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a b s t r a c t

The paper deals with the setting where two viruses (say virus 1 and virus 2) coexist in a population,
and they are not necessarily mutually exclusive, in the sense that infection due to one virus does not
preclude the possibility of simultaneous infection due to the other. We develop a coupled bi-virus
susceptible–infected–susceptible (SIS) model from a 4n-state Markov process, where n is the number
of agents (i.e., individuals or subpopulation) in the population. We identify a sufficient condition
for both viruses to eventually die out, and a sufficient condition for the existence, uniqueness and
asymptotic stability of the endemic equilibrium of each virus. We establish a sufficient condition and
multiple necessary conditions for local exponential convergence to the boundary equilibrium (i.e., one
virus persists, the other one dies out) of each virus. Under mild assumptions on the healing rate, we
show that there cannot exist a coexisting equilibrium where for each node there is a nonzero fraction
infected only by virus 1; a nonzero fraction infected only by virus 2; but no fraction that is infected by
both viruses 1 and 2. Likewise, assuming that healing rates are strictly positive, a coexisting equilibrium
where for each node there is a nonzero fraction infected by both viruses 1 and 2, but no fraction is
infected only by virus 1 (resp. virus 2) does not exist. Further, we provide a necessary condition for the
existence of certain other kinds of coexisting equilibria. We show that, unlike the competitive bivirus
model, the coupled bivirus model is not monotone. Finally, we illustrate our theoretical findings using
an extensive set of simulations.
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1. Introduction

The phenomenon of spreading processes has been a key facet
of human civilization. Several manifestations of this phenomenon
are witnessed in the present day too, including the spread of
opinions in social networks, diseases in contact networks, viruses
in computer networks, products in markets, etc. Given the var-
ious ramifications of such processes, researchers across diverse
disciplines such as physics (Newman, Forrest, & Balthrop, 2002),
ecology (Munster & Fouchier, 2009), epidemiology (Bailey et al.,
1975), and computer science (Wang, Chakrabarti, Wang, & Falout-
sos, 2003) have devoted significant attention to the same.

This paper deals with the spread of viruses in human con-
tact networks. The first model to capture the spread of a virus
was proposed by Daniel Bernoulli in the 18th century to cal-
culate the gain in life expectancy at birth if smallpox were to
be eliminated as a cause of death (Bernoulli, 1760). As a dis-
cipline in its own right, mathematical epidemiology witnessed
enormous growth in the 20th century, with (Bailey et al., 1975;
data mining, AI training, and similar technologies.
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ethcote, 2000) being some of the key works. One of the fun-
damental research objectives in mathematical epidemiology is
to analyze the system equilibria and determine the convergence
behavior of epidemic processes in the vicinity of isolated equi-
libria. Leveraging such analysis enables the design of mitigation
(or eradication) strategies. To this end, various models have
been studied in the literature: susceptible–infected–recovered
(SIR) (Mei, Mohagheghi, Zampieri, & Bullo, 2017); susceptible–
xposed–infected–recovered (SEIR) (Arcede, Caga-Anan, Mentuda,

Mammeri, 2020); susceptible–asymptomatic–infected–
ecovered susceptible (SAIRS) (Paré, Beck, & Başar, 2020);
susceptible–infected (SI) (Matouk, 2020); and susceptible-
infected–susceptible (SIS) (Castillo-Chavez, Hethcote, Andreasen,
Levin, & Liu, 1989; Khanafer, Başar, & Gharesifard, 2016; Van
Mieghem, Omic, & Kooij, 2009) being some of the notable ones.

The focus of this paper is on the susceptible-infected-
susceptible (SIS) model. In particular, we are interested in net-
worked SIS models Networked SIS models have been extensively
studied in the literature; see, for instance, (Fall, Iggidr, Sallet, &
Tewa, 2007; Khanafer et al., 2016; Paré, Beck, & Başar, 2020).

Note that none of the aforementioned papers account for
ettings where multiple strains of a virus could be simultaneously
ctive within a population. The dynamics in the multi-virus set-
ing are far richer than those in the single-virus setting. More
pecifically, suppose that there are two viruses, say virus 1 and
irus 2, prevalent; then these viruses could be either (a) compet-
tive, e.g., leprosy and tuberculosis (Castillo-Chavez et al., 1989;
ahneh & Scoglio, 2014; Zhang, Gracy, Başar, & Paré, 2022);
r (b) co-operative, e.g., human immunodeficiency virus (HIV)
nd syphilis (resp. herpes simplex virus type 2 (HSV-2)) (Beutel,
rakash, Rosenfeld, & Faloutsos, 2012; Xu, Lu, & Zhan, 2012; Zhao,
ang, & Ruan, 2020). In the competitive regime, an agent can be

nfected either with virus 1 or with virus 2 or neither, whereas in
he co-operative regime (also referred to as co-infection) an agent
an be simultaneously infected with both virus 1 and virus 2.
Bi-virus models that capture the possibility of an agent be-

ng infected with more than one virus at the same time are
roadly referred to as coupled bi-virus models. Such scenarios are
xtremely common during pandemics. In fact, during the Covid-
9 pandemic, there were reports of coinfections with SARS-Cov-2
nd influenza A virus (Wang et al., 2020), while a 90-year old
oman in Belgium was simultaneously infected with both the al-
ha and beta variants of SARS-Cov-2 (Roberts, 2021). In a similar
ein, co-infections with Zika and Dengue viruses have also been
eported in the past (Dupont-Rouzeyrol et al., 2015). Other exam-
les include individuals being simultaneously infected with both
uberculosis and human immunodeficiency virus (HIV), and such
oinfections pose particular challenges both from therapeutical
nd diagnostic perspectives (Pawlowski, Jansson, Sköld, Rotten-
erg, & Källenius, 2012); with HIV and malaria (Alemu, Shiferaw,
ddis, Mathewos, & Birhan, 2013); with Hepatitis B and C (Chu
Lee, 2008); and with chlamydia and gonorrhea (Creighton,

enant-Flowers, Taylor, Miller, & Low, 2003). The phenomenon
f coinfection is also observed in animals; some examples include
oinfection with different strains of foot-and-mouth disease virus
n livestock (Arzt et al., 2021); with H9N2 and H7N9 avian in-
luenza viruses in poultry (Bhat et al., 2022); and with different
ubtypes of the Hepatitis E virus in swine (de Souza et al., 2012).
In this paper, our focus is on the development and analysis of

coupled networked SIS bi-virus model. The authors in (Beutel
t al., 2012) proposed such a model, but it accounted only for
ndirected graphs, and each of the nodes are restricted to have
he same healing and infection rates with respect to each of the
iruses. A probabilistic coupled bi-virus SIS model was proposed
nd studied in (Xu et al., 2012), but the authors treated infection

nd recovery from each virus as probabilities, which implies that

2

hose are constrained to stay between zero and one. Differently
rom (Xu et al., 2012), the model we propose admits nonnegative
nfection rates and positive healing rates larger than one for
ach virus. Moreover, we provide a richer analysis of the various
quilibria of the co-operative viruses regime. Recently, a coupled
i-virus SIS model that accounts for only a single population
ode has been proposed in (Zhao et al., 2020). Overcoming this
imitation, the coupled bi-virus model that we propose admits an
rbitrary but finite number of population nodes. The two viruses
ay spread through possibly different directed contact graphs. An
gent could be either infected by virus 1 or by virus 2 or, at the
ame time, by both (i.e., viruses 1 and 2) or by neither. To better
apture the possibilities with respect to simultaneous infection
y both viruses 1 and 2, we introduce a coupling parameter ϵ(m)

≥ 0), where m = 1, 2. Specifically, if ϵ(m) > 1 for m = 1, 2
hen infection with virus 1 (resp. virus 2) increases the possibility
f infection with virus 2 (resp. virus 1). Such a scenario is ob-
erved with respect to infection with human immunodeficiency
irus (HIV) and syphilis (resp. herpes simplex virus type 2 (HSV-
)) (Chen, Ghanbarnejad, Cai, & Grassberger, 2013; Newman &
errario, 2013). Similarly, if ϵ(1) > 1 and ϵ(2) < 1 then infection
ith virus 2 increases the possibility of simultaneous infection
ith virus 1, but infection with virus 1 decreases the possibility of
imultaneous infection with virus 2, e.g., the spread of malicious
athogens and growth of immune cells in living organisms (Ahn,
eong, Masuda, & Noh, 2006). Likewise, if ϵ(m) < 1 for m =

, 2, then infection with virus 1 (resp. virus 2) decreases the
ossibility of infection with virus 2 (resp. virus 1). Such a scenario
orresponds to the simultaneous circulation of multiple strains
f influenza viruses in a community, where the presence of the
train from a previous year(s) (resp. the current year) decreases
he possibility of also being simultaneously infected with the
train from the current year (resp. previous years) (Krauland,
alloway, Raviotta, Zimmerman, & Roberts, 2022). We classify
he equilibria into the following classes: (a) the healthy state
both viruses are eradicated), (b) single-virus endemic equilib-
ium (the endemic equilibrium corresponding to that of virus 1
resp. virus 2) if only virus 1 (resp. virus 2) were prevalent in the
opulation), (c) boundary equilibria (one virus is eradicated, the
ther one is persistent, fraction of population infected by both is
ero), and (d) coexisting equilibria (both viruses simultaneously
nfect possibly same fractions of the population). It turns out that
ur model generalizes the competitive networked bi-virus model;
ee Remark 1.
A particular class of nonlinear systems is monotone dynamical

ystems. Very briefly, a nonlinear system ẋ = f (x) is monotone, if,
or two initial states x0 and y0, x0 ≤ y0 implies x(t) ≤ y(t) for all
∈ R+. It is well known that monotone systems, assuming they
enerically have a finite number of equilibria, converge to a stable
quilibrium point (assuming one exists) for almost all choices of
ystem parameters, and that any limit cycle (if it exists) is non-
ttractive; see (Hirsch, 1988; Smith, 1988)1. In the context of
pidemiology, the notion of monotone dynamical systems plays
key role in the following sense: supposing that the model

overning the spread of a disease is monotone and that it has
finite number of equilibria, then the typical behavior that a
olicymaker will have to contend with is that of convergence to
ome equilibrium point (disease-free, endemic, coexistence, etc.).
ore pertinently, it says that existence of limit cycles (i.e., the
ccurrence of waves of epidemic) is less likely. Furthermore, even
f a limit cycle were to exist, it would be non-attractive (Ye,
nderson, & Liu, 2022). More complicated behavior such as chaos

1 The term ‘‘generically’’ is to be understood as follows: the choices of system
arameters for which convergence to a stable equilibrium does not happen lies

on a set of measure zero.



