A Whole New Ball Game: A Primal Accelerated Method for Matrix Games and
Minimizing the Maximum of Smooth Functions

Yair Carmon* Arun Jambulapatif Yujia Jin* Aaron Sidford®

Abstract

We design algorithms for minimizing max;c, fi() over a d-dimensional Euclidean or simplex domain. When
each f; is 1-Lipschitz and 1-smooth, our method computes an e-approximate solution using O(ne_l/3 +e?)

gradient and function evaluations, and 6(7’16_4/ 3) additional runtime. For large n, our evaluation complexity is
optimal up to polylogarithmic factors. In the special case where each f; is linear—which corresponds to finding
a near-optimal primal strategy in a matrix game—our method finds an e-approximate solution in runtime

O(n(d/e)*? + nd + de~?). For n > d and e = 1/y/n this improves over all existing first-order methods. When

additionally d = w(ns/n) our runtime also improves over all known interior point methods.

Our algorithm combines three novel primitives: (1) A dynamic data structure which enables efficient
stochastic gradient estimation in small ¢» or ¢; balls. (2) A mirror descent algorithm tailored to our data
structure implementing an oracle which minimizes the objective over these balls. (3) A simple ball oracle
acceleration framework suitable for non-Euclidean geometry.

1 Introduction

Consider the optimization problem

(1.1) minimize{ maxa; = max 2 ' Ay p,
zeEX 1€[n] yEA™

where X C R? is closed and convex, A" is the probability simplex in n dimensions, and A € R**™ has columns
ai,...,a,. We consider two settings of X: (1) the ¢; setting where X C A™ and we measure distance with the
1-norm, and (2) the ¢5 setting where X is a subset of the unit Euclidean ball and we measure distance with the
Euclidean norm. The first setting encompasses finding an optimal strategy for one side of a matrix game, which is
sufficient for linear programming [24], [1]. The second setting includes important problems in machine learning
and computational geometry: hard-margin support vector machines [41] and minimum enclosing and maximum
inscribed ball [21].

Due to its fundamental nature, many algorithms have been developed to solve . The frontier of the
best performing algorithms comprises efficiently-implemented second-order interior point methods [22], 64] and
stochastic first-order methods [28| [21] [13]. We are interested in methods of the second type, which currently
obtain preferable runtimes as we fix the solution accuracy and let the problem dimensions n and d grow. The best
existing methods of this type jointly evolve the primal x and dual y variables via stochastic mirror descent; it not
clear if additional runtime improvements are possible with this approach.

In this work we adopt a different approach, and design a primal stochastic first-order method that evolves the
variable x by directly sampling from an (approximate) best-response distribution y at each step Our method

" *Tel Aviv University, ycarmon@tauex.tau.ac.il.
tUniversity of Washington, jmblpati@uw.edu.
fStanford University, yujiajin@stanford.edu.
§Stanford University, sidford@stanford.edu.
The “ball” in the title refers to ball oracle acceleration [14] at the heart of our results; no balls are placed into bins in this paper.
This paper is available as a preprint at https://arxiv.org/abs/2311.10886,
1t is not clear whether our method can efficiently extract the solution to the dual problem maximizey e An Minge x x| Ay without
simply swapping the role of y and z. Nevertheless, in many applications finding an approximately-optimal z suffices.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2311.10886

solves the more general problem

(1.2) minimize fmax(z) = {Ié%l)](filz) = max 2]yifi(x)]

where fi,..., fn are convex, Ly-Lipschitz, and Lg-smooth with respect to the norm of interest. The problem ([1.1))
corresponds to f;(z) = aj x and L, = 0.

B

Method fi, Vfi evaluation Additional runtime Simplex
complexity guaran-
tees?
2
Subgradient method n % - v
AGD on softmax [47] n LT - v
L,\%/? L
“Thinking inside the ball” [16] n(?f) + ﬁ(%) - X
1/2
AGD on linearization [49), [16] n(%) nd(n + d) L];}//,“LT’ X
L, \1/3 L\2 Iz
Proposed method n(j) + (Tf) nLgTQM v
1/3 1/2
Lower bound [16] n(%) + ﬁ(%) N/A X

Table 1. Complexity guarantees for solving the problem to € accuracy. Parameters n and d denote the
number of functions and domain dimensions, respectively, while Ly and Ly are the respective Lipschitz constants of
fi and V f;. Expressions in the table omit constant and polylogarithmic factors. We assume that each f; and Vf;
evaluation takes time €2(d) so that the “additional runtime” column only includes terms that are not dominated by
d times the evaluation complexity. For simplicity, we also assume that e < L, < Lfc /€. The final column indicates
whether the method has proven guarantees for the ¢ /simplex setting.

Runtime for Runtime for
Method _ 1
general parameters n>dand e = T
Stochastic primal-dual [28] [21] (n+d)e? n?
Exact gradient primal-dual |45, 48] nde~! n3/2d
Variance-reduced primal-dual [13] nd + \/nd(n + d)e™* n3/24'/?
Proposed method nd +n(d/e)?? +de=2 nt/3d/3
. . i max{n, d}* nv
Interior point [resp., 22] 64] nd + min{n, d}5/2 nd + d5/2

Table 2. Runtime bounds for solving the problem to € accuracy, omitting constant and polylogarithmic
factors. The bounds assume a unit Lipschitz constant, i.e., ||a;:||« < 1 for all 4, where the dual norm ||-||« is the
oo-norm in the ¢; setting and the 2-norm ins the 2 setting. 'To our knowledge the runtime bound nd + min{n, (1}5/2
is proven only in the ¢; setting.

Our methods builds upon previous work [16] 3, [L1] that develop ball oracles which approximately minimize
fmax in a small ball around a reference point, and then apply ball oracle acceleration [14L [17] to globally minimize
the objective in a small number of ball oracle calls. These methods have two key shortcomings that prevent them
from providing better runtimes for matrix games: (1) the ball oracles they implement have too small ball radii and
(2) they do not apply to ¢; geometry. This work overcomes the first shortcoming by designing data structures that,
using sketching and sampling techniques, maintain linear approximations of the functions {f;} which facilitate
efficient gradient estimation at larger distance from the reference point. To overcome the second challenge we
redesign the ball oracle acceleration framework using a novel accelerated proximal point method formulation,

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

. Algorithm 3 Algorithm 5 Alaorithm 4
Algorithm 1 > M Agorithm2 2 gorithm > gorithm
(Section 4) (Section 5) (Section 7) (Section 6)

Stochastic .
Ball orac_le Ball oracle . A4 p-matrlx-vector
acceleration implementation gradient
framework P estimator data structure

Figure 1: A diagram of the main components of our algorithm and their location in the paper.

and implement an approximate non-Euclidean ball oracle using a careful mirror descent scheme that provides a
fine-grained control of the amount of iterate movement which our data structures require.

Tables [1 and [2) summarize the complexity guarantees of our method and compare them to prior work. We
measure complexity as either the runtime or the number of evaluations of f;(z) and Vf;(z) (for some x € X
and @ € [n]) required to produce x such that Efax(2) — ming, cx fimax(z«) < €. For the problem in the
regime where n is large (e.g., n > L?ce*Q) we obtain the optimal evaluation complexity with a modest additional
computational cost due to our data structures, which becomes negligible as d grows. For problem , in the
regime d < min{e~2,ne?} (which implies d < n) our bounds improve on all previous first-order methods. This
regime includes € = ﬁ, which is standard for empirical risk minimization problems, where statistical errors

are typically also of order ﬁ Since we consider maximum (rather that mean) risk minimization, statistical

errors (if they exist) will likely be higher for the problems we study. Additionally, our runtime improves over
all known methods (including interior point methods) when 7 is not too much larger than d and ¢ lies in some
range, namely d < n < d%/2, ¢ < ﬁ, and € > max{ds%, ;%//24, %/2} For ¢ = ﬁ we improve over all methods
when n8/"' < d < n.

Our results also directly lead to an algorithm for finding the minimum Euclidean ball enclosing points
ai,...,a, € R% a fundamental problem in computational geometry [58, 21]. Our algorithm finds an e-accurate
solution in 5(nd +d/e+nd?/3¢1/3) time, while the previous best known runtime obtained by first-order methods
is O(nd + nd'/2¢=1/2) [2, [15]. This is an improvement for a range of parameter values including n > 1/¢ > d.

Paper organization (see also Figure . In Section we discuss related work. In Section [2| we provide a
detailed overview of our key technical contributions. Section [3|introduces the general notation and conventions of
the paper. In Section [4] we describe the main acceleration framework building on a ball-restricted proximal oracle,
followed by the implementation of restricted oracle in Section 5. In Section [6, we build the main data structure
used for /,-matrix-vector maintenance, which we then use to build an efficient stochastic gradient estimator
in Section [7] In Sectionwe combine our developments and obtain guarantees for solving problem and, as
special cases, problem (1.1} and minimum enclosing ball.

1.1 Related work. We now review several additional closely related lines of research.

Minimizing the maximum of linear functions. Research on algorithms for solving problems of the
form , particularly in the context of linear programming, has a long and celebrated history in computer
science [24]. The best existing methods fall on a spectrum of trade-offs between per-iteration cost and number
of iterations. At one end of the spectrum lie second-order, interior-point methods [33] [51], whose iterations are
expensive (usually requiring a linear system solution) but the number of iterations depends only logarithmically
on the desired accuracy €~ !; recent years saw much progress at making the iterations of these methods more

efficient [e.g., [39, [22], 60L [63], [64] [61] [32]. Next come first-order methods that use exact gradients [e.g., [47] 45] 48]

whose per-iteration cost is linear in the problem size, but whose iteration complexity typically scales as e *.

Finally, at the other end of the spectrum are stochastic first-order methods [e.g., 28] 21] whose per iteration cost
is sublinear in the problem size—and sometimes even near-constant [66]—but whose iteration complexity
typically scales as e~ 2. In addition, variance reduction techniques [e.g., [5, [13] [56|, [57] use a mix of exact and
stochastic gradient computation to obtain a faster rate of convergence in terms of € while maintaining a sublinear
per-iteration cost.

It is possible to view our ball oracle approach as a hybrid of stochastic and exact gradient queries, though the

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

way we leverage the exact gradient queries is quite different from variance reduction: we query exact gradients to
increase the efficiency of nearby stochastic gradient estimates, while variance reduction methods seek to make
them more accurate. Carmon et al. [16] (discussed at length in the following section) combine a ball oracle and
variance reduction for minimizing the maximum of Lipschitz, slightly smooth functions. However, to do so they
rely on an “exponentiated softmax” technique that is not compatible with the larger balls we consider in this
paper. Enhancing our method using variance reduction is a promising direction for future work.

Minimizing the maximum of general convex functions. The general problem has seen less research
than the matrix games problem . The exact-gradient first order methods mentioned above [e.g., 47, [45] [48]
also apply in the general case, and Nesterov [49, Section 2.3.1] shows how to reduce the general cases to a sequence
of matrix games. However, stochastic gradient methods typically exploit the matrix structure in and do not
extend to the general case. Indeed, stochastic methods for the problem typically have high variance gradient
estimators, leading to an iteration count that depends on the number of functions n [44] [54] 46| [11]. The work [16]
made significant progress in reducing the number of full-data passes required to solve the problem , and we
improve it further to obtain (for large n) the optimal number of data passes for smooth problems.

Accelerated approximate proximal point methods. The accelerated proximal point method [29, 53] is a
powerful and versatile building block for convex optimization algorithms, owing to the fact that the proximal point
operation admits several approximate solution criteria that preserve the accelerated rate of convergence 26l [40] [18].
In particular, the approximate solution notion due to Monteiro and Svaiter [43] has led to a plethora of accelerated
optimization methods [e.g., 27, [9] 31l [10} [8] 34] including the ball oracle acceleration framework [14] [16, [3] [11]
at the core of our algorithm. We contribute to this line of research by designing a new approximate accelerate
proximal point method that is suitable for non-Euclidean geometry and allows efficient oracle implementation
using stochastic gradient methods; our technique also borrows the momentum damping technique from [17] for
improving the simplicity and efficiency of the Monteiro-Svaiter method.

Our acceleration scheme also bears a strong resemblance to gradient sliding [35] [59L [36]: both techniques
efficiently approximate the accelerated proximal point method by making use of both the averaged and final
iterates of stochastic gradient descent. Since our method is based on a simple approximation condition for an
exact proximal point problem, it provides insight into the efficacy of this approach.

Data structures for optimization. Optimization algorithms often rely on data structures for leveraging
iterate sparsity and efficiently computing projections [38] [55 25 [15]. However, randomized data structures—such
as the matrix-vector maintainer we employ—are notoriously difficult to use in the context of optimization, since the
iterative nature of the algorithm could make the sequence of data structure queries non-oblivious, thus invalidating
the data structure’s guarantees. We address this difficulty using rejection sampling, which ensures that the
distribution of consecutive queries is the same regardless of the data structure’s random state.

Our matrix-vector maintenance data structure is closely related to data structures designed in recent works on
efficient interior point methods for linear programming [63] [62] [64], e.g., the “vector maintenance data structure’
in [63]. The interior point methods using these data structures also take care to ensure that their queries remain
oblivious, though not always via rejection sampling. Similar to our data structure, the ones in [63] [62, [64] also
maintain an approximation to the products of a sequence of query vector with a given matrix, and they use a linear
sketch similar to the one we use for the Euclidean case (but not the ¢; case). Our data structure differs in the
type of approximation maintained, the norms considered, and the assumptions on the query sequence. Moreover,
our technique of supporting a long query sequence by instantiating multiple simpler data structures at different
scales is well known [see, e.g., [4].

)

2 Technical overview

In this section we provide a detailed overview of our technical contribution. Section describes the initial setup
proposed in [16] [3]. In Section we explain how we use linear approximations and data structures to increase the
size of the ball for which we can implement an optimization oracle. Then, in Section we explain how to extend
ball oracle acceleration to non-Euclidean geometry, in Section we describe the ball oracle implementation, and
in Section [2.5] we put the components of our algorithm together and derive its complexity bounds.

2.1 Preliminaries. To begin the technical exposition, we first explain the key components of the “thinking
inside the ball” approach [16l [3] to solving the problem (1.2), which we build upon to obtain our results. The first

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

step at tackling the problem is the standard “softmax” trick of smoothing the maximum operation by considering

(2.3) femax(T) == max Z [yifi(z) — €'yilogy;] p = € log Z fi@/€) with ¢ =
i€[n] i€[n]

which is a uniform $-approximation to fmax and therefore minimizing it to accuracy § solves the problem (1.2 to

accuracy .

Next, we design an oracle that approximately minimizes fsmax in a ball of radius r around a query point
y € X. Roughly speaking, the implementation consists of stochastic gradient descent (SGD) with an unbiased
estimator for V fymax () = E, s,/ V fi(x). Naively computing the distribution proportional to efi@)/€ requires
n function/gradient evaluations, which is as expensive as computing V fymax exactly. Instead, the estimator
proposed in [3] uses rejection sampling to efficiently draw i ~ efi@/€ and then returns V fi(z). Given a query
point x and a reference point y, the rejection sampling operates by drawing i ~ efi(z?y)/él, where ﬁ(w, y) is an
approximation of f;(x) for x close to y, and then accepting with probability exp((f;(z) — filz;y) — C)/¢€) for
C such that |f;(z) — filx; y)| < C for all ||z — y|| < r. For an approximation fi with C = O(€'), this rejection
sampling routine returns a valid sample from ef(®)/¢ yusing an expected O(1) draws from efi@v)/€ Agi et al. 13]
simply perform n evaluations to precompute f1(y),..., fn(y) and then take fl(x, y) = fi(y), for which C' = Lyr by
the Lipschitz continuity of the f;. Taking r = ¢'/Ls ensures that each V fnax estimation takes O(1) expected
additional evaluations. Thus, the overall expected evaluation complexity of minimizing fsmax inside a ball of radius
r=0(e/Ly) is n + O(T), where the SGD iteration number T is sublinear in n.

Finally, we make efficient use of the ball oracle to globally minimize fs,.x. To this end, we rely on the ball
oracle acceleration technique proposed by Carmon et al. [14] and refined in [16], 3} [11} [17], which we further improve
in this work. The technique, a type of accelerated proximal point method [29] [63] 42] finds an e-accurate minimizer
in O(r=2/31og(1/e€)) ball oracle calls. Combining these ingredients yields a gradient evaluation complexity bound
whose leading term in n is O(nr=2/3) = O(n(Ls/€)*/3).

