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Abstract

The transport of PFOS and PFOA in well-characterized sand was investigated for relatively
low water saturations. An instrumented column was used for some experiments to provide real-
time in-situ monitoring of water saturation and matric potential. The results showed that water
saturations and matric potentials varied minimally during the experiments. Flow rates were
monitored continuously and were essentially constant. These results demonstrate that surfactant-
induced flow and other nonideal hydraulic processes did not materially impact PFAS transport for
the experiment conditions. Air-water interfacial adsorption was demonstrated to provide the great
majority of retention for PFOS and PFOA. Retention was significantly greater at the lower water
saturations (0.35-0.45) compared to the higher saturations (~0.66) for both PFAS, due to the larger
extant air-water interfacial areas. Retardation factors were 5 and 3-times greater at the lower water
saturations for PFOS and PFOA, respectively. Early breakthrough was observed for the PFAS but
not for the non-reactive tracers at the lower water saturations, indicating the possibility that air-
water interfacial adsorption was rate-limited to some degree. Independently determined retention
parameters were used to predict retardation factors for PFOS and PFOA, which were similar to the
measured values in all cases. The consistency between the predicted and measured values indicates
that PFAS retention was accurately represented. In addition, air-water interfacial adsorption
coefficients measured from the transport experiments were consistent with independently
measured equilibrium-based values. Based on these results, it appears that the air-water interfacial
adsorption processes mediating the magnitude of PFOS and PFOA retention under lower water-
saturation conditions are consistent with those for higher water saturations. This provides some
confidence that our understanding of PFAS retention obtained from work conducted at higher

water saturations is applicable to lower water saturations.
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1. Introduction

It is now well established that per and poly-fluoroalkyl substances (PFAS) are present in
soils at numerous sites across the globe (e.g., Rankin et al., 2016; Washington et al., 2019;
Brusseau et al., 2020a). The potential for PFAS to leach through the vadose zone and impact
groundwater is a primary concern for these sites. As a result, the processes and factors influencing
PFAS retention and migration in the vadose zone have been a focus of recent research. These
investigations have included bench-scale transport experiments, field-characterization studies, and
the application of conceptual and mathematical models. All three approaches are critical to
developing a thorough understanding of PFAS transport in the vadose zone.

Among the different approaches, bench-scale miscible-displacement (i.e., “column”)
transport experiments serve as a means to directly examine under controlled conditions specific
processes and factors mediating PFAS retention and transport. Initial such experiments for PFAS
were conducted by Brusseau and colleagues (Lyu et al., 2018; Brusseau et al., 2019a), who
demonstrated that retention under unsaturated-flow conditions is greater than under saturated
conditions due to PFAS adsorption at air-water interfaces. They have since investigated the impact
of porous-medium type, solution properties, PFAS chain length, mass-transfer processes, and the
presence of PFAS mixtures and hydrocarbon surfactant on PFAS transport under unsaturated
conditions (Brusseau, 2020; Lyu and Brusseau, 2020; Yan et al., 2020; Brusseau et al., 2021; Ji et
al., 2021; Huang et al., 2022; Lyu et al., 2022a). Sun and colleagues have investigated the impact

of porous-medium type, solution ionic composition, and the presence of hydrocarbon surfactant
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specifically on perfluorooctanoic acid (PFOA) transport under unsaturated conditions (Lyu et al.,
2020; Li et al., 2021; Lyu et al., 2022b). Abraham et al. (2022) have recently investigated the
impact of trapped air bubbles on PFAS transport in porous media.

These works have contributed significantly to our understanding of PFAS retention and
transport in unsaturated porous media. However, the great majority of the prior experiments were
conducted using comparatively high water saturations, in the range of approximately 0.64 to 0.84.
Field studies of infiltration and recharge have shown that water saturations are typically lower,
even during active infiltration and drainage, ranging between approximately 0.2 to 0.6 (e.g., Yao
et al., 2004; Rimon et al., 2007; Turkeltaub et al., 2014). These ranges are supported by
mathematical-modeling simulations of PFAS vadose-zone transport, wherein the simulated water
saturations remained between 0.2 and 0.6, depending upon the recharge rate and soil properties
(Guo et al., 2020; Brusseau and Guo, 2022). A recent field study of PFAS distribution in porewater
versus soil also reported water saturations ranging between 0.25 and ~0.6 (Schaefer et al., 2022a).
Of course, the magnitude and range of values will depend on soil properties and site conditions.
To our knowledge, only two sets of PFAS transport experiments have been conducted using lower
saturations. Lyu et al. (2018) conducted an experiment at a water saturation of 0.35, whereas Lyu
et al. (2020) conducted experiments at a water saturation of 0.45.

Decades of research have established that solute transport in macroscopically
homogeneous porous media is often more complex under unsaturated conditions than for saturated
conditions, wherein for example early breakthrough, extended concentration tailing, and increased
spreading or dispersion are often observed. Such behavior is typically attributed to greater flow-
path tortuosity, greater variances in porewater velocities, and the presence of stagnant/immobile

water under unsaturated conditions. Numerous bench-scale solute-transport experiments have
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demonstrated that this nonideal behavior is a function of water saturation, with greater nonideality
often observed at lower water saturations (e.g., Biggar and Nielsen, 1960; Krupp and Elrick, 1968;
Gaudet et al., 1977; De Smedt and Wierenga, 1984; Bond and Wierenga, 1990; Padilla et al., 1999;
Toride et al., 2003; Kumahor et al., 2015; Zhuang et al., 2021). This is also supported by the results
of pore-scale modeling and imaging studies (e.g., Raoof and Hassanizadeh, 2013; Hasan et al.,
2020).