S. Gracy, P.E. Paré, J. Liu et al. Automatica 171 (2025) 111937

c
i
i
a
i

p

ould be definitively ruled out (Sontag, 2007). On the contrary,
f the system is not monotone, then no dynamical behavior,
ncluding chaos, can be definitively ruled out without additional
nalysis (Sontag, 2007). Note that the competitive bi-virus model
s monotone (Ye et al., 2022). However, it is not known if the
coupled bi-virus model is monotone.

Our main contributions in this paper are as follows:

(i) We derive the coupled bi-virus model starting with a 4n-
state Markov process; see Eqs. (8)–(10) in Section 2.

(ii) We provide a sufficient condition which ensures that, irre-
spective of the initial state of the network (i.e., healthy or
sick), both viruses eventually die out; see Theorem 1.

(iii) We provide a sufficient condition for the existence, unique-
ness, and asymptotic stability of a single-virus endemic
equilibrium; see Theorem 2.

(iv) We identify a sufficient condition for local exponential
stability of the boundary equilibria (i.e., one virus persists,
and the other one dies out); see Theorem 3.

(v) We show that the coupled bi-virus model is not mono-
tone; see Theorem 4. Consequently, one cannot use the
existing tools in the literature on competitive bivirus sys-
tems, which are deeply rooted in monotone dynamical sys-
tems (see Hirsch 1988, Smith 1988), to study the limiting
behavior of our model.

Additionally, we provide a necessary and sufficient condition for
the healthy state to be the unique equilibrium of the system; see
Corollary 1. Assuming both viruses pervade the network, we es-
tablish a lower bound on the number of equilibria for the coupled
bi-virus system; see Corollary 2. We identify multiple necessary
conditions for local exponential convergence to the boundary
equilibria; see Proposition 2. Assuming that the healing rates are
strictly positive, we show that a point in the 3n-dimensional state
space, where for each node there is a nonzero fraction infected
only by virus 1 (resp. virus 2) but no fraction that is infected by
both viruses 1 and 2, cannot be an equilibrium point; see Propo-
sition 3. Likewise, under mild assumptions on the healing rates,
a point, where for each node there is a nonzero fraction infected
by both viruses 1 and 2, but no fraction is infected only by virus 1
(resp. virus 2), cannot be an equilibrium; see Proposition 4. We
establish a necessary condition for the existence of a coexisting
equilibrium wherein the fraction of each node infected by only
virus 2 is zero and the rest (i.e., the fraction infected by only
virus 1 and the fraction infected by both viruses 1 and 2) are
strictly positive; see Proposition 5. Finally, we identify a condition
that rules out a given point in the state space as a coexisting
equilibrium where each node has (i) a fraction that is infected
only by virus 1; (ii) a fraction that is infected only by virus 2;
and (iii) a fraction that is infected by both viruses 1 and 2, see
Proposition 6.

Some of the material in this paper was partially presented
earlier in an American Control Conference (ACC) paper (Paré,
Liu, Beck, & Başar, 2018); the present paper provides a more
comprehensive treatment of the work, and considers a more
general model. Specifically, the paper provides:

(i) an expansion of the model to the case of virus-dependent
coupling parameters that can be greater than 1. However,
most of our findings rely on the assumption that ϵ(m)

∈

[0, 1] for m = 1, 2;
(ii) complete proofs of all the results;
(iii) a derivation of the coupled bi-virus model from a 4n-state

Markov process; see Section 2;
(iv) stability results for the boundary equilibria; see Theorem 3;
(v) existence results for coexisting equilibria; see Proposi-
tions 3, 4, 5 and 6. a

3

(vi) a result establishing that the coupled bivirus system is not
monotone; see Theorem 4; and

(vii) additional illustrative simulations in Section 8, none of
which were included in (Paré et al., 2018).

The paper is organized as follows. The derivation of the cou-
led bi-virus model from a 4n-state Markov process is provided in

Section 2. The problems of interest and standing assumptions are
formally stated in Section 3. The main results for the model devel-
oped in Section 2 are split across the next four sections: analysis
of the disease-free equilibrium (DFE) is given in Section 4; persis-
tence of a virus in the population is given in Section 5; analysis of
various coexisting equilibria are provided in Section 6; and non-
monotonicity of the coupled bivirus model is shown in Section 7.
The theoretical findings are illustrated in Section 8. A summary of
the results of the paper, and some questions of possible interest
to the wider community are given in Section 9.

We conclude this section by introducing all the notations to
be used in the rest of the paper.

Notation: For any positive integer n, we use [n] to denote the
set {1, 2, . . . , n}. We use 0 and 1 to denote the vectors whose
entries all equal 0 and 1, respectively, and I to denote the identity
matrix, while the dimensions of the vectors and matrices can be
inferred from the context. For any vector x ∈ Rn, we use x⊤ to
denote its transpose and diag(x) or X to denote the n×n diagonal
matrix whose ith diagonal entry equals xi. The notation 1a=b is
used as an indicator function which takes the value one if a equals
b; and zero otherwise. For 1A=b, where A is a matrix, the result is
a binary matrix of the same dimensions as A with entries 1aij=b.
For any two sets A and B, we use A \ B to denote the set of
elements in A but not in B. For any two real vectors a, b ∈ Rn,
we write a ≥ b if ai ≥ bi for all i ∈ [n], a > b if a ≥ b and
a ̸= b, and a ≫ b if ai > bi for all i ∈ [n]. Likewise, for any
two real matrices A, B ∈ Rn1×n2 , we write A ≥ B if Aij ≥ Bij
for all i ∈ [n1], j ∈ [n2], and A > B if A ≥ B and A ̸= B. For
a real square matrix M , we use s(M) to denote the largest real
part among the eigenvalues of M , and ρ(M) to denote the spectral
radius, i.e., ρ(M) = max{|λ| : λ ∈ σ (M)}, where σ (M) denotes the
spectrum of M .

A real square matrix A is said to be Metzler if all of its off-
diagonal entries are nonnegative. A real square matrix A is said
to be a Z-matrix if all of its off-diagonal entries are nonpositive.
A Z-matrix is an M-matrix if all its eigenvalues have nonnegative
real parts. Furthermore, if an M-matrix has an eigenvalue at the
origin, then we say that it is singular; if each of its eigenvalues
have strictly positive parts, then we say that it is nonsingular.

2. The model

Consider two viruses spreading over a network of n agents.
Each agent may be infected with either or both viruses at the
same time. Specifically, each agent can be infected if one of its
neighbors is infected. The neighbor relationships among the n
agents2 are described by an n-vertex directed graph. A directed
edge from node j to node i means that agent i can be infected
by agent j, i.e., agent j is a neighbor of agent i. We use Ni to
denote the set of neighbors of agent i. The two viruses may spread
through different routes in the network. We use N (m)

i to denote
the set of neighbors of agent i from which virus m spreads, m ∈

{1, 2}. Clearly, N (1)
i ∪ N (2)

i = Ni for all i ∈ [n].
For each virus m ∈ {1, 2}, each agent i has its curing rate δ

(m)
i

and infection rates β
(m)
ji when i ∈ N (m)

j . The former means that if
agent i is infected by virus m, it is cured with rate δ

(m)
i , and the

2 Throughout this paper, the terms agents and nodes are used interchange-
bly.
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atter means that if agent i is infected by virus m and its neighbor
is not, agent i can infect agent j at rate β

(m)
ji . The two viruses

an simultaneously infect the same node, but not independently.
pecifically, they are coupled in the following manner. Let i and
be any pair of integers in [n] such that agent j is a neighbor
f agent i. If agent j has been infected by only one virus, say
irus 1, and agent i is infected by the other virus, virus 2, then,
rrespective of whether (or not) it is infected by virus 1, agent
can infect agent j with virus 2 at a rate ϵ(1)β

(2)
ji . See Fig. 1

or a depiction of the model. It is worth noting that there is
o transition link from state I (1,2) (infected by both viruses) to
tate S (healthy state), as the probability that the two viruses
re cured at the same time is zero. We call ϵ(m) the coupling
arameter between the viruses, and assume that each ϵ(m) takes
nonnegative value. If ϵ(m)

∈ (0, 1), it means that if a node is
nfected with virus m, then it is less susceptible to the other virus.
f ϵ(m) > 1, it means that if a node is infected with virus m, it is
ore likely to become infected with the other virus. If ϵ(m)

= 1
or all m, then the two viruses are independent. If ϵ(m)

= 0 for all
, then the two viruses are competitive. We will discuss these

ast two special cases in-depth in Remark 1.
Let B(m)

= [β
(m)
ij ] for m ∈ [2]. The spread of the two viruses

cross the population can be represented by a two-layer graph,
here the vertices of the graph correspond to the population
odes. Each layer contains a set of directed edges, E(m), specific
o virus m, where m = 1, 2; there exists a directed edge from
agent j to agent i in E(m) if, assuming agent j is infected with
irus m, it can directly infect agent i. Note that there is a one-
o-one correspondence between the notations E(m) and B(m) for
∈ [2]. That is, (i, j) ∈ E(m) if, and only if, [B(m)

]ji ̸= 0. It is worth
mphasizing that the two viruses may spread along different
outes, that is, the layers corresponding to B(1) and B(2) are not
ecessarily the same. We call the layers corresponding to B(1) and
(2) as the spreading graphs of viruses 1 and 2, respectively.
For completeness, we provide here a full description of the 4n-

tate Markov process. Each state, Yk(t), corresponds to a string s
f length n, where si = S, si = I (1), si = I (2), or si = I (1,2) indicate
hat the ith agent is either susceptible, or infected with virus 1,
r infected with virus 2, or infected with both viruses 1 and 2,
espectively. The generator matrix (Norris, 1998), Q , is defined
y

kl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
(1)
i , if si = I (1), k = l+ 4i−1

δ
(2)
i , if si = I (2), k = l+ 2(4i−1)

δ
(1)
i , if si = I (1,2), k = l+ 4i−1

δ
(2)
i , if si = I (1,2), k = l+ 2(4i−1)
n∑

j=1

β
(1)
ij (1sj=I(1) + 1sj=I(1,2) ), if si = S, k = l− 4i−1

n∑
j=1

β
(2)
ij (1sj=I(2) + 1sj=I(1,2) ), if si = S, k = l− 2(4i−1)

ϵ(2)
n∑

j=1

β
(1)
ij (1sj=I(1) + 1sj=I(1,2) ), if si = I (2), k = l− 4i−1

ϵ(1)
n∑

j=1

β
(2)
ij (1sj=I(2) + 1sj=I(1,2) ), if si = I (1), k = l− 2(4i−1)

−

∑
j̸=l

qjl, if k = l

0, otherwise,

(1)

for i ∈ [n]. Here virus 1 and virus 2 are propagating over a
network whose infection rates are given by β

