ is also an ✏-additive minimizer of the original problem (8.35). We therefore focus on solving
(8.35) to ✏/4 additive error.

Stochastic gradient oracle. At the t’th ball oracle call in the outer loop (Algorithm 1) we instantiate
a gradient estimator G for rfsmax using Algorithm 5 with initial point �t(vt), parameters r and r0 = eO(r),
and failure probability � = ✏

LfR
·

1
100Touter

with Touter = eO((R/r)2/3) such that Theorem 4.1 guarantees (via

Markov’s inequality) that Algorithm 1 requires at most Touter iterations with probability at least 99
100 . Since

Theorem 7.1 only guarantees that this gradient estimator is unbiased for rfsmax with high probability, we repeat
the coupling argument from the proof of Theorem 7.1. Namely, we consider “alternative” completely unbiased
gradient estimators that with probability at least 1� � produce identical outputs to Algorithm 5. We then analyze
an alternative algorithm with the alternative estimators, and use the fact that with probability at least 1� �Touter

it produces the same output as our algorithm. By our choice of � and Touter, we have that with probability at
least 1� ✏

50LfR
the actual and alternative gradient estimators produce identical outputs for the entire duration of

the algorithm.
Correctness. For the ball and simplex setups, our chosen Bregman divergence Vx(y) is 1-strongly convex

with respect to the `2 or `1 norm, respectively. The corresponding divergence also satisfies a ⌧ -triangle inequality
(Definition 5.1) with ⌧ = e⇥(1). For the k’th out loop iteration, let us argue that the stochastic gradient queries
made the inner loop of Algorithm 2 satisfy the conditions of Theorem 7.1. Let G denote the estimator for
rfsmax defined above, and let Gk(x) = ak+1G(�k(x)) be the gradient estimator for hk defined in Algorithm 1
and let y = �(vk). Let x1, . . . , xT denote the sequence of queries to Gk made by Algorithm 2. Then Theorem 5.1
guarantees that kxt � vkk  ⇢ for all t 2 [T] and that

P
t2[T]kxt � xt�1k = eO(⇢). By design of Algorithm 1 we

have that �k(z)� �k(z0) =
r
⇢ (z � z0) and therefore the queries to G satisfy k�k(xt)� yk  r for all t 2 [T] and

P
t2[T]k�k(xt)� �k(xt�1)k = eO(r) = r0 as required by Theorem 7.1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

With the conditions of Theorem 7.1 satisfied, we have a nearly unbiased gradient estimator for fsmax, that
with probability at least 1 � ✏

50LfR
produce identical outputs to a completely unbiased gradient for the entire

duration of the algorithm, as discussed above. Theorem 5.1 then guarantees that (using the alternative gradient
estimator) Algorithm 2 implements a valid (⇢, �, cmax) restricted proximal oracle for ⇢ = e⇥(R2/3r1/3), � = eO(1)
and cmax <1. We may therefore apply Theorem 4.1 (with ✏! ✏/8) to conclude that with alternative gradient
estimator we output x0 such that

Efsmax(x
0)  min

x?2X⌫

fsmax(x?) +
✏

8
.

Letting x be the output of the algorithm using the actual gradient estimator, we have

Efsmax(x) = Efsmax(x
0) {x=x0} + Efsmax(x) {x 6=x0}

(i)
 Efsmax(x

0) + ELfkx� x0k {x 6=x0}
(ii)
 Efsmax(x

0) + LfR · P(x 6= x0)

(iii)
 min

x?2X⌫

fsmax(x?) +
✏

8
+ LfR ·

1

50LfR
 min

x?2X⌫

fsmax(x?) +
✏

4
,

due to the (i) Lipschitz continuity of fsmax, (ii) the definition of R, and (iii) the bounds on Ef(x0) and the
probability of x = x0 discussed above. This proves the correctness of our algorithm.

Complexity. By Theorem 4.1 and the discussion above, the outer loop (Algorithm 1) terminates in Touter =
eO(R2/3r�2/3) iterations with probability at least 99

100 . Each iteration of the outer loop performs O(1) operations
on d-dimensional vectors and makes one call to a ball restricted proximal oracle.