While the noted research has focused on nonreactive solutes, the retention and transport of
interfacially active solutes such as PFAS will also be affected by these processes. However, their
transport may in addition be impacted by changes in accessibility to air-water interfaces accruing
to changes in water saturation. Access to air-water interfaces for solutes migrating in the aqueous
phase typically becomes more constrained as water saturation decreases (e.g., Costanza-Robinson
and Brusseau, 2002; Brusseau et al., 2007). This can lead to an increase in mass-transfer constraints
affecting air-water interfacial adsorption, which in turn can impact retention and transport behavior
(Brusseau, 2020). Such behavior for example has been speculated to result in the underestimation
of PFAS air-water interfacial adsorption coefficients (Schaefer et al., 2022b).

The monitoring of water saturations in all of the prior works was done gravimetrically by
weighing the columns. While this approach produces accurate measurements of column-averaged
values, it does not provide information on the internal distribution of water saturation. Some
investigators have speculated that uncertainty in the distribution or status of water saturation may
have resulted in errors in quantifying the retention behavior of hydrocarbon surfactants (Costanza-
Robinson and Henry, 2017) or PFAS (Schaefer et al., 2022b) in transport studies. Furthermore,
the occurrence of surfactant-induced flow is a potential concern for unsaturated-flow experiments

conducted with interfacially active solutes (e.g., Kim et al., 1997; Smith and Gillham, 1999;
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Karagunduz et al., 2015; Costanza-Robinson and Henry, 2017). These issues can be addressed by
employing an instrumented-column system to provide real-time in-situ monitoring of water
saturation and matric potential. Such highly instrumented columns have been used successfully
for example to investigate the transport of butanol (e.g., Smith and Gillham, 1999) and silica
colloids (Lenhart and Saiers, 2002) under unsaturated-flow conditions.

Based on the preceding discussion, it is possible that PFAS retention and transport may be
subject to greater nonideal behavior at the lower water saturations that are representative of typical
field conditions. Hence, additional investigations of PFAS transport under lower water-saturation
conditions are clearly warranted. Additionally, the use of an instrumented-column system would
enhance the investigation. The objective of this study is to examine the transport of PFAS under
relatively low water saturations. Miscible-displacement experiments are conducted for
perfluorooctanesulfonic acid (PFOS) and PFOA transport in a well-characterized sand that has
been used in prior experiments, allowing direct comparative analysis. An instrumented column
that is equipped with multiple amplitude domain reflectometry (ADR) probes and
tensiometers/pressure-transducers is employed for select experiments to provide real-time in-situ
monitoring of water saturation and matric potential. To our knowledge, this represents the first
time that such a system has been used to investigate PFAS transport. Independently determined
values for retention parameters are used to predict retardation factors, which are subsequently
compared to the measured values. These experiments help to fill in the gap examining the impact

of lower water saturations on the retention and transport of PFAS in unsaturated media.
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2. Materials and methods
2.1 Materials

The experiments were conducted with PFOS (CAS# 1763-23-1, Sigma-Aldrich, 98%) and
PFOA (CAS# 335-67-1, AIKE Reagent, 98%) as the representative PFAS. Input concentrations
(Co) of 100 npg/L were used for both to be consistent with our prior experiments.
Pentafluorobenzoic acid (PBA, 120 mg/L), which is not a PFAS, and sodium bromide (0.01 M)
were used as the nonreactive tracers (NRTs). Sodium dodecyl benzene sulfonate (SDBS, 35 mg/L)
was used as the air-water interfacial adsorptive tracer. A background electrolyte (0.01 M NaCl)
was used to maintain a constant ionic strength for all experiments. Surface tensions of the tracer
solutions were measured with a force tensiometer (Sigma 70, Biolin Scientific) using the Du Nuoy
ring method. No measurable difference in surface tension was observed between 0.01 M NaCl and
0.01 M NaBr solutions. All aqueous solutions were prepared in deionized water (> 18.2 MQecm
resistivity) from a NANOpure ultrapure water system (Barnstead™).

The porous medium used for these experiments is 40/50 mesh quartz sand (Accusand).
This sand has been thoroughly characterized in previous studies including measurements of the
soil water characteristic (Brusseau and Guo, 2021), air-water interfacial area (Araujo et al., 2015;
Brusseau et al. 2015; Brusseau et al., 2020b; El Ouni et al. 2021), and solid-phase sorption for
PFOS and PFOA (Van Glubt et al., 2021). The medium has low organic-carbon (0.04%) and metal-
oxide (0.003%) contents, and no clay minerals. This medium has a low sorption capacity for PFOS
and PFOA (Van Glubt et al., 2021), which supports a focus on the contributions of air-water
interfacial adsorption to retention.

