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Abstract. We prove that a smooth complete intersection of two quadrics of dimension at
least 2 over a number field has index dividing 2, i.e., that it possesses a rational 0-cycle of
degree 2.

1. Introduction

The index of a variety over a field k is the greatest common divisor of the degrees [k(x) : k]
ranging over the residue fields k(x) of the (zero-dimensional) closed points x of the variety.
Equivalently, the index is the smallest positive degree of a k-rational 0-cycle.
Let X ⊂ Pn

k be a smooth complete intersection of two quadrics over a field k of character-
istic not equal to 2. Then the index of X necessarily divides 4, because intersecting with a
plane yields a 0-cycle of degree 4. In general, this is the best possible bound. Indeed, there
are examples with index 4 over local and global fields when n = 3 [LT58, Theorem 7] and
over fields of characteristic 0 when n = 4, as we show in Theorem 7.6.

Our main result is the following sharp bound on the index when n ≥ 4 and k is a number
field or a local field.

Theorem 1.1. Let X be a smooth complete intersection of two quadrics in Pn
k with n ≥ 4

and assume that k is either a number field or a local field. Then the index of X divides 2.

This result allows us to complete the list of integers which occur as the index of a del
Pezzo surface over a local field or a number field (See Section 7.4). It also allows us to
deduce nontrivial index bounds for other interesting classes of varieties. In particular, if C/k
is a genus 2 curve over a number field with a rational Weierstrass point, then it follows from
the result above that any torsor of period 2 under the Jacobian of C has index dividing 8 (see
Theorem 7.7) and the corresponding Kummer variety, which is an intersection of 3 quadrics
in P5, has index dividing 4 (see Remark 7.8). Again, these results fail for arbitrary fields
(see Remark 7.8). Theorem 1.2 below shows that Theorem 1.1 also holds for global function
fields of odd characteristic when n ≥ 5 and conditionally in a number of cases when n ≥ 4.

Theorems of Amer, Brumer and Springer [Ame76,Bru78,Spr56] show that, for X as above,
index 1 is equivalent to the existence of a k-rational point. Analogously one can ask if index
2 implies the existence of a closed point of degree 2. Colliot-Thélène has recently sketched
an argument that if X is a smooth complete intersection of two quadrics in P4 over a field
of characteristic 0 and X has index 2, then X has a closed point of degree 14, 6 or 2. Our
next result identifies conditions under which we can prove that a smooth intersection of two
quadrics in Pn has a closed point of degree 2. In order to state it we introduce the following
notation: We say that a global field k satisfies (⋆) if Brauer-Manin is the only obstruction
to the Hasse principle for del Pezzo surfaces of degree 4 over all quadratic extensions of k.
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Theorem 1.2. Let n ≥ 4 and let X ⊂ Pn
k be a smooth complete intersection of two quadrics

over a field k. In any of the following cases there is a quadratic extension K/k such that
X(K) ̸= ∅:

(1) k is a local field and n ≥ 4;
(2) k is a global function field and n ≥ 5;
(3) k is a global function field of characteristic 2 and n = 4;
(4) k is a number field that satisfies Schinzel’s hypothesis and n ≥ 5;
(5) k is a global field that satisfies (⋆) or a number field that satisfies Schinzel’s hypothesis,

n = 4 and the following holds: for any quadratic field extension L/k and rank 4
quadric Q ⊂ P4

L such that X = ∩σ∈Gal(L/k)σ(Q) and NormL/k (disc(Q)) ∈ k×2, we
have that Q fails to have smooth local points at an even number of primes of L.

When n = 4, there are exactly five rank 4 quadrics in the pencil of quadrics containing X
(see Section 4 for details). The condition in case (5) holds for most intersections of quadrics
and can be easily checked. In particular, it is satisfied if there is no pair of Galois conjugate
rank 4 quadrics in the pencil or if X has points everywhere locally (for then any quadric
containing X will have points over all completions). In fact, if X is assumed everywhere
locally solvable, the proofs of our main results become much easier (See Corollary 3.4 and
Remark 4.8). For further details of the cases covered (and not covered) in case (5), see
Remark 6.2 and Section 7.1.

Theorem 1.2(5) naturally raises the question of whether the parity condition is necessary.
We have constructed many examples that fail this parity condition, but in each we have
found an ad hoc proof that (⋆) implies the existence of a quadratic point. Based on our
results and this extensive numerical evidence, we expect the following question to have a
positive answer.

Question 1.3. Does every complete intersection of 2 quadrics X ⊂ P4
k over a number field

k possess a K-rational point for some quadratic extension K/k?

One can also pose this question for other classes of fields, e.g., Cr fields. Over C3 fields,
the question has a negative answer (see Section 7.3 for examples), but it is open for C2 fields.

1.1. Obstructions to index 1 over local and global fields. Over local and global fields,
necessary and sufficient conditions for an intersection of two quadrics to have index 1 (equiva-
lently, to have a rational point) have been well studied. When k is a local field and n ≤ 7 there
are examples with X(k) = ∅ (which necessarily have index greater than 1), while for n ≥ 8
and k a p-adic field, X(k) ̸= ∅ [Dem56]. For k a number field, Colliot-Thélène, Sansuc and
Swinnerton-Dyer conjecture that a smooth complete intersection of quadrics in Pn

k satisfies
the Hasse principle as soon as n ≥ 5 [CTSSD87b, §16]. For n ≥ 8, the conjecture is proven
in [CTSSD87a,CTSSD87b] and this has been extended to n ≥ 7 by Heath-Brown [HB18].
The analogue of this conjecture over global function fields of odd characteristic has been
established by Tian [Tia17], allowing us to deduce case (2) from case (1) of Theorem 1.2.

When n = 4 (in which case X is a del Pezzo surface of degree 4), the Hasse principle
can fail [BSD75]. Colliot-Thélène and Sansuc have conjectured that this failure is always
explained by the Brauer-Manin obstruction [CTS80]. This conjecture implies that all number
fields satisfy the condition (⋆) appearing in Theorem 1.2(5). Most cases of the n = 4
conjecture have been proven conditionally on Schinzel’s hypothesis and the finiteness of Tate-
Shafarevich groups of elliptic curves by Wittenberg [Wit07]. This also gives a conditional
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proof of the Hasse principle when n ≥ 5 as this can be reduced to cases of the n = 4
conjecture which are covered by Wittenberg’s result.

1.2. Outline of the proof of Theorems 1.1 and 1.2. Using an argument of Wittenberg
[Wit07] (which we review in Section 6.2), we can reduce to the case n = 4, when X is a del
Pezzo surface of degree 4.

In Section 2 we prove that any del Pezzo surface of degree 4 over a local field must have
points over some quadratic extension, which proves Theorem 1.2(1) and the local case of
Theorem 1.1. Our approach uses the theorems of Amer, Brumer, and Springer to reduce
to the case where no integral model of X has a special fiber that is split (i.e., contains a
geometrically integral open subscheme) over a quadratic extension. We then use semistable
models of degree 4 del Pezzo surfaces, introduced by Tian [Tia17], to directly show that the
remaining types of degree 4 del Pezzo surfaces obtain points over every ramified quadratic
extension of k.

In Section 2.6, we give an easy generalization of a result in [DD18], showing that, for k a
field of characteristic 2, any del Pezzo surface of degree 4 obtains a point over k1/2. For local
and global fields of characteristic 2 we have [k1/2 : k] = 2, so this proves Theorem 1.2(3) and
gives an alternate proof of Theorem 1.2(1) in characteristic 2. Thus, for the remainder of
the paper, it suffices to assume that k is of characteristic different from 2.

Over a global field, the results of Section 2 show that after base change to a suitable qua-
dratic extension X becomes everywhere locally solvable. While it is also true that the Brauer
group of X becomes constant after a suitable quadratic extension (this can be deduced from
the explicit calculation of Br(X)/Br0(X) in [VAV14]), one cannot deduce that Theorem 1.2
holds for fields k satisfying (⋆) directly from case (1) in this way because, in general, there
is no quadratic extension K/k for which XK is locally solvable and the Brauer group of XK

is trivial modulo constant algebras (See Example 6.4).
To obtain our results when k is a global field of characteristic not equal to 2 we study the

arithmetic of the symmetric square of X, which is birational to the variety G parameterizing
lines on the quadrics in the pencil of quadrics in P4

k containing X (see Section 4 for more
details). In Section 5, we develop the main tools for studying the arithmetic of G over a global
field. We determine explicit central simple algebras over the function field of G representing
the Brauer group of G modulo constant algebras and then develop techniques to calculate
the evaluation maps of these central simple algebras at several types of local points.

Theorem 1.2(1) implies that G is everywhere locally solvable. The results of Section 5
are used in Section 6 to show further that there is always an adelic 0-cycle of degree 1 on
G orthogonal to the Brauer group and, under the hypothesis of Theorem 1.2(5), that there
is an adelic point on G orthogonal to the Brauer group. This is perhaps surprising given
that in this case the Brauer group of G can contain nonconstant algebras and in general can
obstruct weak approximation on G (see Corollary 6.3 and Example 6.4).

The variety of lines on a smooth quadric 3-fold is a Severi-Brauer 3-fold, so the arithmetic
of G is amenable to the fibration method, as first observed in [CTS82]. Results of [CTSD94]
show that, in the number field case, the vanishing of the Brauer-Manin obstruction on G
implies the existence of a 0-cycle of degree 1 on G and, conditionally on Schinzel’s hypothesis,
a k-rational point on G. This yields a 0-cycle of degree 2 on X and, under the hypothesis
of Theorem 1.2(5), a quadratic point on X if we assume Schinzel’s hypothesis. To the best
of our knowledge the function field analogue of these results based on the fibration method
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have not been established. This prevents us from considering global function fields in the
n = 4 case of Theorem 1.1.

One can ask whether index(G) = 1 always implies that G has a rational point (when k is
a global field this is equivalent to Question 1.3). Our results do not answer this question,
but they do show that a stronger condition on 0-cycles fails over p-adic fields. Namely, G
can contain 0-cycles of degree 1 that are not rationally equivalent to a rational point (See
Remark 7.4(1)).

To deduce the results in case (5) of Theorem 1.2 assuming that k satisfies (⋆) (without
assuming Schinzel), we make use of Proposition 3.6, which may be of interest in its own
right. It relates the Brauer-Manin obstruction on the symmetric square of a variety that
has finite Brauer group (modulo constant algebras) to the Brauer-Manin obstruction over
quadratic extensions. (More generally, in Section 3 we collect results relating the Brauer-
Manin obstruction on a nice variety Y to the Brauer-Manin over an extension which may
also be of independent interest.) In a similar spirit, we answer a question posed in [CTP00]
concerning Brauer-Manin obstructions over extensions (see Remarks 7.4(2)) and give an
example of a del Pezzo surface of degree 4 defined over Q which, for any finite extension
k/Q, has a Brauer-Manin obstruction to the existence of k-points if and only if k is of odd
degree over Q (See Section 7.2).

Notation. For a field k we use k to denote a separable closure and Gk := Gal(k/k) to denote
the absolute Galois group of k. In Sections 2 and 3, we allow k of arbitrary characteristic; in
the remainder of the paper we restrict to k of characteristic different from 2. For k-schemes
Y → Spec(k) and S → Spec(k) we define YS := Y ×Spec(k) S and Y = Y ×Spec k Spec(k).
When S = Spec(A) is the spectrum of a k-algebra A, we use the notation YA := YSpec(A).
A quadratic point on Y is a morphism of k-schemes Spec(K) → Y , where K is an étale
k-algebra of degree 2. In particular, K = k× k is allowed in which case ZK ≃ Z ×Z for any
k-subscheme Z ⊂ Y .

The Brauer group of a scheme Y is the étale cohomology group Br(Y ) := H2
ét(Y,Gm); when

Y = Spec(R) is the spectrum of a ring R we define Br(R) := Br(SpecR). If sY : Y → Spec(k)
is a k-scheme, then Br0(Y ) ⊂ Br(Y ) is the image of the pullback map s∗Y : Br(k)→ Br(Y ).
We use Br1(Y ) to denote the kernel of the map Br(Y ) → Br(Y ). We recall that there is a
canonical injective map Br1(Y )/Br0(Y )→ H1(k,Pic(Y )) coming from the Hochschild-Serre
spectral sequence [CTS21, Prop. 4.3.2] and that this map is an isomorphism if H3(k,Gm) = 0.

An element β ∈ Br(Y ) may be evaluated at a k-point y : Spec(k) → Y by pulling back
along y to obtain β(y) := y∗β ∈ Br(k). For a finite locally free morphism of schemes Y → Z
we use CorY/Z : Br(Y ) → Br(Z) to denote the corestriction map. When Y = Spec(A) and
Z = Spec(B) are affine schemes this is also denoted by CorA/B : Br(A)→ Br(B).
A variety over k is a separated scheme of finite type over k. A variety is called nice if

it is smooth, projective and geometrically integral and is called split if it contains an open
subscheme that is geometrically integral.

If Y is an integral k-variety, k(Y ) denotes its function field. More generally, if Y is a
finite union of integral k-varieties Yi, then k(Y ) :=

∏︁
k(Yi) is the ring of global sections

of the sheaf of total quotient rings. In particular, if a finite dimensional étale k-algebra A
decomposes as a product A ≃

∏︁
kj of finite field extensions of k and Y is a reduced k-variety,

then k(YA) ≃
∏︁

k(Ykj), and Cork(YA)/k(Y ) =
∑︁

Cork(Ykj
)/k(Y ).
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For a global field k, we use Ωk to denote the set of primes of k. For a prime v ∈ Ωk we
use kv to denote the corresponding completion and for a k-scheme Y we set Yv := Ykv . We
use Ak to denote the adele ring of k. For a subgroup B ⊂ Br(Y ), Y (Ak)

B ⊂ Y (Ak) denotes
the set of adelic points orthogonal to B, i.e.,

Y (Ak)
B = {(yv) ∈ Y (Ak) : ∀ β ∈ B ,

∑︂
v∈Ωk

invv(β(yv)) = 0 } .

We define Y (Ak)
Br := Y (Ak)

Br(Y ).
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2. Intersections of quadrics in P4 over local fields

Theorem 2.1. Let X ⊂ P4
k be a smooth complete intersection of two quadrics over a local

field k. There is a quadratic extension K/k such that X(K) ̸= ∅.

Outline of proof of Theorem 2.1. In Section 2.1, we prove that if there exists an integral
model X ⊂ P4 with split special fiber, then X(k) ̸= ∅. We use this result to reduce to the
case that the special fiber is a union of four planes permuted transitively by the Galois group.
We then use the geometric classification results in Section 2.3 together with the existence of
semistable models proved by Tian [Tia17] (following Kollár [Kol97]) to give explicit models of
the remaining cases in Section 2.4. Next, we study these explicit models and show directly
that over every ramified quadratic extension there is a change of coordinates so that the
model has split special fiber. Thus, by the results of Section 2.1, these models have points
over every ramified quadratic extension. The details of how the ingredients come together
are in Section 2.5.