2.2 Increasing the ball size by linear approximation data structures.
Exact linear approximation. The main limitation of the softmax gradient estimation procedure described

above is that it only works for fairly small balls of radius O(e/Ly). To increase the ball size, we leverage smoothness
to build better function value approximations f;(x;y). As a starting point, consider the linear approximation

fin (2 y) = fily) + (Vfily),z —) -

When each f; is Lg-smooth (i.e., Vf; is Ly-Lipschitz) then |f(z) — fi““(m;yﬂ < 1Ly||z — y||? for all and y.
Therefore, we may increase the ball radius 7 from €’/ L to \/€ /L. Since computing fi(y), ..., fi"(-;y) requires
only n function and gradient evaluations, substituting this improved approximation into the acceleration framework
described above yields a leading order evaluation complexity term of O(nr=2/3) = O(n(L,/€)*/3).

However, sampling i ~ ef @)/ g computationally expensive, since exactly computing the inner products
(Viily),x —y),....,(Vfu(y),z — y) takes O(nd) time. In some cases, including bilinear problems , this is as
expensive as calculating V fsmax exactly, undoing the efficiency gains of rejection sampling using f'™.

Matrix-vector estimation data structure. We address this challenge by replacing f}i“(x;y) with an
efficient randomized approximation, denoted f*(z;y), such that ‘ etz y) — fin(x y)| < ¢ with high probability.
We construct matriz-vector estimation data structures that, after O(nd) preprocessing time, for query = and
reference y, compute {ff“(w;y)}ie[n] in time O (n(Lme - y||/e’)2>: in the ¢ setting we achieve this using
CountSketch [19] [37], while in the ¢; setting we simply approximate (V f;(y),z — y) by sampling entries of V f;(y)
from a distribution proportional to |z — y|, a technique similar to “sampling from the difference” used for variance
reduction in matrix games [13].

From matrix-vector estimation to maintenance. If we were to implement the ball oracle using the
estimate described above, the additional runtime cost would be O(n(Lyr/ €)°T), where T is the SGD iteration count.
While independent of d, such runtime would have a large dependence on the desired accuracy €, again rendering
the approach unhelpful for matrix games. To further improve efficiency, we design matriz-vector maintenance data

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

structures that allow evaluating o' at a series of query points 1, . ..,z with additional runtime

2
Lidiemmllzi — xi_1||>

6/

O nd+n<

As we explain in more detail below, we design a careful stochastic gradient method for which the queries satisfy
Yiemllzi — il = O(r), leading to the O (T_Q/Sn(LfT/6)2> =0 (nL?/Lg/Be‘lB) additional runtime shown in
Table [II

Our matrix-vector maintenance data structure solves the more general problem of approximately maintaining
the value of Az for a suitably bounded matrix A € R"*? and a changing z that is guaranteed not to move too
much. Specialized to our applications, this data structure essentially maintains approximations to (V f;(y),v) for
vectors v of different (exponentially spaced) distances from the current point. Given a new query z, the data
structure simply updates the v vectors and the approximations to (V f;(y), v) to preserve the exponentially space
distance invariant. This update is made efficient by estimating the values of (V f;(y),v) for the update v in terms
of their difference in value from the closest (to the query point) non-updated v and using a matrix-vector estimator.
Finally, the data structure outputs the approximation to (V f;(y),v) for the closest v.

By carefully choosing and reusing approximations to the (V f;(y),v;) over time, we are able to guarantee the
claimed runtime bound. Essentially, we obtain a runtime for maintaining approximation over a whole sequence
of queries in essentially the same complexity a matrix-vector estimation data structure would naturally use for
answering one query whose distance form y is the sum of all query movements. We design our matrix-vector
maintenance data structure via a reduction to matrix-vector estimation, which; this more general framework could
be of utility in other geometries.

A note on obliviousness. Our use of efficient randomized data structures hinges on a subtle yet crucial
property of our method: our data structure query sequences do not depend on its random state, and hence the
probabilistic approximation guarantees remain valid throughout. At first glance this might appear to be false,
since we use the output of the data structure to draw random indices that define the stochastic gradient estimate
and hence influence the next SGD iterate and data structure query point. However, due to rejection sampling, the
distribution of the rejection sampling output is proportional to ef(*)/ 6/, without any dependence on the random
bits of the data structurel?|

2.3 Accelerating entropy ball oracles. We now shift our focus to the ball oracle acceleration algorithm that

takes in an (approximate) radius-r ball oracle and returns an approximate minimizer in 6(r_2/ 3) oracle calls.
Here, the main challenge is extending the algorithm to support a non-Euclidean domain geometry. Specifically, the
difficulty lies in coming up with an approximate oracle notion that supports efficient implementation via stochastic
gradient methods while still allowing acceleration.

Prior idealized scheme. To explain our developments, it is instructive to first consider idealized acceleration
schemes using exact ball oracles, and contrast the idealized scheme of prior work to the one proposed here.
Previous ball acceleration methods [14} [16], [3] 17] maintain a parameter sequence aq,...,ar and its running sums
Ay =3, ., a;, and construct an iterate sequence (¢, v;) according to

A A
(24) T+l = argmin {f(x) + tz+1 |z — (I)t(vt)Hg} where ®4(2) = ———x + el ,
TEX: [l —Dy (v)[l2<r 2044 Aty A1
. 1
(2.5) Ve = argmln{<vf(xt+1)7v> + 53—l - vt||§}.
veX Qt+1

The step calls a radius-r ball oracle with center point ®;(v;), while the step executes a mirror descent
iteration using the gradient of f at the output of the ball oracle. Proper setting of a; ensures that for all ¢ we have
2More precisely, the distribution of the next iterate is the same for all possible random bits, except for a low-probability set of
random bits for which the approximation condition |f~fSt(x; y) — f}i“(ac; y)| < € fails for some 7 € [n].
31n order to ensure correctness, these ball acceleration methods must either choose a+ such that @41 has ||x¢+1 — ®t(ve)|| € [r/2,7)
(which necessitates a bisection to solve an implicit equation) or modify their iterates through a momentum damping scheme [17]. We
ignore this point throughout the overview, and use momentum damping in our full method.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

T

2/3
flxy) — f(zy) < W for some S; > 0, and that after T = O((sz*h> log W) iterations

either Ap > M or St > |lzo — x4|3-

To move to general norms, we use the standard technique of introducing a Bregman divergence V,(b) induced
by a 1-strongly-convex distance generating function, so that V,(b) > 3||b — al|?*; in the Euclidean we simply have
Vo(b) = 1la — b||3, while for the simplex setting we use the KL divergence V,(b) = > ieq) bilog (% (see Section
for more details).

A straightforward generalization of the idealized method above exists, but is not conducive to approximation.

Such generalization consists of replacing |-||2 in step (2.4) with a general norm ||-||, and replacing %|jv — vy||3
2/3
with V,, (v) in step (2.5). It can be shown that f(z:) — f(x.) < € after O ((VTOT(I*)) log w> iterations.

However, it is not clear how to efficiently approximate the non-Euclidean ball oracle computation in this method.
In particular, in order to approximate the step , Asi et al. [3] design a multilevel Monte Carlo (MLMC)
estimator that is nearly unbiased for the exact ball oracle output , and the analysis of this technique appears
to strongly rely on properties that are unique to the Euclidean norm.

New idealized scheme. To address this challenge, we redesign the acceleration method with Bregman
divergences and efficient approximation in mind. Our new idealized method is

A
(2.6) Vi1 = argmin {Ai11f(®1(v)) + Vo, (v)} where piyq = tH,
vEX:Vy, (v)ﬁ%pf+1 A¢4+1
(27) Ti4+1 = q)t('l)tJrl)

and ®; is as defined in (2.4). In the unconstrained Euclidean case (i.e., when X = R% and the a; sequence is such
that ||zp41 — Pi(vr)|| < 7 for all t), straightforward algebra shows that the old and new idealized schemes are exactly
equivalent. However, outside that setting—and particularly in the non-Euclidean case—the two methods produce

different iterates. Nonetheless, both methods enjoy the same O((V'”’f(w*))z/3 log M) iteration complexity
guarantee. Moreover, the constraint V,, (v) < %pf 1 and the definition of p;y; implies that every feasible point v
in step satisfies || ®;(v) — ®y(vy)| < ZZ—J:HU —] < Z::ll pt+1 = r. This justifies considering a call to a
radius-r optimization oracle centered at ®;(v;).

Defining the approximate ball oracle. We now briefly derive our approximation condition for step .
To lighten notation, let y := vy, let p == pry1, let h(v) = Apy1f(P:(v)) and v, == vy1 (i.e., the exact ball oracle
output). Note that v, is the global minimizer of H(v) = hi(v) + ¢V, (v), for some ¢ > 1 which enforces the
constraint V;(v) < 1p%. Therefore, by convexity we have H(v,) — H(u) < —cV,, (u) for all u € X. Substituting
the definition of H and dividing through by c gives

h(ve) —h 1
(2.8) h(v,) = h(w) <Vy(u) =V, (u) = Vy(ve) < Vy(u) =V, (u) — §p2]l{c>1} for all u € X,
c
where the final inequality holds since V,(v,) = %pQ when ¢ > 1 due to complementary slackness.

To further relax the condition , we allow the approximate ball oracle to return two points z,w € X such
that h(z) replaces h(v.) and V,,(u) replaces V,, (u). We further replace £p*Li.~1} with yp®L{.~0y for some v < 3,
and we allow yp? additive error for ¢ < 2. Finally, we allow randomization by requiring that bound holds only in
expectation. The resulting relaxed output condition is

h(z) = h(u)

(2.9) E-2—

< E[Vy(u) — Viy(u)] — fpr]E[]]{c>2} —]l{cg}} for all u € X.

In the acceleration framework, we approximate v;1; with w, and z;41 with ®;(z), and show that the resulting
sequence still satisfies (up to constants) the same error bound as the exact proximal method. The key advantage of
the two-point approximation condition is that SGD naturally achieves it, with z and w being the average and
final SGD iterates respectively. This “two outputs” property of SGD has been leveraged before in the literature
on gradient sliding methods in structured convex optimization [35] [59] [36]. It allows us to sidestep the need for
Multilevel Monte-Carlo [7] 3], which appears challenging to use in the non-Euclidean setting,.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2.4 Implementing entropy-ball oracles. We now explain the key components in constructing an approximate
ball oracle meeting the condition using our data structure-based gradient estimator. There are two main
challenges in designing this oracle. First, the inequality needs to hold for all u € X rather than just in a
ball of radius p around y; this prevents us from using standard constrained optimization techniques. Second, our
matrix-vector maintenance data structure requires that the total movement in the SGD iterates sum to O(p), a
guarantee which standard SGD does not provide. We explain our solution to each challenge in turn.

Implicitly-constrained SGD. To obtain a guarantee valid for any comparator point u € X, we approximately
find the Lagrange multiplier for the constraint V,(v) < %pZ and apply unconstrained SGD, taking careful care to
show that its iterates nevertheless stay close to the reference point y. First, we perform bisection to find a Lagrange
multiplier A > 1 such that vy = argmin, ¢y {h(v) + AV, (v)} satisfies V,(vy) € [$p?, §p2] for some «, 8 = (1),
where we use SGD to approximate V,(vy). Second, having found a suitable A, we apply (unconstrained) SGD once
more to obtain the global guarantee with ¢ = A\. However, removing the explicit ball constraint introduces
another difficulty: SGD could potentially query iterates outside the ball, where our gradient estimator is inefficient.
To address this concern we use techniques introduced in [12] [30] to show that, with high probability, SGD never
leaves a ball of radius O(||vy — y||) around y. Since X satisfies V;(vy) = O(p?), the SGD iterates remain (with high
probability) in the region where our gradient estimator is efficient.

A relaxed triangle inequality of KL divergence. Before proceeding to the next challenge we highlight a
technical point of potential broader interest. To establish the correctness of the procedures described above, we
need to assume that the Bregman divergence satisfies a relaxed triangle inequality of the form

Va(b) + Vi) < 7(V{a,¢) + V(e b)) where V(,y) = min{V, (y), Vy (@)}

for all a,b,c € X. In the Euclidean case where V,(b) = 1||a — b||3, this holds for 7 = 4. However, when X is the
simplex and V is the KL divergence, this inequality is false for any 7. Nevertheless we show that for a truncated
simplex A = {p € A" | p; > v for all i}, the relaxed triangle inequality holds with 7 = O(log £). This observation
is new to the best of our knowledge, and potentially of independent interest. The Lipschitz continuity of our
objective functions means that its optimal value in X and X N A7 differ by at most O(Lv). Therefore, truncating
the simplex with v = poly(e/Ly) allows us to use the relaxed triangle inequality with 7 = 5(1) without significantly
changing the solution quality.

Controlling the sum of query movement sizes. Next, we address the challenge introduced by our
matrix-vector maintenance data structure. This data structure enables us to generate stochastic gradients for
SGD at a computational cost proportional to the sum of distances between consecutive SGD queries. For standard
SGD using T iterations, this sum is Q(\/T), resulting in a bad complexity bound. To address this, we employ a
variant of SGD due to Cutkosky [23] which enables much tighter control over total query movement. This variant
applies mirror descent updates on the gradient estimated on the running average of its iterates, computing

1
Wiat = argmm{<g<xt>,w> + Ly, <w>},
weEX n

where 7) is a step size, G is the gradient estimator, and z; = %Zigt w; = %xt,l + %wt. Therefore, we have
Soerllve — el = Yier 1||lw — 41| Since we guarantee that ||w, — wo|| = O(p) for all ¢ < T with high
probability, we have [|w; — z¢[| = O(p) as well. This implies the movement bound >, Hwy — a4]| = O(plog T)
that is sufficient for our purposes.

2.5 Putting it all together. Having described our main algorithmic ingredients, we now briefly derive the
runtime bounds shown in Tables [[] and Pl

Acceleration framework setup. We begin by considering our accelerated proximal point method applied
on the function fimax. We stop the method at the first time 7" in which Ar = Q(e~!), where its potential analysis
guarantees E fsmax (1) — fsmax(2x) = O(€). Roughly speaking, our algorithm sets the a; sequence such that
% = @)(72/ 3) is constant for all iterations. We show that with an appropriate damping scheme, our algorithm

will either grow A;y; by a multiplicative 1 + é(rQ/ 3) factor or decrease a nonnegative potential function with
initial value 1 by ©(r?/3): this implies that Az exceeds the stopping threshold in 7' = O(r~2/3) steps.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Our setting of a; means that
A ~
Py = = @(rl/d)
a

is also constant for all the iterations. At step ¢ we apply our approximate ball oracle on h;(v) = A1 fsmax (P (v)).

Noting that the Jacobian of ®; is Zt:rll I, we have Vhi(v) = at4+1V fsmax(P:(v)) by the chain rule. Therefore, to

estimate Vhy(v) we simply apply our estimator for V fsmax at the point ®4(v) and multiply the resulting vector by
a¢11. Since our estimates for V fomax are always of the form V f;(®¢(v)) for some ¢ € [N], they are bounded by Ly.
The gradients estimates for h; are therefore bounded by

- - 7,,2/3
I'= at+1Lf =0 (T2/3At+1Lf> =0 <€Lf) s

where the last transition holds since A; = O(e~!) for all iterations before stopping.

Iteration and evaluation complexity. Next, we bound the iteration count of all ball oracle calls and the
total gradient evaluation complexity. For a function h with stochastic gradients bounded by I' and target movement
p, the approximate ball oracle requires O(I'2/p?) iterations; the complexity of finding a point that is O(p) away
from the optimum of a 1-strongly-convex function using stochastic gradients bounded by I'. Substituting the above

bounds for I' and p, the iteration complexity per oracle call is O (1"2/ 3L3@e’2). For each ball oracle call we require

n individual function and gradient evaluations to set up the data structure, and (for r = 5(\/ €/Ly)) an additional
O(1) gradient evaluations per step with high probability, giving O(n + 72/ 3L?6_2) evaluations overall. Since the
expected number of ball oracle calls is 6(7"’2/ 3), with constant probability the total evaluation complexity is
9] (nr72/3 + L?eiQ) .

Runtime complexity. To account for the runtime complexity of our method, we make the simplifying
assumption that each function/gradient evaluation takes 2(d) time. In this case, the only term not subsumed
by the function/gradient evaluation cost comes from the matrix-vector maintenance” data structure. Our oracle

implementation makes sequences of queries to our V fsmax estimator, whose total movement is O(r). Therefore, the
additional runtime of a single oracle call is 9) (ancrz /€?), and for the whole algorithm the cost is 9] ancr‘l/ 3/ 62).