(1)
ij and β

(2)
ij , respec-

(1) (2) (1) (2)
tively (nonnegative with βii = βii = 0, ∀j), δi and δi are

4

Fig. 1. The possible states and transitions for node i. State S stands for being
healthy but susceptible. States I (1) , I (2) , and I (1,2) stand for being infected by
irus 1, virus 2, and both virus 1 and virus 2, respectively.

he respective healing rates of the ith agent, and, again, si = S,
i = I (1), si = I (2), or si = I (1,2) indicate that the ith agent is either
usceptible, or infected with virus 1, or infected with virus 2, or
nfected with both viruses 1 and 2, respectively. The state vector
(t) is defined as

k(t) = Pr[Yk(t) = k], (2)

ith
∑4n

k=1 yk(t) = 1. The Markov process evolves as

dy⊤(t)
dt

= y⊤(t)Q . (3)

Let v
(1)
i (t) = Pr[Xi(t) = I (1)], v

(2)
i (t) = Pr[Xi(t) = I (2)], and

(1,2)
i (t) = Pr[Xi(t) = I (1,2)], where Xi(t) is the random variable
epresenting whether the ith agent is susceptible or infected with
irus 1, or 2, or both. Then, for i = {(1), (2), (1, 2)}

vi)⊤(t) = y⊤(t)M i, (4)

here the ith columns of M (1), M (2), M (1,2) indicate the states
n the Markov process where agent i is infected with virus 1,
irus 2, and both (all the strings where si = I (1), si = I (2), and
i = I (1,2)), respectively, that is, M i

= 1M=i for i ∈ {(1), (2), (1, 2)},
here M ∈ R4n×n has rows of lexicographically-ordered ternary
umbers, bit reversed3. Therefore, v

(1)
i (t), v

(2)
i (t), and v

(1,2)
i (t)

eflect the summation of all probabilities where si = I (1), si = I (2),
nd si = I (1,2). Note that the first state of the process, which
orresponds to si = S, the healthy state, for δ

(1)
i , δ

(2)
i > 0 ∀i, is

he absorbing or sink state of the process. That is, once in the
ealthy state, the Markov process will never escape it. Moreover,
ince the healthy state is the only absorbing state, the system will
onverge to it with probability one (Norris, 1998).
We derive the model in (5)–(7) using a mean-field type ap-

roximation by considering the probability that node i is healthy
Xi = S) or infected with virus 1 (Xi = I (1)), or virus 2 (Xi = I (2)),
or both (Xi = I (1,2)) at time t + ∆t . From (1), we have

r(Xi(t + ∆t) = S|Xi(t) = I (1), X(t)) = δ(1)∆t + o(∆t)

r(Xi(t + ∆t) = I (1)|Xi(t) = S, X(t)) = o(∆t)

+
∑n

j=1 β
(1)
ij (1Xj=I(1) + 1Xj=I(1,2) )∆t

Pr(Xi(t + ∆t) = S|Xi(t) = I (2), X(t)) = δ(2)∆t + o(∆t)

Pr(Xi(t + ∆t) = I (2)|Xi(t) = S, X(t)) = o(∆t)

3 Matlab code: M = fliplr(dec2base(0 : (4n)− 1, 4)−′ 0′)
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+
∑n

j=1 β
(2)
ij (1Xj=I(2) + 1Xj=I(1,2) )∆t

r(Xi(t + ∆t) = I (1)|Xi(t) = I (1,2), X(t)) = δ(2)∆t + o(∆t)

r(Xi(t + ∆t) = I (2)|Xi(t) = I (1,2), X(t)) = δ(1)∆t + o(∆t)

Pr(Xi(t + ∆t) = I (1,2)|Xi(t) = I (1), X(t)) = o(∆t)

+ ϵ(1) ∑n
j=1 β

(2)
ij (1Xj=I(2) + 1Xj=I(1,2) )∆t

Pr(Xi(t + ∆t) = I (1,2)|Xi(t) = I (2), X(t)) = o(∆t)

+ ϵ(2) ∑n
j=1 β

(2)
ij (1Xj=I(1) + 1Xj=I(1,2) )∆t

...

Letting ∆t go to zero and taking expectations of 1Xi(t)=I(1) ,
1Xi(t)=I(2) , and 1Xi(t)=I(1,2) gives

d E(1Xi(t)=I(1) )
dt

= −δ(1) E(1Xi(t)=I(1) )+ δ(2) E(1Xi(t)=I(1,2) )

+ E
(
1Xi(t)=S

∑n
j=1 β

(1)
ij (1Xj(t)=I(1) + 1Xj(t)=I(1,2) )

)
− E

(
1Xi(t)=I(1)ϵ

(1) ∑n
j=1 β

(2)
ij (1Xj(t)=I(2) + 1Xj(t)=I(1,2) )

)
,

d E(1Xi(t)=I(2) )
dt

= −δ(2) E(1Xi(t)=I(2) )+ δ(1)E(1Xi(t)=I(1,2) )

+ E
(
1Xi(t)=S

∑n
j=1 β

(2)
ij (1Xj(t)=I(2) + 1Xj(t)=I(1,2) )

)
− E

(
1Xi(t)=I(2)ϵ

(2) ∑n
j=1 β

(1)
ij (1Xj(t)=I(1) + 1Xj(t)=I(1,2) )

)
,

d E(1Xi(t)=I(1,2) )
dt

= −(δ(1) + δ(2)) E(1Xi(t)=I(1,2) )

+ E
(
1Xi(t)=I(1)ϵ

(1) ∑n
j=1 β

(2)
ij (1Xj(t)=I(2) + 1Xj(t)=I(1,2) )

)
+ E

(
1Xi(t)=I(2)ϵ

(2) ∑n
j=1 β

(1)
ij (1Xj(t)=I(1) + 1Xj(t)=I(1,2) )

)
.

Using the above equations, Pr(z) = E(1z), x
(1)
i (t) = Pr(Xi(t) =

I (1)), x(2)i (t) = Pr(Xi(t) = I (2)), zi(t) = Pr(Xi(t) = I (1,2)), (1 −

x(1)i (t) − x(2)i (t) − zi(t)) = Pr(Xi(t) = S), and approximating
Pr(Xi(t) = I (1), Xj(t) = I (1)) ≈ x(1)i (t)x(1)j (t), Pr(Xi(t) = I (1), Xj(t) =
I (2)) ≈ x(1)i (t)x(2)j (t), Pr(Xi(t) = I (1), Xj(t) = I (1,2)) ≈ x(1)i (t)zj(t),
Pr(Xi(t) = I (2), Xj(t) = I (2)) ≈ x(2)i (t)x(2)j (t), Pr(Xi(t) = I (2), Xj(t) =
I (1,2)) ≈ x(2)i (t)zj(t) (which inaccurately assumes independence, as
is done in the single-virus (Van Mieghem et al., 2009) and bi-virus
cases (Liu et al., 2019)) gives

ẋ(1)i (t) = −δ
(1)
i x1i (t)+ δ

(2)
i zi(t) (5)

+ (1− x(1)i (t)− x(2)i (t)− zi(t))
∑n

j=1 β
(1)
ij (x(1)j (t)+ zj(t))

− x(1)i (t)ϵ(1) ∑n
j=1 β

(2)
ij (x(2)j (t)+ zj(t)),

ẋ(2)i (t) = −δ
(2)
i x(2)i (t)+ δ

(1)
i zi(t) (6)

+ (1− x(1)i (t)− x(2)i (t)− zi(t))
∑n

j=1 β
(2)
ij (x(2)j (t)+ zj(t))

− x(2)i (t)ϵ(2) ∑n
j=1 β

(1)
ij (x(1)j (t)+ zj(t)),

żi(t) = −(δ(1)i + δ
(2)
i )zi(t)+ x(1)i (t)ϵ(1) ∑n

j=1 β
(2)
ij (x(2)j (t)+ zj(t))

+ x(2)i (t)ϵ(2) ∑n
j=1 β

(1)
ij (x(1)j (t)+ zj(t)). (7)

The above equations can be combined into vector form, as fol-
lows:

ẋ(1)(t) = −D(1)x(1)(t)+ D(2)z(t) (8)

+ (I − X (1)(t)− X (2)(t)− Z(t))B(1)(x(1)(t)+ z(t))

− ϵ(1)X (1)(t)B(2)(x(2)(t)+ z(t)),

ẋ(2)(t) = −D(2)x(2)(t)+ D(1)z(t) (9)

+ (I − X (1)(t)− X (2)(t)− Z(t))B(2)(x(2)(t)+ z(t))

− ϵ(2)X (2)(t)B(2)(x(1)(t)+ z(t)),
5

ż(t) = −(D(1)
+ D(2))z(t)+ ϵ(1)X (1)(t)B(2)(x(2)(t)+ z(t)) (10)

+ ϵ(2)X (2)(t)B(1)(x(1)(t)+ z(t)),

where x(1)(t), x(2)(t), z(t) are the column vectors obtained by
stacking x(1)i (t), x(2)i (t), and zi(t), respectively, B(1), B(2) are the
matrices of β (1)

ij , β
(2)
ij , respectively, X (1)(t) = diag(x(1)(t)), X (2)(t) =

diag(x(2)t), Z(t) = diag(z(t)), D(1)
= diag(δ(1)), and D(2)

=

diag(δ(2)). For completeness, to illustrate the effectiveness of the
first-order approximation, we compare (1)–(4) and (8)–(10) via
simulations in Section 8.1.

Note that an agent i could be interpreted as either an individ-
ual i or a subpopulation i. The two interpretations are equivalent,
since the group model that we employ in this paper can also
be derived from a group model interpretation of the original
stochastic model; see (Paré, Liu, Beck, Kirwan, & Başar, 2020). In
particular, the former models the probability of each individual
being infected over time, while the latter models the fraction
of a subpopulation being infected. Thus, there are no abrupt
transitions from a susceptible state to one of the infected states
for an entire subpopulation. The states of each subpopulation are
continuously changing variable values between 0 and 1. Further,
it is assumed that each subpopulation is well mixed/connected,
which is the same assumption as in classical single-population
epidemic models (Kermack & McKendrick, 1927).

Remark 1. We consider two special cases of the model. First, let
ϵ(1)

= ϵ(2)
= 0, and δ

(1)
i + δ

(2)
i > 0 for all i ∈ [n]. Then, the system

defined by (8)–(10) simplifies to

ẋ(1)(t) = −D(1)x(1)(t)+ D(2)z(t) (11)

+ (I − X (1)(t)− X (2)(t)− Z(t))B(1)(x(1)(t)+ z(t)),

ẋ(2)(t) = −D(2)x(2)(t)+ D(1)z(t) (12)

+ (I − X (1)(t)− X (2)(t)− Z(t))B(2)(x(2)(t)+ z(t)),

ż(t) = −(D(1)
+ D(2))z(t). (13)

In this case, since the matrix D(1)
+ D(2) is positive definite,

it follows that z(t) converges to 0 exponentially fast, and thus
the system will eventually become a competitive bi-virus model
which has been studied in (Liu et al., 2016, 2019; Prakash, Beutel,
Rosenfeld, & Faloutsos, 2012; Santos, Moura, & Xavier, 2015).