Remark 2.2. The methods of this proof are fairly flexible, but it does rely on two key
properties of finite fields: 1) There is a unique quartic extension of any finite field, it is
Galois, and the Galois group is cyclic; and 2) Every split variety over a finite field has index
1. If k is a complete field with respect to a discrete valuation and its residue field satisfies
the above two properties, then Theorem 2.1 holds over k.
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As mentioned in the introduction, we also give alternate proofs of Theorem 2.1 which work
in the case that k has odd residue characteristic (Section 4.2) and in the case that k has
characteristic 2 (Section 2.6); this latter proof also holds for global fields of characteristic 2.

2.1. Intersections of quadrics with split special fiber.

Proposition 2.3. Let k be a nonarchimedean local field, let O denote the valuation ring
of k, and let X/k smooth complete intersection of quadrics in P4

k. Assume there exists an
integral model X/O such that the special fiber is split (i.e., contains a geometrically integral
open subscheme). Then X(k) ̸= ∅.

Proof. Since the special fiber is split, it contains a geometrically integral open subscheme
U◦/F. By the Hasse-Weil bounds, U◦ contains a smooth F′-point for all extensions with
sufficiently large cardinality. In particular, there exists an extension F′/F of odd degree
where U◦ has a smooth F′-point. Thus, by Hensel’s Lemma, X has a k′-point for k′/k
an unramified extension of odd degree. Since X is an intersection of two quadrics, the
theorems of Amer, Brumer and Springer [Ame76,Bru78, Spr56] then imply that X(k) ̸= ∅.
(In characteristic 2, see [EKM08, Cor. 18.5 and Thm. 17.14] for proofs of the Amer, Brumer
and Springer theorems; the Amer and Brumer theorem in characteristic 2 is attributed to
an unpublished preprint of Leep.) □

2.2. Ranks of a quadratic forms in arbitrary characteristic. Let q be a quadratic
form on a vector space V over a field F . Then (by definition) the mapping Bq : V × V → F
given by Bq(x, y) = q(x + y) − q(x) − q(y) is bilinear. We say that q is regular if the set
{x ∈ V : q(x) = 0 and ∀ y ∈ V, Bq(x, y) = 0} contains only the zero vector in V . (If the
characteristic of F is not 2, then the condition q(x) = 0 is superfluous.) We say that q is
geometrically regular if its base change to the algebraic closure of F is regular. Such forms are
called nondegenerate in [EKM08, Definition 7.17]. A quadratic form q on a vector space of
dimension at least 2 is geometrically regular if and only if the quadric Q in P(V ) defined by
the vanishing of q is geometrically regular or, equivalently, smooth (see [EKM08, Proposition
22.1]).

The rank of a quadratic form q is the largest integer m such that there is a subspace
W ⊂ V of dimension m such that the restriction of q to W is geometrically regular, i.e.,
such that the intersection of Q with the linear space corresponding to W is smooth. The
rank of a quadric in Pn is defined to be the rank of any quadratic form defining it. If F has
characteristic different from 2, then the rank of q is the same as the rank of a symmetric
matrix associated to Bq.

If char(F ) = 2, then the rank of q is not necessarily equal to the rank of (a matrix
associated to) Bq, but the definition yields the lower bound rank(Bq) ≤ rank(q). The possible
discrepancy between these two ranks is due to the fact that Bq(x, x) = q(2x) − 2q(x) = 0
for all x ∈ V . Thus a matrix associated to Bq has zeros along the diagonal and so is skew-
symmetric (and symmetric). Skew symmetric matrices always have even rank, but quadratic
forms can have odd rank (e.g., q = x2 has rank 1).

Over an algebraically closed field a quadratic form q has rank 2n if and only there is a
change of coordinates such that q = x1x2 + x3x4 + · · · + x2n−1x2n, and rank(q) = 2n + 1 if
and only if there is a change of coordinates such that q = x2

0 + x1x2 + x3x4 + · · ·+ x2n−1x2n
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(see [EKM08, Props. 7.29 and 7.31 and Ex. 7.34]).1 It follows from this characterization
that a quadric in Pn of rank 1 with n ≥ 1 is not geometrically reduced and a quadric in Pn

of rank 2 with n ≥ 2 is not geometrically irreducible.
It also follows that, for a quadratic form q over an algebraically closed field, the rank is the

smallest integer r such that there exists a linear change of variables under which q becomes a
quadratic form in the variables x1, . . . , xr alone. This is the definition of rank used in [HB18].
We will only require the equivalence of these definitions over algebraically closed fields, but
we note that they are also equivalent if the field is not of characteristic 2 (by the well known
fact that q can be diagonalized) or if the field is perfect of characteristic 2 (as follows from

[EKM08, Proposition 7.31] using that in this case c1x
2
1+· · ·+csx

2
s = (c

1/2
1 x1+· · ·+c

1/2
s xs)

2). In
general, the two notions differ as seen by considering the rank 1 form x2

1+tx2
2 = (x1+t1/2x2)

2

over F2(t) for which there is no F2(t)-linear change of variables writing it as a form in 1
variable.

Lemma 2.4. Suppose q and q̃ are quadratic forms of rank r(q) and r(q̃), respectively, over
a field F . Then r(q ⊥ q̃) = r(q) + r(q̃) except when char(F ) = 2 and r(q) and r(q̃) are both
odd, in which case r(q ⊥ q̃) = r(q) + r(q̃)− 1.

Proof. For char(F ) ̸= 2 see [EKM08, Prop. 7.29]. For char(F ) = 2 this follows from
[EKM08, Proposition 7.31 and Remark 7.21] and the fact that an orthogonal direct sum of
rank 1 forms has rank 1 (cf. [EKM08, Remark 7.24]). □

2.3. Intersections of two quadrics with many irreducible components.

Lemma 2.5. Let X ⊂ P4 be a reduced complete intersection of two quadrics over an alge-
braically closed field. If X is reducible, then X contains a 2-plane or an irreducible quadric
surface. In addition:

(1) if X contains an irreducible quadric surface, then X is the union of two quadric
surfaces (with one possibly reducible) and X is contained in a rank 2 quadric; and

(2) if X contains two distinct 2-planes P1, P2, then X is either the union of four distinct
2-planes or the union of P1 and P2 with an irreducible quadric surface.

Proof. The components of this proof can be found in [CTSSD87a, Section 1] and [HB18,
Proof of Lemma 3.2]. We repeat them here for the reader’s convenience.

The degrees of the irreducible components of X sum to 4, so we consider the partitions

3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

In any of these cases, X contains a surface of degree 1 (i.e., a 2-plane) or a surface of degree
2 (i.e., a quadric surface). To complete the proof, it remains to show that if X contains an
irreducible quadric surface, then X is contained in a rank 2 quadric, and in the case of the
partition 2 + 1 + 1, the union of the two planes is a quadric surface, i.e., is contained in a
hyperplane.

Assume that X contains an irreducible quadric surface, given by the vanishing of a qua-
dratic form q and a linear form ℓ. The rank of q cannot be 1 because X is reduced and the
rank of q cannot be 2 because the quadric surface is irreducible. So q must have rank at
least 3. Then the quadratic forms defining X must be of the form cq+ ℓℓ′, for some constant

1This characterization shows that, in general, the rank of the symmetric bilinear form can only differ from
the rank of the quadratic form by 1, namely that rank(Bq) ≤ rank(q) ≤ rank(Bq) + 1.
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c and some linear form ℓ′. There will be some linear combination of these where c = 0, and
so X is cut out by the ideal

⟨ℓℓ′, q + ℓℓ′′⟩ = ⟨ℓ, q⟩ · ⟨ℓ′, q + ℓℓ′′⟩,
for some linear forms ℓ′, ℓ′′. The first factor gives our original quadric surface, the resid-
ual factor will give a (possibly reducible) quadric surface, and V (ℓℓ′) is a rank 2 quadric
hypersurface containing X. □

Lemma 2.6. Let X ⊂ P4 be a complete intersection of two quadrics over an algebraically
closed field. If X is the union of 4 distinct planes, then X is a cone and X is contained in
a quadric hypersurface of rank 2. If, in addition, X has a unique cone point and there is
cyclic subgroup of Aut(X) acting transitively on the irreducible components of X, then, up
to an automorphism of P4, X = V (x0x1, x2x3) ⊂ P4.

Proof. After a change of coordinates, we may assume that one of the planes is V (x0, x1). If
all pairs of the planes meet in a line, then we may assume that one of the other planes is

V (x0, x2). Thus, X must be defined by x0ℓ = x0
˜︁ℓ+x1x2 = 0 for some linear forms ℓ, ˜︁ℓ. Note

that x0ℓ has rank 2. If x0, x1, x2, ℓ, ˜︁ℓ are linearly dependent, then X is a cone. If x0, x1, x2, ℓ, ˜︁ℓ
are linearly independent, then, without loss of generality, we may assume that ℓ = x3 and˜︁ℓ = x4, so

X = V (x0x3, x0x4 + x1x2) = V (x0, x1) ∪ V (x0, x2) ∪ V (x3, x0x4 + x1x2).

This is not a union of four planes, so we have a contradiction.
If any pair of the planes meet in a point (in which case any cone point would be unique),

then we may instead assume that one of the other planes is V (x2, x3). Under these assump-
tions X must be the intersection of V (aix0x2 + bix0x3 + cix1x2 + dix1x3) for i = 0, 1 and
some ai, bi, ci, di. In particular, X is a cone. In addition, if (a0, d0), (a1, d1) are linearly in-
dependent, then one of the defining equations can be taken to be a rank 2 quadric divisible
by xi, and similarly if (b0, c0), (b1, c1) are linearly independent. Thus, it remains to consider
the case that X = V (ax0x2 + dx1x3, bx0x3 + cx1x2), with abcd ̸= 0. Then

bc (ax0x2 + dx1x3) +
√
abcd (bx0x3 + cx1x2) =

(︂√
abx0 +

√
bcdx1

)︂(︂√
acx2 +

√
bcdx3

)︂
,

and so X is contained in a rank 2 quadric.
It remains to show that if X has a unique cone point and admits a transitive cyclic action

on its irreducible components, then, up to an automorphism of P4, X = V (x0x1, x2x3) ⊂ P4.
Without loss of generality, we may assume the cone point is [0 : 0 : 0 : 0 : 1], and so X is a
cone over an intersection of quadrics in P3, which is a curve Z of arithmetic genus 1. Since
by assumption X is a union of 4 planes, Z must be the union of 4 lines. Furthermore, since
X has a unique cone point, the four lines of Z cannot all meet. This combined with the
transitive Z/4Z-action then implies that any triple of the lines cannot meet. By enumerating
the possible intersection configurations, one can check that the only arrangement of lines with
a transitive Z/4Z-action, with no triple meeting, and whose union is a curve of genus 1 is
a 4-gon, i.e., a cycle of rational curves, where each curve meets exactly two of the others.
After a change of coordinates, we may assume that the intersections are

P1∩P2 = V (x0, x1, x2), P2∩P3 = V (x0, x1, x3), P3∩P4 = V (x0, x2, x3), P4∩P1 = V (x1, x2, x3),

so X = V (x0x2, x1x3). □
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Corollary 2.7. Let X ⊂ P4
k be a geometrically reduced complete intersection of two quadrics

over a field k. If X is nonsplit, then X is contained in a rank 2 quadric.

Proof. Assume X is nonsplit. Since X is geometrically reduced and nonsplit, it must be
geometrically reducible, and so reducible over a separable closure. Thus the absolute Galois
group of k acts on the geometric components. Since X is nonsplit, none of the components
are fixed by Galois, and so, by Lemma 2.5, X is geometrically either the union of two
irreducible quadric surfaces or the union of four planes. In the first case, Lemma 2.5(1) gives
the result, and in the second Lemma 2.6 does. □

2.4. Semistable models. Following work of Kollár [Kol97] in the case of hypersurfaces,
Tian [Tia17, Section 2.1] has defined a notion of semistability for intersections of two quadrics
over discrete valuation rings. This notion of semistability allows one to find a model of X
whose special fiber is fairly well controlled.

Before stating our results, we first review some of the definitions from Tian’s semistability
machinery. Suppose k is a nonarchimedean local field with ring of integers O and residue
field F. We will use π to denote a uniformizer. Let X ⊂ P4

O be an intersection of two quadrics.
Given X, we can associate a 2 × 15 matrix A such that each row is the coefficient vector
of the corresponding defining equation for X. Note that changing the defining equations
corresponds to multiplying A on the left by an element of GL2(O). Thus, up to this GL2-
action, we have a well-defined matrix AX.

Given an nonnegative integer weight vector w ∈ N5, we define the change of coordinates
fw : P4

O → P4
O, xi ↦→ πwixi. Then we define the multiplicity of X with respect to w to be

multw(X) := min{v(m) : m is a 2× 2 minor of Af∗
wX} ,

where v denotes the valuation on O. Then X is said to be semistable if for all weight vectors
w and all automorphisms g ∈ Aut(P4

O) = PGL5(O), we have

multw(g(X)) ≤
4

5

(︄
4∑︂

i=0

wi

)︄
.

By [Tia17, Theorem 2.7], any smooth intersection of two quadrics X ⊂ P4
k has a semistable

integral model. For more details, see [Tia17, Section 2.1 and 2.4].
We will also make use of the following results from [Tia17].

Lemma 2.8. Let k be a nonarchimedean local field, let O denote the valuation ring of k,
let F denote the residue field of k, and let X ⊂ P4

k be a smooth complete intersection of two
quadrics. Let X ⊂ P4

O be a semistable model of X (which exists by [Tia17, Theorem 2.7]).
Then:

(1) [Tia17, Lemma 2.9] The special fiber of X is a complete intersection of two quadrics.
(2) [Tia17, Lemma 2.22(1)] The special fiber is not contained in a reducible quadric hy-

persurface defined over F.
(3) [Tia17, Lemma 2.22(2)] The special fiber does not contain a plane defined over F.
(4) [Tia17, Lemma 2.22(4)] The special fiber is reduced.

Remark 2.9. In [Tia17, Sections 2.2 – 2.4], Tian works over local function fields, but as
noted in [Tia17, beginning of Section 2.2], the proofs go through essentially verbatim for
any nonarchimedean local field. In [Tia17, Section 2.4] (in which [Tia17, Lemma 2.22] is
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stated and proved), Tian adds the hypothesis that the residue field has odd characteristic,
and so freely interchanges smooth and nonsingular. However, no assumption on the residue
characteristic is needed for the proofs of [Tia17, Lemma 2.22 (1), (2), and (4)]. For the sake
of completeness, we repeat Tian’s proof of Lemma 2.8(2)–(4).