Three column setups were used for the experiments. One setup employed a standard solid-

barrel column, which was 15 cm long with an internal diameter of 2.5 cm. The second setup
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comprised a stacked set of segmented rings of 1.5 cm height and 2.8 cm diameter (see Figure 1).
Silicone tape was wrapped around the stacked rings to hold them in place and ensure they were
water-tight during the experiment. This segmented-column design facilitates the measurement of
water saturation at discrete intervals along the length of the column at the end of an experiment.
Ten-micron polypropylene porous plates (Scientific Commodities, BB2062-10BL) were placed at
the bottom of both columns. The top caps were removed during unsaturated-flow experiments to
allow equilibration with the atmosphere. Water saturation was monitored gravimetrically for these
two setups by weighing both the column and the effluent samples.

The third setup employed an instrumented column (Figure 1), 30 cm long with an internal
diameter of 12.17 cm. The larger diameter was required to accommodate the instrumentation.
Three intervals of instrument suites were installed at heights of 5, 15, and 25 cm. Each of these
suites contained a tensiometer/pressure transducer couple (rods from SoilMoisture Equipment and
transducers GT3-30 from ICT International) to measure matric potential and an ADR probe (ICT
international MP306) to measure water saturation. Care was taken to ensure that the instruments
within each layer occupied the same horizontal plane. The top of the column has four ports. Three
of the ports were used to inject the influent aqueous solutions through a porous frit to ensure
uniform distribution across the column cross section. The fourth is closed for saturated-flow
experiments, and open for unsaturated-flow experiments to ensure pressure equilibration across
the column. The bottom has three effluent ports and a 10-micron polypropylene porous plate
(Scientific Commodities, BB2062-10AL) to retain the media and ensure uniform pressure
distribution. Given the comparative large size of this system, it was used for select experiments to

minimize generation of PFAS waste.
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An HPLC piston pump (Shimadzu LC20 AD) was used to inject the solutions into the
column at a constant specific discharge of either 0.05 or 0.09 cm/min. One of two vacuum systems
was used to generate unsaturated flow. One system employed a set of vacuum flasks and a vacuum

pump (Figure 1), while the other employed a custom-built vacuum chamber and pump.

Instrumented Column Segmented Column
Influent Solution (HPLC pump) Solution application

Open to air Open to air I
ﬁ /p \ .
— [} Post experiment

I
B o
Silicone tape| .
Sampling
\ Tape removal |:>
g —>

I

Sample collection
(vacuum sampler)

—

Figure 1. Diagrams of the instrumented-column and segmented-column setups.

2.2 Methods

Multiple sets of experiments were conducted for this study. (1) The soil water characteristic
(SWC) was measured in-situ by monitoring the tensiometers and ADRs in the instrumented
column during primary drainage. These in-situ measurements will be compared to new and
previous measurements conducted using a standard Tempe-cell method. (2) Nonreactive tracer
tests were conducted to characterize the influence of hydraulic properties on water flow and solute

transport. (3) Interfacial tracer tests were conducted to obtain independent measures of air-water
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interfacial area at the water saturations used for the PFAS experiments. These data supplement the
numerous prior measurements that have been reported for this medium. (4) PFOS and PFOA
transport was investigated individually to examine the impact of air-water interfacial adsorption
on retention under lower water-saturation conditions. (5) Initial experiments were conducted to
characterize the potential impact of PFAS presence on spatial and temporal water-saturation
distributions and tracer transport. One experiment was conducted with the instrumented column
using an influent PFOS concentration of 10 mg/L, 100-times larger than that used for the primary
experiments, to characterize the potential impact of surfactant-induced flow. Another experiment
was conducted with the segmented column and a PFOS concentration of 1 mg/L to measure water
saturation at discrete intervals along the length of the column. Finally, a preliminary experiment
was conducted to test the simultaneous application of the NRT and PFOS (0.1 mg/L).

Measurements of the SWC: Simultaneous monitoring of water saturation and matric

potential during drainage in the instrumented column provides a direct, in-situ measure of the
SWC. These data are compared to prior and new measurements conducted with the standard
Tempe-cell method. For the Tempe-cell measurements, each standard 6-cm Tempe cell
(Soilmoisture 1400B01M1-6) was dry packed to the target bulk density. Porous 1-bar ceramic
plates were pre-saturated with solution and attached to the cells. The Tempe cells were then slowly
saturated with degassed 0.01 M NaCl solution. Once saturated, drainage was induced by a
regulated pressure source and saturation was determined gravimetrically (ASTM, 2016). The prior
Tempe-cell measurements were reported in Brusseau and Guo (2021).

Preparation and operation of the packed columns: Each column was packed with air-dried

media to bulk densities of approximately1.69 to 1.73 g/cm? and porosities of approximately 0.30

to 0.35. The column was then saturated with degassed 0.01 M NaCl solution, introduced from the

10
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bottom of the column. The mass of the column was monitored gravimetrically, and a stable mass
was used to indicate full saturation. This was confirmed via ADR measurements for the
instrumented column.