In the second case, we let ϵ(1)
= ϵ(2)

= 1. To proceed, we
define y(1)i (t) = x(1)i (t) + zi(t) and y(2)i (t) = x(2)i (t) + zi(t) for
each i ∈ [n], which represents the total probabilities of agent i
being infected by viruses 1 and 2, respectively. From (5)–(7), the
dynamics of y(1)i and y(2)i are

ẏ(1)i (t) = −δ
(1)
i y(1)i (t)+ (1− y(1)i (t))

∑n
j=1 β

(1)
ij y(1)j (t),

ẏ(2)i (t) = −δ
(2)
i y(2)i (t)+ (1− y(2)i (t))

∑n
j=1 β

(2)
ij y(2)j (t),

which are two independent single SIS dynamics. Therefore, the
system defined by (8)–(10) subsumes both the single SIS virus
(two single, independent viruses) and the competitive SIS virus
models.

3. Problem formulation

In this section, we formally state the problems of interest,
and the key assumptions needed for ensuring that the model
introduced in Section 2 is well defined.

3.1. Problem statements

With respect to the model in (8)–(10), we consider the follow-
ing questions:



S. Gracy, P.E. Paré, J. Liu et al. Automatica 171 (2025) 111937

T
h
s
a

(i) Can a sufficient condition be identified under which, irre-
spective of the initial state, the dynamics converge asymp-
totically to the healthy state?

(ii) Can a sufficient condition be identified for virus m, such
that for any x(m)(0) ̸= 0 the dynamics asymptotically
converge to the single-virus endemic equilibrium of virus
m, for m = 1, 2?

(iii) Can a sufficient condition be identified for local exponential
convergence to the boundary equilibrium of virus m, for
m = 1, 2?

(iv) Can a necessary condition(s) be provided for local exponen-
tial convergence to the boundary equilibrium of virusm, for
m = 1, 2?

(v) Is it possible for equilibria of the kind (a) (x̂(1), x̂(2), 0) with
x̂(1), x̂(2) > 0, and (b) (0, 0, ẑ) with ẑ > 0, to exist?

(vi) Can a necessary condition be identified for the existence of
the coexisting equilibria (a) (x̂(1), 0, ẑ), with x̂(1), ẑ > 0, or
(b) (0, x̂(2), ẑ), with x̂(2), ẑ > 0?

(vii) Can a condition be identified that rules out an arbitrary
point (x̂(1), x̂(2), ẑ) with x̂(1), x̂(2), ẑ > 0 as a coexisting
equilibrium?

(viii) Is the system monotone?

3.2. Key assumptions and preliminaries

We make the following assumptions on the model to ensure
that it is well defined.

Assumption 1. For all i ∈ [n], we have x(1)i (0), x(2)i (0), zi(0),
(1− x(1)i (0)− x(2)i (0)− zi(0)) ∈ [0, 1].

Assumption 2. For all i ∈ [n], we have δ
(1)
i , δ

(2)
i ≥ 0. The matrices

B(1) and B(2) are nonnegative and irreducible.

Assumption 1 guarantees that the initial infection level with
respect to each virus m (m ∈ [2]) in each node i ∈ [n] lies in
the set [0, 1], whereas Assumption 2 ensures that the healing and
infection rates are nonnegative, and that the spreading graphs for
virus 1 and 2 are strongly connected.

Define the set

D : = {(x(1), x(2), z) | x(1) ≥ 0, x(2) ≥ 0, z ≥ 0, (14)
x(1) + x(2) + z ≤ 1}

The following lemma establishes that the set D is positively
invariant with respect to the system (8)–(10).

Lemma 1. Under Assumptions 1 and 2, x(1)i (t), x(2)i (t), z(t), x(2)i (t)+
x(2)i (t)+ z(t) ∈ [0, 1] for all i ∈ [n] and t ≥ 0.

Proof. See the proof of (Gracy et al., 2024, Lemma 1). ■

Lemma 1 implies that the set D is positively invariant with
respect to the system defined by (8)–(10). Since x(1)i , x(2)i , and
zi denote the probabilities of sickness of agent i, or fractions of
group i, infected by viruses 1, 2, and both 1 and 2 simultaneously,
respectively, and 1−x(1)i −x(2)i −zi denotes the probability of agent
i, or fraction of group i that is healthy, it is natural to assume
that their initial values are in the interval [0, 1], since otherwise
the values will be devoid of any physical meaning for the spread
model considered here.

Let (x̂(1), x̂(2), ẑ) be an equilibrium of system (8)–(10). Then,
the Jacobian matrix of the equilibrium, denoted by J(x̂(1), x̂(2), ẑ),
with B̂(i)

= diag(B(i)(x̂(i) + ẑ)), Ẑ (i)
= Zdiag(B(i)1), i ∈ [2], and

W = (I − X̂ (1)
− X̂ (2)

− Ẑ), is as given in (15) (see Box I), where

J = WB(1)
− D(1)

− B̂(1)
− ϵ(1)B̂(2) (16)
1,1

6

J2,2 = WB(2)
− D(2)

− B̂(2)
− ϵ(2)B̂(1) (17)

J3,3 = −D(1)
− D(2)

+ ϵ(1)X̂ (1)B(2)
+ ϵ(2)X̂ (2)B(1). (18)

4. Analysis of the disease-free equilibrium

In this section, we analyze the system defined by (8)–(10). It is
easy to see that (0, 0, 0) is an equilibrium of the system defined
by (8)–(10). We call it the DFE, or the healthy state. We focus
on identifying conditions under which the healthy state is stable.
The following proposition provides a necessary and sufficient
condition for local exponential convergence to the healthy state.

Proposition 1. Consider system (8)–(10) under Assumptions 1 and
2. The healthy state is locally exponentially stable if, and only if,
s(−D(1)

+ B(1)) < 0, s(−D(2)
+ B(2)) < 0, and δ

(1)
i + δ

(2)
i > 0 for

all i ∈ [n]. If s(−D(1)
+ B(1)) > 0 or if s(−D(2)

+ B(2)) > 0, then the
healthy state is unstable.

Proof. From (15), we have

J(0, 0, 0) =

⎡⎣B(1)
− D(1) 0 B(1)

+ D(2)

0 B(2)
− D(2) WB(2)

+ D(1)

0 0 −D(1)
− D(2)

⎤⎦ . (19)

hus, from (Khalil, 2002, Theorem 4.15 and Corollary 4.3), the
ealthy state is locally exponentially stable if, and only if,
(−D(1)

+ B(1)) < 0, s(−D(2)
+ B(2)) < 0, and δ

(1)
i + δ

(2)
i > 0 for

ll i ∈ [n]. Note that if s(−D(1)
+ B(1)) > 0 or if s(−D(2)

+ B(2)) >

0, then s(J(0, 0, 0)) > 0. The claim on instability then follows
from (Khalil, 2002, Theorem 4.7). ■

Note that, on the one hand, the guarantees provided by Propo-
sition 1 are limited in the sense that they concern trajectories that
originate in a small neighborhood of the healthy state. On the
other hand, no restrictions, besides nonnegativity, are imposed
on ϵ(m), m = 1, 2. Simulations, as we see in Section 8.2, indicate
that the region of attraction for the healthy state depends on
the choices of ϵ(m), m = 1, 2. In particular, if the initial state of
system (8)–(10) is very close to the healthy state, then, even for
a larger value of ϵ(m), m = 1, 2, the dynamics converge to the
healthy state. If the initial state of system (8)–(10) is not too close
to the healthy state, then for large values of ϵ(m), the dynamics do
not converge to the healthy state; see Fig. 9 in Section 8.2.

The following theorem guarantees global convergence to the
healthy state, but with the following caveats: (i) the speed of
convergence is slower, and (ii) more restrictions on ϵ(m),m = 1, 2,
have to be imposed.

Theorem 1. Under Assumptions 1 and 2, if ϵ(1), ϵ(2)
∈ [0, 1],

s(B(1)
−D(1)) ≤ 0 and s(B(2)

−D(2)) ≤ 0, then the healthy state is the
unique equilibrium of (8)–(10), and the system defined by (8)–(10)
asymptotically converges to the healthy state for any initial state in
D, as defined in (14).

Proof. See the Appendix. ■

Theorem 1 answers Question (i) raised in Section 3.1.

5. Persistence of viruses

We call an equilibrium (x̂(1), x̂(2), ẑ) an endemic equilibrium
if it is not the healthy state, (0, 0, 0). It turns out that if either
(or both) of the spectral abscissa conditions in Theorem 1 are
violated, then at least one of the viruses pervades the population.

We detail the same in the rest of this section.
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J(x̂(1), x̂(2), ẑ) = (15)⎡⎣ J1,1 −B̂(1)
− ϵ(1)X̂ (1)B(2) WB(1)

+ D(2)
− B̂(1)

− ϵ(1)X̂ (1)B(2)

−B̂(2)
− ϵ(2)X̂ (2)B(1) J2,2 WB(2)

+ D(1)
− B̂(2)

− ϵ(2)X̂ (2)B(1)

ϵ(1)B̂(2)
+ ϵ(2)X̂ (2)B(1) ϵ(2)B̂(1)

+ ϵ(1)X̂ (1)B(2) J3,3

⎤⎦ .

Box I.
l

P
a
B
s

P

.1. Existence, uniqueness and stability of the single virus endemic
quilibria

We consider the scenario in which either s(B(1)
− D(1)) or

(B(2)
− D(2)) is greater than zero. Without loss of generality, we

ssume that s(B(1)
− D(1)) > 0, ϵ(1)

∈ [0, 1], and s(B(2)
− D(2)) ≤ 0.

e denote by x̂(1) (resp. x̂(2)) the single-virus endemic equilibrium
orresponding to virus 1 (resp. virus 2). We have the following
esult.

heorem 2. Under Assumptions 1 and 2, if s(B(1)
− D(1)) > 0,

(1)
∈ [0, 1], and s(B(2)

− D(2)) ≤ 0, then system (8)–(10) has
unique endemic equilibrium (x̂(1), 0, 0) with x̂(1) ≫ 0, and the

ystem asymptotically converges to the endemic equilibrium for any
nitial state in D \ {(0, x(2), 0)|0 ≤ x(2) ≤ 1}, where D is as defined
in (14).