Proof. If the special fiber is contained in a reducible quadric hypersurface defined over F,
then, after possibly changing variables, one of the quadrics defining X must be of the form
x0x1 + πq̃, in which case mult(1,0,0,0,0)(X) ≥ 1. However, since X is assumed to be semistable

we must have mult(1,0,0,0,0)(X) ≤ 4·(1)
5

, resulting in a contradiction. This proves (2). Similarly,
if the special fiber contains a linear subspace of dimension 2 defined over F, which we may
assume is V (x0, x1), then mult(1,1,0,0,0)(X) ≥ 2. However, the semistability hypothesis implies

that mult(1,1,0,0,0)(X) ≤ 4·(1+1)
5

= 8
5
, giving a contradication. Thus, we conclude (3).

Now we prove (4). By [Tia17, Lemma 2.9], the special fiber is a complete intersection, so
the special fiber is reduced if and only if all geometric irreducible components are reduced.
Assume that the special fiber has a nonreduced geometric irreducible component. Since the
special fiber has degree 4 and contains no plane defined over F, the only possibilities are:

(a) a quadric surface of multiplicity 2, or
(b) a union of two conjugate planes, each with multiplicity 2.

Note that in case (b), the two planes must meet in a line, as otherwise a general hyperplane
section would be the union of two skew double lines, which is not possible. Thus, case (b) is
subsumed by case (a), and so the reduced special fiber is given by the vanishing of a linear
form ℓ and a quadratic form q. Hence, the special fiber is defined by quadratic forms of the
form ℓℓ1, ℓℓ2 + q for some linear forms ℓ1, ℓ2, which contradicts (2). □

Proposition 2.10. Let k be a nonarchimedean local field, let O denote the valuation ring of
k, let F denote the residue field of k, and let X ⊂ P4

k be smooth complete intersection of two
quadrics. Let X ⊂ P4

O be a semistable model of X (which exists by [Tia17, Theorem 2.7]).
Assume that the special fiber of X/O is geometrically the union of four 2-planes and that the
Galois group acts transitively on the four 2-planes. Then, for any choice of uniformizer π,
X must be given by the vanishing of quadratic forms of the shape:

q(x0, . . . , x3) + πmx4ℓ(x0, . . . , x3), and q̃(x0, . . . , x3) + πx2
4 + πnx4

˜︁ℓ(x0, . . . , x3), (2.1)

(with m,n positive integers, and q, q̃ quadratic forms such that every F-linear combination
of q and q̃ modulo π has rank at least 2); or

g(x0, x1, x2) + πh(x3, x4) + πax3ℓ3(x0, x1, x2) + πbx4ℓ4(x0, x1, x2), and

g̃(x0, x1, x2) + πh̃(x3, x4) + πcx3
˜︁ℓ3(x0, x1, x2) + πdx4

˜︁ℓ4(x0, x1, x2),
(2.2)

(with a, b, c, d positive integers, ℓi, ℓ̃i linear forms and g, g̃, h, h̃ quadratic forms such that
every F-linear combination of g and g̃ modulo π has rank at least 2 and every F-linear
combination of h and h̃ modulo π has rank at least 1).

Proof. By Lemma 2.6, the special fiber must be isomorphic (over F) to V (x0x1, x2x3) or a
cone over a complete intersection of two quadrics in P2 (i.e., a complete intersection of two
conics).

Let us first assume that the special fiber is geometrically isomorphic to V (x0x1, x2x3).
Note that this variety has a unique singular point, the cone point, so it must be defined over
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F. After a change of coordinates, we may assume the cone point reduces to V (x0, x1, x2, x3)
and hence X is given by

q(x0, . . . , x3) + πmx4ℓ(x0, . . . , x4), and q̃(x0, . . . , x3) + πnx4
˜︁ℓ(x0, . . . , x4),

for some integers m,n ≥ 1, quadratic forms q, q̃ and linear forms ℓ, ˜︁ℓ that are nonzero modulo
π. We will first use the semistability of X for the weight vector w := (1, 1, 1, 1, 0) to show

that one of πmℓ or πn˜︁ℓ must evaluate to a uniformizer at [0 : 0 : 0 : 0 : 1]. Note that Af∗
wX

has the following form(︃
π2coefs(q) πm+1ℓ0 πm+1ℓ1 πm+1ℓ2 πm+1ℓ3 πmℓ4
π2coefs(q̃) πn+1˜︁ℓ0 πn+1˜︁ℓ1 πn+1˜︁ℓ2 πn+1˜︁ℓ3 πn˜︁ℓ4

)︃
,

where ℓ =
∑︁

i ℓixi, ˜︁ℓ =
∑︁

i
˜︁ℓixi and coefs(q), coefs(q̃) denote the coefficient vectors of q, q̃

respectively. Hence, using the strong triangle equality and the definition of multiplicity, one

can compute that multw(X) ≥ min(4, 2+m+v(ℓ4), 2+n+v(˜︁ℓ4)). However, the semistability

assumption implies that multw(X) ≤ 4·(1+1+1+1)
5

= 16
5
, and so min(m+ v(ℓ4), n+ v(˜︁ℓ4)) = 1.

Thus, after renaming q, q̃ and ℓ, ℓ̃ and possibly scaling the equations, we may assume the
equations are of the form:

q(x0, . . . , x3) + πmx4ℓ(x0, . . . , x3), and q̃(x0, . . . , x3) + πnx4
˜︁ℓ(x0, . . . , x3) + πx2

4.

To see that every F-linear combination of q and q̃ modulo π is rank at least 2, recall that the
variety defined by q and q̃ modulo π is geometrically isomorphic to V (x0x1, x2x3) and note
that ax0x1 + bx2x3 has rank 4 for all a, b ̸= 0.
Now assume that the special fiber is a cone over a complete intersection of two quadrics

in P2. Then, up to a change of variables, X must be given by quadratic forms of the shape

g(x0, x1, x2) + πmh(x3, x4) + πax3ℓ3(x0, x1, x2) + πbx4ℓ4(x0, x1, x2), and

g̃(x0, x1, x2) + πm̃h̃(x3, x4) + πcx3
˜︁ℓ3(x0, x1, x2) + πdx4

˜︁ℓ4(x0, x1, x2),

where a, b, c, d,m, m̃ are positive integers, g, g̃, h, h̃ are quadratic forms, and ℓi, ℓ̃i are linear
forms. Since, by assumption, the special fiber is reduced, the complete intersection in P2

F
defined by the vanishing of g and g̃ modulo π must also be reduced. This complete inter-
section is therefore, geometrically, a set of 4 non-colinear points in P2

F. These points are not

contained in any quadric of rank 1 so every F-linear combination of g and g̃ modulo π has
rank at least 2.

To complete the proof, we need to show that m = m̃ = 1 and that h, h̃ are linearly
independent modulo π. We will again use our semistability hypothesis. Consider the
weight vector w = (1, 1, 1, 0, 0). One can compute that multw(X) is at least min{4,m +

m̃, 2 + m, 2 + m̃} and, in addition, if h and h̃ are linearly dependent modulo π, then
multw(X) ≥ min{4,m+m̃+1, 2+m, 2+m̃}. However, the semistability assumption implies

that multw(X) ≤ 4·(1+1+1)
5

= 12
5
. Thus, we must have that h and h̃ are linearly independent

modulo π, and m+ m̃ = 2, which implies that m = m̃ = 1. □

2.5. Proof of Theorem 2.1. If k is archimedean, then [k : k] ≤ 2 so the result is immediate.
Henceforth we assume that k is nonarchimedean, and we write O for the valuation ring
of k and F for the residue field of k. By [Tia17, Theorem 2.7], there is a linear change
of coordinates on P4

k such that the resulting integral model X ⊂ P4
O of X is semistable.
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In particular, by Lemma 2.8, the special fiber of X is a reduced complete intersection of
quadrics.

If the special fiber of X is split, then the desired result follows from Proposition 2.3. If
the special fiber of X is not split, but becomes split over the quadratic extension of F, then
we may apply Proposition 2.3 over k′, the unique quadratic unramified extension of k, and
conclude that X(k′) ̸= ∅.

Thus, we have reduced to the case that the special fiber X◦ of X is nonsplit and remains
nonsplit over the unique quadratic extension F′/F. Since F is perfect and X◦ is reduced, X◦

must be geometrically reduced. Therefore X◦ must be geometrically reducible and Gal(F/F′)
must act nontrivially on the components. By Lemma 2.5, this is possible only if X◦

F is the

union of four 2-planes. Furthermore, the current assumptions imply that Gal(F/F) must act
transitively on the four 2-planes. Thus, by Proposition 2.10, we may assume that X is given
by quadrics as in (2.1) or (2.2).

Consider a ramified quadratic extension k′/k and let ϖ be a uniformizer of k′. First
assume that X is given by equations of the form (2.1). Over k′ we may absorb a ϖ into x4

and obtain the model X′/O′ (where O′ is the valuation ring of k′):

q(x0, . . . , x3) + urϖ2r−1x4ℓ(x0, . . . , x3), and

q̃(x0, . . . , x3) + unϖ2n−1x4
˜︁ℓ(x0, . . . , x3) + ux2

4,
(2.3)

where u is the unit such that uϖ2 = π. Every F-linear combination of the forms in (2.3)
modulo ϖ is an orthogonal sum of an F-linear combination of q and q̃ modulo ϖ (which has
rank at least 2 by (2.1)) with a quadratic form of rank 1. It follows from Lemma 2.4 that
every F-linear combination of the forms in (2.3) modulo ϖ has rank at least 3. Thus, by
Corollary 2.7, the special fiber of X′ is split, so, by Proposition 2.3, X′ has a k′-point.

Now assume that X is given by equations of the form (2.2). Then, we may absorb a ϖ
into x3 and x4 and obtain the model X′/O given by

g(x0, x1, x2) + uh(x3, x4) + uaϖ2a−1x3ℓ3(x0, x1, x2) + ubϖ2b−1x4ℓ4(x0, x1, x2), and

g̃(x0, x1, x2) + uh̃(x3, x4) + ucϖ2c−1x3
˜︁ℓ3(x0, x1, x2) + udϖ2d−1x4

˜︁ℓ4(x0, x1, x2),
(2.4)

where u is the unit such that uϖ2 = π. Then every F-linear combination of the forms
in (2.4) modulo ϖ is an orthogonal direct sum of an F-linear combination of g and g̃ modulo

ϖ (which is a form of rank 2 or 3) with an F-linear combination of h and h̃ modulo ϖ (which
is a form of rank 1 or 2). Thus, by Lemma 2.4, every F-linear combination of the forms
in (2.4) modulo ϖ has rank at least 3. Hence, by Corollary 2.7, the special fiber of X′ is
split, and so X has a k′-point, by Proposition 2.3. □

2.6. Alternate proof in characteristic 2. The following is a slight generalization of
[DD18, Theorem 4.4].

Proposition 2.11. Suppose k is a field of characteristic 2 and X ⊂ P4
k is smooth complete

intersection of two quadrics. Then X(k1/2) ̸= ∅. In particular, if k is a local or global field
of characteristic 2, then X contains a point defined over the quadratic extension k1/2 of k.
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Proof. By [DD18, Theorem 1.1], X can be defined by the vanishing of quadratic forms of
the form

a0x
2
0 + a1x

2
1 + a2x

2
2 + x3ℓ1 + x4ℓ2 , and

b0x
2
0 + b1x

2
1 + b2x

2
2 + x3ℓ3 + x4ℓ4

where ai, bi ∈ k and ℓi ∈ k[x0, . . . , x4] are linear forms. In particular, the intersection of X
with the plane V (x3, x4) is an intersection of two conics in P2 neither of which is geometrically
reduced. The reduced subschemes of the base changes of these conics to the algebraic closure

are the lines V (a
1/2
0 x0 + a

1/2
1 x1 + a

1/2
2 x2) and V (b

1/2
0 x0 + b

1/2
1 x1 + b

1/2
2 x2), which are defined

over k1/2. Their intersection yields a k1/2-point on X.
It remains to show that [k1/2 : k] = 2 when k is a local or global field of characteristic 2. If

k is local, then k = F((t)) with F a finite field of characteristic 2 and k1/2 = F((t1/2)) which
is clearly an extension of degree 2. Similarly, if k = F(t) is a global function field of genus 0
and characteristic 2, then k1/2 = F(t1/2) is clearly a degree 2 extension. For a general global
field k of characteristic 2, which is necessarily a finite extension of k0 = F(t) with F finite
characteristic 2, we may reduce to the genus 0 case as follows (cf. [BM40, Theorem 3]).

Frobenius gives an isomorphism F : k1/2 → k which restricts to an isomorphism k
1/2
0 → k0,

and so [k1/2 : k
1/2
0 ] = [k : k0]. Since k and k

1/2
0 are both intermediate fields of the extension

k0 ⊂ k1/2 we have

[k1/2 : k][k : k0] = [k1/2 : k
1/2
0 ][k

1/2
0 : k0] .

Taken together these observations show that [k1/2 : k] = [k
1/2
0 : k0]. □

3. Brauer-Manin obstructions over extensions

In this section, we prove some general results relating the Brauer-Manin obstruction on a
nice variety Y to the Brauer-Manin obstruction over an extension. Moreover, for quadratic
extensions, we relate the Brauer-Manin obstruction on (a desingularization of) the symmetric
square to the Brauer-Manin obstruction over quadratic extensions.

Lemma 3.1. Let Y/k be a nice variety over a global field k, let K/k be a finite extension,
and let B be a subset of Br(YK). Then Y (Ak)

CorK/k(B) ⊂ YK(AK)
B. In particular,

(1) if Y (Ak)
Br ̸= ∅, then YK(AK)

Br ̸= ∅, and
(2) for any d | [K : k], Y (Ak) ⊂ YK(AK)

ResK/k Br(Y )[d].

Proof. By [CTS21, Prop. 3.8.1], for any α ∈ Br(YK) and for any local point Pv ∈ Y (kv), we
have (CorYK/Y (α))(Pv) = CorKv/kv(α(Pv)), where Kv = K ⊗k kv. Thus, for (Pv) ∈ Y (Ak),∑︂

v∈Ωk

invv
(︁
CorYK/Y (α)(Pv)

)︁
=
∑︂
v∈Ωk

invv
(︁
CorKv/kv(α(Pv))

)︁
=
∑︂
v∈Ωk

∑︂
w∈ΩK ,w|v

invw(α(Pv))

(where the last equality follows from the equality of maps invw = invv ◦CorKw/kv for any

prime w|v), and so Y (Ak)
CorK/k(α) ⊂ Y (AK)

α. The general statement follows by considering
the intersection of Y (AK)

α for all α ∈ B.
It remains to prove statements (1) and (2). The first follows from taking B = Br(YK)

and observing that Y (Ak)
Br(Y ) ⊂ Y (Ak)

CorK/k(Br(YK)), and the second follows from taking
B = ResK/k Br(Y )[d] and using that CorK/k ◦ResK/k = [K : k]. □
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Remark 3.2. Yang Cao has given an alternative proof of Lemma 3.1(1) which also yields a
similar statement for the étale-Brauer obstruction. This will appear in forthcoming work of
Yang Cao and Yongqi Liang [CL].