Once the column was saturated, the influent flow was switched to the top of the column.
The top cap was removed for the standard and segmented columns to allow equilibration with the
atmosphere. The vent at the top of the column was opened for the instrumented column. Steady
unsaturated flow was achieved by modifying the bottom vacuum pressures and monitoring the
influent and effluent flow rates. In addition, the ADRs and tensiometers were monitored within
the instrumented column. Once steady-state flow was achieved, the respective transport
experiments were initiated. The effluent samples were weighed to determine the effluent flow rates
and to help monitor potential changes in water saturation within the column.

Effluent samples were collected from the bottom of the column. The effluent sample was
delivered to the first of two flasks for the vacuum-flask system, and the flow was switched to the
second flask when the desired sample volume was obtained. After the sample was collected, the
first flask was cleaned, purged to the vacuum pressure of the manifold, and reattached. The process
was then repeated for the second flask. This process ensured minimal fluctuations in vacuum
pressures throughout the duration of the experiment. Measurements conducted with a manometer
connected to the system demonstrated that purging the flasks before reattachment to the vacuum
system maintained an uninterrupted vacuum pressure on the bottom of the column. For the
vacuum-chamber system, the samples were delivered to a fraction collector housed within the
chamber. The effluent samples were analyzed for the relevant solutes as described in the next
section. For the segmented column, the tape was removed at the completion of the experiment and

the soil from each ring was weighed, dried, and weighed again to determine water saturation.

11



224

225

226

227

228

229

230

231

232

233

234

235

236

Tracer and PFAS transport experiments: Experiments were conducted to characterize

transport of PFOS, PFOA, SDBS, and the nonreactive tracers. An overview is presented in Table

1. The PFOS and PFOA transport experiments were conducted in duplicate, while the SDBS tests

were conducted in triplicate. For most experiments, an NRT test was conducted first, followed by

PFOS, PFOA, or SDBS transport. In select cases, the NRT test was conducted simultaneously with

the PFAS or SDBS transport. For the SDBS experiment, two NRT tests were conducted using the

same packed column, one sequentially with PBA and bromide present and one simultaneously

with bromide. When bromide was used as the NRT, the NaCl solution was replaced with NaBr,

such that the ionic strength was not altered.

Table 1. Overview of Transport Experiments

Experiment Column Type Notes

SDBS-1 Instrumented NRT-sequential

SDBS-2 Instrumented NRT-sequential

SDBS-3 Instrumented NRT-sequential & simultaneous
PFOS-initial Instrumented Test water-saturation and matric-potential measurements
PFOS-initial Segmented Test water-saturation spatial distribution
PFOS-initial Standard Test simultaneous NRT

PFOS-1 Segmented NRT-sequential

PFOS-2 Standard NRT-sequential

PFOA-1 Instrumented NRT-sequential

PFOA-2 Standard NRT-simultaneous

12
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The experiments were conducted for a target nominal water saturation of 0.35 for PFOA
and 0.45 for PFOS. These saturations represent the mid-range of those reported for the field and
modeling studies cited in the Introduction. The larger water saturation was used for PFOS to reduce
the magnitude of retardation and the requisite experiment timeframe. The specific water
saturations were measured for each experiment and are reported in Table 2. The results of these
experiments will be compared to the results of prior experiments conducted at higher water
saturations (Brusseau et al., 2021; Huang et al., 2022). These prior studies used the same porous

medium and input concentrations.

2.3 Chemical analysis

Pentafluorobenzoic acid (254 nm wavelength) and SDBS (223 nm wavelength)
concentrations were measured by UV-vis spectrophotometry. Bromide concentrations were
determined using a bromide ion selective electrode (Thermo Scientific 9635BNWP). PFOS and
PFOA were analyzed at the University of Arizona WEST Center by liquid chromatography tandem
mass spectrometry (LC-MS/MS), with an Agilent 1290 Infinity HPLC coupled with an Agilent
6460 Triple Quadrupole LC/MS. Chromatographic separation was achieved using a Phonomenex
Gemini C18 column (100 x 3 mm, 3 um), which was paired with a Phonomenex Guard column
(50 x 3 mm, 3 um) and maintained at a temperature of 40°C. The mobile phase consisted of 20
mM ammonium acetate (Sigma Millipore) and 99.8+% HPLC Grade methanol (Thermo
Scientific). The MS was operated in negative ion mode, with the collision energy set to 54 eV for
PFOS and 8 eV for PFOA. Standard QA/QC procedures were employed, including periodical

spikes of the blank and standards. Data were collected by Agilent MassHunter and analyzed by

13
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Skyline (MacLean et al., 2010). The method detection limits (MDLs) calculated according to EPA

revision 2 (EPA, 2016) are approximately 40 ng/L in 0.01 M NaCl solution.