By Theorem 5.1, each restricted ball oracle call makes eO
�
�2/⇢2

�
calls to the gradient estimator, mirror descent

step computations, and d-dimensional vector arithmetic operations.7 Recalling that r0 = eO(r) and ✏0 = eO(✏),
Theorem 7.1 gives that, with probability at least 1� 1

100Touter
the runtime of a restricted oracle call is at most

Tinner = eO
✓
n
Lfr2

✏2
+ d

Lfr

✏
+ n(Teval + d) + (Teval + Tmd + d)

�2

⇢2

◆
.

By Theorems 4.1 and 7.1 we have that ⇢ = e⇥(R2/3r1/3) and � = eO
⇣

Lfr
2/3R4/3

✏

⌘
. Moreover, the number of

ball oracle calls is bounded by Touter = eO(R2/3r�2/3) with probability at least 99
100 . Substituting and applying a

union bound, we get that the total runtime of the algorithm is bounded by

Touter · Tinner = eO

n
L2
fR

2/3r4/3

✏2
+ n(Teval + d)

R2/3

r2/3
+ (Teval + Tmd + d)

L2
fR

2

✏2

!

with probability at least 9
10 . Substituting r = min

⇢q
✏

Lg logn ,
✏
p
Teval+d
Lf

�
yields the claimed bound (8.34) and

completes the proof.

8.2 Matrix games. In the special case where fi(x) = [A>x]i are linear functions, the ball and simplex setups
reduce to `p-`1 matrix games with p 2 {2, 1}, respectively. Formally, the problem definition is

(8.36) minimize
x2X


max
y2�n

x>Ay

�
, where X = �d for `1-`1 and X = Bd for `2-`1.

To simplify expressions, we assume that each fi(x) is 1-Lipschitz in k·kp, which is equivalent to assuming that

(8.37) kAkp!1 =

(
maxj,i |Aji| for `1-`1 games

maxi2[n] kA:ik2 for `2-`1 games  1

Our runtime guarantees are as follows.

7
Logarithmic factors in Theorem 5.1 depend on a bound for maxx,y2X⌫ Vx(y) whereas we only assumed maxy2X⌫ Vx0 (y)  R

2
/2.

However, a ⌧ -triangle inequality with ⌧ = eO(1) implies that maxx,y2X⌫ Vx(y) = eO(maxy2X⌫ Vx0 (y)).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Corollary 8.1. (Matrix games) For p 2 {1, 2}, consider the problem of `p-`1 matrix games (8.36) under the

assumption (8.37). For ✏ 2 (0, 1) and ⌫ = ✏/(4d), Algorithm 1 with parameters r = min(1,
p
d✏), R = eO(1), E0 = R,

accuracy ✏/4, ball oracle implementation in Algorithm 2 and gradient oracle implementation in Algorithm 5, return
a point x such that

Emin
x2X


max
y2�n

x>Ay

�
� min

x?2X


max
y?2�n

x>
? Ay?

�
 ✏.

With probability at least 9
10 the runtime of the algorithm is

eO
✓
nd+ nd2/3

1

✏2/3
+ d

1

✏2

◆
.

Proof. We invoke Theorem 8.1 with Lf = 1 (by assumption) and Lg = 0 (since each function is linear). For

matrix games we have Teval = O(d). Let us also argue that Tmd = eO(d), recalling that Tmd is the time to find
w = argminw2X {hg, wi+ �Vy(w) + Vz(w)} for some y, z 2 X⌫ and g 2 Rd. In the ball setup we simply have

w = ⇧Bd

✓
z + �y � g

1 + �

◆
where ⇧Bd(x) =

x

max{1, kxk}

is the Euclidean projection onto Bd. Therefore, Tmd = O(d) in the ball setup.
In the (truncated) simplex setup X = �d

⌫ with some ⌫ 2 (0, 1/2d], we can implement the mirror descent

step as follows. Let ⇠ = z
1

1+� � y
�

1+� � exp(� 1
1+�g), where we use � to represent element-wise product. Let �

be a permutation of (1, . . . , d) such that ⇠�i is the i-th largest entry of ⇠ (breaking ties arbitrarily). Now define