The following lemma and corollary extend techniques of Kanevsky in the case of cubic
surfaces [Kan87].

Lemma 3.3. Let Y be a nice variety over a field k such that H3(k,Gm) = 0. Assume that:

(1) Pic(Y ) is finitely generated and torsion free,
(2) Br(Y ) is finite, and
(3) Br(Y )→ Br(Y )Gk is surjective.

Then there is a finite Galois extension k1/k such that for all extensions K/k linearly disjoint
from k1 the map ResK/k : Br(Y )/Br0(Y )→ Br(YK)/Br0(YK) is surjective.

Proof. The assumption H3(k,Gm) = 0 implies that the injective map Br1(Y )/Br0(Y ) →
H1(k,Pic(Y )) coming from the Hochschild-Serre spectral sequence [CTS21, Prop. 4.3.2] is
an isomorphism. Assumption (1) implies that H1(k,Pic(Y )) ≃ H1(k0/k,Pic(Y )) for some
finite Galois extension k0/k. By assumption (2), there is a finite Galois extension k1/k0 such
that Resk/k1 : Br(Yk1)→ Br(Y ) is surjective. Now suppose K/k is linearly disjoint from k1.

In particular, K is linearly disjoint from k0, so ResK/k : Br1(Y )/Br0(Y ) ≃ H1(k,Pic(Y ))→
H1(K,Pic(Y )) ≃ Br1(YK)/Br0(YK) is an isomorphism. So it will suffice to show that Br(Y )
and Br(YK) have the same image in Br(Y ). Since Br(Yk1)→ Br(Y ) is surjective, the image
of Br(YK) → Br(Y ) is contained in Br(Y )GK ∩ Br(Y )Gk1 , which is equal to Br(Y )Gk , since
k1 and K are linearly disjoint. Thus, by assumption (3), Br(Y ) and Br(YK) have the same
image in Br(Y ). □

Corollary 3.4. If Y is a nice variety over a global field k such that Y (Ak) ̸= ∅ and
Br(Y )/Br0(Y ) is generated by the image of Br(Y )[d], then for any extension K/k of de-
gree d, YK(AK)

ResK/k(Br(Y )) ̸= ∅. Moreover, if Y satisfies the conditions of Lemma 3.3, then
there is a finite extension k1/k such that for any degree d extension K/k which is linearly
disjoint from k1 we have YK(AK)

Br ̸= ∅. □

Proof. For a global field k we have H3(k,Gm) = 0. So the corollary follows immediately from
Lemmas 3.1(2) and 3.3. □

Remark 3.5. If Y ⊂ P4
k is smooth complete intersection of two quadrics over a global field k of

characteristic not equal to 2 and Y is everywhere locally solvable, then the corollary applies
with d = 2. This gives a proof of the n = 4 case of Theorem 1.2(5) under the additional
hypothesis of local solubility. Note that local solubility is used here in two distinct ways.
First it ensures that Br(Y )/Br0(Y ) is generated by the image of Br(Y )[2] (which is not
the case in general even though Br(Y )/Br0(Y ) is 2-torsion) [VAV14, Thm. 3.4]. Second,
it implies that the canonical maps Br(k) → Br0(Y ) are isomorphisms, locally and globally.
This is used implicitly in the proof of Lemma 3.1. In general, Br(k) → Br0(Y ) need not
be injective (see Lemma 5.9 for a description of the kernel when Y is a del Pezzo surface of
degree 4) and so ResK/k does not necessarily annihilate [K : k]-torsion elements of Br0(Y ).
Consequently, the exact sequence

0→ Br(k)→
⨁︂

Br(kv)→ Q/Z→ 0
14



of global class field theory has no analogue for Br0(Y ).

The following proposition relates the Brauer-Manin obstruction over quadratic extensions
to the Brauer-Manin obstruction on the symmetric square. Note that while the symmetric
square Sym2(Y ) is singular if Y has dimension at least 2, there exists a smooth projective
model Y (2) over any field of characteristic different from 2 (see the proof of part (1) of the
proposition for details).

Proposition 3.6. Let k be a field of characteristic different from 2, let Y/k be a nice variety
of dimension at least 2 with torsion free geometric Picard group, and let Y (2) be a smooth
projective model of the symmetric square of Y over k.

(1) The rational map Y 2 → Sym2(Y ) ‧‧➡ Y (2) induces a corestriction map

CorY 2/Y (2) : Br(Y 2)→ Br(Y (2))

on the Brauer groups of the varieties. Furthermore, if π1 denotes projection onto the
first factor of Y 2 = Y × Y , then the composition CorY 2/Y (2) ◦π∗

1 : Br(Y ) → Br(Y (2))
induces an injective map

ϕ :
Br1(Y )

Br0(Y )
↪→ Br1(Y

(2))

Br0(Y (2))
.

(2) Let α ∈ Br(Y ) and let β = CorY 2/Y (2) ◦π∗
1(α) ∈ Br(Y (2)). There exists a dense open

U ⊂ Y (2) such that for any y ∈ U , y corresponds to a quadratic point ỹ : Spec(K)→
Y for some degree 2 étale k(y)-algebra K and we have β(y) = CorK/k(y) (α(ỹ)).

(3) Suppose k is a global field, Br(Y )/Br0(Y ) is finite and let B ⊂ Br(Y (2))/Br0(Y
(2))

denote the image of CorY 2/Y (2) ◦π∗
1 modulo constant algebras. If there exists a qua-

dratic extension K/k such that YK(AK)
ResK/k(Br(Y )) ̸= ∅, then Y (2)(Ak)

B ̸= ∅.
(4) Let B ⊂ Br(Y (2))/Br0(Y

(2)) denote the image of CorY 2/Y (2) ◦π∗
1 modulo constant

algebras. Suppose that k is a global field, that Y (2)(Ak)
B ̸= ∅, and that Y satisfies

the hypotheses of Lemma 3.3. Then there exists a finite set S ⊂ Ωk, degree 2 étale
kv-algebras Kw/kv for v ∈ S and a finite extension k1/k such that for any quadratic
extension K/k that is linearly disjoint from k1 and such that K ⊗ kv ≃ Kw for v ∈ S
we have YK(AK)

Br ̸= ∅. In particular, there are infinitely many quadratic extensions
K/k such that YK(AK)

Br ̸= ∅.

Proof. (1): Let ∆ = {(y, y) : y ∈ Y } ⊂ Y 2 denote the diagonal subscheme and let
Bl∆ Y 2 denote the blow-up of Y along ∆. Observe that the S2-action on Y 2 extends to an
action on Bl∆ Y 2 whose fixed locus is the exceptional divisor E∆; we claim that the quotient
(Bl∆ Y 2)/S2 is smooth (equivalently geometrically regular). Since Bl∆ Y 2 is smooth, the
quotient (Bl∆ Y 2)/S2 is automatically smooth away from the branch locus. Let y ∈ E∆.
Since E∆ is a divisor, the involution acts as a pseudo-reflection on the geometric tangent
space of y. Since the order of the group acting is not divisible by the characteristic of k,
the Chevalley-Shephard-Todd theorem (see, e.g., [Smi85]) implies that the dimensions of the
geometric tangent spaces of y and its image in the quotient are equal. Hence the quotient is
smooth at the image of y.
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Consider the following commutative diagram.

Bl∆ Y 2 →→

↓↓

(Bl∆ Y 2)/S2

↓↓

Y 2 →→ Sym2 Y

The left vertical map is birational by definition, and since Y 2 → Sym2 Y is generically degree
2, the right vertical map is also birational. The top horizontal map is flat of degree 2 [SP, Tag
00R4], so we have a corestriction morphism Br(Bl∆ Y 2)→ Br((Bl∆ Y 2)/S2) that extends to
the corestriction map on function fields [CTS21, Section 3.8]. Since the Brauer group of
smooth projective varieties is a birational invariant (and pullback along any birational map
gives an isomorphism) [CTS21, Corollary 6.2.11], this yields the first claim.

It remains to prove injectivity of the induced map ϕ on the quotient Br1(Y )/Br0(Y ). Since
k(Y 2) is Galois over k(Y (2)) with Galois group generated by the involution σ interchanging
the factors of Y × Y , by [GS06, Chapter 3, Exercise 3], the composition

Resk(Y 2)/k(Y (2)) ◦Cork(Y 2)/k(Y (2)) : Br(k(Y 2))→ Br
(︁
k(Y 2)

)︁
is given by x ↦→ x+σ(x). We may then deduce that the same formula holds for the composi-
tion ResY 2/Y (2) ◦CorY 2/Y (2) : Br(Y 2)→ Br(Y 2) by evaluating at generic points [CTS21, The-
orem 3.5.4]. Therefore, the composition Res ◦Cor ◦π∗

1 is equal to the diagonal map Br(Y )→
Br(Y )⊕ Br(Y )→ Br(Y 2) sending α to π∗

1α + σ(π∗
1α) = π∗

1α + π∗
2α.

If Pic(Y ) is torsion free, then Pic(Y ) ⊕ Pic(Y ) ≃ Pic(Y
2
) (see [SZ14, Prop. 1.7]). So

the diagonal map together with the Hochschild-Serre spectral sequence gives a commutative
diagram

H1(k,Pic(Y )) →→ H1(k,Pic(Y ))⊕2 H1(k,Pic(Y
2
))

Br1(Y )/Br0(Y )
↗↘

↑↑

→→ (Br1(Y )/Br0(Y ))⊕2
↗↘

↑↑

→→ Br1(Y
2)/Br0(Y

2) .
↗↘

↑↑

As the composition along the top row is injective, the same must be true of the composition
along the bottom row. This composition is induced by Res ◦Cor ◦π∗

1 and it factors through
the map ϕ in the last statement of (1), so ϕ must also be injective.
(2): Since Y (2) is birational to Sym2 Y , there is an open set U ⊂ Y (2) that is isomorphic to

an open set of the regular locus of Sym2 Y , i.e., the image of Y 2 −∆. For y ∈ U , we obtain
ỹ by taking the preimage of y under Y 2 → Sym2 Y ‧‧➡ Y (2). The points y and ỹ fit into a
commutative diagram displayed on the left below. This induces the diagram displayed on
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the right. Commutativity of the latter gives the result.

Spec(k(y))
y
→→ Y (2) Br(k(y)) Br(Y (2))

y∗
←←

f−1(y)

↑↑

→→ Y × Y

f

↑↑

π1

↓↓

⇒ Br(f−1(y))

Cor

↑↑

Br(Y × Y )

Cor

↑↑

←←

Spec(K)
ỹ

→→ Y Br(K) Br(Y )

π∗
1

↑↑

ỹ∗
←←

(3): Suppose that K/k is a quadratic extension, YK(AK)
ResK/k(Br(Y )) ̸= ∅ and that β =

CorY 2/Y (2)(π∗
1(α)) ∈ Br(Y (2)) represents a class in B that is the image of α ∈ Br(Y ). Since

Br(Y )/Br0(Y ) is finite, YK(AK)
ResK/k(Br(Y )) is an open subset of YK(AK) in the adelic topol-

ogy which we have assumed is nonempty. So for any v ∈ Ωk the image of the projection map
YK(AK)

ResK/k(Br(Y )) →
∏︁

w|v YK(Kw) = Y (K ⊗ kv) is a nonempty open subset and therefore

contains a quadratic point ỹv : Spec(K ⊗ kv) → Y corresponding to a point yv ∈ U(kv),
where U is the open set from (2). For the case that v does not split in K we are using the
fact that Y (Kw) ̸= Y (kv) since kv is a local field (see, e.g., [LL18, Proposition 8.3]). By (2)
we have ∑︂

v∈Ωk

invv β(yv) =
∑︂
v∈Ωk

invv CorK⊗kv/kv(α(yṽ)) = 0 .

So the adelic point y = (yv) ∈ Y (2)(Ak) is orthogonal to β.
(4): Suppose Y (2)(Ak)

B ̸= ∅. The hypothesis in Lemma 3.3 implies that Br(Y )/Br0(Y )
and, hence, B is finite. Thus, Y (2)(Ak)

B is open and, arguing as in (3), we see that, for
each v ∈ Ωk, its image in Y (kv) contains a point yv ∈ U(kv) corresponding to a quadratic
point ỹv : Spec(Kv) → Y , where Kv is an étale kv-algebra of degree 2. Moreover, by (2)
if α ∈ Br(Y ) and β = CorY 2/Y (2)(π∗

1(α)), then β(yv) = CorKv/kv(α(ỹv)). By assumption∑︁
v∈Ωk

invv β(yv) = 0, so (ỹv)v∈Ωk
is an effective adelic 0-cycle of degree 2 on Y which is

orthogonal to the Brauer group of Y . Under the additional hypotheses of (4), Br(Y )/Br0(Y )
is finite and, by Lemma 3.3, there is an extension k1/k such that for K/k linearly disjoint
from k1, ResK/k : Br(Y )→ Br(YK)/Br0(YK) is surjective. Moreover, for any set α1, . . . , αn ∈
Br(Y ) of representatives for Br(Y )/Br0(Y ), there is a finite set S ⊂ Ωk such that for all
i = 1, . . . , n and all v ̸∈ S the evaluation maps invv ◦αi : Y (kv) → Q/Z are constant (see
[CTS13, Lemma 1.2 & Theorem 3.1]). In particular Y (kv) ̸= ∅ for v ̸∈ S. Let K/k be a
quadratic extension linearly disjoint from k1 and such that K ⊗ kv ≃ Kw for v ∈ S. By
weak approximation on k× the map k×/k×2 →

∏︁
v∈S′ k×

v /k
×2
v is surjective for any finite set

of primes S ′ ⊂ Ωk, so such extensions K/k do in fact exist. Any adelic point (xw)w∈ΩK
∈

YK(AK) such that ỹv =
∑︁

w|v xw for v ∈ S will be orthogonal to Br(YK). □

4. Pencils of quadrics in P4 and associated objects

Let Q ⊂ P4×P1 be a pencil of quadrics, i.e., the zero locus of a bihomogeneous polynomial
Q of degree (2, 1), defined over a field k of characteristic different from 2. If the projection
map Q → P1 is generically smooth, then we may naturally associate three objects. First,
we may consider the base locus X = XQ ⊂ P4 of the pencil of quadrics, i.e., ∩t∈P1Qt, where
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Qt ⊂ P4 denotes the fiber over t ∈ P1. This is a degree 4 projective surface. Second, we
may consider the subscheme S ⊂ P1 parameterizing the singular quadrics in the pencil. If
Q is any degree (2, 1) form defining Q, then S is given by the vanishing of det(MQ), where
MQ denotes the symmetric matrix corresponding to Q considered as a quadratic form whose
coefficients are linear polynomials in the homogeneous coordinate ring of P1. Since Q → P1

is generically smooth, S ⊂ P1 is a degree 5 subscheme. Third, we may consider the fourfold
G = GQ → P1 that parametrizes lines on quadrics in the pencil; the generic fiber of G is a
Severi-Brauer variety with index dividing 4 and order dividing 2 [EKM08, Ex. 85.4].