Choosing the ball radius r. Finally, we discuss the optimal choice of the parameter r. For general
problems (1.2) with L, > 0, a simple strategy is to choose the highest value of r for which the linear approximation

is sufficiently accurate, i.e, é(\/e/Lg). This yields the complexity bounds in Table E However, when L, is very
small it is more computationally efficient to choose a smaller value of r. Letting T = Q(d) denote the runtime of
an individual function/gradient evaluation, the value of 7 that minimizes the runtime terms n77r~2/3 + nr/ BL?C /e?

is r = €v/T /Ly, and the minimal value is n(7 Ly /€)?/3. For L, < L?/’Te this optimal 7 is permissible (i.e., smaller

€

~ 2/3 2
than y/€/L,), and the total runtime of the method is O (n(TLf) + T(%)) In particular, for matrix games
(where 7 = O(d) and L, = 0) we obtain the runtimes listed in Table

3 Notation and conventions

General. We use X to denote a general closed convex set. We use A? == {z € R4,z > 0,3, 2; = 1} to
denote the simplex, Ad := {z € A% z > v1} to denote the truncated simplex, and B? := {z € R?, ||z|]2 < 1} to
denote the unit Euclidean ball. We denote the binary indicator of event € by Ij¢y.

Vector, matrix and norm. We use || - || to denote a general norm on X and || - ||« = sup, <1 (z,-) to

denote its dual norm on the dual space X*. For any vector v € R? and p > 1 we denote the £, norm by
lvllp = (Zie[d} |vi|p) v with [|v]|c = max;e[q) |vs|. For any p > 1 we let p* = (1 — %)_1 be such that |||
to ||||p- For any matrix A € R"*¢ we write A;; for the (i, j) entry, A;. for the i-th row as a row vector, and A.;
for the j-th column as a column vector. Given p,q > 1, we write the matrix norm || A, = max,cga 420 %.

Functions. We work with convex, differentiable functions f on domain X throughout the paper. We say a
function f is Ls-Lipschitz with respect to ||| if and only if | f(2) — f(y)| < Ly|lz —y|| for all z,y € X. A function f
is Lg-smooth with respect to || - || if and only if ||V f(z) = Vf(y)|l« < Lg|lz —y| for all z,y € X'. A convex function

p- is dual

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

f is p-strongly convex with respect to || - || if and only if for any z,y € X, f(z)— f(y) = (Vf(y),z —y) > &z —y]>.
We call a random point = an e-optimal minimizer of f in expectation if Ef (x) — mingcx f(2') <e.

Bregman divergences. Given a distance-generating function (dgf) ¢ : X — R, we define its induced Bregman
divergence VI (y) = p(y) — ¢(z) — (Vo(z),y — z), and drop the superscript ¢ when clear from context. Within

the paper, for Euclidean space equipped with [| - [|2, we use ¢(z) = 1||z||* and its induced Bregman divergence

is Vz(y) = 3llz — y[|3, which is 1-strongly convex in || - ||2. For the simplex (or a closed convex subset thereof)
equipped with [- ||1, we use p(x) = >, x;log ; and its induced Bregman divergence is the Kullback-Leibler (KL)
divergence V,(y) = Y, yilog(y;/x;), which is 1-strongly convex in [- ||; by Pinsker’s inequality.

Runtime. To simplify the presentation of our runtime bounds we use the following conventions throughout.
We assume that the number of non-zero elements in matrix A € R¥", denoted nnz(A), satisfies nnz(A) = Q(d+n).
This holds for any matrix without empty rows or columns. In similar vein, we assume that the number of non-zero
elements in any vector x satisfies nnz(x) = Q(1).

We also assume that we are working in a computational model in which can pre-process any vector v € R™
in O(n) time and then be able to sample index ¢ with probability proportional to |v;| in O(1) time, e.g., as in
[65]. If these costs are larger by multiplicative polylogarithmic factors then our final runtimes similarly grow by
multiplicative polylogarithmic factors. _

Throughout the paper, we use O, € and © to hide poly-logarithmic factors in problem parameters, e.g.
dimension, smoothness, Lipschitz constant, domain size, and desired accuracy e and probability factor 1/6.

4 Non-Euclidean ball oracle acceleration

In this section, we describe our main acceleration framework leveraging a non-FEuclidean ball oracle. The main
result proved in this section is the following.

THEOREM 4.1. Let f: X — R be a convex function which supports a gradient oracle G with ||G(z)||« < G for all
x € X. For some &, R > 0, let z9,v9 € X satisfy f(zo) — f(zx) < E and V,, (z,) < R?, where x, is a minimizer
of f. For any ball radius r < R, oracle approzimation parameter v < 1/2, and error tolerance ¢ > 0, Algorithmlz
has the following guarantees:

e The algorithm outputs a point xr such that E[f(xr)] — f(zs) <e.
e The algorithm terminates after O(y~'/3R?/3r=2/310og(&y/€)) iterations in expectation.

e FEach iteration of the algorithm performs O(1) arithmetic operations on elements of X and makes a single
call to a ball-restricted proximal oracle (Deﬁm’tz’on below) with parameter p = © (7*1/3R2/3r1/3) for a

PEEEEE G log (€ /e)).

convez function hy that supports a gradient estimator Gy with ||Gi(z)]l« = O (.

Our result in this section follows the outline in Section Algorithm [1| chooses parameter sequences A}, a;
and in each iteration calls an oracle that attempts to solve the optimization problem

A
(4.10) minimize {h;(2) + Vi, (v)}, where hy(2) = Ay, f(®1(2)) and ®y(z) = A,—t:ct + Zﬁ“ z.
Vi, (2)<p t+1 t+1

We consider an approximate oracle that relaxes the exact solution to (4.10]) in three critical ways:

e We allow the oracle to return a parameter ¢, which corresponds to the Lagrange multiplier on the domain
constraint,

e We let the oracle return two points—each used for a different purpose in our final algorithm,
e We allow the oracle’s output guarantee to hold in expectation and to tolerate some additive error.
Formally, we define this relaxed oracle as follows.

DEFINITION 4.1. (BALL-RESTRICTED PROXIMAL ORACLE) Let h : X — R be a convex function with gradient
estimator G. A (p, 7y, Cmax)-Testricted proximal oracle takes as input G, center point y € X and points z,w € X
and a scalar ¢ € [1, cmax| satisfying

h(z) — h(u
(4.11) E [()C()] < E[Vy(u) = Vi (w)] = 7E [Lezay — Lie<ay] p°-

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

We note that our analysis only needs the oracle parameter ¢y, to be finite, since its only use is verifying a
condition of the optional stopping theorem. We therefore omit it for Theorem and the subsequent lemmas
used to prove it, and argue that it is indeed finite for our oracle implementations.

We now describe a final component of Algorithm [I] that is omitted from the outline in Section momentum
damping. This mechanism, introduced in recent work on optimal methods for Monteiro-Svaiter acceleration [17],
handles the fact the sequence c¢; of regularization terms varies over time which introduces subtlety to the selection
of a suitable sequence a;. Given the outputs 2441, w11, cey1 from the oracle in an iteration, we set vi41 = Wy
and xj,,; = ®¢(2z41). However, instead of returning x;,1 = x;,, for the next iteration, we actually set

/ Ct+1 — 1 at41

1
Ti41 = 7$t+1 + — and At+1 = At +
Ct+1 Ct+1 Ct+1

To provide intuition for this, we consider the cases where ¢;41 ~ 1 and ¢;41 > 1. In the former case, the Lagrange
multiplier on the domain constraint of eq. @ is nearly inactive: thus our output z;.1 =~ x;,,; makes good
progress. On the other hand, if ¢;41 > 1 then the ball constraint on the proximal step is extremely active. In this
case, we are unable to conclude that xQH has good function error: we set x;11 ~ x; and Ay 1 =~ A; to prevent xQ_H
from destabilizing the algorithm. However, we show that ¢; 1 being very large implies that a natural potential
function significantly decreases: this “’‘win-win situation” enables us to guarantee progress regardless of the actual
range of c;41.

Algorithm 1: Generalized ball acceleration framework

Input: Convex function f with gradient estimator G

Input: O, a (p,, Cmax)-ball restricted proximal oracle

Input: Parameters r, R, &y, € > 0

Input: Input points xg,vg € R" satisfying f(zo) — f(zx) < Eo, Vi (24) < R?
_ Rr?

Ao = &)

2 while 4; < w do

3 at41 = (IT/R) At and Aé—i—l = At + At41

a4 | Dz) = A -3 —|—at“zandp—At“r:<

at4+1
5 ht(z) = t+1f ((I)t()) > ||z — y|| < p implies ||®¢(z) — Pi(
6 Qt(z) = at+1g(<1>t(z)) > G is a stochastic gradient estimator for hy

=

2/3
T > p is constant across iterations
< -

L4
A7
/ 1

Zt+1,vt+170t+1: O(Gt, vt, p)
C +171
8 Tyl = et (I)t(zt-i-l) —+ tctJ: Tt
f+1_ 1 / _ at41
9 At = e At+Ct+1A 1—At+ct+1
10 t=t+1

Return: z;

We begin the analysis by proving a potential decrease bound.

LEMMA 4.1. (POTENTIAL DECREASE) Consider an execution of Algorithm |Z Let x, € X be a minimizer of f
and for each iteration t let
E; = f(z) — f(ze) and Dy =V, (xy).

Let Py == AyEy + Dy where Ay is defined on line[9. Then for any t > 0
E[P1] < P —9E [1{6t+122} — L <2}] p
where the expectation is taken over the choice of randomness in a single iteration.

Proof. By the guarantee of the ball-restricted proximal oracle O, we have

he(z — h(u
W <E [VUt (U) - ‘/Ut+1 (u)] - VE []]'{Ct+122} -]]'{Ct+1<2}] P

E

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

We will bound the left-hand side of this inequality. First, observe that for any choice of ¢;41, 241,

hi(zian) = he(w) o Abd f(@e(ze41)) = Acf(20) = a1 f(w)

Ct+1 Ct4+1

_ (A;.H F(®y(2041)) +AtCt—H_1f(l‘t)> — Auf(xy) — Qg1 f(u)

Ct+1 Ct+1 Ct+1

> App1f(wegr) — Aef () — itH f(u)
t+1

= A1 B — AEy.
where the inequalities follow from the convexity of f. Substituting this in yields
E[Ai11Ei41 — AEy] <E[Dy — Diga] = vE [Lery 52y — Lepyi<2y] P2
and rearranging gives the claim. O
Iterating this potential decrease lemma gives a full complexity bound.
LEMMA 4.2. Let x7 be the output of the above algorithm. We have
E[f(er) — /()] < e

In addition, the algorithm performs at most

2/3
18 (B og (3%
Nais €

iterations in expectation, where each iteration calls a ball-restricted proxzimal oracle (Definition ,

Proof. Let T denote the (random) iteration where the algorithm returns zp, i.e., the first T for which
2
Ap > w. Define the random process

¢
Qt= P + Z’Y (Ler>2y — Lie,<2}) P°-
i—1

We recall that

2/3 2/3
(4.12) Appr = A + = (1 " o (W)) = Apy1 > Agexp < : <\ﬁr>) .
2Ct+1 R

Ct4+1 Ct4+1 R

As ¢i11 < ¢max by the definition of the ball-restricted proximal oracle, we observe that with probability 1

2/3
1
A > Agexp (20 <\/]Zr> t) .

2
As we terminate when Ap > w, this implies that T is finite with probability 1. Lemma implies
that @; is a supermartingale and therefore, by the optional stopping theorem, we have

(4.13) E[Qr] < Qo < 2R*.
Now define

T T
T1 = Z]]‘{CiZQ} and T2 = Z]]'{Ci<2}'
i=1

i=1

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

By definition, we have T'=T7 4+ T, and
Qr = Pr+vp*(Ty — T).

Now for any iteration with ¢;41 < 2, eq. (4.12)) implies

1 23 T r\ /3
App > Agexp <4 (g)) = Ar > Agexp (: <\/}Z > .

As Ar_1 < w and A < (1 + (ﬁr/R)2/3) Ar_ < w, this implies that with probability
1

2 2 2/3 2/3
80R*1og(80&/¢) > R—exp 1 /A) — 7 <4 R log 80&p log(80&y /€)
€ &o 4 R Naks €

2/3
< F) T g (3%
\ﬁr €

where the last inequality follows from alog o < o? for any a > 0. This implies

R ** /80&
(4.14) E [Pr +vp°Ti] = E[Qr + 7p*T2] < 2R* + 8yp? (\ﬁ?") log (60)

where the inequality follows from the above bound on 75 and eq. (4.13). Now, note that

R 2/3 2R2/3T1/3
o=+ (%))<

as r < R. Substituting this into eq. (4.14), we obtain

40R? log(80&y /¢) E

€

[f(zr) — f(2)] SE[ArTET]

R *® [80&
<E[Pr+vp*T1] <2R*+8yp” | — log 0
VT €
< 2R? + 32R?log <80‘€°) < 34R%log (80‘%)
€ €
and therefore E [f(x1) — f(2.)] < €. In addition, eq. (4.14)) also yields

2 2/3
B[] < 20 44 (R) log (MW)
P VT c

2/3 p2 2/3 2/3
S 2’7 R 48 R log 8050 S 10 R log 8050)
yR4/3r2/3 VT € VAT €

Thus, the expected number of iterations of the method satisfies

E[T] = E[T3] + E[T}] < 18 (\/{;)2/3 log <80€5°> .

d

We combine these facts to prove Theorem |4.1

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Proof of Theorem[4.1. Lemma [4.2] implies the first two items in Theorem For the third item, we observe that
the only nontrivial step of the while loop is on line [7] which performs a single call to O with gradient estimator G;

and parameter p = O(r'/3R?/3). Any t prior to terminating has A, = O(%). Thus, for any z € X

-\ 2/3
1G: (@) = s G(@(2))ls < (g) A,G

_0 (71/3 r2/?j R*log(&y/e) G) o (71/3R4/3r2/3 log(&o/€) G) |
R2/3 € 6

|

5 Ball oracle implementation

In this section, we develop Algorithm [2] which implements a ball-restricted proximal introduced in Definition in
the previous section. The algorithm combines last-iterate proximal mirror descent (LI-MD, Algorithm [3) with
a careful bisection procedure (A-BISECTION in Algorithm . For high-level description of the algorithm, see
Section 2.4l B

Let us briefly describe Algorithms E and E The A-BISECTION procedure tries (with high probability) O(1)
values of A and finds one for which v} = argmin,ex h(x) + AV, (x) satisfies V,,(u}) = O(p?). Using this A we
call Algorithm [3 once again to obtain random outputs z,w independent of the random bits that produce A. By
properly choosing the step sizes and number of iterations, we argue that the results satisfy the restricted proximal
ball oracle condition .

Our algorithm has additional properties that enable efficient gradient estimation for the problems we study.
First, all iterations stay within a radius-p norm ball centered at y, as LI-MD aborts whenever going outside the
radius. This enables efficiently sampling from softmax distribution using linear approximation and rejection
sampling, see Section |7 |: Second, due to the “last-iterate” mechanism (which performs iterate averaging before
the stochastic gradient queries), the total movement of iterates throughout Algorithm [2]is also bounded by O(p).
This movement bound is used for bounding the runtime when querying the data structure that we designed
in Algorithm 4| for constructing G.

The formal guarantees of our algorithm require the following notion of 7-triangle inequality for Bregman
divergences.

DEFINITION 5.1. (T-TRIANGLE INEQUALITY) For any 7 > 1, a domain X and Bregman divergence V satisfy a
T-triangle inequality, for all x,y,z € X,

(5.15) Va(2) + Va(2) < 7(min{ Vs (y), Vi (2)} + min{V, (2), Va(y)}).
With this definition in hand, we state the main guarantees of Algorithm

THEOREM 5.1. Let X be a closed convex set, let h : X — R be a convex function with gradient estimator G that
satisfies ||G(z)|l« < T with probability 1, and let X and V' satisfy a T > 4 triangle inequality (Deﬁm’tion as well
as maxy yex Vao(y) < R2. Let Ty to be the number of iterations in the k’th call to LI-MD. Then, for any radius

p > 0, center point y € X, for error probability § < m, the following holds:
1. Algorithm |2 implements a (p,7, cmax) Testricted prozimal oracle for function h, with v = ﬁ and
Cmax = 3277' That is, the outputs z,w and c of Algorithml? satisfy
h(z) — h(u) 1
(5.16) E—————< E[V,(v) — Vi (u)] — mﬂ«:(ﬂ{@} — Lfecoy)p® forallue X
and ¢ < % with probability 1.