↵i =
⌫
P

ji ⇠�j

1�⌫(d�i) (so that ↵iP
ji ⇠�j+↵i(d�i) = ⌫), and the cuto↵ index i0 2 [d] to be the largest i 2 [d] such that

⇠�iP
ji ⇠�j

�
⌫

1�⌫(d�i) . Such i0 2 [d] must be well-defined as the inequality is satisfied when i = 1. It is then

straightforward to verify that w 2 Rd such that for all i 2 [d]

wi =

(
⌫
↵i0

· ⇠�i if i  i0,

⌫ if i > i0

is the solution to the problem defining the mirror descent step. Computing ⇠ takes O(d) time, sorting it takes
O(d log d) time, and finding i0 and calculating w each take additional O(d) time, so overall Tmd = eO(d) in the
simplex setup.

Plugging Lf = 1, Lg = 0, and Teval, Touter = eO(d) into Equation (8.34) yields the claimed runtime bound.

8.3 Minimum Enclosing Ball. In this section, we apply our method to solving the minimum enclosing ball
problem, defined as follows. Given data points a1, . . . , an 2 Rd such that a1 = 0 and maxi2[n] kaik2 = 1, the goal
is to find the minimum radius R? ball containing all data points. That is,

(8.38)
1

2
R2

? = min
x2Rd

max
y2�n

fi(x) where fi(x) =
1

2
kx� aik

2
2.

The problem is also equivalent to an `2-`1 matrix game with a quadratic regularization term, but for our purpose
the natural formulation above is more convenient. Letting x? := argminx2Rd maxy2�n fi(x), it holds without
loss of generality that kx?k2  1 and R? 2 [12 , 1] (see Allen-Zhu et al. [2] for detailed explanation). Under these
assumptions, we obtain the following runtime guarantee.

Corollary 8.2. (minimum enclosing ball) Consider the problem (8.38) with a1 = 0 and maxi2[n]kaik2  1

(so that kx?k  1 and R? � 1/2). For any ✏ 2 (0, 1), there is an algorithm that makes eO(1) calls to Algorithm 1
with ball oracle implementation Algorithm 2 and gradient oracle implementation in Algorithm 5 and, with probability
at least 9

10 returns a point x such that
1

2
kx� x?k

2
2  ✏ ·R2

?

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

with total runtime
eO
⇣
nd+ nd2/3✏�1/3 + d✏�1

⌘
.

Proof. Let K = log2
4
✏ . We use Theorem 8.1 with fi(x) =

1
2kx� aik22 defined above, and boost its result to failure

probability 1
10K by repeatedly calling the algorithm eO(1) times, cutting it o↵ whenever it exceeds the runtime

bound, and selecting the best result in eO(nd) time. We apply this high-probability solver recursively, generating a
sequence of solutions x(0), . . . , x(K) that satisfies, with probability at least 9

10 ,

1

2
kx(k)

� x?k
2
2  2�(k+1)

 2�k2R2
? for all k  K,

so that x = x(K) satisfies 1
2kx� x?k

2
2  ✏ ·R2

? as required.

To generate x(0), . . . , x(K), we start with x(0) = 0, which satisfies 1
2kx

(0)
� x?k

2
2 

1
2  2R2

? by assumption.

To produce x(k) for k � 1 we apply our algorithm on with parameters Rk = 2�(k�1)/2, ✏k = 2�(k+1), Lg = 1 and
Lf = O(1) on the domain Xk =

�
x | kx� x(k�1)

k  2�(k�1)/2

, which contains x? by the inductive assumption

that kx(k�1)
� x?k2  2�(k�1)/2. The 1-strong-convexity of our objective function then guarantees (with the

appropriate probability) that 1
2kx

(k)
� x?k

2
2  ✏k = 2�(k+1), completing the induction. The runtime to produce

x(k) is

eO

n(Teval + d)

✓
R2

k

✏k

◆1/3

+ n

✓
(Teval + d)Rk

✏k

◆2/3

+ (Teval + Tmd + d)

✓
Rk

✏k

◆2
!

= eO
⇣
nd+ nd2/3 · 2k/3 + d · 2k

⌘
,

where the transition follows from substituting Rk, ✏k, and plugging in Teval = Tmd = O(d). Summing this over
k 2 [K] and recalling that 2K = O(1✏) yields the claimed runtime bound.