Remark 4.1. Over a field of characteristic 2, det(MQ) is identically 0 since MQ is a 5x5 skew-
symmetric matrix, and so the correspondences between these objects already fails. Due to
this, the assumption that k has characteristic different from 2 will remain in force for the
remainder of the paper.

Each of these objects has been well-studied, and their conditions for smoothness are known
to be closely related.

Proposition 4.2. Let Q ⊂ P4 × P1 be a pencil of quadrics over a field of characteristic
different from 2. Then the following are equivalent:

(1) The base locus X is smooth and purely of dimension 2, in which case X is a del Pezzo
surface of degree 4;

(2) The degree 5 subscheme S ⊂ P1 is reduced;
(3) For every s ∈ S, the fiber Qs is rank 4 and the vertex of Qs does not lie on any other

quadric in the pencil; and
(4) The fourfold G is smooth, the map G → P1 is smooth away from S, and above S the

fibers are geometrically reducible.

Proof. The equivalence of conditions (1), (2), and (3) is given by [Rei72, Prop. 2.1]. The
equivalence of (4) with any (equivalently all) of the others is given by [Rei72, Thm. 1.10]. □

Definition 4.3. A pencil of quadrics Q over a field of characteristic different from 2 satisfies
(†) if any of the equivalent conditions in Proposition 4.2 hold. Given a pencil Q satisfying
(†), we define εS ∈ k(S)/k(S)×2 to be the discriminant of a smooth hyperplane section of QS;
note that the square class of the discriminant does not depend on the choice of hyperplane,
nor on the choice of a defining equation for QS.

Given a pencil of quadrics satisfying (†), there are even stronger connections among these
three objects.

Proposition 4.4. Let Q be a pencil of quadrics satisfying (†). Let X = XQ,G = GQ, and
(S, εS) = (SQ, εSQ).

(1) The variety G is birational to the symmetric square Sym2(X) of X. Moreover, G(k) ̸=
∅ if and only if X(K) ̸= ∅ for some quadratic extension K/k.

(2) The residues of the Brauer class [Gk(P1)] ∈ Brk(P1) are

εS ∈ k(S)×/k(S)×2 ≃ H1
(︁
k(S), 1

2
Z/Z

)︁
⊂

⨁︂
t∈(P1)(1)

H1(k(t),Q/Z).

In particular, Normk(S)/k(εS) ∈ k×2.
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(3) Given a pair (S′, εS′) where S′ ⊂ P1 is a reduced degree 5 subscheme and a class
εS′ ∈ k(S′)×/k(S′)×2 of square norm, there exists a unique (up to isomorphism) pencil
of quadrics Q such that (S′, εS′) = (SQ, εSQ). Thus, for any t ∈ P1−S, [Gt] ∈ Br(k(t))
is determined by (S, εS).

Remark 4.5. The second statement of Part (2) provides an alternate proof of a proposition
by Wittenberg [Wit07, Prop. 3.39].

Proof. (1): Consider a point (x, x′) ∈ X ×X −∆, where ∆ denotes the diagonal image of
X, and let ℓ{x,x′} be the line joining them. For generic (x, x′) the line ℓ{x,x′} is not contained
in X, in which case we claim that ℓ{x,x′} lies on a quadric in the pencil containing X. This
quadric will be unique since a line that is contained in more than one quadric in the pencil lies
on X. To see that ℓ{x,x′} is contained in some quadric note that the intersections Qt ∩ ℓ{x,x′}
determine a nonzero pencil of binary quadrics (i.e., quadrics in P1) that all contain x and
x′. The singular binary quadrics of this pencil are rank at most 1 and contain the distinct
points x and x′ so they must be identically 0 on ℓ{x,x′}.
Therefore, we have a rational map

f : X ×X ‧‧➡ G , (x, x′) ↦→ (t{x,x′}, ℓ{x,x′}) ,

defined on the locus of pairs (x, x′) ∈ X ×X −∆ such that the line ℓ{x,x′} is not contained
in X, where t{x,x′} ∈ P1 is such that ℓ{x,x′} ⊂ Qt{x,x′}

. Noting that a line ℓ ⊂ Qt which is not
contained in X intersects X in 0-dimensional scheme of degree 2 we see that f is dominant,
generically of degree 2, and factors through the symmetric square of X. Thus, the induced
map Sym2X ‧‧➡ G is birational.

If G(k) ̸= ∅, then the Lang-Nishimura Theorem (see, e.g., [Poo17, Theorem 3.6.11]) (which
applies since G is smooth) implies that Sym2(X)(k) ̸= ∅ and, consequently, that there is a
quadratic point on X. In particular, there is a quadratic extension K/k with X(K) ̸=
∅. Conversely, if X(K) ̸= ∅ for some quadratic extension K/k, then X(K) is infinite by
[SS91, Theorem (0.1)]. The line through any Galois stable pair of distinct points gives a
k-rational point on G.

(2): Let t ∈ P1. By [Rei72, Thms. 1.2 and 1.8], the fiber Gt is smooth and geometrically
irreducible exactly when Qt has rank 5. Thus, for all t ∈ P1 − S, the class [Gk(P1)] has
trivial residue at t. By Proposition 4.2 and assumption (†), if t ∈ S, then Qt has rank
4. If Qt is rank 4 and has square discriminant, then by [Rei72, Thm. 1.8] the fiber Gt is
reducible and split over k(t). If Qt is rank 4 and has nonsquare discriminant, then the same
result of Reid says that Gt is irreducible and non-split over k(t), but becomes split over
the quadratic discriminant extension. Thus, the residue of [Gk(P1)] at t is the discriminant
of Qt [Fro97, Prop. 2.3]. By definition of εS, this gives the first statement. The second
statement now follows from the Faddeev exact sequence for Brk(P1) (see [GS06, Thm 6.4.5]
or (5.4)).

(3): The first statement is a theorem of Flynn [Fly09] which was expanded upon by
Skorobogatov [Sko10]. The second statement follows from the first together with the Faddeev
exact sequence for Br(k(P1)) (see [GS06, Thm 6.4.5] or (5.4)). □

The proceeding proposition together with Theorem 2.1 yields the following.

Corollary 4.6. Assume k is a local field of characteristic not equal to 2. For any pencil of
quadric threefolds Q → P1 satisfying (†), GQ(k) ̸= ∅. □
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4.1. Notation. For a pencil of quadrics that satisfies (†) we will move freely between the
objects Q, X = XQ,G = GQ, and (S, εS) = (SQ, εSQ). We will assume that S ⊂ A1 = P1−∞.
This can be arranged by an automorphism of P1, provided k has at least 5 elements. We
will write k[T ] for the coordinate ring of A1 and let f(T ) be the unique monic polynomial
whose vanishing defines S.

Let QA1 ∈ k(T )[x0, . . . , x4] be a quadratic form whose coefficients are linear polynomials
in k[T ] and whose vanishing defines QA1 on A1 ⊂ P1. While QA1 is only defined up to
multiplication by an element of k×, none of our results depend on this choice. For a (possibly
reducible) subscheme T ⊂ A1 = Spec(k[T ]), the canonical map k[T ]→ k(T) can be applied
to the coefficients of QA1 to obtain a quadratic form QT over the k-algebra k(T) whose
vanishing defines QT = Q×P1 T. In particular, for a ∈ k = A1(k), the form Qa is obtained
by evaluating the coefficients of QA1 at a. We define Q∞ = Q1−Q0, so that QA1 = Q0+TQ∞.
We will write θ for the image of T in k(S) = k[T ]/⟨f(T )⟩. For a subscheme T ⊂ S we

use εT ∈ k(T)×

k(T)×2 ⊂ k(S)×

k(S)×2 to denote the discriminant corresponding to QT. We will use N to

denote any map induced in an obvious way by the norm map Normk(S)/k : k(S) → k. Note
that Normk(T)/k(εT) = Normk(S)/k(εT) = N(εT).

4.2. Alternate proof of Theorem 2.1 for odd residue characteristic. We now give
an alternate proof of Theorem 2.1 (valid for local fields of odd residue characteristic) which
avoids the classificiation of reducible special fibers.

Proposition 4.7. Let X ⊂ P4
k be a smooth complete intersection of two quadrics over a

local field k of characteristic not equal to 2. Then X has index dividing 2. If the residue
characteristic of k is odd, then there is a quadratic extension K/k such that X has a K-point.

Proof. First let us prove that X has a quadratic point assuming that s ∈ S(k) ̸= ∅. After a
change of coordinates on the P1 parameterizing the pencil and a change of coordinates on P4,
we may assume that s = 0, that Q0 = Q0(x0, x1, x2, x3), and that Q∞ = Q̃∞(x0, x1, x2, x3)+
x2
4. If Q0 contains a smooth k-point, then the line joining the vertex of Q0 and this point

will intersect X in a degree 2 subscheme, which shows that X has a quadratic point. Thus,
we may restrict to the case that Q0 has no smooth k-points.
Projection away from the vertex of Q0 ⊂ P4

k gives a double cover X → Y := Q0 ∩ V (x4)
onto the quadric surface Y . Since Q0 has no smooth k-points, Y (k) = ∅. We will prove that,
in this case, the branch curve C of the double cover X → Y has a quadratic point. Note that
by definition of the double cover, C = X ∩ V (x4) and so is a degree 4 genus 1 curve that is
the base locus of the pencil of quadric surfaces Q′ → P1 with Q′

t = Qt∩V (x4). Moreover, C
is a 2-covering of the degree 2 genus one curve C ′ given by the equation y2 = det(M) where
M is the 4 × 4 symmetric matrix with entries in H0(OP1(1)) corresponding to a defining
equation for Q′ (see [AKM+01]).

Consider the fiber of C ′ → P1 above 0. By definition of Q′, this is given by the equation
y2 = disc(Q0 ∩ V (x4)). By assumption, Q0 ∩ V (x4) has no k-points. Since there is (up
to isomorphism) a unique rank 4 quadric over the local field k that is anisotropic and it
has square discriminant, we conclude that disc(Q0 ∩ V (x4)) is a square and so C ′(k) ̸= ∅.
Consequently, C ′ ≃ Jac(C) and so the order of C in H1(k, Jac(C)) divides 2. By a result
of Lichtenbaum [Lic68, Theorems 3 & 4] it follows that C has a point defined over some
quadratic extension of the local field k. The aforementioned result of Lichtenbaum is stated
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for k a p-adic field, but the proof works for any local field due to Milne’s extension of Tate’s
local duality results to positive characteristic [Mil06, Cor. I.3.4, Rmk. I.3.5, Thm. III.7.8].

Now we can deduce the statement in the proposition. The scheme S ⊂ P1
k parameterizing

singular quadrics in the pencil has degree 5, so there is an odd degree extension k′/k such
that S(k′) ̸= ∅. By what we have shown above, X has a K-rational point for some quadratic
extension K/k′. It follows that X has index at most 2. If the residue characteristic is odd,
then the inclusion k ⊂ k′ induces an isomorphism k×/k×2 ≃ k′×/k′×2, so K contains a
quadratic extension k2/k as an odd index subfield. By the theorems of Amer, Brumer and
Springer [Ame76,Bru78,Spr56], we have X(K) ̸= ∅ ⇒ X(k2) ̸= ∅, so X has a k2-point. □

Remark 4.8. The preceding proof can be adapted to give an easy proof that a locally solvable
del Pezzo surface of degree 4 over a global field over a field of characteristic different from 2
must have index dividing 2. Indeed, over some odd degree extension X may be written as a
double cover of a quadric surface, which is known to satisfy the Hasse principle. Hence X
obtains a rational point over some extension of degree 2m with m odd.

5. Arithmetic of the space of lines on the quadrics in the pencil

In this section we develop the main tools to prove Theorems 1.1 and 1.2 over global fields
of characteristic not equal to 2. We maintain the notation defined in Section 4.1. Specifically,
Q → P1 is a pencil of quadrics in P4

k over a field k of characteristic not equal to 2 which
satisfies (†), and we let X = XQ, G = GQ and (εS, S) = (εSQ , SQ).
In Section 5.1, we compute Br(G)/Br0(G) and construct explicit representatives in Br(G),

denoted by βT, which are determined by subsets T ⊂ S such that N(εT) ∈ k×2. In Section 5.2,
we study the rank 4 quadrics QT corresponding to subsets T ⊂ S such that N(εT) ∈ k×2. We
use Clifford algebras associated to these rank 4 quadrics to define constant Brauer classes
CT ∈ Br(k) and we show how these are related to the kernel of the canonical map Br(k) →
Br(X). The two constructions come together in Sections 5.3 where we show how the CT
arise when evaluating βT at certain local points of G (see Lemmas 5.11 and 5.14). Finally,
in Section 5.4, we deduce consequences for the evaluation of βT at adelic points of G.

5.1. The Brauer group of G. It follows from the Faddeev exact sequence (see [GS06, Thm
6.4.5]) that the homomorphism

γ′ : k(S)× ∋ ε ↦→ Cork(S)/k(ε, T − θ) ∈ Br(k(P1))

induces an isomorphism

γ : ker

(︃
N:

k(S)×

k(S)×2
→ k×

k×2

)︃
≃ ker

(︂
Br(P1 − S)[2]

∞∗
−→ Br k[2]

)︂
, (5.1)

where ∞∗ denotes evaluation of the Brauer class at ∞ ∈ P1− S. Recall that N(εS) ∈ k×2 by
Proposition 4.4(2).

Define β = π∗γ : ker
(︂
N: k(S)×

k(S)×2 → k×

k×2

)︂
→ Br(k(G)). For T ⊂ S such that N(εT) ∈ k×2,

we set βT := β(εT).

Proposition 5.1. The map β induces a homomorphism

ker

(︄
N:

⨁︂
s∈S

⟨εs⟩ → k×/k×2

)︄
β→ Br(G), (5.2)
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whose image surjects onto Br(G)/Br0(G). Furthermore, βS = [G∞] ∈ Br0(G), and for all
T ⊂ S with N(εT) ∈ k×2 and εT ̸= εS ∈ k(S)×/k(S)×2, we have

βT ∈ Br0(G) ⊂ Br(G) ⇐⇒ βT = 0 ∈ Br(G) ⇐⇒ εT ∈ k(T)×2.

Corollary 5.2.

(1) Every nontrivial element of Br(G)/Br0(G) is represented by βT for some degree 2
subscheme T ⊂ S with N(εT) ∈ k×2.