2. With probability 1, the queries acgk), . ,x%) that AlgorithmH makes to G when called in the k’th iteration of
Algorithm[2 satisfy
ngk) —yl|<p forallt <Tj and k < K.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2: Projection-free ball oracle implementation O(G,y, p)

Input: Objective h : X — R with gradient estimator G, center point y € X', radius p
Parameters: Gradient bound I', 1-strongly-convex dgf ¢ and associated Bregman divergence V', triangle

inequality factor
2

1 A < A\-BISECTION(G,y, p), 0p < 0, 1 < W, T %
(z,w, 0utOfBound) + LI-MD(G, ¢, y, p, A\,n,T)
return z, w and c = \ + niT

Parameters: constant C' = 66 - 2'2, error probability § <

W N

4 function A\-BISECTION(G, y, p)
2)\min — — Sp3

5 Set Amax = mpTF’ Ao = Amin = 1, 10 = C~logl(716/6)~r51“2’ To = noil\;an and Kmax = {log %—‘ +1
6 | (29,0 0utOBound®) «— LI-MD(G, ¢, y, p, Ao, 10, To)

7 if Vy(z(o)) < £ then return A\,

8 for k=1,..., Knax do

1 s 02k . Clog ,{—;’:/,; r? 2
9)\k = §(>\max + >\min)7 6k = k2> an ng = C-log(16/6y,) 752 > satisfying)\/; 5
_ 4 o

10 T, = nkgk > satisfying ST %

11 (), w® OutOfBound ™) « LI-MD(G, ¢, , p, Mk, k> T)

12 if OutOfBound® or Vy(z(k)) > 6’% then Ain = Mg

2

13 else if V,(:M) < 35— then Apax = Ak

14 | else return)\
15 return)\Kmaxb the probability of reaching this line is less than 6 /2

Algorithm 3: Last-iterate proximal mirror descent LI-MD(G, ¢, y, p, A,n,T)

Input: Objective function h : X — R with gradient estimator G, 1-strongly-convex dgf ¢ (and associated
Bregman divergence V'), center point y € X, radius p, regularization parameter A > 0, step size 7,
iteration budget T

1 Set wg=x9 =y
2 Set OutOfBound = False © monitor if iterations go out of p-radius from center y
3 fort=1,...,7T do
t—1 _
a | =1 owi =g+ fwig
5 if ||zt — y|| > p then OutOfBound = True break
6 gt = g(xt) > gt == E[gt | z¢] € Oh(xy)
7 Wy = argminweX{nK‘gh ’LU> + /\Vy(w)] + th71 (U})}
. r.v +Vv PN v +=v
8 Wp = argmaxvex{<2t_l @(;iixn LP(U/T)7U> . QO('U)} — VSO* (Et_l W(;UESLMI S"(’LUT))
An An

9 if OutOfBound = False then return zp, Wy, OutOfBound = False.
10 z =Y + pﬁb Arbitrarily selecting a point with distance p from y

11 return z, z, OutOfBound = True © return arbitrary point if outside radius p

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

3. With probability 1, the sequences {xik), e (k)}kK o defined above satisfy

K Ty

4C'1 16 K GFZ
503 el — a4 < 20 log 2B OITL
k=0 t=1 P

where Kyax = [log M] + 1.

4. Algorithm |2 makes at most O(F—2 76 (log% + log log %) -log %) calls to G and the same number of

mirror-descent steps.

The remainder of this section is organized as follows. First, in Section we give two examples of Bregman
divergences satisfying the 7-triangle inequality and calculate the particular values of 7 in difference cases. Then we
analyze Algorithm [3] and the A-BISECTION procedure in Sections [5.2] and respectively. Finally, in Section
we combine those results to prove the main proposition of the section.

5.1 Divergences satisfying 7-triangle inequality. Throughout the paper we mainly consider two divergences,
Vi(y) = &||z — y||? for the ball setup and V,(y) = > ic(q Yilog(yi/x;) for the simplex setup. In this section we

show both divergences satisfy 7-triangle inequality with 7 = é(1).

EXAMPLE 5.1. (EUCLIDEAN SETUP WITH {3-NORM-SQUARED) Any X C R? and V,(y) = |z — y|3, satisfy a
T-triangle inequality with T = 4.

EXAMPLE 5.2. (TRUNCATED SIMPLEX SETUP WITH KL- DIVERGENCE) For any v € (0,1/4], the simplex A% =
{x € Az > v1} and KL-divergence V,(y) = Zle[d] y; log 2- satisfy a T-triangle inequality with T = 6log(v—1).

Example is an immediate consequence of the standard triangle inequality, but Example is less obvious
and stems from the following connection between KL-divergence to squared Hellinger distance.

LEMMA 5.1. Given v € (0,1/4] and any x,y € A%, consider the KL-divergence V,(y) = Zie[d] Yi logz—: and
squared Hellinger distance H*(z,y) = 1|z — \/y||>. Then

Va(y) + Vy(2) < (6log) H?(x,y).
Proof. We have

Yi 2(t — 1) logt
Vely) + Vo) = 3 (s — i) log 2 = 237 f () (Vi — V&), where f(r) = 20— Llogt
: (Vt—1)
i€[d] ze[d]
. 2(1-1)log 1 1
The lemma follows from noting that max,e,,1/,] f(t) = =*=—<2* < 6log . d

(VE-1)
Proof of Ezample[5.2. We first use the AM-GM inequality of Hellinger distance, which gives 2H?(z, 2)+2H?(z,y) >
H?(z,y), and consequently we have

(4) (i7)

min(Vz(2), Va (@) + min(Vy (2), Va(y)) = 2H? (2, 2) + 2H?(2,y) > H*(z,y) > (Va(y) + Vy (@)

1
6log(v—1)
Here we use (i) the well-established inequality V,(z) > 2H?(z, z) (see, e.g. Reiss [50]), and (ii) the inequality
shown in Lemma This proves the desired claim. O

We remark that any divergence V satisfying the 7-triangle inequality on X is also symmetric in its arguments
up to factor 7, formally stated as follows.
COROLLARY b5.1. For any closed conver set X and some Bregman divergence V. on X satisfying a T-triangle
inequality, then 1V, (y) < V,(z) < 7V (y).

Proof. We can apply the definition of 7-triangle inequality with z = y to get that min{V,(y), Vy(z)} +
min{V,(y),Vy(x)} > 2 (Va(y) + Vy(z)) > 1V, (y), which implies the first inequality. The second inequality
follows by symmetry. 0

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5.2 Analysis of Algorithm [3{ In this section, we provide the main analysis and guarantees for LI-MD (Algo-
rithm . The first lemma is a deterministic error bound for last-iterate proximal mirror descent. Throughout the
analysis we use

Hy(z) = h(z) + \Vy(z) and u} = arg mi/rvl Hy(x)
e
for the regularized objective function and its minimizer, respectively.

LEMMA 5.2. Let X be a closed convex set, and h : X — R be a convex function with gradient estimator G that
satisfies ||G(x)||« < T with probability 1, and let y € X and X\ > 0. The iterates of Algorithm@ satisfy, for all
uek,

Vy () =Viy (W) 0o 1 d .
vat(u)+n—TT+§F +fz<gt—gt,wt,1—u>.

t=1 t=1

(517) H)\({L‘T> — H)\(’U,) S —

N>

Proof. At iteration ¢ € [T, the optimality condition for each iteration of Line [7| gives, for any u € X,
<77gt + nAVVy(wt) + vth—l(wt)a Wt — ’LL> <0,

which by rearranging terms implies

(5.18) (9t + AVVy (wr), wp —u) < % (=VVa_y (we), wp =) = = (Vi () = Vi, () = Vay, _, (wr))

|-

where we use the three-point equality following the definition of Bregman divergence for the last equality.
Now, for the terms on the LHS of (5.18]), by applying three-point equality again,

(5.19) AMVVy(we), wy = u) = A (Vi () + Vy(wi) = Vy(u)) -
By rearranging terms

(G, we — u) = (ge, wp — we—1) + (ge, We—1 — u) + (Gt — Gt, Wee—1 —)
© (Gt wp —we—1) + (ge, tay — (t — D)zgm1 — u) + (Gr — gr, W1 —)

B0 LD L=l + @~ 1) ()~ A1) + ()~ B0) + G~ g1 —)

(#i1)

> —g||§t||i - %VwH(wt) + (= 1) (h(ze) — h(zi-1)) + (h(@e) — h(w)) + (Gt — g, we—1 — u)..

Here we use (i) the relation that tx; = (¢t — 1)ai—1 + wy—1, (47) the AM-GM inequality and convexity of h, and
(#4i) the 1-strong-convexity of the distance generating function.

Plugging Equations ([5.19)) and (5.20) back into Equation (5.18) and rearranging terms,

t(h(xe) — h(u)) = (t = 1)(h(zi—1) — h(w))
<A (Vy(u) — Vi, (u) - Vy(wt)) + % (thq (u) — Vi, (u) — Vi, (wt))

. 1 .
+ g\lgtlli + ;thq(wt) + {9t — Ge, w1 —)

< A (Vi) = Vi (1) = Vi (00)) 1 (Vo 00 = Vi 1))+ JT% 4 g1 = w1 =).

Here for the last inequality we use ||g:||« < T by definition of the gradient estimator.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Averaging over t € [T], we have for any u € X,

te[T] te[T]
+L(V(u)7V (u))JrﬂFerlZ(g — gty we—1 —)
TIT Y wr 92 T t ty Wi—1)
te[T]
A
<AV, (u) > Va (u) = AV (ar)
te[T]
1 R
+ o (Vo) = Vi (w) + N S R
te[T
where the last inequality is due to the convexity of V,(:), V,(wg) = 0 and zp = + 3101 wy so that
% Zte[T] Vy(we) > % Z:Ol Vy(wy) > Vy(2r). Rearranging terms concludes the proof. 0

Combining with 7-triangle inequality of divergence V, we can get the following in-expectation progress

guarantee (5.21)).
COROLLARY 5.2. In the setting of Theorem[5.1], the outputs z,w and OutOfBound of Algorithm[3 satisfy
1 , (A1 .
Eh(z) — h(u) < [A+ — |E[V,(u) — Vi (u)] + I — | = — — |EV, (u})
nT T 0T
(5.21))
+ (\/iRF + <>\ + 77T> R2> P(OutOfBound = True).

Proof. We first consider an alternative “imaginary” algorithm which continues even if OutOfBound becomes True
(i.e., we go outside of radius-p ball) and deterministically terminate after T iterations, outputting xr, @wr. For such
an “imaginary” algorithm we have E[(g; — G, wi—1 — u) |wi—1, 2:—1] = 0, thus by taking expectation on Lemma

(5.22) Eh(zr) — h(u) < E KA + an) (3 Vi (u —VwT (u)) + gFQ — AV, (21) |

te[T)

Standard tools from convex analysis imply that ¢* (the dual function of ¢), and its induced Bregman divergence
VE (a) = ¢*(a') — ¢*(a) — (Ve*(a),a’ — a) satisfy

Va(b) = VE) (Vo))

for any a,a’ € X* [52]. Now,

A 1 (z))\
F 2 Vel + Ve 7Y W (V) + 1 (Volawn)
te[T) tG[T

—
<0

S
a2

At 1 oy 7 > e Velwe) + 77LTVQD(UJT)
nT) Vet M
(i) 1 ’ - 1
= [N+ TTT Vv¢(u (Vp(ar)) = | A+ TTT Vipr (u).

Here we use (i) the equality V,(b) = Vg@(b)(Vga(a)), (#) the convexity of V,(-) and (#i7) the definition of wr as

in line [8|of Algorithm [3| Plugging this back into Equation (5.22) proves the expected guarantee for the “imaginary”

algorithm:

Eh(zr) — h(u) < (A + an)IE[Vy(u) — Vi ()] + gr’Z — AEV, (z7).

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Further, applying strong convexity of Hy, we have Hy(zp) — Hxa(ul) > AVaux (zr). Combining it
with Equation (5.17) (where we choose u = u}), we have

V,, (u} 1 .
)\Vu (SCT) < y(A) +QF2+f Z <gtfgt,wt_1 7U>.

% =<
77T 2 te[T]
Taking expectation yields,
Vy(w3) | n
. N < Y\ T2

(5.23) AEV,; (z1) < T + 2F

By the 7-triangle inequality, we also have

AL

(5.24) ;Vy(ux) < AVy(zr) + AViy (27).

Combining Equations (5.23) and (5.24) we have

A Vy(ui) m Al oy 7

Plugging this back into Equation (5.21) proves the following guarantee for the output zr, wr of the “imaginary”
algorithm.
(5.25) Eh(zr) — h(u) < [A+ — E[V, (4) — Viar ()] =072 — (2 = L VEV, ()

. T = ’I’}T y W n T 77T ANP VA

Now considering the original algorithm, the iterates will behave exactly the same when OutOfBound = False
for all iterations. When OutOfBound = True the actual algorithm returns an arbitrary point z; incurs a loss
bounded by h(x:) — h(zr) + (A + niT)th (u) < V2RT + (A + niT)RQ. Thus, we have for the claimed bound for the
actual algorithm’s output iterates z,w, i.e.,

Eh(z) — h(u) < ()\ + an)E[Vy(u) — Vi (w)] + 0% — (i - an)JEVy(uj) ARV, (27)

+ (\/iRr + ()\ + 1T>R2> P(OutOfBound = True).
n
0

Next, we bound the term Zthl (9t — i, wi—1 — u) on the RHS of Equation (5.17) using concentration of
measure. This is formally stated in the next lemma; we defer its proof to the end of this subsection.

LEMMA 5.3. In the setting of Lemma @, for any 6, € (0,1) and u € X, we have

t

Z (Gi — giywi—1 —u)

1<t<T|4
i=1

(5.26) P(S((S) = { max 5

2
<T max |lw; —ul[4/32T log }) >1-0.
0<i<T
Combining Equation (5.17) in Lemma with the concentration guarantees in Lemma we show the
iteration {wt}te[T] and z7 stay relatively close to the true optimizer v} in the following.
LEMMA 5.4. In the setting of Lemma and Lemma let u} = argmin , Hy(z). For any 6 € (0,1) and
T > 1, when event £(0) happens,

2
*) < * = 212
QDA Vi, (u}) < 2Vy(u}) + (65 log 5>77 T

and

*
A

2V, (uy) 2
< Y\ = 2.
AWy (z7) < 0T + <66 log 5) nl

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. For the first inequality, we follow Equation (5.17), due to Hy(zr) — Hx(u}) > 0 and the non-negativity of
Bregman divergences, we have

2
T+ (g0 dowes —u}).

Vaur () < Vi () + 5
te[T]

Applying the same argument for all ¢ € [T] gives

2
Vi, (uy) < Vy(uy) + %FQt +7 Z (gi — i,wi—1 —u}), forallte[T].
Applying Lemma with u = u}, we have under the event £(9),

Vi, (uX) <V, (uf) + =27 i = §isWi—1 — U}
max Vi (u3) <V (u) + 5 T°T + nmax Z(g Girwimy — u})

2
* n 2 * 2
<V - — —
y(u)\) + 5 T + nF Oglta<x ||wt u)\|| 8T10g

(5.27) 5

(@)

2
< Vy(uf) + L

1
2 202 | Lt w12
5 I“T +n°I'* - (32T log (5) +Omta<xT4||wt u} ||

(44) 65 2 1

< * il = 272 - *)

< Vy(uy) + (5 log 5) r T+021taXT 2th(u>\)
Here we use (7) the AM GM inequality and (i7) the strong convexity of Bregman divergence by definition. Note the
RHS in Equation (5 also upper bounds V,,, (u}) since wo = y in the initialization of Algorithm I Combining

these together and rearranging terms,

2
) < * = 212
Jmax Vi, (0}) < 2V, (uy) + (65log 5) n°TT,

thus proving the first inequality.
For the second inequality, we note by strong convexity, Hx(zr) — Hx(u}) > AV (2r), plugging this

back into Equation (5.17) and again using non-negativity of Bregman divergences and similar arguments
following Lemma we have when event £(0) happens,

Vy(ui) n

1 .
)\Vu;‘\ (QTT) < 7]7]" + 51—‘2 + T t;] <gt — Gt,Wt—1 — u§\>

LAC YN
< ynT I‘Q—&-Tl"orgax lw; — uy]l 32Tlog5

@)V () M2 2 2 1
< + + —— max V. (u}
771 F 32 log 1) nr 277T Oglz< 1 wi (UA)

@) 2V, (uy) 2
< A 4 65 (log =) 2.
< T + 0g 5 n

Here we use the Cauchy-Schwarz inequality for (i) and the first inequality proven for (i7). This concludes the
proof for the second inequality. 0

We use Lemma to control the possibility of LI-MD going out of bounds when u} is not too far from the
center point y.