2.4 Data analysis

Breakthrough curves were developed by plotting relative concentrations versus eluted pore
volumes. The concentration measured for each sample was divided by the input concentration to
determine relative concentrations. The volume of solution displaced from the column was divided
by the volume of solution retained by the column under the extant water saturation to determine
pore volumes. Retardation factors were determined by moment analysis of the measured
breakthrough curves, as detailed in prior works (Van Glubt et al., 2021). The total retention of
PFAS or SDBS under unsaturated conditions is governed by adsorption at the air-water interface

and adsorption at the solid-water interface. The retardation factor is defined as:

Kfcn_lpb + KaWAaW (1)
Ow Ow

R=1+
where pbv is the bulk density, Kr is the solid phase Freundlich sorption coefficient, n is the
Freundlich parameter, C is the aqueous concentration of the input pulse, Aaw is the air-water

interfacial area, and Kaw is the air-water interfacial adsorption coefficient. The fraction of retention

associated with air-water interfacial adsorption (FAWIA) is calculated as:

FAWIA = [R -1 - 2520 /(R — 1) @)

The measured retardation factors obtained from moment analysis of the breakthrough
curves will be compared to predicted values determined using independent measures of the
parameters comprising equation (1). The bulk density and volumetric water contents are measured
for each experiment. The Freundlich solid-phase sorption parameters, K (PFOS-0.15, PFOA-0.1)
and n (PFOS-0.81, PFOA-0.87), were determined in a prior study (Van Glubt et al., 2021). The
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study used batch and column methods to measure isotherms for both PFOS and PFOA sorption by
the sand used in the present study. The Kaw values (PFOS-0.034, PFOA-0.0027) were determined
from surface-tension measurements reported in a prior study (Brusseau et al., 2021). The Aaw
values were measured with the interfacial tracer tests conducted with SDBS. These measurements
were corroborated with the prior measurements of interfacial area conducted for this sand (Araujo
et al., 2015; Brusseau et al. 2015; Brusseau et al., 2020b; EI Ouni et al. 2021).

Note that because values for Aaw are available from independent measurements, values for
Kaw can be determined from the retardation factors measured with the transport experiments
through solving equation (1). This approach will be used as another means of assessing the results
of the experiments. The Kaw values determined with this approach will be compared to those
determined from surface-tension measurements (reported above) as well as studies using aerosol-
generation and surface-microlayer sampling methods. For these latter two methods, the enrichment
factors (EF) measured in the experiments can be converted to Kaw values through the following
definition: EF = 1 + (A/V) Kaw, where A is the surface area of the interface and V is the volume
of water comprising the water film (surface-microlayer sampling) or aerosol (aerosol generation).

As discussed in the Introduction, it is possible that the retention and transport of PFAS
under unsaturated-flow conditions may be influenced by mass-transfer constraints. The impact of
mass-transfer constraints during advective transport can be assessed through the use of Damkholer
Numbers. This approach was used for example by Brusseau (2020) to evaluate the impact of rate-
limited air-water interfacial adsorption on the retention and transport of PFAS and SDBS. The
Damkholer Number represents in this case a comparison (ratio) of the hydraulic residence time

and the characteristic time for mass transfer. It is assumed for the present analysis that air-water
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interfacial adsorption is mediated by diffusive mass transfer to and from the air-water interfaces
(Brusseau, 2020).

The representative Damkohler Number (®) for this case is given as:

__aDylL

)

12v,,
where a is a geometric shape factor (~3 for planar geometry), Dw is the effective diffusion
coefficient in porewater [L*T], [ is the characteristic diffusion length, L is the representative
transport distance (column length), vy is the mean linear porewater velocity [vw = qw/0w; L/T], and
gw = Darcy flux [L/T]. The effective diffusion coefficient is defined as Dw = OwDwot, where Do is
the diffusion coefficient in bulk water [L%/T] and 7 is a tortuosity factor. The 6\ term accounts for
the fraction of cross-sectional area of pore space available for diffusion and the tortuosity factor
accounts for the complex diffusive paths associated with the pore network structure. Numerous
expressions have been developed to determine tortuosity factors for soils. One of the most widely
used expressions is that attributed to Millington and Quirk (1961), where T = 0w"?/01, and 0r is
porosity.
Based on equation (3), the o values for two different water saturations can be compared

as:

©®2 _ Dwz ¥w1 (4)
(&5} Dw1 Vw2

assuming the same shape factor, column length, and diffusive path length. The latter term may
change as a function of water saturation, but will be assumed to be constant as a first
approximation. Substituting in the definitions of Dy and vw, and employing the Millington and

Quirk representation of tortuosity, results in:

Wy _ 931/32/3 s
w1 - e13/3 ( )

wil
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3. Results and discussion
3.1 Characterization of hydraulic and interfacial-area properties

The soil-water characteristic for the sand packed in the instrumented column was measured
in-situ by monitoring matric potential and water saturation during drainage events that started from
initial saturated conditions. These measurements are compared in Figure 2 to new and previous
independent measurements conducted using the standard Tempe-cell method. The in-situ
measurements match very well to the two sets of triplicate Tempe-cell measurements. These
results demonstrate that the instruments produce accurate responses to and measurements of
changes in water saturation and matric potential.

Water saturations were monitored with the ADR probes during a preliminary experiment
conducted with a PFOS input concentration of 10 mg/L (Figure 3). Water saturation is observed
to be similar among the three depths, very close to the targeted saturation of 0.45. The water
saturations also exhibit minimal variation throughout the experiment, with coefficients of variation
(COV) of ~0.1%. Similar results are observed for an experiment conducted with PFOA at a
concentration of 0.1 mg/L. In addition, the matric potentials are observed to be relatively constant
over the course of the experiments. These results demonstrate that conditions of steady unsaturated

flow and uniform water saturation were attained for the experiments.
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Figure 2. Measured soil water characteristic curves for the sand under primary drainage conditions. IC
data sets represent measurements conducted in-situ for the instrumented column employing the ADR and
tensiometer probes. IC-1 and IC-2 represent separate tests. TC data represent independent measurements
obtained with the Tempe Cell method. The data designated as “New” represent new measurements
conducted in the present study; those designated as “B&G” are from Brusseau and Guo, 2021.