(2) Br(G)/Br0(G) ≃ (Z/2Z)n for some n ∈ {0, 1, 2}.
(3) If Br(G)/Br0(G) is not cyclic, then every degree 2 subscheme T ⊂ S with N(εT) ∈ k×2

must be reducible.
(4) Let s0 ∈ S(k) be such that there exists an s′ ∈ S(k) with β{s0,s′} ∈ Br(G) − Br0(G).

Then {β{s0,s} : s ∈ S(k), N(ε{s0,s}) ∈ k×2} generates Br(G)/Br0(G).
(5) There is a collection T of degree 2 subschemes of S and an element ε ∈ k×, such that

• N(εT) ∈ k×2 for all T ∈ T;
• {βT : T ∈ T} generates Br(G)/Br0(G);
• for all s ∈ ∪T∈TT, the image of ε in k(s)×/k(s)×2 is equal to εs; and
• for any extension L/k and any s ∈ ∪T∈TT, ε ∈ k(sL)

×2 if and only if ε ∈ k(s′L)
×2

for all s′ ∈ ∪T∈TT.
(6) Br(G)/Br0(G) ≃ H1(k,Pic(X)).
(7) If k is a local or global field, then the injective map Br(X)/Br0(X)→ Br(G)/Br0(G)

given by Proposition 3.6(1) is an isomorphism.

Proof of Corollary 5.2. The proposition implies that βS ∈ Br0(G) and, for any T ⊂ S such
that N(εT) ∈ k(T)×2, that βT = βS−T ∈ Br(G)/Br0(G). Since S has degree 5, it follows that
every nontrivial element in Br(G)/Br0(G) is represented by some βT with deg(T) ≤ 2. But
if T has degree 1, then εT = N(εT) ∈ k×2 and βT = 0. Thus we have (1). In particular,
if Br(G) ̸= Br0 G, then {deg s : s ∈ S} must be {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1},
or {1, 1, 1, 1, 1}. Now a straightforward case by case analysis of the possible relations on
⊕s∈S⟨εs⟩∼= ⊕s∈SZ/2Z allows one to deduce statements (2)–(4). Given this characterization
of Br(G)/Br0(G) in terms of degree 2 subschemes T ⊂ S, (5) can be established using [VAV14,
Lemma 3.1] for the existence of ε ∈ k×. For (6), we observe that [VAV14, Proof of Theorem
3.4] gives a description of H1(k,PicX) in terms of degree two subschemes T ⊂ S and the
square classes εT; comparing this description with (5) gives the desired isomorphism. Finally,
when k is a local or global field, the injective map Br1(X)/Br0(X)→ H1(k,Pic(X)) coming
from the Hochschild-Serre spectral sequence [CTS21, Prop. 4.3.2] is an isomorphism, so (6)
implies that the injective map Br(X)/Br0(X) → Br(G)/Br0(G) from Proposition 3.6(1) is
also surjective. □

Remark 5.3. If T ⊂ S is a degree 2 subscheme with N(εT) ∈ k×2 such that the quadric QT has
a smooth k(T)-point, then [VAV14, Cor. 3.5] yields a rational map ρ : X ‧‧➡ P1 such that
ρ∗γ(εT) ∈ Br(X). One can show that the image of ρ∗γ(εT) under the map Br(X)/Br0(X)→
Br(G)/Br0(G) given by Proposition 3.6(1) is equal to the class of βT.

Proof of Proposition 5.1. Let η ∈ P1 be the generic point. Since G is smooth, Br(G) injects
into Br(Gη). Further, by the Hochschild-Serre spectral sequence, we have an exact sequence

0→ Pic(Gη)→
(︁
Pic(Gη)

)︁Gk(η) → Br(k(η))→ ker
(︁
Br(Gη)→ Br(Gη)

)︁
→ H1

(︁
Gk(η),Pic(Gη)

)︁
.
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Since Gη is a Severi-Brauer variety, Pic(Gη) ≃ Z with trivial Galois action, and Br(Gη) = 0.
Hence, the exact sequence simplifies to

Z→ Br(k(η))
π∗
→ Br(Gη)→ 0, (5.3)

where the first map sends 1 to [Gη] ∈ Br(k(η)). Thus, to determine Br(G), it suffices to
determine Br(G) ∩ π∗ Br(k(η)).

The projection map π : G → P1 induces the following commutative diagram of exact
sequences where the top row is the Faddeev exact sequence [GS06, Thm 6.4.5].

Br(k) Br(k(η))
⨁︂

t∈(P1)(1)

H1(k(t),Q/Z) H1(k,Q/Z)

Br(G) Br(Gη)
⨁︂
t∈P1

⨁︂
x∈G(1)

π(x)=t

H1(k(x),Q/Z),

π∗

(∂t)

π∗
Br

∑︁
t Cork(t)/k

π∗
H1

(∂x)

(5.4)

If t ∈ P1 − S, then the fiber Gt is geometrically irreducible by Proposition 4.2 and hence
π∗
H1 : H1(k(t),Q/Z)→ H1(k(Gt),Q/Z) is an injection. For t ∈ S, the fiber Gt consists of two

split components that are conjugate over k(t)(
√
εt).

Therefore, for t ∈ S, the kernel of π∗ : H1(k(t),Q/Z) → H1(k(Gt),Q/Z) is the 2-torsion
cyclic subgroup corresponding to the extension k∩k(Gt) = k(t)(

√
εt). Moreover, the residues

of the kernel of π∗
Br are (∂t) (ker(π

∗
Br)) = (εt)t∈S = εS ∈ k(S)/k(S)×2. Thus, the commutativ-

ity of the above diagram shows that

kerπ∗
H1

⋂︂
ker
∑︂
t

Cork(t)/k ≃ ker

(︄
N:

⨁︂
t∈S

⟨εt⟩ → k×/k×2

)︄
.

In particular, the image under β of ker
(︁
N:

⨁︁
t∈S⟨εt⟩ → k×/k×2

)︁
is contained inside of Br(G).

Further, since π∗
Br is surjective, the image of ker

(︁
N:

⨁︁
t∈S⟨εt⟩ → k×/k×2

)︁
under β generates

Br(G)/Br0(G).
It remains to understand which subsets T ⊂ S give rise to βT ∈ Br0(G). If βT ∈ Br0(G),

then by definition of Br0(G) there exists A ∈ Br(k) such that γ(εT)−A ∈ kerπ∗
Br. By (5.3),

the kernel of π∗
Br is generated by [Gη]. Thus, γ(εT) = [Gη] + A or γ(εT) = A, where both

equalities are in Br(P1 − S). The final statement of the proposition follows from these
equalities after computing residues and evaluating at ∞. □

Recall that BQt denotes the bilinear form corresponding to Qt.

Lemma 5.4. Let f : Sym2(X) ‧‧➡ G be the birational map given in Proposition 4.4 and
let {x, x′} ∈ Sym2(X) − Indet(f). Suppose that f({x, x′}) = (t, ℓ) =: y ∈ G(k). Then
π(y) = t = [BQ0(x, x

′) : −BQ∞(x, x′)] ∈ P1(k). If, moreover, T ⊂ S is such that N(εT) ∈ k×2

and π(y) ̸∈ T ∪ {∞}, then

βT(y) = Cork(T)/k

(︃
εT,−

BQT
(x, x′)

BQ∞(x, x′)

)︃
.
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Proof. Observe that for any point ax+ bx′ on the line ℓ{x,x′} through x and x′ we have

Qt(ax+ bx′) = BQt(ax+ bx′, ax+ bx′) = a2Qt(x)+ b2Qt(x
′)+2abBQt(x, x

′) = 2abBQt(x, x
′) .

Therefore, the line ℓ{x,x′} is contained in the quadric Qt precisely when BQt(x, x
′) = 0. If

BQ0(x, x
′) = BQ∞(x, x′) = 0, then ℓ{x,x′} ⊂ X in which case f is not defined at {x, x′}.

Otherwise, the relation BQt(x, x
′) := BQ0(x, x

′) + tBQ∞(x, x′) = 0 shows that t = π(y) ∈ P1

must be equal to [BQ0(x, x
′) : −BQ∞(x, x′)].

For the second statement recall that βT = π∗γ(εT) = π∗Cork(S)/k(εT, T − θ) , where T is
the coordinate on Spec(k[T ]) = A1 ⊂ P1 and θ is the image of T in k(S). We have

π(y)− θ = −BQ0(x, x
′) + θBQ∞(x, x′)

BQ∞(x, x′)
= − BQS

(x, x′)

BQ∞(x, x′)
∈ k(S) .

As γ(εT) is unramified away from T we may evaluate at π(y) to obtain

βT(y) = γ(εT)(π(y)) = Cork(S)/k

(︃
εT,−

BQS
(x, x′)

BQ∞(x, x′)

)︃
.

The projections of εT ∈
⨁︁

s∈S k(s)
×/k(s)×2 onto the factors corresponding to s ∈ S− T are

trivial. So

βT(y) = Cork(S)/k

(︃
εT,−

BQS
(x, x′)

BQ∞(x, x′)

)︃
= Cork(T)/k

(︃
εT,−

BQT
(x, x′)

BQ∞(x, x′)

)︃
. □

5.2. Clifford algebras and Brauer classes. For a quadratic form F over a field of charac-
teristic not equal to 2 we use Clif(F ) to denote the Clifford algebra of the restriction of F to
a maximal regular subspace, and Clif0(F ) to denote the corresponding even subalgebra. By
Witt’s Theorem [Lam05, Chap. I, Theorems 4.2 and 4.3], these do not depend on the choice
of maximal regular subspace. If F has even rank, then Clif(F ) is a central simple algebra,
which will be identified with its class in the Brauer group. This extends to quadratic forms
over finite étale algebras in the natural way, i.e., factor by factor.

In particular, we will consider Clif(QT) ∈ Br(k(T)) where QT is a quadratic form defining
the quadricQT corresponding to a subscheme T ⊂ S. This depends on the choice of quadratic
form as indicated by the following lemma.

Lemma 5.5. Let s ∈ S and c ∈ k(s)×. Then

Clif(cQs) = Clif(Qs) + (εs, c) ∈ Br(k(s)) .

Proof. This follows from a short calculation using [Lam05, Chap. V, Corollary 2.7]. □

For a rank 4 quadric Qs, s ∈ S with εs ∈ k(s)×2, any quadratic form Qs defining Qs is a
constant multiple of the reduced norm form of a quaternion algebra whose class in Br(k(s)) is
equal to Clif(Qs) [EKM08, Prop. 12.4]. The following lemma gives a description of Clif(Qs)
in cases when εs /∈ k(s)×2.

Lemma 5.6. Assume that there exists some s ∈ S with εs /∈ k(s)×2 such that Qs has a
smooth k(s)-point. Let Qs be a quadratic form whose vanishing definines Qs. Then for
any Gal(k(s))-stable pair {x, x′} ⊂ Qs(k) and any k(s)-linear form ℓ defining a hyperplane
tangent to Qs at a smooth point with ℓ(x)ℓ(x′) ̸= 0 we have the following equality in Br(k(s)):

Clif(Qs) =

(︃
εs,−

BQs(x, x
′)

ℓ(x)ℓ(x′)

)︃
,
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where BQs denotes the bilinear form corresponding to Qs.

Proof. By [VAV14, Lemma 2.1], for any ℓ = ℓ0 tangent to Qs at a smooth point, the quadric
Qs is defined by the vanishing of Qs = c(ℓ0ℓ1− ℓ22 + εsℓ

2
3), for some linear forms ℓ1, ℓ2, ℓ3 and

some c ∈ k(s)×. In particular, we have ℓ0(x)ℓ1(x) = ℓ2(x)
2 − εsℓ3(x)

2 and similarly for x′.
Thus, we may compute:

−BQs(x, x
′)

ℓ(x)ℓ(x′)
= −c · ℓ0(x)ℓ1(x

′) + ℓ0(x
′)ℓ1(x)− 2ℓ2(x)ℓ2(x

′) + 2εsℓ3(x)ℓ3(x
′)

ℓ0(x)ℓ0(x′)

= −c
(︃
ℓ2(x

′)2 − εsℓ3(x
′)2

ℓ0(x′)2
+

ℓ2(x)
2 − εsℓ3(x)

2

ℓ0(x)2
− 2

ℓ2(x)ℓ2(x
′)

ℓ0(x)ℓ0(x′)
+ 2εs

ℓ3(x)ℓ3(x
′)

ℓ0(x)ℓ0(x′)

)︃
= −c

[︄(︃
ℓ2(x)

ℓ0(x)
− ℓ2(x

′)

ℓ0(x′)

)︃2

− εs

(︃
ℓ3(x)

ℓ0(x)
− ℓ3(x

′)

ℓ0(x′)

)︃2
]︄
,

which shows that
(︂
εs,−BQs (x,x

′)

ℓ(x)ℓ(x′)

)︂
= (εs,−c). Thus, it remains to relate the quaternion

algebra (εs,−c) to the Clifford algebra of Qs. By [Lam05, Chap. V, Corollary 2.7],

Clif(Qs) ≃ Clif(Qs|⟨ℓ0,ℓ1⟩)⊗ Clif(c2 ·Qs|⟨ℓ2,ℓ3⟩) ≃ M2(k)⊗ (−c, cεs).

To complete the proof, we observe that (−c, cεs) = (−c, εs) = (εs,−c) ∈ Br(k). □

Definition 5.7. Given T ⊂ S such that N(εT) ∈ k×2, define

CT := Cork(T)/k(Clif(QT)) ∈ Br(k).

Remark 5.8. Even though Clif(QT) may depend on the choice of quadratic form defining the
pencil, the condition N(εT) ∈ k×2 ensures that the class CT does not. Indeed, if one computes
CT using instead a form cQT which differs from QT by c ∈ k×, Lemma 5.5 shows that the
result will differ by Cork(T)/k(εT, c) = (N(εT), c), which is trivial whenever N(εT) is a square.

Lemma 5.9. The kernel of the canonical map Br(k)→ Br(X) is generated by

{Cs : s ∈ S such that εs ∈ k(s)×2}.

Proof. By the exact sequence of low degree terms coming from the Hochschild-Serre spectral
sequence [CTS21, Prop. 4.3.2], the kernel of Br(k) → Br(X) is the image of the coker-
nel Pic(X) → Pic(X)Gk . By [VAV14, Prop. 2.3] (which relies on results from [KST89]),
Pic(X)Gk is freely generated by the hyperplane section and, for every s ∈ S such that
εs ∈ k(s)×2, the divisor class Normk(s)/k([Cs]) where Cs is obtained by intersecting X
with a plane contained in Qs. Since the hyperplane section is k-rational, the cokernel of
Pic(X)→ Pic(X)Gk is generated by{︁

Normk(s)/k([Cs]) : s ∈ S such that εs ∈ k(s)×2 and Qs contains no k-rational planes
}︁
.