LEMMA 5.5. In the setting of Lemma if Vy(uy) < 1—; and for some § € (0,1) we have (log 2)n*T?*T <

then the event £(6) implies that OutOfBound = False.

65 16

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. We have OutOfBound = False if and only if max,<r||z; — y|| < p. To derive a sufficient condition for this
inequality we upper bound max;<r|lz; — y|| as follows:

(i) (i)
_ < _ < * g < * *
maxa, —yl| < maxflw, —yl| < ul -yl + maxfjw, — il < /2Vy(u}) +, [2max Ve, (u3),

where (i) follows by convexity and the definition of x; as the averaging of wo, ..., w;_1, and (i) follows from the
1-strong-convexity of the distance generating function.
Next, we apply Lemma and the assumption (log) 2T < m to obtain that £(J) implies
p?
max Vi, (u}) <2V, (u}) + 6

Substituting V,(u}) < f—z and combining the above displays yields

p? | P

p
—yll < £ LR
ng\\xt yll_\/§+ Tt se

as required.]

Finally, the next lemma bounds the total movement of iterations {xt}temz

LEMMA 5.6. In the setting of Lemmal[5.2, we have, for any u € X,

T
(5.28) ZHmt — x| < 2(log T + 1) Jmax ||wt —ull.
t=1

Proof. By definition of x;, we have x; — xy—1 = %(wt_l — x4_1), consequently by triangle inequality we have
Zuxt ~ral= Y Hwe — el < Y S —ull+ Y Sl -l
t t
te[T) te[T) te[T—1]
We proceed to bound the two terms on the RHS respectively. For the first term,
1 1
Z Z||wt_1 —ul| < Z - max |Jwy —ul| < (logT + 1) Jmax Hwt —ull.

t] 0<t<T-1
te[T) te(T]

For the second term,

1 1
St —ull < [301 max e ull < (o T+ 1) ma .

te[T] te(T)
where we also use convexity of the norm function || - || and the fact that z,—1 = 15 Z o w; for (x). Summing the
two terms proves the claimed bound. 0

Proof of Lemma[5.3. We consider the random variable X; := S maxg< <1 T =l (9i — gi,wi—1 —u) and the
j<i— J

filtration F;_1 = o(zg, wo, 1, w1, -+ ,w;—1,2;). Note we have E[X;|F;_1] = 0 and additionally | X;| < H‘h q””* <1
with probability 1. Thus, applying Blackwell’s inequality (cf. Blackwell [6] Theorem 1), we have for an‘y a b>0,

P|3te|T] i| <a+bt| <2e729,

1€[t]

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Replacing a = /T'log(2/9)/2, b = +/log(2/6)/2T, with probability 1 — §, we have for all ¢ € [T,

i < /Tlog(2/0)/2 + /log(2/8)/2T - t < \/2T log(2/6).

i€[t]

Now applying Lemma 5 of Ivgi et al. [30] with a; = 2I'maxo<j<;—1 ||w; — u|| and b; = X;, we have

> {gi — Girwio1 —u)

<4I' max ||wZ—uH max
0<i<t—

1<i<t
1€ [t] JE[7]
<T max |w;— u||\/32Tlog — forallt € [T).
0<i<T—1 1)
Taking maximum over all ¢ € [T] gives the desired claim. |

5.3 Analysis of A\-Bisection. In this section, we prove the correctness and bound the number of iterations
for A-BISECTION in Algorithm 2. We use & (0) to denote the probabilistic event described in Lemma with
parameter ¢ when calling LI-MD(G, y, p, Ak, Nk, Tk), which according to that lemma happens with probability at
least 1 — 6. In the next lemma, we first show that if the stopping criterion of the binary search holds for some k&
and A, then with high probability the value of V, (u}) is ©(p*/poly(7)).

nder the event E(0/8), at

LEMMA 5.7. Assume X and V satisfy a T-triangle inequality. For 6, € (0,1), u
2
k) SGP—thenV(uA)<f—6andif

iteration k of Algomthml% the call to LI-MD outputs z*) such that if V (z()
V, (%) > then V, (u},) >

= 10247’4 :

25673

Proof. We begin by noting that V,,(2(®)) < 1mpheb that [|z2*) —y| < p and therefore that OutOfBound™ = False
and z(%) = zgw), i.e., the last iterate of LI—MD. This allows us to apply Lemma to bound, in the event & (dx/8),

2V, (u,) 16 1 §
N (k)y < y\ %X, log Tk M p2 * 14]
Vu)\k (Z) - /\knka (66 5 > /\k - 2T Vy(u)\k) * 102474

To upper bound Vj,(u) we use the 7-triangle inequality, V,,(2(¥)) < £ and the bound on Vy; (2(F)) to write

2

1024

« P 1
V() < 7 (V) + Vag, M) < S u,) +

Rearranging yields V,, (u},) < QG as required.

To lower bound V, (uj,) we combine the 7-triangle with the assumed lower bound on V, (%)),

1 k k 1 k p’ 1 P x
Vy(u3,) = ;Vy(z()= Vig, (V) = ;Vy(z() - Tooard ~ 37 V(A 2 55 — V(w3
2
p
= V() = fopa71

d

The next lemma shows that there exists a nontrivial range of A values for which the binary search will terminate
with high probability. Here by overloading notations we let £x(d) to denote the probablistic event in Lemma
with parameter § when calling LI-MD(G, y, p, A, n,T) with n and T chosen as in A-BISECTION.

LEMMA 5.8. Assume X and V satisfy a T-triangle inequality with T > 4. For 6 € (0,1) let n < ge5par 1022()16/5)751‘2

and T = f}; Then under event Ex(6/8) the output z of LI-MD(G,y, p, A\,n,T) satisfies if V(u}) < g —L— then

4T — 1007’
Vy(2) < &7 and if Vy(u}) = 5= then Vy(2) = o5

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. We begin by noting that by Lemma the assumption V,(u}) < %, the event £,(0/8), and the choice
of n implies that OutOfBound = False. Therefore, as in the proof of Lemma [5.7] above, we may use Lemma[5.4] and

conclude that)

2
Vaux () < ——2~ + <66 log —

T)X —2rY * 10247

By the 7-triangle inequality,

s
6471

IN

Vy(2) < 7 (Vy(u}) + V4 (Z))<§TV(U*)+ - < (¥ L+;
vZ) =T VA T Vg (2)) = 5TV U T J00078 =P\ 2 " 10072 " 102472

Applying the 7-triangle inequality in the other direction gives
2

V()= L h) - Vig ()2 V) 2 (e - ot) 2 g
y\2) = —VylU W)= o N T 00474 T P\ o7 T 12072 T 1024473) T 25678

The next lemma justifies the choice of the upper bisection limit Ay ax.

LEMMA 5.9. (UPPER BISECTION LIMIT) Leth: X — R be convez and, for somey € X, let Hx(x) = h(z)+AV,(x)
with 1-strongly-convex Vy(-) and u} = argmin,cy Hx(x). If h is I'-Lipschitz then for any X\ > 0,
1'\2

2

Consequently, for Amax =)< 1=

1671 *
=~ we have Vy (u}

Proof. We may assume that «3 is in the interior of X, since otherwise V,(u}) = V,(u},) for some X' > X such
that for all A > M\ the point u3, is in the interior of X, and we may apply the following considerations to
A1 N instead. We further assume without loss of generality that h and ¢ are differentiable, as otherwise we may
unifromly approximate them with convex differentiable functions via Moreau envelopes.

These assumptions imply that

0= VH)(u}) = Vh(u}) + AVV, (u}).

Hence, the fact that h is I'-Lipschitz implies that

* 1 *
19V (@)l = $ITA@SI, < 5
Finally, the 1-strong-convexity of z — V,,(x) and the fact that its minimal value of 0 is obtained at y implies that
* * 1 * (12 F2
Vy(u3) = V() — Vyly) < 519V () < 555
as required. 0
The next lemma justifies the lower bisection limit Apjy,.-
LEMMA 5.10. (LOWER BISECTION LIMIT) Let Amin = Ao = 1 and u} = argmin, .y Hy,,,(z) and assume that
X and V satisfy a T-triangle inequality with T > 4. Under the event £(5/8), if V,(2(9) < 6’21—27 then Vy(uy) < :"l’—z

and if V,(2(©)) > £ then Vy(u3) 2 12p0272'

Proof. Immediate from Lemmas [5.7] and 0

*

Finally, we bound the Lipschitz constant of A +— V,(u}) and apply the above lemmas to conclude that
A-BISECTION returns a valid points within O(1) iterations.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

PROPOSITION 5.1. In the setting of Theorem under the event NEre*Ex(01,/8), with Kax = [log, M] +1,
which happens with probabiltiy at least 1 — S, the A»-BISECTION procedure in Algorithm |: successfully returns at

2

iteration K < Knax a value Mg such that Vy(u/\K) < TZ and, if K > 1, also Vy(u/\K) > TohT

Proof. We begin by noting that P(ﬂk ‘“axfk(ék/8)) >1- g by Lemma and the union bound.

Next, Lemma [5.10] establishes the claims of the proposition in the edge case we return with K = 0.

Moving on to the main case we return with K > 1. If also K < K. then Lemma guarantees that the
claim V, (u}) € [102 yr= 16] holds. It therefore remains to argue that the bisection does 1ndeed terminate in

less than Knax steps Let X, X" € (Amin, Amax] satisfy Vi (u},) = 10072 and V,(uy,) = 12072 By Lemmas

to when M," “”"Sk (6%/8) holds then [A'; A’] C [Amin, Amax] 18 an invariant of the bisection and moreover the

blsectlon terminates if we query Ax € [\, \’]. Since the bisection the search interval at every step, it must return

in log, W steps. We have A\pnax — Amin < IGPTF, 0 to conclude the proof we need only lower bound A — \.
To do so, we write

2

A A

p * * * * *

s = Vi) = Vi) = [yan= [9V 3). V) dx
A=A A=\

. N
9_ / ATV), (T2h(5) + ATV, () 79V (u5)))

(i1) 172
< (N _ " _ \\T2.
< = X) g < O =0T
Here for (i) we use Vh(u}) + AVV,(u}) = 0 for all A € [N,\’], which implies V u} = —(V2h(u}) +

V2V, (u%))~'VV,(u}) by taking derivatives with respect to A and rearranging terms (we assume here that
h and r are twice differentiable; this is again without loss of generality due to smoothing arguments). For (i¢)

we reuse |[VV,(u})| < § from the proof of Lemma The above display implies that \” — X > 600’:72%2 and
therefore our choice of K. guarantees that log, w < Kmnax, concluding the proof. O

5.4 Proof of Theorem

Proof. We prove each part of the proposition in turn.
For part 1, let K < K.« be the final iteration of A-BISECTION and let)\K be its output. Recall

from Corollary that, for A = Ak, input parameters n = W, T = n>\’ the outputs of LI-MD
satisfy

Exh(z) — h(u) < ()\ + 771T>)\[Vy(u) — Vi (u)] + 92 — (i - an)Vy(ui)

1
+ <\/§R1" + ()\ + T>R2>IP’)\(OutOfBound = True),
n

where E, and P, denote conditional expectation over random variable A = \g.
Dividing both sides by ¢ = A+ (nT)~! > 1 and taking total expectation we have

g Uz) = h(w)
C
A A
n T T dr vy o V2R
< E[V,(u) = V()] +E XF2 e % V,(u}) + <A+(77T)1 + R2> P5(OutOfBound = True)
2
(5.30) < E[Vy(u) — Vi (u)] + p 5 EV,, (u}) + (V2RT + R*)P(OutOfBound = True).

Clog(16/6)75 57

Proposition implies that V,(u}) > %1{ A#Amim} holds with probability at least 1 — g. Therefore, since
Bregman divergences are nonnegative,

) p? p?
]EV (U}\) 1— - m:ﬂ.{)\#)\mm} 2 W:ﬂ'{)\?ﬁ)\min}'

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

By our choices of n and T, Lemma tells us that Vj,(u}) < % and £,(4/8) imply that OutOfBound = False.
Therefore,

1
= < = < —
]P’,\(OutOfBound True) < P)\(g,\(5/8)) + I{Vy(u;)>%} =3 +]]'{Vy(u;)>%}’
where the final inequality used Lemma Taking expectation and invoking Proposition [5.1| again, we find that

J oo P b 9
P(OutOfBound = True) < 3 + P Vy(uy) > 16 < sts <.

Substituting the bounds on EV,(u}) and P(OutOfBound = True) into Equation (5.30), noting that ¢ > 2 only
. 2
when A # Apnin and recalling that § < m,

bound . Additionally, we note for all possible choices of returned c it satisfies ¢ < 2Apax = % with
probability 1, giving the claimed value of cppax.-

Part 2 of the proposition is immediate from the definition of LI-MD, which always outputs points with distane
at most p from y.

For part 3 we use Lemmawith u = u}, which gives for all k < K that =, 7,) — 2™, || < 210g(2T5)p.
Summing these bounds gives

we obtain the required ball-restricted proximal oracle

K K
. 4Clog(16 K2, /0)TT?
SOF) -2 <23 log(2)p < 2K e log 21281 K max)T
k=0 ¢e[Ty,] k=0 P

Finally, part 4 follows from the setting of the Tj and K., since the total number of gradient queries and

mirror descent steps is at most (fzmé“" Tk). O

6 Matrix-vector maintenance data structures

In this section we formally define an ¢,-matriz-vector maintenance data structures (abbreviated MVM,) and
provide efficient algorithms for them for p € {1,2}. An MVM,, approximates the sequence {Az} to additive €
error in ¢, as long as the sum of the £, norm of the movements A; = z441 — z; does not exceed a given bound
R. The data structure is formally defined below in Definition for a brief description of these data structures
and how they fit into our overall method, see Section In the definition of an MVM,,, and throughout this
section, for any p > 1 we let p* > 1 be such that Il) + z% = 1; if p =1 then p* = co. Furthermore, for any matrix
A € R"*4 with rows aq, ..., a, € R* and p > 1 we let

[Alpsoc =" sup [[Az[lec = max|a;]p- .
o€R™,[|al|p=1 i€ln)

DEFINITION 6.1. (MATRIX-VECTOR MAINTENANCE) We call a data structure an {,-matrix-vector maintenance
data structure (MVM,,) if it supports the following operations:

e INIT(A € R4 70 € RY R € Ry, € € Rug): initializes the data structure with a matriz A with ||Allp—eo < 1,
initial point xg, movement range R, and accuracy € < R/ZH Sets t < 0.

e QUERY(A; € RY): sets 2441 + x4 + Ay, and t <t + 1 and then outputs y; € R™ (or the coordinates which
changed from the previous output if that is cheaper) with ||y; — Axt|eo < € provided that Zie[t] 1A, < R.

Our main results for designing MVM,,’s are encapsulated in the following theorem.

THEOREM 6.1. (MATRIX-VECTOR MAINTENANCE) For both p =1 and p =2 and any 0 > 0, there is a MVM,,
(Deﬁnition that implements INIT and T QUERY operations with probability 1—0 (against an oblivious adversary)
in total time

2
0 Z nnz(A) + <nnz(A) logP™? (R> d- R) logP™? <nR> +n (R> log (nR)
rer] € € €6 € €d
iT

his can always be obtained by initializing the algorithm with a smaller value of € or a larger value of R.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

The runtime in Theorem [6.1/is nearly linear in input size nnz(A) + 3,7y nnz(A) with an additive O(d(R/e))

and O(n(R/€)?) terms. When A is dense and R does not depend on T, this runtime considerably improves on the
Q(ndT) cost of naively implementing the data structure by computing Ax; exactly for each t € [T].

Our data structures have similar runtime complexity for both p =1 and p = 2 (up to additional logarithmic
factors for p = 2), but potentially much smaller memory complexity for p = 2. As developed in the rest of this
section, our data structure for p = 1 needs to store the entire input matrix A. In contrast, our data structure
when p = 2 requires O(d + n(R/€)?) space after initialization, which can be sublinear in nnz(A).

Approach and section organization. We prove Theorem [6.1] in two steps. First, in Section we
consider the simpler problem of designing a data structure which supports preprocessing A and then outputting
{ estimates for Az for a single query x, under no movement bound assumptions. We call such a data structures
an £,-matriz-vector estimation data structure (abbreviated MVE,), and provide efficient implementations for
p € {1,2}. Our MVE,, when p = 2 is then based on linear sketching and our data structure when p =1 is based
on random sampling.