The presence of surfactant in solution has the potential to cause surfactant-induced flow
under unsaturated conditions, as discussed in the Introduction. The results presented in Figure 3
for the Co= 10 mg/L experiment indicate that there was minimal measurable impact of surfactant-
induced flow accruing to the introduction of the PFAS solution. Given that the input concentration
for that PFOS experiment is 100-times higher than the concentrations used for the primary

experiments, it is reasonable to conclude that surfactant-induced flow is not a concern for the

primary experiments. This is consistent with the results of the PFOA 0.1 mg/L experiment as well
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Figure 3. Measurements of water saturation (WS) and matric potential (MP) obtained for two experiments
conducted with the instrumented column. Two input concentrations (Co) were used: Co = 10 mg/L PFOS
(noted in the legend as “(10)”) and Co = 0.1 mg/L PFOA (no notation). Information on mean water
saturations (Sy) and associated coefficients of variation (COV) are reported in the table inset.

The distribution of water saturation along the length of the column was measured in the
experiments conducted with the segmented column (see Figure 4). The saturations are reasonably
uniform, matching the prior discussed results. Finally, the mass of every effluent sample was
measured during each experiment to monitor for potential changes in flow rate and associated
water saturations. The masses varied by <1% for the present PFAS experiments (see Table 2). This

indicates steady flow was maintained, consistent with the results presented in Figure 3.
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Figure 4. Water saturations measured along the length of segmented columns for PFOS Co =1 (25-cm)
and 0.1 (15-cm) mg/L experiments.

Representative breakthrough curves for the nonreactive tracers are presented in Figure 5.
The breakthrough curves are very similar for the three types of columns, indicating that the column
type has no impact on water flow and solute transport. The breakthrough curves are sharp and
symmetrical, and measured retardation factors are 1. These results indicate conditions of uniform
flow with no measurable impacts of potential non-advective flow domains on solute transport.
Notably, the breakthrough curves for the simultaneous NRT-PFAS and NRT-SDBS experiments
are coincident with the breakthrough curves measured for the sequential experiments. This
demonstrates that the presence of PFAS or SDBS has no measurable impact on the advective-
dispersive transport of the NRT, which indicates that PFAS or SDBS has no impact on water flow
(including surfactant-induced flow). This is consistent with the hydraulic measurements discussed
for Figure 3.
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Figure 5. Breakthrough curves for transport of nonreactive tracers (NRT) under unsaturated-flow
conditions (water saturation of 0.4 or 0.46). Note that the input-pulse size varied for each experiment.
Representative data sets are presented for each of the three types of columns used in the experiments:
Instrumented, Segmented, and Standard. PBA represents pentafluorobenzoic acid, Br represents bromide,
SEQ means the NRT and PFAS/SDBS experiments were conducted separately, whereas SIM means they
were conducted simultaneously. The “Instrumented-1” data represent results measured for the same packed
column.

Interfacial tracer tests were conducted with SDBS to measure air-water interfacial area for
the lower water saturations of these experiments. An illustrative breakthrough curve is presented
in Figure 6. The mean air-water interfacial area determined from three experiments conducted at
a water saturation of 0.39 is 283 (£19) cm™!, with a COV of 6.6%. The measurement variability is
quite low, especially considering that the three experiments were conducted using separate packed
columns. Numerous prior interfacial tracer tests have been conducted for this sand using a range
of methods (Brusseau, 2023). An empirical function was determined for these data that allows

interpolation of interfacial areas for a given water saturation. The measured areas obtained from
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the experiments conducted in the present study are consistent with the value (259 £18 cm™)
determined from the function for the given water saturation, with overlapping uncertainty

intervals.

3.2 PFAS transport

Breakthrough curves for PFOS and PFOA transport are presented in Figure 6. Results of
the present experiments conducted at lower water saturations are compared to those from prior
studies conducted at higher saturations. Notably, greater retardation of both PFOS and PFOA is
observed for the breakthrough curves measured at the lower water saturations. This is consistent
with what would be anticipated due to the greater magnitudes of air-water interfacial area present
at the lower water saturations. Greater retardation is observed for PFOS compared to PFOA for
both sets of water saturations. This is expected given the greater interfacial activity of PFOS and

its correspondingly larger air-water interfacial adsorption coefficient.

Table 2. Results for PFAS transport experiments.