Acknowledgments

We thank Kfir Levy for suggesting the work [23] may be useful for ball oracle acceleration, and the anonymous
reviewers for their helpful feedback.

YC was supported in part by the Israeli Science Foundation (ISF) grant no. 2486/21 and the Len Blavatnik
and the Blavatnik Family foundation. YJ was supported in part by a Stanford Graduate Fellowship and the
Dantzig-Lieberman Fellowship. AS was supported in part by a Microsoft Research Faculty Fellowship, NSF
CAREER Award CCF-1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan Research
Fellowship.

References

[1] I. Adler. The equivalence of linear programs and zero-sum games. International Journal of Game Theory, 42:
165–177, 2013.

[2] Z. Allen-Zhu, Z. Liao, and Y. Yuan. Optimization algorithms for faster computational geometry. In
International Colloquium of Automata, Languages and Programming, 2016.

[3] H. Asi, Y. Carmon, A. Jambulapati, Y. Jin, and A. Sidford. Stochastic bias-reduced gradient methods.
Advances in Neural Information Processing Systems, 34, 2021.

[4] B. Axelrod, Y. P. Liu, and A. Sidford. Near-optimal approximate discrete and continuous submodular function
minimization. In Symposium on Discrete Algorithms, (SODA), 2020.

[5] P. Balamurugan and F. Bach. Stochastic variance reduction methods for saddle-point problems. In Advances
in Neural Information Processing Systems (NeurIPS), 2016.

[6] D. Blackwell. Large deviations for martingales. In Festschrift for Lucien Le Cam, 1997.

[7] J. H. Blanchet and P. W. Glynn. Unbiased Monte Carlo for optimization and functions of expectations via
multi-level randomization. In 2015 Winter Simulation Conference (WSC), pages 3656–3667, 2015.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

[8] S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, and A. Sidford. Complexity of highly parallel non-smooth convex
optimization. arXiv:1906.10655, 2019.

[9] S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, and A. Sidford. Near-optimal method for highly smooth convex
optimization. In Proceedings of the Thirty Second Annual Conference on Computational Learning Theory,
pages 492–507, 2019.

[10] B. Bullins. Highly smooth minimization of non-smooth problems. In Conference on Learning Theory, pages
988–1030, 2020.

[11] Y. Carmon and D. Hausler. Distributionally robust optimization via ball oracle acceleration. arXiv:2203.13225,
2022.

[12] Y. Carmon and O. Hinder. Making SGD parameter-free. In Conference on Learning Theory (COLT), 2022.

[13] Y. Carmon, Y. Jin, A. Sidford, and K. Tian. Variance reduction for matrix games. Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[14] Y. Carmon, A. Jambulapati, Q. Jiang, Y. Jin, Y. T. Lee, A. Sidford, and K. Tian. Acceleration with a ball
optimization oracle. In Advances in Neural Information Processing Systems, 2020.

[15] Y. Carmon, Y. Jin, A. Sidford, and K. Tian. Coordinate methods for matrix games. In Symposium on
Foundations of Computer Science (FOCS), 2020.

[16] Y. Carmon, A. Jambulapati, Y. Jin, and A. Sidford. Thinking inside the ball: Near-optimal minimization of
the maximal loss. In Conference on Learning Theory, 2021.

[17] Y. Carmon, D. Hausler, A. Jambulapati, Y. Jin, and A. Sidford. Optimal and adaptive Monteiro-Svaiter
acceleration. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[18] Y. Carmon, A. Jambulapati, Y. Jin, and A. Sidford. RECAPP: Crafting a more e�cient catalyst for convex
optimization. In International Conference on Machine Learning (ICML), 2022.

[19] M. Charikar, K. C. Chen, and M. Farach-Colton. Finding frequent items in data streams. In International
Colloquium of Automata, Languages and Programming, 2018.

[20] H. Cherno↵. A measure of asymptotic e�ciency for tests of a hypothesis based on the sum of observations.
The Annals of Mathematical Statistics, pages 493–507, 1952.