Second, in Section we provide a general reduction from designing a MVM,, to designing MVE,’s. In
particular, we provide an MVM,, which carefully uses O(log(R/¢)) copies of an MVE, with different accuracy
parameters. We use these MVE,’s approximately maintain Az, ..., Azt for k = O(log(R/¢)) reference points
et ,xﬁff. By carefully updating these reference points when the movement is sufficient and using our MVE,’s,
we prove Theorem

Our runtimes for MVM,’s for p € {1,2}, i.e., Theorem are ultimately the same as the cost of initializing
our MVE,’s and performing a single query for a vector that has ¢,-norm at most R (up to logarithmic factors). In
other words, even though an MVM,, needs to answer many queries, the computational cost we obtain is comparable
to answering a single query to a vector that has /¢, distance R from the initial point.

6.1 Matrix-vector estimation. We now formally define an MVM,, data structure (Deﬁnition and efficiently
implement it for p € {1,2}.

DEFINITION 6.2. (MATRIX-VECTOR ESTIMATION) We call a data structure an {,-matrix-vector estimation data
structure (MVE,) if it supports the following operations (against an oblivious adversary):

e INIT(A € R 4 ¢ € Ryg,6 > 0): initialize the data structure with matrix A, accuracy parameter €, and
failure probability § > 0.

e QUERY(z € RY): outputs y € R™ such that ||y — Ax||eo < €||Allp—oollz|lp holds with probability at least 1 — &
(for just this query).

THEOREM 6.2. (£2-MATRIX-VECTOR ESTIMATION) There is a MVE, (Deﬁm'tion that implements INIT(A, €, §)
for in time O((nnz(A) + d)log(n/d)) and subsequent QUERY(x) operations in time O((nnz(z) + ne=2)log(n/d)).

Proof. Our data structure is a natural application of CountSketch matrices [19]. We use that, from the literature on
CountSketch matrices (see e.g., [19} 37]), there exists a distribution, M, on matrices in R**% for s = O(e~2log(n/§)
that have the following properties:

e) ~ M can be computed in O(dlog(n/d)) time and each column of @ has at most O(log(n/d))) non-zero
entries.

e There is a procedure DECODE(that given any input Qz and Qy for @ ~ M drawn independently of z,y € R¢
outputs a = DECODE(Qz, Qy) with |a — (z,y) | < €||z|l2|lyll2 in O(e~?log(n/d)) time with probability at
least 1 — (6/n).

To implement INIT our data structure draws Q ~ M and then computes y* = QA for all i € [n]. To implement
QUERY(z) our data structure then outputs v € R™ with each v; = DECODEq (y;, Q).

To see that our data structure is a MVE; note that [v; — (A, z) | < €||A]||2]|z]|2 with probability at least
1 — (§/n) by the properties of Q. Since |4, ||2 < ||A|l2—o0 for all i € [n] by applying union bound for this event
for all i € [n] we have the desired bound that ||[v — Az|cc < €||A|l2—00]|z||2 With probability at least 1 — 0.

To bound the algorithm’s runtime, first note that computing Qz for any vector x can be implemented in
O(nnz(z)log(n/d)) just by considering the O(log(n/d))-sparse column of @ for each non-zero entry of x. The

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

runtime for INIT follows immediately from this and the time to compute Q. The runtime for QUERY(+) then follows
by first computing Qz in time O(nnz(x)log(n/d)) and then considering the cost of n-invocations of DECODEq (-, -).
d

THEOREM 6.3. ({1-MATRIX-VECTOR ESTIMATION) For p = 1 there is a MVE; data structure (Definition (6.2
that implements INIT(A, €,8) for A € R"*? in time O(nnz(A)) and QUERY(x) in time O(nnz(x) + ne~2log(n/é))

Proof. Our data structure is a straightforward application random sampling and a Chernoff bound. For any
a,r € R? we let SAMPLE(a, z) be a procedure that outputs independent, random X € R by picking i € [d] with
probability proportional to |z;| and then outputting ||z|/1a; sign(z;), i.e., for any j € [n]

| 1 ift>0

o

P(X = ||z|1a;sign(z;)) = m, where sign(t) =< 0 ift=0.
-1 ift<0

By design, E[X] = {(a,z) and by a Chernoff bound [see, e.g., [20] we have that for sufficiently large T =
O(e~?log(n/d)) and a = £ >_te(T) SAMPLE(a,) it is the case that |a — (a,2) | < €l|al| |21 With probability at
least 1 — (§/n). To implement INIT our data structure simply saves A, ¢, and R. To implement QUERY(z) the
data structure then outputs v € R™ with each v; = % D otelT) SAMPLE(A], 7).

To see that our data structure is a MVE; note that |v; — (a,z) | < €||4] ||oo|lz]l1 with probability at least
1 — (§/n) by the properties of Q. Since ||A; ||oco < ||A|l1-00 for all i € [n] by applying union bound for this event
for all ¢ € [n] we have the desired bound that ||v — Az|ec < €||A|l100l/z|l1 With probability at least 1 — 0.

To bound the algorithm’s runtime, first note that, as discussed in Section [3, we assumed that we are in a
computation model where can process the vector |z| in O(nnz(x)) time to support sampling ¢ |z;| in time O(1).
Leveraging this, we have that with O(nnz(z))) time spent all subsequent SAMPLE(-) operations can be performed
in O(1). Since there are nT = O(ne~2log(n/§)) sample operations the data structure has the desired running
time. |

6.2 From estimation to maintenance. Now that we have established efficient MVE,’s for p = 2 (Theorem|6.2)
and p = 1 (Theorem , here we use these data structures to prove our main result on MVM,,’s (Theorem [6.1]).

We provide a general reduction from MVM,, to MVE,. In particular, we provide a MVM,, in Algorithm E
that uses k = O(log(R/€)) MVE,’s for different accuracy parameters. In Theorem we prove that for any
such implementation and choice of input parameters a € AF, Algorithm [4|is indeed a MVM,, and we analyze its
runtime. We then prove Theorem by setting «, using our MVE,, implementations and applying an additional
runtime improvement technique.

Designing and analyzing the data structure. Before providing these results and wrapping up the section,
here we provide some additional intuition and information regarding Algorithm [. In addition to the standard
input for a MVM,, and 0 > 0, the data structure is specified by K MVE,’s and parameters o € AF. In NIT(-), the

data structure initializes each MVE, —denoted D1, ..., Dy—and stores k + 2 reference vectors x{)ef, .. 7;102‘:{1 € R4
all initialized to xg as well as 3t .. ., yiﬁfl € R™ all initialized to Axg. The data structure maintains the invariant

that 5 = 2, and |zt — 21t ||, < €272 for all 1 <4 < k + 1. It uses this invariant to efficiently maintain that
ygef = Axgef. It then holds that, at any given time, yi°f is a valid response to QUERY(-).
The challenge in designing and analyzing Algorithm [4 is then to maintain these invariants, bound the error

in setting 3! to be the response to QUERY(:), and analyzing the runtime. Maintaining that z5f = z; and

[|zzef — ztef ||, < e - 2172 is straightforward; after each QUERY(-) we simply set zif = 2, and then update 21f = z,
all i € [j] for the smallest j for which this suffices to preserve the invariant. Due to the choice of 282 and the bound
on how much the z; can change, it is straightforward to show that zi°f for i > 1 changes at most O((R/e)27%)
times via this procedure. Furthermore, to update y{ef for all such ¢ € [j] we simply estimate A(x; — 2;11) using
D;.QUERY(-) and add this estimate to yi$',. For appropriate choice of accuracies in the D; (adjusted by the o)
we show this algorithm works as desired. Further, by choosing o and the accuracies, we get a tradeoff between
the cost of each D;.QUERY(-) and the number of times it is invoked. Putting these pieces together and carefully
reasoning about computational costs then yields our result.

5Each INIT can actually be implement in time 0(0), i.e., no initialization is required, provided that looking up entries A and the

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 4: ¢, matrix-vector maintenance meta-data structure

Input: Parameter p > 1, > 0, and a € AF
1 State: A € R"¥4 25 € R ReRyg, e € Rug, 6 >0

2 State: Current vector z; € R?, count t € R>g, and parameter k € Z~g

3 State: ¢, matrix-vector estimation data structures, D1,..., Dy // see Definition
4 State: Reference vectors zfff, ... 2}l € R? and yl“Ef ...,yi‘fl € R" / |laref — aref ||, < e . 212

5 function INIT(A € R™*? 25 € R, R € Ryg, e € Ryg)
Save A, xg, R, and € as part of data structure’s state
t <+ 0 and k < [log,([R/€])] +1
ot 20 and yief + Az for all i € {0} U [k + 1]
Set €; + ;27" and call D;.INIT(A, ¢;,8) for § + de/R and all i € [k]

© 0w N o

10 function QUERY(A; € RY)
11 Tip1 < ¢+ Ay and 25 < 2, and then ¢+t + 1

12 Let j be the minimum i € [k + 1] such that ||z, — 25|, < e- 2072
13 forie{j—1,...,1} do z!*' + z{f and then y}*' + D;.QUERY(z*f — 21%,) + yI%)
14 | return yief

THEOREM 6.4. (REDUCING MATRIX VECTOR MAINTENANCE TO ESTIMATION) Algorithm |Z is an £,-matrizc-
vector maintenance data structure (Definition [6.1)). If the runtime for each D;INIT(A,€;,8;) is 7;NIT() and
the runtime for each subsequent D; QUERY(:) is Touery (i) then Algorithm |: can implement INIT and T QUERY
operations in total time

0] nnZ(A) +d- E + Z HDZ(At) + Z <7;N1T(i) + % ' [%UERY(/I:)]>
€ em = <

Proof. We begin by showing that ||z; — zz+1||p < €-2%~1 in each execution of Line @ and therefore the j on
Line [T2]is well-defined. To see this, note that in each execution of Line [I2 we have

Yo@i—zicy)|| <Dl —wical, =) IAil, < R.
P el

i€ft] i€ft]

(6.31) [z = 2ollp =

Since € - 28— > ¢. 2l082(B/€) = R 50 long as a:ffil = xg then ||z; — xfc‘jf_lﬂp < ¢-2F-1 However, xff_ﬁl = 1 is set in
INIT and then never updated (since ¢ < k is on Line [13)) and the claim follows.

Leveraging that j is well-defined on Line @ve show that before and after each call to QUERY(:),
|ztef — atef ||, < €-2172 for all i € [k]. This invariant holds after INIT as each z!! is initially set to z.
Next, suppose the invariant holds before a call QUERY(). xﬁef are only changed on Llne @ and for 1 < j—1,
in which case they are set to z{*f. However, [|zf" — 25|l < e-2/72 by the definition of j (Line @) and that
j is well-defined. Therefore, after the call to QUERY(-) the invariant holds since [|2%°f; — 25| < e 2772 and
|ref — 25 [=0 <e-2072 forall i € [j — 2].

Next, we show that for all ¢ € [k], throughout the use of Algorithm |: as an MVM,,, D; QUERY(-) is called
on Line EE at most Re '27(~2) times. Whenever D;.QUERY(:) is called on Line @ it must be the case that
|z; — 25°F[, > €-2"~2 (as otherwise j < i by the definition of j on Line [12] n Let vy, ..., vr, denote the sequence of
dlfferent zt°f vectors set on Line [13| (where vy = zi!); we have just argued that [|v, — ve_1 ||, > €- 2172 for £ € [L].
Further, since the v, are a subsequence of the x;, triangle inequality implies that

R > Z |z — zi—1|lp > Z lve —ve—1llp > L-€- 9i=2
te(T] Le[L]

values of € and R can all be performed in O(1) during QUERY(:).

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Since D;.QUERY(-) is invoked L times, the claim follows.

Leveraging the previous properties, we next establish that with probability at least 1 — § before and after each
call to QUERY(-), we have that [|yi*f — Azt°f|| < Zk ! %< < § for all i € [k + 1]. By the preceding paragraph,
we know that the total umber of matrix-vector estlmatlon querles on Line [13]is at most

R R 1 R
E - < — — = —,
L €.2172 T Qe £~ 21 Q¢
1€[k] =0

Further, by the definition of a MVE, (Definition and by the union bound with probability at least
1—(6R/(2¢)) > 1 — 0 every call to D; QUERY(pef scH_l) on Line [13[outputs a vector z; where

€
2 = AP = 2350 lloo < €illAllpooo |2 = #iSilloe < 5 -
where we used the definition of ¢;, that [|Al|,—,oc < 1 by assumption and that [|z}°" — 2, || < - 27! in the

last inequality. Consequently, with probability 1 — d, before and after each call to QUERY(-) we have that for all
iek—1],

Q; £ £
—— +llyish — Az llp -

£ £ £ £ £ £
Iy = Azillp < llzi — A(ei® — i)y + llvifs — Azifallp < —

The claim then follows by induction and the facts that [yief, — Azl || = 0 (they are never changed after
initialization) and Re 1272 < 1,

We now have everything necessary to prove that Algorithm {4 is a MVM,, (Deﬁmtlon E Note that with
probability 1—§ after each call to QUERY(-) we have argued that ||yf — Az!°f||, < £ and that [Jyff —yicf||, < e-271.
Consequently,

ref

— Ay = 55 — Azl < 65 — AT + AT — 2l < &+ (Al el — 2T, <

I Io < 5

To complete the proof, we need to bound the data structure’s runtime. Note that INIT can be implemented in
time O(nnz(A) + 3~ 4 Tor(é)) by simply performing the operations (and savmg multiple copies of vectors and

matrices with pointers as needed). Next, note that changes to x;, zif, and x5 — zt°f due to zif' changing can
be computed in O(} ;¢ 7 nnz(Ay)) time. With this, it is possible to keep track of the changes to ||z5f — ztf||,
due to x%!f changing in O(X ey nnz(A¢)) time as well. Whenever j > 1 in Line |12, if we spend O(dj) time to
implement Line 12| and O(d) plus the D;.QUERY(-) costs in each iteration of Line [13|then the total additional cost
of QUERY(-) over all invocations is

Old+k+> {

1€ [k]

au@]+d] | =0 (@[F] 5+ 3 (- Tavmet9)

i€ (k]
provided that only changes to the output of QUERY(+) are reported. O
We conclude the section by proving Theorem the main result that we use in other sections.

Proof of Theorem[6.1. Apply Theorem 6.4 using Theorem [6.2]and Theorem [6.3|respectively. Using these algorithms
for all i € [k]

T (1) = O ((nnz(A) +d)logh™! (Z?)) and Tquery (1) = O (dlogp_1 (Z?) + ne; % log (Z?)) .

Next, to optimize the contribution of the €; terms to to the final runtime, pick a; o 27/3, ie. a; = 2i/3/(zj€[k] 21/3),
Using that €; = 2 %qy this yields that
3

11 9i , (k+1)/3 _ 1 B
E . = § i § i/3 _ _ ky _
2t €2 a? 2 (21/3 — 1) o) O< € >

i€[k] ielk] * i€[k]

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

where in the last step we used the definition of k. Combining with the facts that >

k = O(log(R/€)) yields that
S Tour(i) = 0 ((nnz(A) +d) logP ™ (Z?) log (f)) and

i€[k]

3 R, (nR R* (nR
o (e ORI OR)

The result for p = 2 then follows via Theorem and the log(R/e) = O(R/e).

To obtain the result for p = 1 we proceed identically and add one further improvement on the algorithm’s
implementation. In the case of p = 1 that rather spending O(nnz(A)log(R/€)) time in each D;.INIT(-) we can
simply save the matrix once and use it for each D;. This removes the logarithmic factors on the nnz(A) terms in
the runtime for p = 1 and yields the desire result. a

= O(£) and

1€ k] 627’ €

Even though we only use Algorithm [4|to prove Theorem and in turn only apply Theorem in a restricted
set of settings, we provide the more general algorithm and analysis as it may be useful in additional settings. In
particular, we allowed « to be a parameter because if we were in a setting where the runtime of each D;.QUERY(+)
had a different dependence on ¢, e.g., e~ rather than =2, then other configurations of & might be preferable, e.g.,
uniform with «; = % The particular choice of a; 2¢/3 in the proof of Theorem improves over a; = % by
logarithmic factors.

Note that, with more careful analysis, it may be possible to improve the dependence on d in Theorem
potentially at the cost of additional logarithmic factors. The current dependence arises by accounting for at least d
time whenever j7 > 1 on Line However, in the case that A; are sparse one could instead maintain the difference
from x; to each xref and seek faster implementations of D;.QUERY(-) provided that the input changes sparsely. We
do not pursue such an improvement for simplicity and since the term proportional to d does not affect our final
runtimes.