Proof. See the Appendix. □

Theorem 2 establishes the existence, uniqueness, and asymp-
totic stability of the single-virus endemic equilibrium corre-
sponding to virus 1. An analogous result holds for virus 2; the
details are omitted in the interest of space. Theorem 2 answers
uestion (ii) raised in Section 3.1. Note that, for a single virus
ystem, assuming that the existence of the endemic equilibrium
s guaranteed, an exact characterization of the same has been
rovided in (Mei et al., 2017, Theorem 4.3, statement (iii)(b)).
Combining Theorems 1 and 2, we obtain a necessary and suffi-

ient condition for the healthy state to be the unique equilibrium
f the coupled bi-virus system, as stated below.

orollary 1. Consider system (8)–(10) under Assumptions 1 and
. Suppose further that ϵ(1), ϵ(2)

∈ [0, 1]. The healthy state is the
nique equilibrium if, and only if, each of the following conditions
re satisfied (i) s(B(1)

− D(1)) ≤ 0 and (ii) s(B(2)
− D(2)) ≤ 0.

.2. Both viruses pervading the system

Note that Theorem 2 accounts for the case where exactly one
f the viruses pervades the system, or, in other words, exactly
ne of the spectral abscissa conditions in Theorem 1 is violated.

However, what happens when both the spectral abscissa condi-
tions in Theorem 1 are violated? The following corollary answers
this question.

Corollary 2. Consider system (8)–(10) under Assumptions 1 and 2.
Suppose further that ϵ(1)

= ϵ(2)
= ϵ ∈ [0, 1]. If s(B(1)

−D(1)) > 0 and
s(B(2)

−D(2)) > 0, then system (8)–(10) has at least three equilibria,
namely, the healthy state (0, 0, 0), which is unstable; the single virus
endemic equilibrium corresponding to virus 1 (x̂(1), 0, 0); and the
single virus endemic equilibrium corresponding to virus 2 (0, x̂(2), 0).

Proof. See the Appendix. ■

The equilibria of the kind (x̂(1), 0, 0) and (0, x̂(2), 0) are here-
after referred to as the boundary equilibria. Note that x̂(1) and
7

x̂(2) are asymptotically stable in the single virus (i.e., one of the
two viruses has died out) systems corresponding to virus 1 and
virus 2, respectively; when both viruses pervade the network,
the stability of (x̂(1), 0, 0) and (0, x̂(2), 0), in even the local (let
alone global) sense, is not guaranteed. As such, in the rest of this
section we will focus on identifying a sufficient condition (resp.
some necessary conditions) for local exponential stability of the
boundary equilibria.

We need the following assumption, which is slightly stronger
than Assumption 2.

Assumption 3. For all i ∈ [n], we have δ
(1)
i , δ

(2)
i > 0. The matrices

B(1) and B(2) are nonnegative and irreducible.

The following theorem provides a sufficient condition for local
exponential stability of the boundary equilibrium (x̂(1), 0, 0).

Theorem 3. Consider system (8)–(10) under Assumption 1 and 3.
Suppose that (i) ϵ(1)

= ϵ(2)
= ϵ ∈ [0, 1], (ii) s(−D(1)

+B(1)) > 0, and
(iii) s(−D(2)

+ B(2)) > 0. The equilibrium point (x̂(1), 0, 0) is locally
exponentially stable if

(i) s(−D(2)
+ (I − X̂ (1))B(2)) < 0; and

(ii) s
(
(−D(1)

−D(2)
+ ϵX̂ (1)B(2))− (ϵB̂(1)

+ ϵX̂ (1)B(2))(−D(2)
+ (I−

X̂ (1))B(2)
− ϵB̂(1))−1((I − X̂ (1))B(2)

+ D(1))
)

< 0.

Proof. See the Appendix. ■

Theorem 3 answers Question (iii) raised in Section 3.1.
The following proposition provides necessary conditions for

ocal exponential stability of the equilibrium (x̂(1), 0, 0).

roposition 2. Consider system (8)–(10) under Assumption 1
nd 3. Suppose that ϵ(1)

= ϵ(2)
= ϵ ∈ [0, 1], and that s(−D(1)

+
(1)) > 0. The equilibrium point (x̂(1), 0, 0) is locally exponentially
table only if each of the following conditions are satisfied

(i) s(−D(2)
+ (I − X̂ (1))B(2)

− ϵB̂(1)) < 0; and

(ii) s
(
(−D(1)

−D(2)
+ ϵX̂ (1)B(2))− (ϵB̂(1)

+ ϵX̂ (1)B(2))(−D(2)
+ (I−

X̂ (1))B(2)
− ϵB̂(1))−1((I − X̂ (1))B(2)

+ D(1))
)

< 0.

roof. See the Appendix. ■

Proposition 2 answers (iv) raised in Section 3.1.

Remark 2. Note that, in general, there is a gap between the
sufficient condition in Theorem 3 and the necessary conditions
in Proposition 2. However, if ϵ(m)

= 0 for m = 1, 2, the
sufficient condition in Theorem 3 and the necessary conditions
in Proposition 2 coincide to yield a necessary and sufficient con-
dition for local exponential convergence to (x̂(1), 0, 0). Further, by

(1) (2)
Assumption 3, δi > 0 and δi > 0 for each i ∈ [n]. Hence, if
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(m)
= 0 for m = 1, 2, then condition (ii) in both Theorem 3 and

roposition 2 is always satisfied. As a consequence, condition (i)
n Theorem 3 becomes a necessary and sufficient condition, which
is consistent with (Ye et al., 2022, Theorem 3.10).

Remark 3. Theorem 3 pertains to local exponential stability of
the boundary equilibrium (x̂(1), 0, 0). It is of interest to know
when the boundary equilibrium (x̂(1), 0, 0) can be globally stable.
A partial answer is as follows: Suppose that the conditions in
Theorem 3 are satisfied. Suppose that ϵ(1)

= ϵ(2)
= 0. Then if the

system (8)–(10) has no coexistence equilibria (guaranteed by, for
instance, B(2) > B(1) (Janson, Gracy, Paré, Sandberg, & Johansson,
2020, Corollary 2)), then the boundary equilibrium (x̂(1), 0, 0) is
globally asymptotically stable; see (Ye et al., 2022, Corollary 3.16)

We next present a result for instability of the boundary equi-
librium (x̂(1), 0, 0).

Corollary 3. Consider system (8)–(10) under Assumption 1 and 3.
Suppose that ϵ(1)

= ϵ(2)
= ϵ ∈ [0, 1], and that s(−D(1)

+ B(1)) > 0.
If s(−D(1)

− D(2)
+ ϵX̂ (1)B(2)) > 0, then the equilibrium (x̂(1), 0, 0) is

unstable.

Proof. See the Appendix. ■

Note that by suitably changing the notations of Theorem 3,
Proposition 2, and Corollary 3, we can obtain a sufficient condi-
tion, necessary conditions, and a condition for instability, respec-
tively, for the boundary equilibrium (0, x̂(2), 0).

6. Analysis of coexisting equilibria

Equilibria of the kind (x̂(1), x̂(2), ẑ) with at least any two of
x̂(1), x̂(2), ẑ being non-zero vectors, are referred to as coexisting
equilibria. In this section, we show that certain kinds of coexisting
equilibria cannot exist, and we focus on identifying necessary
conditions for the existence of certain other kinds of coexisting
equilibria.

6.1. Impossibility of existence of a certain kind of coexisting equilib-
ria

It is well known that for the competitive bivirus case
(i.e., ϵ(m)

= 0 form = 1, 2), one of the possible equilibria is the so-
called coexistence equilibrium, where separate fractions of each
node is infected by virus 1 and virus 2 (Janson et al., 2020; Liu
et al., 2019; Ye et al., 2022). More formally, these are equilibria
of the kind (x̂(1), x̂(2)) with 0 ≪ x̂(1) ≪ 1, 0 ≪ x̂(2) ≪ 1 and
x̂(1) + x̂(2) ≪ 1. It is natural to wonder whether similar equilibria
could exist even when ϵ(m) > 0 for m = 1, 2. It turns out,
however, that such coexistence equilibria do not exist for coupled
bivirus systems. The following proposition formalizes this.

Proposition 3. Consider system (8)–(10) under Assumption 1
and 2. Suppose that ϵ(m) > 0 for some m ∈ [2]. There does not exist
a coexisting equilibrium of the form (x̂(1), x̂(2), 0) with x̂(1), x̂(2) > 0.

Proof. See the Appendix. ■

In a similar vein to Proposition 3, the following proposition
states that the coupled bivirus system cannot have an equilibrium
where a fraction of each node is infected by both viruses at the
same time, but that no fraction of any node is infected only by
one of the viruses.

Proposition 4. Consider system (8)–(10) under Assumption 3.
There does not exist an equilibrium of the form (0, 0, ẑ), where
ˆ
z > 0.

8

Proof. See the proof of (Gracy et al., 2024, Proposition 4) ■

Taken together, Propositions 3 and 4 answer, in the negative,
Question (v) raised in Section 3.1. In so doing, Propositions 3 and
4 restrict the set of possible endemic equilibria for the coupled
bivirus system.

6.2. Necessary conditions for existence of certain kinds of coexisting
equilibria

While Section 6.1 has dealt with the impossibility of existence
of certain kinds of coexisting equilibria, in this subsection we are
interested in identifying some necessary conditions for the exis-
tence of certain other kinds of coexisting equilibria. We begin by
presenting a necessary condition for the existence of a coexisting
equilibrium where for each node the fraction infected only by
virus 1 is non-zero, by both viruses 1 and 2 is non-zero, but only
by virus 2 is zero.

Proposition 5. Consider system (8)–(10) under Assumption 3.
Suppose that (i) ρ((D(1))−1B(1)) > 1, and (ii) ϵ(1)

= ϵ(2)
= ϵ

with ϵ ∈ (0, 1). Then, there exists an equilibrium (x̂(1), 0, ẑ) with
x̂(1), ẑ > 0 only if ρ((D(1))−1(B(2))) ≥ 1.

Proof. See the proof of (Gracy et al., 2024, Proposition 5). ■

By following analogous arguments as in the proof of Proposi-
tion 5, it can be shown that there exists an equilibrium (0, x̂(2), ẑ)
only if ρ((D(2))−1(B(1))) ≥ 1. Thus, Proposition 5 conclusively
answers Question (vi) raised in Section 3.1.

Next, we present a condition that rules out a given point in
the state space as a coexisting equilibrium where each node has
(i) a fraction that is infected only by virus 1; (ii) a fraction that is
infected only by virus 2; and (iii) a fraction that is infected by both
viruses 1 and 2. To this end, we need the following assumption.

Assumption 4. The healing and infection rates are the same for
each virus. That is, δ(1)i = δ

(2)
i for all i ∈ [n], and β

(1)
ij = β

(2)
ij for all

i = j ∈ [n] and (i, j) ∈ E .

In words, Assumption 4 states that two identical heteroge-
neous viruses spread over the same graph. This implies that
D(1)

= D(2)
= D, and B(1)

= B(2)
= B. With Assumption 4 in

place, we have the following result.