PFAS Water R Measured | R Predicted FAWIA? Q COV®
Saturation (%)
PFOS-1 0.46 59.5 55.0 0.94 0.3
PFOS-2 0.46 458 45.6 0.94 0.6
PFOS 0.68 10.2 10.6 0.84 1.4
PFOS 0.65 11.0 13.0 0.86 0.2
PFOA-1 0.35 9.9 10.2 0.76 0.5
PFOA-2 0.35 9.2 9.2 0.77 09
PFOA 0.66 3.0 2.9 0.61 4.7
PFOA 0.68 3.1 2.8 0.63 4.4

®Fraction of retention associated with air-water interfacial adsorption
®Coefficient of variation of flow rate as determined from masses of every effluent sample
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Figure 6. Breakthrough curves for transport of PFOS, PFOA, SDBS, and an NRT under unsaturated-flow
conditions (water saturations are reported in the brackets).

The measured retardation factors for PFOS and PFOA are reported in Table 2. Values differ
among the replicates due in part to different bulk densities and porosities of the individual column
packs. The retardation factors are substantially larger for the lower water-saturation experiments
for both PFOS and PFOA. They are also substantially larger for PFOS than PFOA for both sets of
water saturations. Inspection of the FAWIA values shows that air-water interfacial adsorption
contributes the great majority of retention, especially for PFOS. This is anticipated given the low

solid-phase sorption capacity of the sand.
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Retardation factors predicted for each experiment using equation (1) and independently-
determined parameter values are presented in Table 2. The predicted retardation factors are similar
to the measured values in all cases. The greatest deviation, ~10%, is observed for the first PFOS
experiment. This magnitude of deviation is within the uncertainty range of the predicted values.
The good correspondence between the predicted and measured values indicates first of all that the
magnitude of retention mediating PFOS and PFOA transport at the lower water saturations was
accurately represented by equation (1), and concomitantly that air-water interfacial adsorption and
solid-phase sorption provided the only measurable contributions to retention. Second, the good
match indicates that the values used for the input parameters to equation (1) were robust. These
results are consistent with those reported in prior works for PFAS transport at higher water
saturations (Lyu et al., 2018; Brusseau et al., 2021).

The arrival fronts for the NRT, SDBS, PFOS, and PFOA at lower and higher water
saturations are presented in Figure 7. Note that the data are presented as relative pore volumes,
wherein the eluted pore volumes are normalized by the respective retardation factors. This
approach allows direct comparison of breakthrough-curve profiles irrespective of the magnitudes
of retardation. The normalized arrival fronts for SDBS, PFOS, and PFOA for the higher water
saturations exhibit similar profiles, and are consistent with the fronts of both NRTs. Conversely,
the normalized arrival fronts for SDBS, PFOS, and PFOA for the lower water saturations exhibit
a degree of early breakthrough (shifted leftward) compared to the respective fronts for the higher
water saturations and to the NRT front for the lower water saturation.

A number of processes can cause early breakthrough. One process, surfactant-induced
flow, can be ruled out in this case based on the results presented in section 3.1. Observations of

early breakthrough for solute transport under unsaturated-flow conditions can be a result of
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increased flow-path complexity and related factors, as has been observed for NRT transport in
prior experiments discussed in the Introduction. However, the NRT fronts are coincident for the
two saturations, indicating that the transport of the NRTs was not affected. Hence, the early
breakthrough does not appear to be a result of nonideal flow phenomena. The fact that the early
breakthrough is observed only for the interfacially active solutes indicates that the nonideal
behavior is related to retention. In addition, the nonideal behavior is most likely related to air-water
interfacial adsorption, given that it is the predominant source of retention. Nonlinear adsorption
does not cause early breakthrough for favorable adsorption conditions (e.g., Freundlich exponent
<1). Additionally, the early breakthrough is not observed for the higher water saturations, which
were conducted with the same input concentrations. Furthermore, PFAS air-water interfacial
adsorption has been demonstrated to be linear for these lower-concentration ranges (Brusseau et
al., 2021). Hence, the nonideal behavior most likely accrues from a kinetic limitation. This will be

assessed with the Damkohler Number analysis.
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Figure 7. Breakthrough curves for transport of PFOS, PFOA, SDBS, and an NRT under unsaturated-flow
conditions (water saturations are reported in the brackets). Eluted pore volumes (PV) are divided by the
respective retardation factors (R).

Brusseau (2020) determined a mean ® of ~40 from an analysis of PFOA and SDBS
transport at a mean water saturation of 0.75 in the same sand as used herein. Using equation (5),
the o of 40 scales to ~3 for a water saturation of 0.4, the mean of the low water-saturation
experiments. Damkohler Numbers have an effective range of approximately 0.01 to 100 for
transport in porous media. For @ of 100, mass transfer is sufficiently rapid compared to residence
time that it can be treated as effectively instantaneous. A value of 0.01 represents the effective
lower limiting case for which mass transfer is extremely rate limited with respect to transport. The
o of 40 reported in Brusseau (2020) for higher water saturations indicates that air-water interfacial
adsorption was effectively instantaneous compared to the residence time. This is consistent with

the fact that the breakthrough curves did not exhibit early breakthrough. Conversely, the ® of ~3
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obtained for the lower water saturations indicates that air-water interfacial adsorption was likely
rate limited to some degree. This would explain the early breakthrough observed for PFOS, PFOA,
and SDBS in the lower water-saturation experiments. These results suggest that access to a portion
of air-water interface may have been mediated by mass-transfer constraints for the lower water
saturations.