[21] K. L. Clarkson, E. Hazan, and D. P. Woodru↵. Sublinear optimization for machine learning. Journal of the
ACM (JACM), 59(5):1–49, 2012.

[22] M. B. Cohen, Y. T. Lee, and Z. Song. Solving linear programs in the current matrix multiplication time.
Journal of the ACM (JACM), 68(1):1–39, 2021.

[23] A. Cutkosky. Anytime online-to-batch, optimism and acceleration. In International Conference on Machine
Learning (ICML), 2019.

[24] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1953.

[25] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. E�cient projections onto the l 1-ball for learning in
high dimensions. In International Conference on Machine Learning (ICML), 2008.

[26] R. Frostig, R. Ge, S. Kakade, and A. Sidford. Un-regularizing: approximate proximal point and faster
stochastic algorithms for empirical risk minimization. In International Conference on Machine Learning
(ICML), 2015.

[27] A. V. Gasnikov, P. E. Dvurechensky, E. Gorbunov, E. A. Vorontsova, D. Selikhanovych, and C. A. Uribe.
Optimal tensor methods in smooth convex and uniformly convex optimization. In Proceedings of the Thirty
Second Annual Conference on Computational Learning Theory, pages 1374–1391, 2019.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

[28] M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approximation algorithm for matrix
games. Operations Research Letters, 18(2):53–58, 1995.

[29] O. Güler. New proximal point algorithms for convex minimization. SIAM Journal on Optimization, 2(4):
649–664, 1992.

[30] M. Ivgi, O. Hinder, and Y. Carmon. DoG is SGD’s best friend: A parameter-free dynamic step size schedule.
In International Conference on Machine Learning (ICML), 2023.

[31] B. Jiang, H. Wang, and S. Zhang. An optimal high-order tensor method for convex optimization. In Proceedings
of the Thirty Second Annual Conference on Computational Learning Theory, pages 1799–1801, 2019.

[32] S. Jiang, Z. Song, O. Weinstein, and H. Zhang. A faster algorithm for solving general lps. In S. Khuller and
V. V. Williams, editors, Proceedings of the Fifty-Third Annual ACM Symposium on the Theory of Computing,
pages 823–832. ACM, 2021.

[33] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Symposium on Theory of
Computing (STOC), pages 302–311, 1984.

[34] D. Kovalev and A. Gasnikov. The first optimal acceleration of high-order methods in smooth convex
optimization. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[35] G. Lan. Gradient sliding for composite optimization. Mathematical Programming, 159(1):201–235, 2016.

[36] G. Lan and Y. Ouyang. Accelerated gradient sliding for structured convex optimization. Computational
Optimization and Applications, 82(2):361–394, 2022.

[37] K. G. Larsen, R. Pagh, and J. Tetek. CountSketches, feature hashing and the median of three. In International
Conference on Machine Learning (ICML), 2021.

[38] Y. T. Lee and A. Sidford. E�cient accelerated coordinate descent methods and faster algorithms for solving
linear systems. In Symposium on Foundations of Computer Science (FOCS), pages 147–156, 2013.

[39] Y. T. Lee and A. Sidford. E�cient inverse maintenance and faster algorithms for linear programming. In
Symposium on Foundations of Computer Science (FOCS), 2015.

[40] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In Advances in Neural
Information Processing Systems (NeurIPS), 2015.

[41] M. Minsky and S. Papert. Perceptrons: An introduction to computational geometry. MIT Press, 1988.

[42] R. D. Monteiro and B. F. Svaiter. Iteration-complexity of a Newton proximal extragradient method for
monotone variational inequalities and inclusion problems. SIAM Journal on Optimization, 22(3):914–935,
2012.

[43] R. D. C. Monteiro and B. F. Svaiter. An accelerated hybrid proximal extragradient method for convex
optimization and its implications to second-order methods. SIAM Journal on Optimization, 23(2):1092–1125,
2013.

[44] H. Namkoong and J. C. Duchi. Stochastic gradient methods for distributionally robust optimization with
f -divergences. In Advances in Neural Information Processing Systems (NeurIPS), 2016.

[45] A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with Lipschitz
continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on
Optimization, 15(1):229–251, 2004.