Proposition 6. Consider system (8)–(10) under Assumption 1, 3
and 4. Suppose further that ϵ(1)

= ϵ(2)
= ϵ ≥ 0. Then, there

exists an equilibrium (x̂(1), x̂(2), ẑ), where x̂(1), x̂(2), ẑ > 0, only if
ρ((I − X̂ (1)

− X̂ (2)
− Ẑ)D−1B) < 1.

Proof. See the proof of (Gracy et al., 2024, Proposition 6).
Proposition 6 answers Question (vii) raised in Section 3.1.
Note that Proposition 6 is, in itself, not a necessary condition.

That is, if a given point (x̂(1), x̂(2), ẑ), where x̂(1), x̂(2), ẑ > 0, were
to not fulfill the condition in Proposition 6, it does not mean
that there cannot exist another point, say, (x̃(1), x̃(2), z̃), where
x̃(1), x̃(2), z̃ > 0, that satisfies the condition in Proposition 6. Of
course, if every point in the state space violates the aforemen-
tioned condition, then no equilibrium of the form (x̂(1), x̂(2), ẑ),
x̂(1), x̂(2), ẑ > 0, can exist.

7. Monotonicity (or lack thereof) of the coupled bivirus system

The discussion heretofore has centered around existence,
uniqueness and stability of certain specific equilibria. It is natural
to seek a more general perspective on the coupled bi-virus model,
which is the main focus of this section.
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With ϵ(1)
= ϵ(2)

= 0 (i.e., the competitive bivirus case), the
system defined by (8)–(10) is monotone; see (Ye et al., 2022,
Lemma 3.3). This section seeks to answer whether the same holds
for the case when ϵ(1) > 0 and/or ϵ(2) > 0. To this end, first we
introduce a graph structure, and then use this graph to provide a
conclusive answer.

7.1. Construction of the graph associated with the Jacobian of a
non-linear system

Consider a system ẋ = f (x), and let J(·) denote the Jacobian of
this system. It turns out that we can construct a graph associated
with J(·); call this graph Ḡ. The construction follows the outline
provided in (Sontag, 2007). More specifically, the number of
nodes in the graph Ḡ equals the number of rows (resp. columns)
of J(·), whereas the edges of Ḡ are drawn based on the entries in
J(·). If, independent of the argument of J(·), [J(·)]ij ≤ 0 for i ̸= j,
hen we draw an edge from node j to node i labeled with a ‘‘−’’
ign; if, independent of the argument of J(·), [J(·)]ij ≥ 0 for i ̸= j,
hen we draw an edge labeled with a ‘‘+’’ sign. If [J(·)]ij ≤ 0 for
ome argument, and [J(·)]ij ≥ 0 for some other argument then
rom node j to node i we draw an edge labeled with a ‘‘−’’ sign,
nd also an edge labeled with a ‘‘+’’ sign. Furthermore, if from
ode j to node i, there are edges with a ‘‘−’’ sign and with a ‘‘+’’
ign, then we introduce a node between i and j, say i′ such that
here is an edge with a ‘‘+’’ sign from i to i′; an edge with ‘‘+’’
ign from i′ to j; the edge with a ‘‘−’’ sign from j to i is retained;
ee (Sontag, 2007, Figure 3). We refer to the graph constructed
ith the addition of such nodes as Ĝ. Thus, Ĝ is a signed graph.
ote that Ĝ has no self-loops.
We will also be requiring the following notion from graph

heory. A signed graph is said to be consistent if every undirected
ycle in the graph has a net positive sign, i.e., it has an even
umber of ‘‘−’’ signs (Sontag, 2007).

.2. The coupled bivirus system is not monotone

We now show that the coupled bivirus system is not mono-
one.

heorem 4. Under Assumptions 1 and 2, system (8)–(10) is not
onotone.

roof. First, note that the Jacobian J(x(1), x(2), z), as in (15), has
n rows and 3n columns. Hence, the graph Ḡ, constructed with

respect to the Jacobian in (15), has 3n nodes. Next, observe that
the 12 and 21 blocks of J(x(1), x(2), z) are, due to Assumptions 1
and 2, negative matrices, which implies that for any node i, the
dge from node i (resp. i + n) to node i + n (resp. i) has a ‘‘−’’
ign. Similarly, the 31 and 32 blocks of J(x(1), x(2), z) are, due to
ssumptions 1 and 2, positive matrices, which implies that for
ny node i, the edge from node i (resp. i+ n) to node i+ 2n has
‘‘+’’ sign.
Note that the 13 block of J(x(1), x(2), z) can change its sign

epending on the argument. Hence, it is clear that, for any node
, there is an edge from node i + 2n to i with a ‘‘−’’ sign, and an
dge with a ‘‘+’’ sign. Therefore, we introduce n additional nodes,
nd label these 3n+ 1, 3n+ 2 . . . 4n. Similarly, since the 23 block
f J(x(1), x(2), z) can change its sign depending on the argument,
t follows that for any node i, there is an edge from node i + 2n
o i + n with a ‘‘−’’ sign, and an edge with ‘‘+’’ sign. Therefore,
e introduce further n additional nodes, and label those 4n + 1,
n+2 . . . 5n. The edges corresponding to the nodes labeled 3n+1,
n+ 2 . . . 4n, and 4n+ 1, 4n+ 2, . . . 5n are assigned as outlined
n Section 7.1; thus obtaining the corresponding graph Ĝ.
9

Fig. 2. Graph structures: (a) line, (b) star, (c) complete.

In graph Ĝ, the loop starting from node i traversing through
ode i + 3n, node i + 2n, node i + n and back to node i is a 4-
ength cycle that has an odd number (namely, one) of negative
igns. Therefore, from (Sontag, 2007, page 62), the signed graph
ˆ is not consistent. Consequently, from (Sontag, 2007, page 63),
it follows that the system (8)–(10) is not monotone. ■

Theorem 4 answers Question (viii) raised in Section 3.1. Fur-
thermore, Theorem 4 implies that we cannot leverage the rich
literature on monotone dynamical systems (Hirsch, 1988; Smith,
1988) to study the limiting behavior of system (8)–(10). In gen-
eral, for non-monotone systems, no dynamical behavior, includ-
ing chaos, can be definitively ruled out (Sontag, 2007). Therefore,
novel tools are needed to study coupled bivirus systems more in-
depth. The development of such tools is beyond the scope of this
paper.

8. Simulations

This section presents a comparison of the 4n-state Markov
process in (1)–(4) to (8)–(10) via simulation, and also provides
a set of simulations of various coupled virus models.

8.1. Comparison to full probabilistic model

We compare the model in (8)–(10) to the full probabilistic
4n-state model in (1)–(4) via simulations to illustrate the effec-
tiveness of the approximation. We set ϵ(1)

= ϵ(2)
= 3, and

use line graphs, star (hub–spoke) graphs, and complete graphs.
For examples of each type of graph, see Fig. 2. All adjacency
matrices for these graphs are symmetric and binary-valued, and
both viruses spread over the same graph. In the star graph, the
central node is the first agent. Each simulation was run for 10,000
time steps (final time T = 10,000), with three initial conditions:
(1) the first node is infected by virus 1 and the second node is
infected by virus 2,

x(1)(0) = [1 0 · · · 0]⊤

x(2)(0) = [0 1 0 · · · 0]⊤

z(0) = 0;
(20)

(2) the first node is infected by virus 1, the second node is infected
by virus 2, and the third node is infected by both virus 1 and virus
2,

x(1)(0) = [1 0 · · · 0]⊤

x(2)(0) = [0 1 0 · · · 0]⊤

z(0) = [0 0 1 0 · · · 0]⊤;

(21)

and (3) the first node is infected by virus 1, the second node is
infected by virus 2, and the remaining nodes are infected by both
virus 1 and virus 2,

x(1)(0) = [1 0 · · · 0]⊤

x(2)(0) = [0 1 0 · · · 0]⊤

z(0) = [0 0 1 · · · 1]⊤.

(22)

In these tests we explore identical homogeneous viruses, (β, δ) =
(β (1), δ(1)) = (β (2), δ(2)) = (β (3), δ(3)). The (β, δ) pairs are
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Fig. 3. A plot of ∥[v(1)(T ); v(2)(T ); v(3)(T )] − [x(1)(T ); x(2)(T ); z(T )]∥ for the line
raph, T = 10,000. Results from using the different initial conditions (20), (21),
nd (22) are depicted by the blue lines, red dashed lines, and black dash-dot
ines, respectively. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 4. A plot of ∥[v(1)(T ); v(2)(T ); v(3)(T )] − [x(1)(T ); x(2)(T ); z(T )]∥ for the star
graph, T = 10,000. Results from using the different initial conditions (20), (21),
nd (22) are depicted by the blue lines, red dashed lines, and black dash-dot
ines, respectively. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

(0.1, 1), (0.215, 1), (0.464, 1), (0.5, 0.5), (1, 0.464), (1, 0.215),
(1, 0.1)], and the numbers of agents are n = 4, 6. We limited
simulations to these n values since mean field approximations are
typically worse for small values of n and there is a computational
limitation due to the size of the 4n-state Markov model.

The results are given in Figs. 3–5 in terms of the 2-norm of
the difference between the states of (8)–(10) at the final time
([x(1)(T ); x(2)(T ); z(T )]), and the means of the three states in the
4n-state Markov model at the final time ([v(1)(T ); v(2)(T ); v(3)(T )]
as defined by (4)). The accuracy of the approximation appears to
be very similar to the single virus case (Van Mieghem et al., 2009)
and to the two-virus case (Liu et al., 2019). Since the model in
(8)–(10) is an upper bounding approximation, the results show
that the two models converge to the healthy state for the smaller
values of β

δ
, resulting in small errors between the two models.

For many of the larger values of β

δ
, the model in (8)–(10) again

erforms quite well since it is at an epidemic state and the 4n-
tate Markov model does not appear to reach the healthy state
n the finite time considered in the simulations (T = 10,000).
herefore, for certain values of β

δ
and certain time scales, the

model in (8)–(10) is a sufficient approximation of the 4n-state
 f

10
Fig. 5. A plot of the error ∥[v1(T ); v2(T ); v3(T )] − [x(1)(T ); x(2)(T ); z(T )]∥ for
the complete graph, T = 10,000. Results from using the different initial
conditions (20), (21), and (22) are depicted by the blue lines, red dashed lines,
nd black dash-dot lines, respectively. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this
rticle.)

arkov model. For values of β

δ
that are near 1, the models are

quite different, similar to the single- and bi-virus cases. The 4n-
state Markov model appears, in most cases, to be at or close to
the healthy state while the model in (8)–(10) is at an epidemic
tate, resulting in large errors.