7 Efficient gradient estimation via matrix-vector maintenance

In this section, build upon the data structures developed in the previous section to provide an efficient stochastic
gradient oracle for the “softmax” approximation of the original objective. Recall that the “softmax” of functions

fla"'?fn is

fsmax(x) =€ log Z exp ,)
i€[n] < € >
exp(fi(z)/€’)
Yicin exp(fi(z)/€)

Throughout this section we assume that each f; is Lg-smooth and L ¢-Lipschitz.

Algorithm E provides an unbiased estimator of V fsmax(x) by leveraging a matrix-vector maintenance data
structure M. The algorithm takes as input a sequence of query points x1, ...,z that satisfies ||z — zo| < r
and Y, pllwe — z—1|| < 7’ for r,7’ > 0 such that $L,r* < €. It outputs a sequence of vectors G(z1),...,G(z7)
such that (informally) E[G(z:) | M, z1,...,2t] = V famax(z¢) for all ¢ < T with high probability. To compute
these estimates the algorithm requires, with high probability, 5(11 + T') individual function value and gradient
calculations, as well as O ((n+T)d+d(Lygr'/e") +n(Lyr'/¢')?) additional runtime. We state this guarantee in
full detail in the following.

and V fymax (@ Z pi(x)V fi(x) where p;(z) =

1€[n]

THEOREM 7.1. (SOFTMAX GRADIENT ESTIMATOR) Letp € {1,2} and let { fi}ie[n) be Lg-smooth and Ly-Lipschitz
with respect to ||-||,. For allt € [T] assume that input x, to Algorithm E is a (deterministic) function of the
previous outputs G(x1),...,G(x¢—1), and that ||z, — xollp < 7 and Y, pllay — x—1|] < 77 hold for parameters
r,r’ > 0 such that %Lg'r2 <€ and € < Lyr'/2. Let F; be the filtration induced by all the random bits Algorithm
draws up to iteration t and all those that may be used by M. Then for any error tolerance § € (0, 1) there exists
event £ such that the following hold:

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 5: Softmax gradient estimator

Input: {f;}ic[n), query sequence {z;};<7 such that z; is a function of the previous outputs
G(z1),...,G(x¢-1) (i.e., o and x; do not depend on any outputs).
Parameters: Softmax tolerance €', movement bound r’, Lipschitz constant Ly, error tolerate 6 € (0,1),
{,-matrix-vector maintenance data structure M.

1 Call MLINIT(A, 0,7/, <=, %) where A = [Lifoi(xo)T]ie[n]

) [77 2
2 fort=1,2,---,7T do
3 Yp < Lf . M.QUERY(l‘t — xt_l) > maintain vector y; = LyA(zs — x0) = [(V fi(xo),zs — ,1:():\)},{[”:
4 accepted < False
5 while not accepted do
6 Draw i ~ exp(ifi(xol#[yt]i
7 With probability min{exp(%w - 2), 1}

s yield i; = i and G(z¢) = V f;, (2+)
accepted < True

We have P(E) > 1 4.

When & holds we have E[G(x;) | Fi—1] = V fsmax(z¢) for all t € [T).

When € holds, Algorithm [5 makes O(n + Tlog(1/8)) queries of the form {f;(x),V fi(z)}, and requires
additional runtime

1 1 (L’ L 1 [nLer’ L'\ 2 nL¢r’
(o) e () o)) (20 o2 5)

With probability 1 we have ||G(z)||p« < Ly, where p* is such that % + p% =1.

Proof. We prove the theorem by coupling Algorithm [5 to an “alternative” algorithm that uses M in a strictly
oblivious manner, and produces a potentially different sequence of indices 4}, ..., i, queries x5, ..., 2} and matrix-
vector estimates y; = Ly - M.QUERY(z} — z;_;). The alternative algorithm proceeds exactly like Algorithm E,
except at every iteration it tests whether

(7.32) max|[y/]; — (Vfi(wo), 71 — w0)| = Ly || v — Alw} —20)|| <€

i€[n] oo

holds. As long as this condition holds, the algorithm produces i} using rejection sampling as in Algorithm E
(and with the same random bits). If at any ¢ < T' the condition fails, the algorithm proceeds to directly draw
it ~ ef @)/ at all subsequent iterations, ignoring the values of y;. Thus, both algorithms produce identical
outputs G(x}) = G(z) leading to identical queries x} = x; whenever Equation holds for all ¢ € [T].

For the alternative algorithm we have i} ~ efi(@)/¢ for all ¢ € [T, regardless of randomness in M. To see
this, note that by smoothness of the f; we have

< %Lgr2

fi(zy) — fi(zo) — (Vfilzo), ¥} — 7o)

o <1

’ =

€
for all i € [n], by our assumptions that ||z} — zo|[, < and FLsr? < €. Consequently, when Equation (7.32) holds

we have
filxy) — filwo) — (i) (Vfi(xo), 2y — w0) — [yt]i

€ €

<2

§1+‘

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

for all ¢ € [n]. Therefore, exp(w — 2) < 1 and (by standard analysis of rejection sampling) we have

P(i} = i) exp(%ﬂy”i) -exp(%) = efi(#1)/¢' As a consequence, the alternative algorithm’s

outputs satisfy E[G(x}) | F/_1] = V fsmax(}) for all ¢ < T by definition of the softmax function.
Since the alternative algorithm’s queries are oblivious to the data structure’s randomness, we may applyﬁ

Theorem to conclude that, with probability at least 1 — g we have H Lifyé — Az}, — mO)H < % forallt <T,
o0

implying that the condition holds for all ¢t < T and therefore both algorithms produce identical outputs.
This defines a probability > 1 — 2 event under which E[G(z;) | Fi—1] = V fsmax () for all ¢ < T, giving the first
part of the theorem.

For the second part of the theorem, we note that smoothness and the condition also imply that the
fi(zy)—fi(zo)=lyili

rejection probability exp(— 2) > e~%. Therefore, the expected number of rejection sampling

steps in the alternative algorithm is O(1). By standard Chernoff bounds [see, e.g., [20], with probability at least
= g the alternative algorithms makes O(T log %) rejection sampling steps throughout. Thus, by a union bound
we have that with probability 1 — §, Algorithm [5 and the alternative algorithm are identical, with each making
O(T log %) rejection sampling steps. Each rejection sampling step costs O(1) function and gradient evaluations,
and to construct the matrix A we require n additional evaluations. Additionally, given the computational model
of this paper, with O(n) preprocessing we can implement each random sampling of 7 in O(1) time as discussed in
Section (3l Altogether, this brings the overall cost to O(n + T log %) and the bound on additional runtime follows
immediately from Theorem
Finally, the third part of the theorem is immediate from noting that G(z) = Vf;, (a;) for some i; € [n] and
therefore ||G(x¢)||,+ < Ly by the Lipschitz continuity of the f;. O

8 Runtime bounds

We now put together the pieces constructed in the previous sections to obtain runtime bounds for minimizing the
maximum of convex functions. In Section [8.1] we study general convex functions, in Section [8.2] we specialize our
results to linear functions, and in Section [8.3| we specialize them further to the problem of finding a minimum
enclosing ball.

8.1 General convex functions. Recall the problem

8.33 inimi max (%) = ifi
() mnwlgglze Smax(z) ;relégg Z yifi(z)

We consider the problem in two different settings, which we call the ball setup or the simplex setup, formally
defined as follows.

DEFINITION 8.1. (BALL SETUP) In the ball setup, the norm ||-|| is the Euclidean norm |||z, the domain X is a
closed and convex subset of the unit Euclidean ball B = {x € R? | ||z||o < 1}, and the Bregman divergence is
Va(y) = 3lly — z||3. Furthermore, we let X, == X for all v > 0.

DEFINITION 8.2. (SIMPLEX SETUP) In the simplex setup, the norm ||| is the I-norm ||-||1, the domain X is a
closed and convex subset of the probability simpler A% = {z € R%O | Zie[d] x; = 1}, and the Bregman divergence is
Va(y) = Xiejq ¥ilog 2. Furthermore, we let X, == {x € X [x; 2 v, Vi € [d]} for all v = 0.

We introduce the set A, in the definitions above in order to satisfy the 7-triangle in the simplex setup;
see Definition and Example
The following is our main result concerning the complexity of solving the problem (8.33).

THEOREM 8.1. Consider the problem (8.33) in either the ball or simplex setups (Definitions and
respectively), where each function f; is convex, Ljy-Lipschitz, and Lg-smooth with respect to ||-||. Let e > 0,

6The matrix A satisfies || Al|p—s o0 < 1 since ||V f;(z0)|lp+ < Ly for all i € [n] by the Lipschitz continuity assumption.
P P f

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

let v = ﬁ, and for initial point xg € X, let max,cx, Vi, (2) < %RQ. Then, AlgorithmE with parameters

— £
Lglogn’ 87

implementation in Algorithm[5, return a point x such that

r < R, & = LfR, accuracy ball oracle implementation AlgorithmE and gradient oracle

Efmax(x) - fIfléI}(fmax(x*) <e

Let Teval be the time to compute fi(x),Vfi(x) for any x € X and i € [n], and let Tma be the time to
compute a mirror descent step of the form argmin, ¢y {(g,2) + AV, (2) + Va(2)} for any g € R and z,y € X. For

Lglogn? Ly 10~

- L,R2\? “eal +)L R\ LiR\?
(8:34) 0<n(7'eva1+d)(g€> +n<w> +(7éva1+de+d)<£> .

€< min{LgR2, L?/Lg} and r = min{\/ £ W} with probability at least ==, the algorithm has runtime

€

Proof. We establish the theorem in four steps: reducing the objective to softmax on a truncated domain, describing
the gradient oracle implementation, arguing the correctness of our methods, and finally bounding the runtime.
Reduction. We claim it suffices to solve to ¢/4 additive error the problem

(8.35) mixneigluize fsmax(7) where fomax(z) = € log .ez[:] exp (fle(,x)) , € = 21§gn7 V= 4d€Lf'

To see the claim is true, note we have | fsmax () — fmax(z)] < €/2 for all © € X and
i max g i max S i max 4
N frnax (%) < WD frnax () < 1 frnax (2) + €/

due to Ly-Lipschitz continuity of f. Consequently, for any & that is an /4 approximate optimizer of the true

minimizer of (8.35), we have
fomax(Z) < min fonax(z) + €/4 < min frax(x) + €/2 4+ €/4 < min frax(z) +€/4 + €/2 + €/4.
TEX, TEX, reX

This proves such Z is also an e-additive minimizer of the original problem . We therefore focus on solving
to €/4 additive error.

Stochastic gradient oracle. At the ¢'th ball oracle call in the outer loop (Algorithm [1) we instantiate
a gradient estimator G for V fynax using Algorithm E with initial point ®;(v:), parameters r and r’ = 6(7“),

LJ%R . Wloum with Touter = 6((R/T)2/3) such that Theorem guarantees (via
t 29

Markov’s inequality) that Algorithm E requires at most Toyier iterations with probability at least ;75. Since
Theorem only guarantees that this gradient estimator is unbiased for V fsmax with high probability, we repeat
the coupling argument from the proof of Theorem Namely, we consider “alternative” completely unbiased
gradient estimators that with probability at least 1 — § produce identical outputs to Algorithm [5] We then analyze
an alternative algorithm with the alternative estimators, and use the fact that with probability at least 1 — 6Touter
it produces the same output as our algorithm. By our choice of § and Tyyter, we have that with probability at
least 1 — the actual and alternative gradient estimators produce identical outputs for the entire duration of

and failure probability § =

50177
the algorithm.

Correctness. For the ball and simplex setups, our chosen Bregman divergence V. (y) is 1-strongly convex
with respect to the £ or £; norm, respectively. The corresponding divergence also satisfies a 7-triangle inequality
(Definition with 7 = ©(1). For the k’th out loop iteration, let us argue that the stochastic gradient queries
made the inner loop of Algorithm [2 satisfy the conditions of Theorem Let G denote the estimator for
V fsmax defined above, and let Gi(z) = ax+1G(Px(x)) be the gradient estimator for hj defined in Algorithm |1
and let y = ®(vg). Let x1, ...,z denote the sequence of queries to Gy made by Algorithm {2l Then Theorem [5.1
guarantees that |z, — vi|| < p for all ¢ € [T'] and that >, pllze — 21| = O(p). By design of Algorithm E we
have that ®4(z) — ®x(z) = £ (z — 2’) and therefore the queries to G satisfy || ®x(z¢) — y|| < r for all t € [T] and

2ieml|Pr(@e) — Pr(ze—1)| = O(r) = r’ as required by Theorem |7.1

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

With the conditions of Theorem satisfied, we have a nearly unbiased gradient estimator for fgnax, that
with probability at least 1 — m produce identical outputs to a completely unbiased gradient for the entire
duration of the algorithm, as discussed above. Theorem then guarantees that (using the alternative gradient
estimator) Algorithm E implements a valid (p,7, cmax) Testricted proximal oracle for p = O(R2/3r1/3), v = O(1)
and ¢pax < 00. We may therefore apply Theorem u (with € — €/8) to conclude that with alternative gradient

estimator we output 2’ such that
€

E smax ! < i smax o
Fomax(27) < 1000 fomax(24) + ¢

Letting x be the output of the algorithm using the actual gradient estimator, we have

E fosmax(2) = Efsmax(xl)]l{zzr’} + Efomax () Lozary
(1)
< Efsmax(-r/) + ELfo - xOH]]“{fH'Sl’I}
(44)
< Efomax(z) + LR -P(x # 2')
(i43) €

< i max S L !
= mI*nelEst a (z*)+8+ fR

1 < min fomax(zs) + ¢
50L;R ~ w.ex, g7
due to the (¢) Lipschitz continuity of fomax, (é¢) the definition of R, and (4ii) the bounds on Ef(z’) and the
probability of z = x’ discussed above. This proves the correctness of our algorithm.
Complexity. By Theorem and the discussion above, the outer loop (Algorithm [1)) terminates in Toyter =
5(R2/ 3p=2/3) iterations with probability at least %. Each iteration of the outer loop performs O(1) operations
on d-dimensional vectors and makes one call to a ball restricted proximal oracle.

By Theorem each restricted ball oracle call makes O (F2 / p2) calls to the gradient estimator, mirror descent
step computations, and d-dimensional vector arithmetic operations Recalling that ' = O(r) and € = O(e),

Theorem gives that, with probability at least 1 — m the runtime of a restricted oracle call is at most

~ L 7’2 L T F2
Enner =0 <n£2 + de + n(7deval + d) + (%val + de + d)p2> .

- L 2/3 pa
By Theorems and we have that p = O(R?*/3r/3) and T' = O (@) Moreover, the number of

ball oracle calls is bounded by Touter = 5(R2/ 3p—2/ 3) with probability at least %. Substituting and applying a
union bound, we get that the total runtime of the algorithm is bounded by

~ [L3R/3p4/3 R%/3 L3}R?
Toutcr : Enncr - O niz + n(,]::val + d)% + (%val + de + d))
€ r €

with probability at least 1—90. Substituting r = min{ \/ T fogn, “/Evjj‘”'d} yields the claimed bound (8.34) and

completes the proof.]

8.2 Matrix games. In the special case where f;(x) = [ATz]; are linear functions, the ball and simplex setups
reduce to £,-¢1 matrix games with p € {2, 1}, respectively. Formally, the problem definition is

(8.36) minirgize [man :ETAy} ., where X = A? for ¢1-¢; and X = B? for lo-¢;.
faS YyeA™"
To simplify expressions, we assume that each f;(x) is 1-Lipschitz in ||-||,, which is equivalent to assuming that
max; ; | Aj;l for ¢;-¢1 games
(8.37) [Allp—o0 = e
maxey || A:ill2 for £>-¢1 games <1

Our runtime guarantees are as follows.