The results of the Damkholer Number analysis suggest that air-water interfacial adsorption
may have been impacted by mass-transfer constraints for the lower water-saturation experiments.
However, the consistency between the predicted and measured retardation factors indicates that,
while mass-transfer constraints or other nonideal interfacial adsorption processes may have
impacted the breakthrough-curve profiles, they did not measurably impact the magnitude of
adsorption. One factor contributing to the absence of impacts to the measured retardation factors
is the use of moment analysis as the method of their determination. It is well established that
moment analysis is in theory not affected by the impacts of mass-transfer constraints (e.g., Kucera,
1965; Valocchi, 1985). This has been demonstrated for PFAS transport in prior works. For
example, sorption isotherms and Ka values measured for PFOS and PFOA with the miscible-
displacement method were consistent with batch-measured equilibrium data, even though the
transport of PFOS and PFOA was influenced significantly by rate-limited sorption (Brusseau et
al., 2019b; Van Glubt et al., 2021).

Considering the high-resolution measurements conducted for water saturation and air-
water interfacial area, any significant deviations between the predicted and measured retardation
factors would reasonably be attributed to a failure to accurately represent the magnitudes of the
adsorption coefficients. This assessment would be focused primarily on the Kaw values, given the

very low contribution of solid-phase sorption. However, the consistency between the predicted
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and measured retardation factors indicates that the Kaw values used for the predictions accurately
represented the magnitude of air-water interfacial adsorption observed under transport conditions.

To further assess their representativeness, Kaw values can be determined from the transport
experiments as described in the Materials and Methods. The mean transport-measured values are
0.036 cm™! for PFOS and 0.0026 cm™! for PFOA. These values are very close to those determined
from the surface-tension measurements (PFOS-0.034, PFOA-0.0027). They are also consistent
with values measured with other methods. McMurdo et al. (2008) employed an aerosol-generation
method and reported an enrichment factor of 4.4 for PFOA in a filtered river-water solution, which
translates to a Kaw 0f 0.0028 cm!. Reth et al. (2011) used the surface-microlayer sampling method
and obtained enrichment factors of 1.7 and 15 for PFOA and PFOS, respectively, in tap water.
These translate to Kaw values of 0.0035 cm™ for PFOA and 0.07 cm™! for PFOS. It is important to
point out that the Kaw values measured with these three methods represent equilibrium values.
These results demonstrate that the miscible-displacement method as employed herein produced
accurate measurements of equilibrium-equivalent Kaw values, even in the presence of mass-
transfer constraints.

The results of this study can be used to address the speculation concerning limitations of
the miscible-displacement method for characterizing the air-water interfacial adsorption of
interfacially active solutes. The good match between predicted and measured retardation factors
demonstrates that the transport experiments produced robust measurements of PFAS retention and
specifically air-water interfacial adsorption, both in the presence and absence of the high-
resolution ancillary measurements provided by the instrumented column. This is further supported
by the similarity of the transport-measured Kaw values to independently-measured equilibrium

values. These results disprove the speculation posed by Costanza-Robinson and Henry (2017) and
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Schaefer et al. (2022b) that the miscible-displacement method, at least as applied herein, produces
inaccurate measurements of retention magnitude due to surfactant-induced flow, uncertainty in

measuring water-saturation status, or the impact of mass-transfer constraints.

4. Conclusions

This study investigated the transport of PFOS and PFOA under relatively low water
saturations in a well-characterized sand. An instrumented column was used for some experiments
to provide real-time in-situ monitoring of water saturation and matric potential. Additionally,
experiments were conducted wherein the nonreactive tracer was present in the PFAS solution,
allowing simultaneous measurements of transport. The results showed that water saturations and
matric potentials varied minimally during the experiments, indicating steady-state flow conditions.
The breakthrough curves for the NRT tests conducted simultaneously with PFAS were coincident
with those measured for the sequential NRT tests, indicating that the presence of PFAS had no
measurable impact on solute transport and thus water flow. In addition, the flow rates exhibited
minimal variation over the course of the experiments. In total, these results demonstrate that
surfactant-induced flow and other non-ideal hydraulic processes did not materially impact PFAS
transport for the conditions of these experiments.

Air-water interfacial adsorption was demonstrated to provide the great majority of retention
for PFOS and PFOA. Retention was shown to be significantly greater for the lower water
saturations, due to the larger extant air-water interfacial areas. Independently determined retention
parameters were used to predict retardation factors, which were similar to the measured values in
all cases. The consistency between the predicted and measured values indicates that PFAS

retention was accurately represented. Furthermore, the Kaw values measured from the transport
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experiments were consistent with values measured by three independent equilibrium-based
methods, demonstrating that the miscible-displacement method produced accurate measurements
of air-water interfacial adsorption.

Based on these results, it appears that the air-water interfacial adsorption processes
mediating the magnitude of PFOS and PFOA retention under lower water-saturation conditions
are consistent with those for higher water saturations. This provides some confidence that our
understanding of PFAS retention obtained from work conducted at higher water saturations is
applicable to lower water saturations. The consistency of results also suggests that the air-water
interfacial adsorption process is the same for PFOS, PFOA, and SDBS, with the specific magnitude

of retention a function of their respective Kaw values and the extant water saturation.
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