.2. Illustrative examples

Virus 1 is depicted by the color red (r), virus 2 is depicted by
he color blue (b), and the state of being infected with both states,
(t), is depicted by the color green (g). For all i ∈ [n], the color at
ach time t for node i is given by

x(1)i (t)
si(t)

r +
x(2)i (t)
si(t)

b+
zi(t)
si(t)

g, (23)

where si(t) = x(1)i (t)+x(2)i (t)+zi(t). When x(1)i (t)+x(2)i (t)+zi(t) =
0, the color is black, indicating completely healthy, susceptible.
These color variations are used to facilitate the depiction of the
parallel equilibria (x̂(1) = αx̂(2)), a behavior that is exhibited by
the ϵ(1)

= ϵ(2)
= 0 case (see Liu et al. 2016) and are illustrated

by all the nodes converging to the same color. For all i ∈ [n], the
diameter of node i is given by

d0 + si(t)r0, (24)

with d0 being the default/smallest diameter and r0 being the
scaling factor depending on the total sickness of node i. Therefore,
the color indicates the type of virus(es) each agent has and the
diameter indicates the degree of sickness for each agent. The
graph structure is as follows:

aij(t) =

{
e−∥yi(t)−yj(t)∥2 , if ∥zi(t)− zj(t)∥ < r̂,
0, otherwise,

(25)

where yi(t) ∈ R2 is the position of node i, with r̂ = .35.
We consider a network of n = 15 nodes. The binary matrices

A(1) and A(2) are populated in correspondence, respectively, to the
black and green edges depicted in Fig. 6. The initial condition of
the network is shown in Fig. 6. The elements of diagonal matrices
D(1) and D(2) are chosen uniformly at random from [0, 1]. Let b(1)
be a vector whose elements are chosen uniformly at random from
[0, 1]. Let B(1)

= diag(B(1)/6)A(1). Vector b(2) is chosen analogous
to b(1). Then, let B(2)

= diag(b(2)/11)A(2). Let ϵ(1)
= ϵ(2)

= ϵ, and
ix ϵ = 0.5. Given that the matrices involved are of dimension



S. Gracy, P.E. Paré, J. Liu et al. Automatica 171 (2025) 111937

1
v
a
i
B
ϵ

d
a
w
a

B
c
n
f

C
o
−

b
i

B

W

s

5 × 15, in the interest of space, we refrain from providing exact
alues; the exact values used along with the Matlab code used
re available via github.4 With these choices of model parameters,
t turns out that s(−D(1)

+ B(1)) = −0.0037 < 0 and s(−D(2)
+

(2)) = −0.0013 < 0. Consistent with Proposition 1 (and since
∈ (0, 1), also consistent with Theorem 1), both the viruses

ie out; see Fig. 7(a). Next, with the same model parameters
nd initial condition as before, we set ϵ = 2. Again, consistent
ith Proposition 1, the dynamics converge to the healthy state,
lbeit the rate of convergence is slower than that with ϵ = 0.5;

see Fig. 7(b). Once again, with the same model parameters and
initial condition as before, we set ϵ = 1000. Although s(−D(1)

+
(1)) = −0.0037 < 0 and s(−D(2)

+ B(2)) = −0.0013 < 0, as a
onsequence of the effect of the large value of ϵ, the dynamics do
ot die out; see Fig. 8. Next, using the same set of parameters as
or the simulations in Fig. 7(a), except for ϵ(1)

= 2 and ϵ2
= 0.5,

we check the conditions in Proposition 1. It seems that, although
it needs to be proven rigorously, even with the aforementioned
choice of ϵ(m) for m = 1, 2, the conditions in Proposition 1
guarantee eradication of both the viruses; see Fig. 9.

For the next simulation, D(1), D(2), b(1), and b(2) are the same
as before. Let B(1)

= diag(b(1))A(1), and let B(2)
= diag(b(2)/11)A(2).

hoose ϵ = 0.5. With these choices of model parameters, it turns
ut that s(−D(1)

+ B(1)) = 1.4904 > 0 and s(−D(2)
+ B(2)) =

0.0013 < 0. Consistent with Theorem 2, virus 2 dies out, virus 1
ecomes endemic in the population, and no fraction of any node
s infected by both viruses 1 and 2 simultaneously; see Fig. 10.

Next, D(1), D(2), b(1), and b(2) take the same values as before. Let
(1)

= diag(b(1)/2)A(1), and let B(2)
= diag(b(2)/10)A(2). We choose

ϵ = 0.5. With such a choice, we obtain s(−D(1)
+B(1)) = 0.5026 >

0, thus ensuring the existence of an endemic equilibrium x̂(1).
e also have s(−D(2)

+ B(2)) = 0.0063. Further, we have that

(−D(2)
+ (I − X̂ (1))B(2)) = −0.0210 < 0, and s

(
(−D(1)

− D(2)
+

ϵX̂ (1)B(2))− (ϵB̂(1)
+ ϵX̂ (1)B(2))(−D(2)

+ (I − X̂ (1))B(2)
− ϵB̂(1))−1((I −

X̂ (1))B(2)
+ D(1))

)
= −0.0259 < 0. Hence, in line with the result

in Theorem 3, the dynamics converge to (x̂(1), 0, 0) exponentially
fast; see Fig. 11.

Note that we also ran the same set of simulations on a large-
scale network, namely the graph of adjacent counties in the
contiguous United States of America (n = 3109). We used
the same adjacency matrix as in (Paré, Liu, et al., 2020), with
practically identical outcomes on the average infection levels;
see (Gracy et al., 2024, Section 8.3) for more details.

9. Conclusion

We have addressed the problem of simultaneous infection of
an individual (resp. subpopulation) by possibly two viruses. We
derived a coupled bi-virus model from a 4n-state Markov process.
We identified a condition that leads to the extinction of both
viruses; likewise a condition that causes one of the viruses to
become endemic in the population. Subsequently, we provided
a sufficient condition and two necessary conditions for local
exponential convergence of boundary equilibria. With respect to
coexistence equilibria, we conclusively ruled out the existence of
the following types of coexisting equilibria: (i) a point in the state
space where for each node there is a non-trivial fraction infected
only by virus 1, a non-trivial fraction infected only by virus 2, but
no fraction that is infected by both viruses 1 and 2; and (ii) a
point in the state space where for each node there is a fraction
that is infected simultaneously by both viruses 1 and 2, but no

4 https://github.com/philpare/coupled_bivirus
11
Fig. 6. Initial condition of the network. Black: healthy nodes; red: nodes infected
only by virus 1; blue: nodes infected only by virus 2; and green: nodes infected
by both viruses 1 and 2. Black edges: spreading pattern for virus 1; green edges:
spreading pattern for virus 2. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 7. In both figures, the red line indicates the average infection level of the
population with respect to virus 1; the blue line with respect to virus 2; and
the yellow line with respect to both viruses 1 and 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 8. The parameters chosen fulfill the conditions in Proposition 1, but since
ϵ(= 1000) is quite large the dynamics do not converge to the healthy state.

Fig. 9. The parameters are chosen so as to fulfill the conditions in Proposition 1,
with the exception that ϵ(1)

= 0.5 and ϵ(2)
= 2. The dynamics still converge to

the healthy state.

Fig. 10. Virus 1 becomes endemic; virus 2 has died out completely, and no
fraction of any node is infected by both viruses 1 and 2.

https://github.com/philpare/coupled_bivirus
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Fig. 11. Average infection level with respect to virus 1, virus 2, and virus 1 and
irus 2 using the initial condition in Fig. 6.

fraction is infected only by virus 1 (resp. virus 2). We provided
a necessary condition for the existence of certain other kinds of
coexisting equilibria. Finally, we showed that the coupled bi-virus
model is not monotone.

The fact that the coupled bivirus system is not monotone
makes its stability analysis harder. However, one could leverage
the theory of singular perturbations for monotone systems (Wang
& Sontag, 2006) to possibly draw conclusions on the generic con-
vergence of the coupled bivirus system, whereas one could possi-
bly take recourse to the Lyapunov techniques espoused in (Shuai
& van den Driessche, 2013) to establish global asymptotic stability
of boundary equilibria. Other problems of further interest include
identifying condition(s) for stability (local or global) of various
coexisting equilibria.
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Appendix

Proof of Theorem 1. Let y(1)i (t) = x(1)i (t) + zi(t) and y(2)i (t) =
(2)
i (t)+ zi(t) for each i ∈ [n]. From (5)–(7), the dynamics of y(1)i (t)
nd y(2)i (t) are

̇
(1)
i (t) = −δ

(1)
i y(1)i (t)+ (1− y(1)i (t)− (1− ϵ(2))x(2)i (t))

∑n
j=1 β

(1)
ij y1j (t),

̇
(2)
i (t) = −δ

(2)
i y(2)i (t)+ (1− y(2)i (t)− (1− ϵ(1))x(1)i (t))

∑n
j=1 β

(2)
ij y(2)j (t).

(26)

Since ϵ(1), ϵ(2)
∈ [0, 1], it follows that

̇
(1)
i (t) ≤ −δ

(1)
i y(1)i (t)+ (1− y(1)i (t))

∑n
j=1 β

(1)
ij y(1)j (t),

̇
(2)
i (t) ≤ −δ

(2)
i y(2)i (t)+ (1− y(2)i (t))

∑n
j=1 β

(2)
ij y(2)j (t),

hich implies that the trajectories of y(1)i (t) and y(2)i (t) in (26)
re both bounded above by the trajectory of a single-virus SIS
odel. From (Liu et al., 2016, Proposition 3), in the case when

(B(1)
− D(1)) ≤ 0 and s(B(2)

− D(2)) ≤ 0, then all y(1)i (t)
nd y(2)i (t) asymptotically converge to 0 for any initial condition,
hich implies that system (8)–(10) asymptotically converges to
he healthy state for any initial state in D. Therefore, the healthy
tate is the unique equilibrium of the system.

roof of Theorem 2. Let y(2)i (t) = x(2)i (t) + zi(t) for each i ∈

n]. From the proof of Theorem 1, since s(B(2)
− D(2)) ≤ 0 and

(1)
∈ [0, 1], all y(2)i (t) converge to zero, which implies all x(2)i (t)
nd zi(t) converge to zero as well. From (5), the dynamics of all

12
x(1)i (t), i ∈ [n] can be viewed as a cascade system with x(2)i (t),
zi(t), i ∈ [n] as inputs. Using similar arguments to those in the
proof of (Khanafer et al., 2016, Theorem 4), this cascade system
is input-to-state stable. Note that with x(2)i (t) = zi(t) = 0 for all
i ∈ [n], the dynamics of all x(1)i (t) in (5) simplify to the single-virus
networked SIS model. The theorem is then a direct consequence
of (Khalil, 2002, Lemma 4.7) and (Liu et al., 2019, Proposition 3).