Logarithmic factors in Theorem depend on a bound for max, yex, Vz(y) whereas we only assumed maxyc x, Va, (y) < R?/2.
However, a 7-triangle inequality with 7 = O(1) implies that max, yex, Vi (y) = O(maxyex, Vio ())-

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

COROLLARY 8.1. (MATRIX GAMES) For p € {1,2}, consider the problem of £,-f1 matriz games under the

assumption (8.37). Fore € (0,1) and v = ¢/(4d), Algomthmwzth parameters r = min(1,Vde), R = O(), €0 =R,
accuracy €/4, ball oracle implementation in Algomthml and gradient oracle implementation in Algomthm@ return
a point x such that

Emin | max 2" Ay| — min | max x, TAy, | <e.
zeX |yeAn TL,EX |y, EA™

With probability at least o5 the runtime of the algorithm is

2/3_1_

O(nd—l—nd 2/3—|—d)

Proof. We invoke Theorem with Ly = 1 (by assumption) and L, = 0 (since each function is linear). For
matrix games we have Tova = O(d). Let us also argue that T,q = O(d), recalling that 7p,q is the time to find
w = argmin,, ¢y {(g, w) + AV, (w) + V. (w)} for some y, z € X, and g € R%. In the ball setup we simply have

z+Ay—g x
= Tlga (2227 "9 where TI S —
Y (1+ A)W #(0) = L, T}

is the Euclidean projection onto B?. Therefore, Trq = O(d) in the ball setup.
In the (truncated) sunplex setup X = Ad with some v € (0,1/2d], we can implement the mirror descent

step as follows. Let £ = z1+k o y1+>\ o exp(— 1+/\g) where we use o to represent element-wise product. Let o
be a permutation of (1,...,d) such that &,, is the i-th largest entry of £ (breaking ties arbitrarily). Now define

o = % (so that W = v), and the cutoff index i’ € [d] to be the largest i € [d] such that

Z_i"?g > 171/2/ Rl Such i’ € [d] must be well-defined as the inequality is satisfied when ¢ = 1. It is then
J<i 595
straightforward to verify that w € R¢ such that for all i € [d]

v e
ey, i <7
w; = i

v if ¢ >4

is the solution to the problem defining the mirror descent step. Computing £ takes O(d) time, sorting it takes
O(dlog d) time, and finding i’ and calculating w each take additional O(d) time, so overall Tq = O(d) in the
simplex setup. B

Plugging Ly = 1, Ly, = 0, and Teval, Touter = O(d) into Equation @) yields the claimed runtime bound.
d

8.3 Minimum Enclosing Ball. In this section, we apply our method to solving the minimum enclosing ball
problem, defined as follows. Given data points a1, ..., a, € R? such that a; = 0 and max;ey) [|a;i|l2 = 1, the goal
is to find the minimum radius R, ball containing all data points. That is,

1 1
8.38 “R} = h (z) = <l — a3
(8-38) 5% = min max fi(x) where fi(x) = gllz —aill3
The problem is also equivalent to an £»-¢1; matrix game with a quadratic regularization term, but for our purpose
the natural formulation above is more convenient. Letting z, = argmin,cgs maxycan» fi(z), it holds without
loss of generality that ||z, |2 <1 and R, € [%,1] (see Allen-Zhu et al. [2] for detailed explanation). Under these
assumptions, we obtain the following runtime guarantee.

COROLLARY 8.2. (MINIMUM ENCLOSING BALL) Consider the problem (8.38) with a1 =0 and max;cp,)|laill2 <1

(so that |x.|| <1 and R, > 1/2). For any € € (0,1), there is an algorithm that makes O(1) calls to Algom'thmlz
with ball oracle implementation Algorithm[2 and gradient oracle implementation in Algorithm[5 and, with probability
at least % returns a point x such that

1
Sl —wi <e B2

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

with total runtime _
O (nd +nd?Be 13 4 d671> .

Proof. Let K =log, 2. We use Theorem m with f;(z) = 3|l — a;||3 defined above, and boost its result to failure
probability 10#}(by repeatedly calling the algorithm O(1) times, cutting it off whenever it exceeds the runtime

bound, and selecting the best result in O(nd) time. We apply this high-probability solver recursively, generating a
sequence of solutions z(?), ..., (%) that satisfies, with probability at least 19—0,

1
§||;v(k) —)3 <27 *FD < 97RIR2 forall k<K,

so that 2 = 2(5) satisfies % ||z — z,[|3 < - R? as required.

To generate (¥, ..., 2 we start with 2(0) = 0, which satisfies 1||z(®) — z,]|3 < 1 < 2R? by assumption.
To produce z*) for k > 1 we apply our algorithm on with parameters Ry = 2~ *=1/2 ¢ =2-(*+D [=1 and
Ly = O(1) on the domain X}, = {z | ||z — zF-D| < 2_(k_1)/2}, which contains x, by the inductive assumption
that [|z(*=D — 2,||; < 2= =1/2_ The 1-strong-convexity of our objective function then guarantees (with the
appropriate probability) that %Hx(k) —n 3 < e = 2= (+1) completing the induction. The runtime to produce

x®) is
N 2\ 1/3 2/3 2
0] (n(%val +d)<R’“> +n<(7;val +d)R’“> + (Teval + Tmd +d)<R’“>)

€k €k €k
zé(nd+nd2/3~2k/3+d~2k),

where the transition follows from substituting Ry, €x, and plugging in Teval = Tma = O(d). Summing this over
k € [K] and recalling that 25 = O(1) yields the claimed runtime bound. O

Acknowledgments

We thank Kfir Levy for suggesting the work [23] may be useful for ball oracle acceleration, and the anonymous
reviewers for their helpful feedback.

YC was supported in part by the Israeli Science Foundation (ISF) grant no. 2486/21 and the Len Blavatnik
and the Blavatnik Family foundation. YJ was supported in part by a Stanford Graduate Fellowship and the
Dantzig-Lieberman Fellowship. AS was supported in part by a Microsoft Research Faculty Fellowship, NSF
CAREER Award CCF-1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan Research
Fellowship.

References

[1] I. Adler. The equivalence of linear programs and zero-sum games. International Journal of Game Theory, 42:
165-177, 2013.

[2] Z. Allen-Zhu, Z. Liao, and Y. Yuan. Optimization algorithms for faster computational geometry. In
International Colloquium of Automata, Languages and Programming, 2016.

[3] H. Asi, Y. Carmon, A. Jambulapati, Y. Jin, and A. Sidford. Stochastic bias-reduced gradient methods.
Advances in Neural Information Processing Systems, 34, 2021.

[4] B. Axelrod, Y. P. Liu, and A. Sidford. Near-optimal approximate discrete and continuous submodular function
minimization. In Symposium on Discrete Algorithms, (SODA), 2020.

[5] P. Balamurugan and F. Bach. Stochastic variance reduction methods for saddle-point problems. In Advances
in Neural Information Processing Systems (NeurIPS), 2016.

[6] D. Blackwell. Large deviations for martingales. In Festschrift for Lucien Le Cam, 1997.

[7] J. H. Blanchet and P. W. Glynn. Unbiased Monte Carlo for optimization and functions of expectations via
multi-level randomization. In 2015 Winter Simulation Conference (WSC), pages 3656-3667, 2015.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

8]

[9]

[10]

S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, and A. Sidford. Complexity of highly parallel non-smooth convex
optimization. arXiw:1906.10655, 2019.

S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, and A. Sidford. Near-optimal method for highly smooth convex
optimization. In Proceedings of the Thirty Second Annual Conference on Computational Learning Theory,
pages 492-507, 2019.

B. Bullins. Highly smooth minimization of non-smooth problems. In Conference on Learning Theory, pages
988-1030, 2020.

Y. Carmon and D. Hausler. Distributionally robust optimization via ball oracle acceleration. arXiv:2203.13225,
2022.

Y. Carmon and O. Hinder. Making SGD parameter-free. In Conference on Learning Theory (COLT), 2022.

Y. Carmon, Y. Jin, A. Sidford, and K. Tian. Variance reduction for matrix games. Advances in Neural
Information Processing Systems (NeurIPS), 2019.

Y. Carmon, A. Jambulapati, Q. Jiang, Y. Jin, Y. T. Lee, A. Sidford, and K. Tian. Acceleration with a ball
optimization oracle. In Advances in Neural Information Processing Systems, 2020.

Y. Carmon, Y. Jin, A. Sidford, and K. Tian. Coordinate methods for matrix games. In Symposium on
Foundations of Computer Science (FOCS), 2020.

Y. Carmon, A. Jambulapati, Y. Jin, and A. Sidford. Thinking inside the ball: Near-optimal minimization of
the maximal loss. In Conference on Learning Theory, 2021.

Y. Carmon, D. Hausler, A. Jambulapati, Y. Jin, and A. Sidford. Optimal and adaptive Monteiro-Svaiter
acceleration. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Y. Carmon, A. Jambulapati, Y. Jin, and A. Sidford. RECAPP: Crafting a more efficient catalyst for convex
optimization. In International Conference on Machine Learning (ICML), 2022.

M. Charikar, K. C. Chen, and M. Farach-Colton. Finding frequent items in data streams. In International
Collogquium of Automata, Languages and Programming, 2018.

H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations.
The Annals of Mathematical Statistics, pages 493-507, 1952.

K. L. Clarkson, E. Hazan, and D. P. Woodruff. Sublinear optimization for machine learning. Journal of the
ACM (JACM), 59(5):1-49, 2012.

M. B. Cohen, Y. T. Lee, and Z. Song. Solving linear programs in the current matrix multiplication time.
Journal of the ACM (JACM), 68(1):1-39, 2021.

A. Cutkosky. Anytime online-to-batch, optimism and acceleration. In International Conference on Machine
Learning (ICML), 2019.

G. B. Dantzig. Linear Programming and FExtensions. Princeton University Press, Princeton, NJ, 1953.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the 1 1-ball for learning in
high dimensions. In International Conference on Machine Learning (ICML), 2008.

R. Frostig, R. Ge, S. Kakade, and A. Sidford. Un-regularizing: approximate proximal point and faster
stochastic algorithms for empirical risk minimization. In International Conference on Machine Learning
(ICML), 2015.

A. V. Gasnikov, P. E. Dvurechensky, E. Gorbunov, E. A. Vorontsova, D. Selikhanovych, and C. A. Uribe.
Optimal tensor methods in smooth convex and uniformly convex optimization. In Proceedings of the Thirty
Second Annual Conference on Computational Learning Theory, pages 1374-1391, 2019.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

[28]

[29]

[30]

[31]

32]

[46]

[47]

M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approximation algorithm for matrix
games. Operations Research Letters, 18(2):53-58, 1995.

O. Giiler. New proximal point algorithms for convex minimization. SIAM Journal on Optimization, 2(4):
649-664, 1992.

M. Ivgi, O. Hinder, and Y. Carmon. DoG is SGD’s best friend: A parameter-free dynamic step size schedule.
In International Conference on Machine Learning (ICML), 2023.

B. Jiang, H. Wang, and S. Zhang. An optimal high-order tensor method for convex optimization. In Proceedings
of the Thirty Second Annual Conference on Computational Learning Theory, pages 1799-1801, 2019.

S. Jiang, Z. Song, O. Weinstein, and H. Zhang. A faster algorithm for solving general lps. In S. Khuller and
V. V. Williams, editors, Proceedings of the Fifty-Third Annual ACM Symposium on the Theory of Computing,
pages 823-832. ACM, 2021.

N. Karmarkar. A new polynomial-time algorithm for linear programming. In Symposium on Theory of
Computing (STOC), pages 302-311, 1984.

D. Kovalev and A. Gasnikov. The first optimal acceleration of high-order methods in smooth convex
optimization. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

G. Lan. Gradient sliding for composite optimization. Mathematical Programming, 159(1):201-235, 2016.

G. Lan and Y. Ouyang. Accelerated gradient sliding for structured convex optimization. Computational
Optimization and Applications, 82(2):361-394, 2022.

K. G. Larsen, R. Pagh, and J. Tetek. CountSketches, feature hashing and the median of three. In International
Conference on Machine Learning (ICML), 2021.

Y. T. Lee and A. Sidford. Efficient accelerated coordinate descent methods and faster algorithms for solving
linear systems. In Symposium on Foundations of Computer Science (FOCS), pages 147-156, 2013.

Y. T. Lee and A. Sidford. Efficient inverse maintenance and faster algorithms for linear programming. In
Symposium on Foundations of Computer Science (FOCS), 2015.

H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In Advances in Neural
Information Processing Systems (NeurIPS), 2015.

M. Minsky and S. Papert. Perceptrons: An introduction to computational geometry. MIT Press, 1988.

R. D. Monteiro and B. F. Svaiter. Iteration-complexity of a Newton proximal extragradient method for
monotone variational inequalities and inclusion problems. SIAM Journal on Optimization, 22(3):914-935,
2012.

R. D. C. Monteiro and B. F. Svaiter. An accelerated hybrid proximal extragradient method for convex
optimization and its implications to second-order methods. SIAM Journal on Optimization, 23(2):1092-1125,
2013.

H. Namkoong and J. C. Duchi. Stochastic gradient methods for distributionally robust optimization with
f-divergences. In Advances in Neural Information Processing Systems (NeurIPS), 2016.

A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with Lipschitz
continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on
Optimization, 15(1):229-251, 2004.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic
programming. SIAM Journal on optimization, 19(4):1574-1609, 2009.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103:127-152, 2005.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

[48]

[49]
[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Y. Nesterov. Dual extrapolation and its applications to solving variational inequalities and related problems.
Mathematical Programming, 109(2-3):319-344, 2007.

Y. Nesterov. Lectures on conver optimization. Springer, 2018.

R.-D. Reiss. Approximate distributions of order statistics: with applications to nonparametric statistics.
Springer science & business media, 2012.

J. Renegar. A polynomial-time algorithm, based on Newton’s method, for linear programming. Mathematical
programming, 40(1-3):59-93, 1988.

R. T. Rockafellar. Convex analysis. Princeton university press, 1997.

S. Salzo and S. Villa. Inexact and accelerated proximal point algorithms. Journal of Convexr analysis, 19(4):
1167-1192, 2012.

S. Shalev-Shwartz and Y. Wexler. Minimizing the maximal loss: How and why? In International Conference
on Machine Learning (ICML), 2016.

A. Sidford and K. Tian. Coordinate methods for accelerating £, regression and faster approximate maximum
flow. In Symposium on Foundations of Computer Science (FOCS), 2018.

C. Song, S. J. Wright, and J. Diakonikolas. Variance reduction via primal-dual accelerated dual averaging for
nonsmooth convex finite-sums. In International Conference on Machine Learning, 2021.

C. Song, C. Y. Lin, S. Wright, and J. Diakonikolas. Coordinate linear variance reduction for generalized linear
programming. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

J. J. Sylvester. A question in the geometry of situation. Quarterly Journal of Pure and Applied Mathematics,
1(1):79-80, 1857.

K. K. Thekumparampil, P. Jain, P. Netrapalli, and S. Oh. Projection efficient subgradient method and
optimal nonsmooth frank-wolfe method. In Advances in Neural Information Processing Systems, 2020.

J. van den Brand. A deterministic linear program solver in current matrix multiplication time. pages 259—-278.
STAM, 2020.

J. van den Brand. Unifying matrix data structures: Simplifying and speeding up iterative algorithms. In
H. V. Le and V. King, editors, 4th Symposium on Simplicity in Algorithms (SOSA), pages 1-13. SIAM, 2021.

J. van den Brand, Y. T. Lee, D. Nanongkai, R. Peng, T. Saranurak, A. Sidford, Z. Song, and D. Wang.
Bipartite matching in nearly-linear time on moderately dense graphs. In Symposium on Foundations of
Computer Science (FOCS), 2020.

J. van den Brand, Y. T. Lee, A. Sidford, and Z. Song. Solving tall dense linear programs in nearly linear
time. In K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and J. Chuzhoy, editors, Proceedings of
the Fifty-Second Annual ACM Symposium on the Theory of Computing, 2020.

J. Van Den Brand, Y. T. Lee, Y. P. Liu, T. Saranurak, A. Sidford, Z. Song, and D. Wang. Minimum cost flows,
MDPs, and {¢;-regression in nearly linear time for dense instances. In Symposium on Theory of Computing
(STOC), 2021.

M. Vose. A linear algorithm for generating random numbers with a given distribution. IEEE Transactions on
Software Engineering, 17(9):972-975, 1991.

M. Wang. Randomized linear programming solves the Markov decision problem in nearly linear (sometimes
sublinear) time. Mathematics of Operations Research, 45(2):517-546, 2020.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Related work.

	Technical overview
	Preliminaries.
	Increasing the ball size by linear approximation data structures.
	Accelerating entropy ball oracles.
	Implementing entropy-ball oracles.
	Putting it all together.

	Notation and conventions
	Non-Euclidean ball oracle acceleration
	Ball oracle implementation
	Divergences satisfying -triangle inequality.
	Analysis of alg:mirror-descent.
	Analysis of -Bisection.
	Proof of thm:oracle-impl.

	Matrix-vector maintenance data structures
	Matrix-vector estimation.
	From estimation to maintenance.

	Efficient gradient estimation via matrix-vector maintenance
	Runtime bounds
	General convex functions.
	Matrix games.
	Minimum Enclosing Ball.