By definition, the image of [Cs] in Br(k(s)) is the Severi-Brauer variety whose points param-
etrize representatives of the class [Cs]. Since εs is a square, by [CTS93, Thm. 2.5], Qs is a
cone over the surface Zs × Zs, where Zs is a smooth conic obtained by intersecting Qs with
a general 2-plane. Since planes in a fixed ruling on Qs correspond to fibers in a projection
Zs ×Zs → Zs, we deduce that [Cs] ↦→ Zs ∈ Br(k(s)). By [EKM08, Prop. 12.4] we also have
that Clif(Qs) = Zs ∈ Br(k(s)). Hence, Normk(s)/k([Cs]) = Cork(s)/k(Clif(Qs)) = Cs. □
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5.3. Local evaluation maps.

Lemma 5.10. If there exists a degree 2 subscheme T ⊂ S such that for all t ∈ T, εt ∈ k(t)×2

and Qt has a smooth k(t)-point, then X(k) ̸= ∅.

Proof. Let T(k) = {t1, t2}. The assumptions in the lemma imply that there are k(ti)-rational
planes contained in Qti . The intersection of one with X gives a k(ti)-rational conic Ci on
X. If t1 /∈ T(k), then we replace C2 with the conjugate of C1. Thus, the pair {C1, C2} are
Galois invariant. As computed in [VAV14, Proof of Proposition 2.2] we have C1.C2 = 1.
(We note that our C2 may be either C2 or C

′
2 in the notation of [VAV14], but both have the

same intersection number with C1.) Therefore the intersection of these divisors produces a
k-point on X. □

Lemma 5.11. Assume that k is a local field of characteristic not equal to 2 and let T ⊂ S

be a degree 2 subscheme such that N(εT) ∈ k×2. Then, for any quadratic extension K/k
with εT ∈ k(TK)

×2 and K ̸= k(T), there exists y ∈ G(k) corresponding to a quadratic point
SpecK → X. Moreover, for such y,

βT(y) =

{︄
CT if εT /∈ k(T)×2,

0 if εT ∈ k(T)×2.

Proof. If X(k) ̸= ∅, then for any nontrivial extension K/k we have X(k) ⊊ X(K) because
k is local (see, e.g., [LL18, Proposition 8.3]). Then any pair of Gal(K/k)-conjugate points
on X will give the required y ∈ G(k). Now we prove the first statement in the case where
X(k) = ∅. Over any local field, there is a unique rank 4 quadric (up to isomorphism) that
fails to have a point, and it has square discriminant. Furthermore, this anisotropic quadric
has a point over any quadratic extension of k(t).
If εt ∈ k(t)×2 for some t ∈ T (equivalently, for all t ∈ T by Corollary 5.2(5)), then Qt may

not have a smooth k(t)-point, but it will have a smooth point over any quadratic extension
of k(t). If K/k is a quadratic extension different from k(T)/k, then k(TK) will be a quadratic
extension of k(T) and hence we may apply Lemma 5.10. Moreover, since εT ∈ k(T)×2, by
definition, βT = 0 ∈ Br(G).

Now we consider the case when εt /∈ k(t)×2, so Qt has nonsquare discriminant, and thus
is isotropic. Hence, Lemma 5.10 gives the existence of K-points on X for any K such that
εT ∈ k(TK)

×2.
Now suppose y corresponds to the line joining the K/k-conjugate points x, x′ ∈ X(K),

with K satisfying the conditions of the lemma. By continuity of the evaluation map, we may
reduce to the case where π(y) ̸=∞, π(y) ̸∈ T. By Lemma 5.4 we have

βT(y) = (εT,−BQT
(x, x′)/BQ∞(x, x′))

= Cork(T)/k (εT,−BQT
(x, x′)) +

(︁
Nk(T)/k(εT), BQ∞(x, x′)

)︁
= Cork(T)/k (εT,−BQT

(x, x′)) (since N(εT) ∈ k×2 )

= Cork(T)/k [(εT, ℓT(x)ℓT(x
′)) + Clif(QT)] (by Lemma 5.6)

= Cork(TK)/k(εT, ℓT(x)) + Cork(T)/k Clif(QT)

= Cork(T)/k Clif(QT) (since εT ∈ k(TK)
×2 )

= CT (by Definition 5.7) .□
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Lemma 5.12. Assume that k is a local field of characteristic not equal to 2. Suppose
s ∈ S(k) is such that Qs has a smooth k-point and let vs denote the vertex of Qs. For any
t ∈ A1(k)− {s} sufficiently close to s, we have

Gt(k) ̸= ∅ ⇐⇒ (εs, t− s) = Clif(Qs) + (εs,−Q∞(vs)) in Br(k) .

Remark 5.13. Note that by Lemma 5.5, the sum Clif(Qs) + (εs,−Q∞(vs)) appearing on the
right-hand side above does not depend on the choice of quadratic form defining the pencil.

Proof. Since t ∈ A1(k)− {s} is sufficiently close to s and S is closed, we have t /∈ S and Qt

has rank 5. So by [EKM08, Ex. 85.4] the Severi-Brauer variety Gt and the even Clifford
algebra Clif0(Qt) (which is a central simple k-algebra) determine the same class in Br(k). In
particular, Gt(k) ̸= ∅ if and only if Clif0(Qt) = 0 in Br(k).

Since X is smooth, Qt(vs) ̸= 0. So the quadratic forms Qt and Qt|⟨vs⟩⊥⊕Qt|⟨vs⟩ are
equivalent by [Lam05, Chap. I, Cor 2.5]. Therefore,

Clif0(Qt) = Clif(−Qt(vs) ·Qt|⟨vs⟩⊥) (by [Lam05, Chap. V, Cor. 2.9])

= Clif(Qt|⟨vs⟩⊥) + (disc(Qt|⟨vs⟩⊥),−Qt(vs)) (by Lemma 5.5).

For t sufficiently close to s, the quadratic forms Qt|⟨vs⟩⊥ and Qs|⟨vs⟩⊥ will be equivalent. For
such t, Clif(Qt|⟨vs⟩⊥) = Clif(Qs) ∈ Br(k) and disc(Qt|⟨vs⟩⊥) = disc(Qs) ∈ k×/k×2. Hence

Clif0(Qt) = Clif(Qs) + (εs,−Qt(vs)) .

To complete the proof, we note that Qt(vs)= (Qs + (t− s)Q∞)(vs) = (t− s)Q∞(vs). □

Lemma 5.14. Assume that k is a local field of characteristic not equal to 2 and T ⊂ S is a
degree 2 subscheme with N(εT) ∈ k×2 and εT /∈ k(T)×2. Then there exists y ∈ GT(k(T)) such
that π(y) = T. Moreover, for any such y,

Cork(T)/k(βT(y)) = CT + (ε,−∆T N(Q∞(vT))) ∈ Br(k) ,

where ε ∈ k× is an element whose image in k(T)×/k(T)×2 represents εT, ∆T is the discrim-
inant of k(T)/k (which we take to be 1 if T is reducible), and vT is the vertex of QT.

Proof. By [VAV14, Lemma 3.1] there exists ε ∈ k× such that ε · εt ∈ k(t)×2 for all t ∈ T. Fix
a closed point s ∈ T, and let s′ be the unique k(s) point in Tk(s) − {s}.

Since εs ̸∈ k(s)×2, Qs is a cone over an isotropic quadric and as such contains smooth k(s)-
points and k(s)-rational lines (passing through the vertex). Hence Gs(k(s)) is nonempty. By
the implicit function theorem, we can find t ∈ (P1 − {s})(k(s)) arbitrarily close to s such
that Gt(k(s)) ̸= ∅. In addition, by Lemma 5.12 and the fact that the evaluation map
β : G(k(s))→ Br(k(s)) is locally constant and constant on the fibers of π : G → P1 (because
βT is the pullback of a element of Br(k(P1))), we may choose such a t sufficiently close to s
so that

(1) (ε, t− s) = Clif(Qs) + (ε,−Q∞(vs)) ∈ Br(k(s)),
(2) βT(Gs(k(s))) = βT(Gt(k(s))) ∈ Br(k(s)), and
(3) t− s′ and s− s′ represent the same class in k(s)×2.

Then for y1 ∈ Gs(k(s)) and y′1 ∈ Gt(k(s)), we have

βT(y1) = βT(y
′
1) = (ε, (t− s)(t− s′)) = Clif(Qs) + (ε,−Q∞(vs)(s− s′))∈ Br(k(s)).
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Suppose y : Spec(k(T)) → G is such that π(y) = T. Then, because ε ∈ k× we have
Cork(T)/k(ε, s− s′) = (ε,Normk(T)/k(s− s′)) = (ε, (s− s′)(s′ − s)). It follows that

Cork(T)/k(βT(y)) = Cork(T)/k [Clif(QT) + (ε,−Q∞(vT)) + (ε, s− s′)]

= Cork(T)/k (Clif(QT)) + (ε,N(Q∞(vT))) + (ε, (s− s′)(s′ − s))

= CT + (ε,N(Q∞(vT))) + (ε,−∆T) . □

5.4. Evaluation of Brauer classes on G(Ak).

Definition 5.15. Let k be a global field of characteristic not equal to 2. Given T ⊂ S define

RT := {v ∈ Ωk : εTv ∈ k(Sv)
×2 and CTv ̸= 0}.

Theorem 5.16. Assume that k is a global field of characteristic different from 2.

(1) There exists (yv) ∈ G(Ak) such that for all degree 2 subschemes T ⊂ S with N(εT) ∈
k×2, we have

∑︁
v∈Ωk

invv(βT(yv)) =
#RT

2
∈ Q/Z.

(2) For all t ∈ S(k) there exists (yv) ∈ G(Ak) such that for all degree 2 subschemes T ⊂ S

with N(εT) ∈ k×2 and t ∈ T, we have
∑︁

v∈Ωk
invv(βT(yv)) =

#Rt

2
∈ Q/Z.

Proof. (1) It suffices to prove the result for {βT : T ∈ T}, where T is a collection of
degree 2 subschemes of S as in Corollary 5.2(5), with corresponding ε ∈ k× simultaneously
representing the discriminants of all T ∈ T.
We define an adelic point (yv) ∈ G(Ak) as follows. For v ∈ Ωk such that ε ∈ k(Tv)

×2 for
some T ∈ T (equivalently, for all T ∈ T by Corollary 5.2(5)), let yv ∈ G(kv) be any point
(which exists by Corollary 4.6). Note that if ε ∈ k(Tv)

×2, then βT⊗kv = 0 by Proposition 5.1.
For each v ∈ Ωk with ε /∈ k(Tv)

×2 for some (equivalently all) T ∈ T, let yv ∈ G(kv) be a point
corresponding to a kv(

√
ε)-point on X, as provided by Lemma 5.11. Note that Lemma 5.11

further implies that for such yv, βT(yv) = CTv for all T ∈ T. Thus, for any T ∈ T we have∑︂
v∈Ωk

invv(βT(yv)) =
∑︂

ε/∈k(Tv)×2

invv (CTv) =
∑︂

ε∈k(Tv)×2

invv (CTv) =
#RT

2
∈ Q/Z ,

where the penultimate equality follows from quadratic reciprocity.
(2) Let t ∈ S(k) and set ε := εt. If t is not contained in any degree 2 subschemes T ⊂ S

with N(εT) ∈ k×2, then we need only show that G(Ak) ̸= ∅, which follows from Corollary 4.6.
Thus, we may assume there is some degree 2 subscheme T ⊂ S containing t such that
N(εT) ∈ k×2. For any such T we have εT = (ε, ε) ∈ k(T)×/k(T)×2 ≃ k×/k×2 × k×/k×2.
We define an adelic point (yv) ∈ G(Ak) as follows. For v ∈ Ωk such that ε ∈ k×2

v , take yv to
be any point of G(kv) (which exists by Corollary 4.6). For v ∈ Ωk such that ε /∈ k×2

v we take
yv ∈ G(kv) to be any point such that π(yv) ∈ P1(kv) is close enough t so that Lemma 5.12
applies (note that Qt is a cone over an isotropic quadric surface so the hypothesis of the
Lemma 5.12 is satisfied) and so that, for all s ∈ S(k)− {t} with εεs ∈ k×2, (π(yv)− s) and
(t− s) have the same class in k×

v /k
×2
v .

Suppose T = {s, t} ⊂ S(k) is such that N(εT) ∈ k×2. For v ∈ Ωk such that ε ∈ k×2
v , we

have invv(βT(yv)) = 0. For v ∈ Ωk such that ε /∈ k×2
v we have

invv(βT(yv)) = invv (ε, (π(yv)− t)(π(yv)− s))

= invv (ε, π(yv)− t)) + invv (ε, t− s)

= invv(Clif(Qt)) + invv(ε,−Q∞(vt)) + invv(ε, t− s) (By Lemma 5.12) .
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Since (ε,−Q∞(vt)(t− s)) is an element of Br(k), its local invariants sum to 0. Furthermore,
(ε,−Q∞(vt)(t− s)) has trivial invariant at all v ∈ Ωk where ε ∈ k×2

v . Thus,∑︂
v∈Ωk

invv(βT(yv)) =
∑︂
ε/∈k×2

v

invv(βT(yv)) =
∑︂
ε/∈k×2

v

invv(Clif(Qt)) =
∑︂
ε∈k×2

v

invv(Clif(Qt)).

where the last equality follows from the fact that the local invariants of Clif(Qt) ∈ Br(k)
sum to 0. For v ∈ Ωk such that εt ∈ k×2

v we have invv(Clif(Qt)) = invv(Ctv). Hence,∑︂
v∈Ωk

invv(βT(yv)) =
∑︂
ε∈k×2

v

invv(Ctv) =
#Rt

2
,∈ Q/Z . □

The following lemma relates the set RT to the condition given in (5) of Theorem 1.2.

Lemma 5.17. Let k be a global field of characteristic not equal to 2 and T ⊂ S a degree 2
subscheme such that N(εT) ∈ k×2. Then v ∈ RT if and only if there are an odd number of
components of QTv = ∪tv∈TvQtv which have no smooth k(tv)-point.