[46] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic
programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

[47] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103:127–152, 2005.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

[48] Y. Nesterov. Dual extrapolation and its applications to solving variational inequalities and related problems.
Mathematical Programming, 109(2-3):319–344, 2007.

[49] Y. Nesterov. Lectures on convex optimization. Springer, 2018.

[50] R.-D. Reiss. Approximate distributions of order statistics: with applications to nonparametric statistics.
Springer science & business media, 2012.

[51] J. Renegar. A polynomial-time algorithm, based on Newton’s method, for linear programming. Mathematical
programming, 40(1-3):59–93, 1988.

[52] R. T. Rockafellar. Convex analysis. Princeton university press, 1997.

[53] S. Salzo and S. Villa. Inexact and accelerated proximal point algorithms. Journal of Convex analysis, 19(4):
1167–1192, 2012.

[54] S. Shalev-Shwartz and Y. Wexler. Minimizing the maximal loss: How and why? In International Conference
on Machine Learning (ICML), 2016.

[55] A. Sidford and K. Tian. Coordinate methods for accelerating `1 regression and faster approximate maximum
flow. In Symposium on Foundations of Computer Science (FOCS), 2018.

[56] C. Song, S. J. Wright, and J. Diakonikolas. Variance reduction via primal-dual accelerated dual averaging for
nonsmooth convex finite-sums. In International Conference on Machine Learning, 2021.

[57] C. Song, C. Y. Lin, S. Wright, and J. Diakonikolas. Coordinate linear variance reduction for generalized linear
programming. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[58] J. J. Sylvester. A question in the geometry of situation. Quarterly Journal of Pure and Applied Mathematics,
1(1):79–80, 1857.

[59] K. K. Thekumparampil, P. Jain, P. Netrapalli, and S. Oh. Projection e�cient subgradient method and
optimal nonsmooth frank-wolfe method. In Advances in Neural Information Processing Systems, 2020.

[60] J. van den Brand. A deterministic linear program solver in current matrix multiplication time. pages 259–278.
SIAM, 2020.

[61] J. van den Brand. Unifying matrix data structures: Simplifying and speeding up iterative algorithms. In
H. V. Le and V. King, editors, 4th Symposium on Simplicity in Algorithms (SOSA), pages 1–13. SIAM, 2021.

[62] J. van den Brand, Y. T. Lee, D. Nanongkai, R. Peng, T. Saranurak, A. Sidford, Z. Song, and D. Wang.
Bipartite matching in nearly-linear time on moderately dense graphs. In Symposium on Foundations of
Computer Science (FOCS), 2020.

[63] J. van den Brand, Y. T. Lee, A. Sidford, and Z. Song. Solving tall dense linear programs in nearly linear
time. In K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and J. Chuzhoy, editors, Proceedings of
the Fifty-Second Annual ACM Symposium on the Theory of Computing, 2020.

[64] J. Van Den Brand, Y. T. Lee, Y. P. Liu, T. Saranurak, A. Sidford, Z. Song, and D. Wang. Minimum cost flows,
MDPs, and `1-regression in nearly linear time for dense instances. In Symposium on Theory of Computing
(STOC), 2021.

[65] M. Vose. A linear algorithm for generating random numbers with a given distribution. IEEE Transactions on
Software Engineering, 17(9):972–975, 1991.

[66] M. Wang. Randomized linear programming solves the Markov decision problem in nearly linear (sometimes
sublinear) time. Mathematics of Operations Research, 45(2):517–546, 2020.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Related work.

	Technical overview
	Preliminaries.
	Increasing the ball size by linear approximation data structures.
	Accelerating entropy ball oracles.
	Implementing entropy-ball oracles.
	Putting it all together.

	Notation and conventions
	Non-Euclidean ball oracle acceleration
	Ball oracle implementation
	Divergences satisfying -triangle inequality.
	Analysis of alg:mirror-descent.
	Analysis of -Bisection.
	Proof of thm:oracle-impl.

	Matrix-vector maintenance data structures
	Matrix-vector estimation.
	From estimation to maintenance.

	Efficient gradient estimation via matrix-vector maintenance
	Runtime bounds
	General convex functions.
	Matrix games.
	Minimum Enclosing Ball.