Proof of Corollary 2. Consider system (8)–(10). Note that, by the
definition of equilibrium, the healthy state (0, 0, 0) is an equilib-
rium point, regardless of whether (or not), for m ∈ [2], s(B(m)

−

D(m)) ≤ 0. Since, by assumption, for m ∈ [2], s(B(m)
− D(m)) > 0,

instability of (0, 0, 0) follows from the proof of Proposition 1. The
existence and uniqueness of the equilibrium points (x̂(1), 0, 0) and
(0, x̂(2), 0) follow from the proof of Theorem 2.

We need the following lemmas to prove Theorem 3.

Lemma 2 (Varga 1999, Lemma 2.3). Suppose that M is an irre-
ducible Metzler matrix. Then r = s(M) is a simple eigenvalue of M,
and if Mζ = rζ , then ζ ≫ 0.

Lemma 3. Consider system (8)–(10) under Assumption 1 and 3. If
(x̂(1), x̂(2), ẑ) ∈ D such that x̂(1), x̂(2), ẑ > 0, then 0 ≪ x̂(1) ≪ 1 or
0 ≪ x̂(2) ≪ 1 or 0 ≪ ẑ ≪ 1. Furthermore, x̂(1) + x̂(2) + ẑ ≪ 1.

Proof. See the proof of (Gracy et al., 2024, Lemma 6).

Lemma 4 (Souza, Wirth, and Shorten 2017, Corollary 1). Let A ∈

Rn×n be a Metzler matrix partitioned in blocks as

A =

[
A11 A12
A21 A22

]
in which A11 and A22 are square matrices. Define A/A11 := A22 −

A21A−1
11 A12. Then, A is Hurwitz if, and only if, A11 and A/A11 are

Hurwitz Metzler matrices.

Proof of Theorem 3. Consider the equilibrium point (x̂(1), 0, 0).
The Jacobian matrix of this equilibrium point can be rewritten as

J(x̂(1), 0, 0) =
[
−D(1)

+ (I − X̂ (1))B(1)
− B̂(1) Ĵ

0 J̃

]
. (27)

where Ĵ = [ −B̂(1)−ϵX̂ (1)B(2) D(2)
−B̂(1)+(I−X̂ (1))B(1)−ϵX̂ (1)B(2) ], while

J̃ =
[
−D(2)

+ (I − X̂ (1))B(2)
− ϵB̂(1) (I − X̂ (1))B(2)

+ D(1)

ϵB̂(1)
+ ϵX̂ (1)B(2)

−D(1)
− D(2)

+ ϵX̂ (1)B(2)

]
.

(28)

From (27) it is clear that the matrix J(x̂(1), 0, 0) is block upper tri-
angular. Therefore, s(J(x̂(1), 0, 0)) < 0 if, and only if, the following
conditions are satisfied: (i) s(−D(1)

+ (I− X̂ (1))B(1)
− B̂(1)) < 0, and

(ii) s(J̃) < 0. Since (x̂(1), 0, 0) is an equilibrium point, from (8) we
obtain:

(−D(1)
+ (I − X̂ (1))B(1))x̂(1) = 0. (29)

Define Q := D(1)
− (I − X̂ (1))B(1). Since −Q is an irreducible

Metzler matrix, and since x̂(1) ≫ 0, applying Lemma 2 to (29)
yields s(−Q ) = 0. Note that −Q being Metzler implies that Q is
an M-matrix, and since s(−Q ) = 0 it follows that Q is an irre-
ducible singular M-matrix. Since B(1) is nonnegative irreducible,
and x̂(1) ≫ 0, it follows that the matrix B̂(1) has at least one diag-
onal element that is strictly positive. Therefore, due to (Qu, 2009,
Corollary 4.33), the matrix Q + B̂(1) is a non-singular M-matrix,
hich further implies that s(−D(1)

+ (I − X̂ (1))B(1)
− B̂(1)) < 0.

From (28), it is immediate that J̃ is Metzler. We now prove, by
˜
using Lemma 4, that the matrix J is also Hurwitz. Observe that
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J̃11 = −D(2)
+ (I − X̂ (1))B(2)

− ϵB̂(1). Since by Lemma 3, x̂(1) ≪

, it follows that (I − X̂ (1)) is a positive diagonal matrix. Since
by Assumption 2, B(2) is nonnegative irreducible, it is clear that
(I − X̂ (1))B(2) is nonnegative irreducible, and hence J̃11 is Metzler.
By assumption, s(−D(2)

+(I−X̂ (1))B(2)) < 0. Hence, by using similar
arguments involved in showing that s(−D(1)

+(I−X̂ (1))B(1)
−B̂(1)) <

, we can also show that s(J̃11) < 0. Therefore, J̃11 is a Hurwitz
etzler matrix.
Note that

˜/J̃11 =(−D(1)
− D(2)

+ ϵX̂ (1)B(2))

− (ϵB̂(1)
+ ϵX̂ (1)B(2))(−D(2)

+ (I − X̂ (1))B(2)

− ϵB̂(1))−1((I − X̂ (1))B(2)
+ D(1)).

Note that the existence of (−D(2)
+ (I − X̂ (1))B(2)

− ϵB̂(1))−1

s a consequence of Hurwitzness of (−D(2)
+ (I − X̂ (1))B(2)

−

B̂(1)) (Berman & Plemmons, 1994; Briat, 2017). Furthermore,
bserve that since (−D(2)

+ (I − X̂ (1))B(2)
− ϵB̂(1))−1 is Metzler,

it follows that −(−D(2)
+ (I − X̂ (1))B(2)

− ϵB̂(1))−1 is an M-
matrix. Since −(−D(2)

+ (I − X̂ (1))B(2)
− ϵB̂(1))−1 exists, it follows

that −(−D(2)
+ (I − X̂ (1))B(2)

− ϵB̂(1))−1 is a nonsingular M-
matrix. Hence, −(−D(2)

+ (I− X̂ (1))B(2)
− ϵB̂(1))−1 is a nonnegative

matrix (Plemmons, 1977, F.15). Define

Q1 := − (ϵB̂(1)
+ ϵX̂ (1)B(2))×

(−D(2)
+ (I − X̂ (1))B(2)

− ϵB̂(1))−1((I − X̂ (1))B(2)
+ D(1)).

Since ϵ ≥ 0, from Assumption 3 it is clear that B̂(1) is nonnegative
diagonal matrix, B(2) is nonnegative, and D(1) and D(2) are positive
diagonal matrices. Hence, since from Lemma 3 the matrix (I−X̂ (1))
is also positive, it is immediate that Q1 is nonnegative. Therefore,
since (−D(1)

−D(2)
+ϵX̂ (1)B(2)) is Metzler, it follows that the matrix

(−D(1)
− D(2)

+ ϵX̂ (1)B(2)) + Q1 is Metzler. Consequently, J̃/J̃11 is
Metzler. Since, by assumption, s

(
(−D(1)

−D(2)
+ϵX̂ (1)B(2))−(ϵB̂(1)

+

ϵX̂ (1)B(2))(−D(2)
+(I−X̂ (1))B(2)

−ϵB̂(1))−1((I−X̂ (1))B(2)
+D(1))

)
< 0, it

means that s((−D(1)
−D(2)

+ϵX̂ (1)B(2))+Q1) < 0, thereby implying
that s(J̃/J̃11) < 0. Thus, J̃/J̃11 is Hurwitz Metzler. Therefore, from
Lemma 4, it follows that the matrix J̃ is Hurwitz. Hence, we
can conclude that s(J(x̂(1), 0, 0)) < 0. Local exponential stability
of (x̂(1), 0, 0) then follows from (Khalil, 2002, Theorem 4.15 and
Corollary 4.3), thus concluding the proof. ■

Proof of Proposition 2. Consider the matrix J̃ given in (28).
Suppose that s(−D(2)

+ (I− X̂ (1))B(2)
−ϵB̂(1)) ≥ 0. This implies that

[J̃]11 (i.e., the 11-block of J̃) is not Hurwitz. Hence, from Lemma 4,
it follows that J̃ is not Hurwitz. That is, s(J̃) ≥ 0. Therefore, it
follows that J(x̂(1), 0, 0) is not Hurwitz, and, consequently, the
equilibrium point (x̂(1), 0, 0) is not locally exponentially stable.

Note that if s
(

(−D(1)
− D(2)

+ ϵX̂ (1)B(2)) − (ϵB̂(1)
+ ϵX̂ (1)B(2))

(−D(2)
+ (I − X̂ (1))B(2)

− ϵB̂(1))−1((I − X̂ (1))B(2)
+ D(1))

)
≥ 0, then

the matrix J̃/J̃11 is not Hurwitz. The rest of the proof is analogous
to that of necessity of item (i). ■

Proof of Corollary 3. Assume that s(−D1
− D2

+ ϵx̂(1)B(2)) > 0.
Note that, from the proof of Theorem 3, (−D1

− D2
+ ϵx̂(1)B(2)) <

J̃/J̃11, where J̃/J̃11 is as given in the proof of Theorem 3. Since
both (−D1

− D2
+ ϵx̂(1)B(2)) and J̃/J̃11 are Metzler matrices, due

to the assumption that s(−D1
− D2

+ ϵx̂(1)B(2)) > 0, it follows
from (Varga, 2009, Theorem 2.1) that s(J̃/J̃11) > 0. Consequently,
it follows from Lemma 4 that the matrix J̃ in (28) is not Hurwitz.
ence, s(J(x̂(1), 0, 0)) > 0, which further implies from (Khalil,
002, Theorem 4.7) that the boundary equilibrium (x̂(1), 0, 0) is
nstable. ■
13
roof of Proposition 3. Suppose, to the contrary, that there
xists an equilibrium of the form (x̂(1), x̂(2), 0) with x̂(1), x̂(2) > 0
or system (8)–(10). By assumption (x̂(1), x̂(2), 0) is a non-zero
quilibrium point. Hence, from Lemma 3, it follows that 0 ≪ x̂(1)
nd 0 ≪ x̂(2). Since (x̂(1), x̂(2), 0) is an equilibrium point, the
quilibrium version of Eq. (10) reads as follows:

= ϵ(1)x̂(1)B(2)x̂(2) + ϵ(2)x̂(2)B(1)x̂(1). (30)

ote that, by assumption, ϵ(m) > 0 for some m ∈ [2]. By As-
umption 2, the matrices B(1) and B(2) are nonnegative irreducible,
hus, since x̂(1) and x̂(2) are strictly positive vectors, implying that
ither ϵ(1)x̂(1)B(2)x̂(2) > 0 or ϵ(2)x̂(2)B(1)x̂(1) > 0. As a consequence,

ϵ(1)x̂(1)B(2)x̂(2) + ϵ(2)x̂(2)B(1)x̂(1) > 0, which contradicts (30). There-
fore, there does not exist a coexisting equilibrium of the form
(x̂(1), x̂(2), 0) with x̂(1), x̂(2) > 0. ■
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