Proof. Let v ∈ Ωk. First suppose that εTv ̸∈ k(Sv)
×2. Then v ̸∈ RT by definition. Note also

that for all tv ∈ Tv, εtv ̸∈ k(tv)
×2 (a priori this must hold for some tv ∈ Tv; the stronger

conclusion holds because T has degree 2 and N(εT) ∈ k×2). Recall that there is a unique
anisotropic quadratic form of rank 4 over any local field and that it has square discriminant.
Hence, when εTv ̸∈ k(tv)

×2, all components Qtv have smooth k(tv)-points.
Now suppose that εTv ∈ k(Sv)

×2. As above εtv ∈ k(tv)
×2, for each tv ∈ Tv. Then

the rank 4 quadratic forms Qtv are equivalent to constant multiples of the norm forms
of the quaternion algebras Clif(Qtv) (see [EKM08, Prop. 12.4]). In particular, Qtv has
a smooth k(tv)-point if and only if Clif(Qtv) = 0 ∈ Br(k(tv)). The corestriction maps
Cork(tv)/kv : Br(k(tv)) → Br(kv) are isomorphisms, so CTv =

∑︁
tv∈Tv Cork(tv)/kv Clif(Qtv)

is nonzero if and only if there are an odd number of components of QTv with no smooth
k(tv)-points. By definition v ∈ RT if and only if CTv ̸= 0. □

Lemma 5.18. Assume that k is a global field of characteristic different from 2 and suppose
T ⊂ S is irreducible of degree 2 such that N(εT) ∈ k×2. For any t ∈ T(k(T)), the cardinalities
of the sets

RT ⊂ Ωk and Rt ⊂ Ωk(T)

have the same parity.

Proof. For a prime v ∈ Ωk, we have εT ∈ k(Tv)
×2 if and only if εt ∈ k(t)×2

w for all (equivalently
some) w ∈ Ωk(T) with w | v. For such v we have

invv(CTv) = invv(Cork(T)/k(Clif(QT))) =
∑︂
w|v

invw(Clif(Qt)) =
∑︂
w|v

invw(Ctw).

In particular, CTv ̸= 0 if and only if there are an odd number of primes w | v with Ctw ̸= 0. □

6. Proofs of the Main Theorems

6.1. Corollaries of Theorem 5.16.

Corollary 6.1. Assume that k is a global field of characteristic not equal to 2 and that either
of the following conditions hold:
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(1) Every nontrivial element of Br(G)/Br0(G) can be represented by βT for some degree
2 subscheme T ⊂ S such that N(εT) ∈ k×2 and #RT even; or

(2) Every nontrivial element of Br(G)/Br0(G) can be represented by βT for some degree
2 subscheme T= {t1, t2} ⊂ S(k) such that N(εT) ∈ k×2.

Then G(Ak)
Br ̸= ∅.

Proof. If condition (1) holds, then the corollary follows from Theorem 5.16(1). Now assume
condition (2) holds and (1) fails. Then there exists a nontrivial element of Br(G) of the form
β{t,t′} with t, t′ ∈ S(k) such that R{t,t′} has odd cardinality. Note that R{t,t′} is the symmetric
difference of Rt and Rt′ . Thus, interchanging t and t′ if needed we may assume Rt has even
cardinality. Theorem 5.16(2) then gives an adelic point orthogonal to all βT such that T has
degree 2, contains t and N(εT) ∈ k×2. The result follows since Corollary 5.2(4) shows that
such βT generate Br(G)/Br0(G). □

Remark 6.2. If both conditions of Corollary 6.1 fail, then Br(G)/Br0(G) ≃ Z/2Z by Corol-
lary 5.2 and any βT with T of degree 2 which represents the nontrivial class must have T

irreducible. Thus, S must contain an irreducible degree 2 subscheme T such that

• N(εT) ∈ k×2,
• εT ̸∈ k(T)×2,
• if #(S− T)(k) = 3, then εt /∈ k×2 for all t ∈ S− T, and
• #RT is odd, which in particular implies that QT has no smooth k(T)-points.

Corollary 6.3. Assume that k is a global field of characteristic not equal to 2. Sup-
pose there is a degree 2 subscheme T ⊂ S with N(εT) ∈ k×2 such that RT has odd car-
dinality. Then G(Ak)

Br ̸= G(Ak) and there exists a quadratic extension K/k such that
XK(AK) ̸= XK(AK)

Br = ∅. In particular, G does not satisfy weak approximation and there
exists quadratic extension K/k such that XK has a Brauer-Manin obstruction to the Hasse
principle.

Proof. The first statement follows immediately from Theorem 5.16(1). For the second state-
ment we construct K by approximating fixed quadratic extensions of kv for the primes
v ∈ S := {v : X(kv) = ∅ or invv ◦βT : G(kv) → Q/Z is nonzero}. (In particular, by
Lemma 5.11 and the definition of CT, we will approximate K at every prime where CT
ramifies.) For such v, if ε /∈ k×2

v , then we fix Kv := kv(
√
ε). If v is such that ε ∈ k×2

v , then
we let Kv be any quadratic extension such that X(Kv) ̸= ∅. Then Lemma 5.11 implies that
for every v ∈ S, there exists a yv ∈ G(kv) corresponding to a quadratic point SpecKv → X
and for all such yv, βT(yv) = CTv if ε ̸∈ k×2

v and βT(yv) = 0 otherwise. Furthermore, for
v /∈ S (which necessarily means that CTv = 0), our assumptions imply that X(Kv) ̸= ∅ and
that βT(yv) = 0 for all yv ∈ G(kv). Thus, for all (yv) ∈ G(Ak) corresponding to an adelic
quadratic point Spec(AK)→ X we have∑︂

v

invv βT(yv) =
∑︂
ε/∈k×2

v

invv βT(yv) =
∑︂
ε/∈k×2

v

invv CTv =
∑︂
ε∈k×2

v

invv CTv =
#RT

2
∈ Q/Z.

By Proposition 3.6(2) and Corollary 5.2(7), this implies that XK(AK)
Br = ∅. □
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Example 6.4. Let G → P1 be the fibration of Severi-Brauer threefolds corresponding to the
pencil containing the quadrics given by the vanishing of the rank 4 forms

Q0 = x0x1 − x2
2 + εx2

3 , and

Q1 = ax2
0 + bx2

1 − abx2
2 − εx2

4

where a, b, ε ∈ k×. Then T = {0, 1} ⊂ S is a degree 2 subscheme with εT = (ε, ε). Hence,
Corollaries 5.2 and 6.1 imply that G(Ak)

Br ̸= ∅. Note that Q0 has smooth k-points, so
RT = R1 = {v ∈ Ωk : ε ∈ k×2

v and invv(a, b) ̸= 0}. Clearly one can choose a, b, ε so that RT

has odd cardinality (e.g., for k = Q, a = 3, b = 7, ε = 2 we have RT = {7}), in which case G
has a Brauer-Manin obstruction to weak approximation and the base locus X of the pencil
is a counterexample to the Hasse principle over some quadratic extension by Corollary 6.3.

If 4− ab ∈ k×2
v − k×2 for some prime v ∈ RT (which holds for the values indicated above),

then there exists no quadratic extension K/k such that XK is everywhere locally solvable
and Br(XK) = Br0(XK). To see this first observe that 4 − ab = εt is the discriminant of
the rank 4 quadric Qt =

1
1−ab

(Q1 − abQ0) (here t = 1/(1 − ab) ∈ S(k)). Now note that if
a prime v ∈ RT splits in a quadratic extension K, then XK is not locally solvable because
Q1 has no smooth Kw-points for the primes w | v. On the other hand, Proposition 5.1
shows that βT ⊗ K ∈ Br(XK) lies in the subgroup Br0(XK) if and only if ε ∈ K×2 (in
which case K = k(

√
ε) and all primes of RT split in K) or εS−T ∈ k(SK)

×2 (in which case
K = k(

√
4− ab) and so some prime of RT splits in K by assumption). We conclude that if

K/k is a quadratic extension such that βT ⊗K ∈ Br0(XK), then XK(AK) = ∅.

Corollary 6.5. Assume that k is a global field of characteristic not equal to 2. There is an
adelic 0-cycle of degree 1 on G orthogonal to Br(G).

Proof. We may assume that G(Ak)
Br = ∅ (for otherwise the Corollary holds immediately)

and hence, that the hypothesis of Corollary 6.1 fails. As explained in Remark 6.2, this
implies that there is an irreducible degree 2 subscheme T ⊂ S such that N(εT) ∈ k×2,
εT /∈ k(T)×2 and RT has odd cardinality. By Corollary 5.2(3), the existence of such an
irreducible T implies that Br(G)/Br0(G) has order 2. Moreover, if t ∈ T(k(T)) then, by
Lemma 5.18, the set Rt ⊂ Ωk(T) has odd cardinality. Thus, by Theorem 5.16 applied over
k(T) we obtain an effective adelic 0-cycle of degree 2 over k, denote it by (zv), such that∑︁

v∈Ωk
invv(βT(zv)) = 1/2. If (yv) ∈ G(Ak) is any adelic point (which exists by Corollary 4.6),

then (zv − yv) is an adelic 0-cycle of degree 1 and, since G(Ak)
Br = G(Ak)

βT = ∅, we have∑︁
v∈Ωk

invv(βT(zv − yv)) =
∑︁

v∈Ωk
invv(βT(zv))−

∑︁
v∈Ωk

invv(βT(yv)) = 1/2− 1/2 = 0. □

Remark 6.6. In the cases not already covered by Corollary 6.1, the proof above hinges on
constructing an adelic 0-cycle of degree 2 on G that is not orthogonal to the Brauer group.
Lemma 5.14 can be used to give an alternative construction of such a 0-cycle. See Section 7.1.

6.2. Proof of Theorem 1.1. Let X ′ ⊂ Pn
k be a smooth complete intersection of two

quadrics over k. By Bertini’s theorem the intersection of X ′ with a suitable linear sub-
space will yield a smooth complete intersection of two quadrics X ⊂ P4

k. If k is a local field,
then the result follows from Theorem 2.1. It remains to consider the case that k is a number
field. By Corollary 6.5, G has an adelic 0-cycle of degree 1 orthogonal to the Brauer group.
Since G is a pencil of Severi-Brauer varieties, [CTSD94, Theorem 5.1] shows that G has a
0-cycle of degree 1. By Proposition 4.4 this gives a 0-cycle of degree 2 on X.
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6.3. Proof of Theorem 1.2. Let X ′ ⊂ Pn
k be a smooth complete intersection of two

quadrics over k. As noted above, X ′ contains a smooth of two quadrics in P4
k. Thus,

Theorem 2.1 implies that X ′ contains a quadratic point when k is local. This proves Theo-
rem 1.2(1). Similarly, Theorem 1.2(3) follows from Proposition 2.11.

Now assume k is global of characteristic not equal to 2. Theorem 2.1 implies that there
is a quadratic extension K/k such that X ′

K is everywhere locally solvable. If k is a global
function field and n ≥ 5, then X ′

K satisfies the Hasse principle by [Tia17]. This proves
Theorem 1.2(2).

We claim that (under the hypotheses of the theorem) X ′ contains a smooth del Pezzo
surface X of degree 4 such that the corresponding Severi-Brauer pencil G has G(Ak)

Br ̸= ∅. If
n ≥ 5, then by [Wit07, Section 3.5] the intersection of X ′ with an appropriate linear subspace
is a smooth del Pezzo surface X of degree 4 with Br(X) = Br0(X). Corollary 5.2(7) implies
that the corresponding G has Br(G)/Br0(G) = 0, so G(Ak)

Br ̸= ∅ by Corollary 6.1. When
n = 4, X ′ = X is itself a smooth del Pezzo surface of degree 4. If all of the nontrivial elements
of Br(G)/Br0(G) can be represented by some βT with T reducible, then Corollary 6.1(1)
implies that G(Ak)

Br ̸= ∅. Otherwise, by Corollary 5.2, the order of Br(G)/Br0(G) divides
2 and any nontrivial element can be represented by βT with T irreducible and N(εT) ∈ k×2.
Any such element determines a quadratic extension L = k(T) and the assumption in case (5)
of the theorem is that the geometric components of QT (which are defined over L) each fail
to have smooth local points at an even number of primes of L. By Lemma 5.17 this implies
that RT has even cardinality and so G(Ak)

Br ̸= ∅ by Corollary 6.1(2).
If k is a number field for which Schinzel’s hypothesis holds, then it is a result of Serre that

the Brauer-Manin obstruction is the only obstruction to the Hasse principle for fibrations
of Severi-Brauer varieties (Serre’s result is unpublished, but a more general result [CTSD94,
Theorem 4.2] implies this result of Serre). In this case we obtain a k-point on G and,
consequently by Proposition 4.4, a quadratic point on X. To prove the result assuming k
satisfies (⋆) it is enough to find a quadratic extension K/k such that XK(AK)

Br ̸= ∅. The
existence of such a K follows from Proposition 3.6(4), since as noted in Corollary 5.2(7) the
map Br(X)/Br0(X)→ Br(G)/Br0(G) given by Proposition 3.6(1) is an isomorphism.

7. Complements and Remarks

7.1. Remarks on the cases not covered by Theorem 1.2. Suppose X is a del Pezzo
surface of degree 4 over a global field k of characteristic not equal to 2 with corresponding
Severi-Brauer pencil G such that the conditions of Corollary 6.1 are not satisfied. As noted
in Remark 6.2 this implies that Br(G)/Br0(G) is cyclic of order 2, with the nontrivial class
represented by βT for an irreducible subscheme T ⊂ S of degree 2 with N(εT) ∈ k×2 for which
#RT is odd. By Corollary 6.3, βT obstructs weak approximation and so G(Ak)

Br ̸= ∅ if and
only if there exists a prime v ∈ Ωk such that the evaluation map βT : G(kv)→ Br(kv) is not
constant.

Let C ′T := CT + (ε,−∆T N(Q∞(vT))) ∈ Br(k) be the class from Lemma 5.14 and define

R′
T := {v ∈ Ωk : εT /∈ k(Sv)

×2 and invv(C ′T) ̸= 0} .

Since RT has odd cardinality, so too must R′
T. In particular, R′

T is nonempty. If Tv is reducible
for a prime v ∈ R′

T, then Lemma 5.14 shows that the evaluation map βT : G(kv)→ Br(kv) is
nonconstant and so G(Ak)

Br = G(Ak)
βT ̸= ∅. If Tv is irreducible at v ∈ R′

T, then Lemma 5.14
32



shows that βT ⊗ k(Tv) : G(k(Tv)) → Br(k(Tv)) is nonconstant. Indeed the lemma gives a
k(Tv)-point where βT⊗k(Tv) takes the nonzero value C ′Tv , but βT⊗k(Tv) takes the value 0 at
any elements in the subset G(kv) ⊂ G(k(Tv)). Unfortunately, this is not enough to conclude
that G(Ak)

Br ̸= ∅ because βT : G(kv)→ Br(kv) can still be constant. Using the lemma below
one can check that this occurs at v = 5 for the pencil of quadrics defined by

Q0 = −55x2
1 + 2x1x2 + x2

3 + 5x2
4 and Q∞ = 33x2

0 − 5x2
1 − x2

2 + 10x3x4 .

We note, however, that in this example (and in all others with R′
T ̸= ∅ that we have con-

sidered) there is some prime w ∈ Ωk (in this case w = 2) for which the evaluation map
βT : G(kw)→ Br(kw) is not constant and, hence, G(Ak)

Br ̸= ∅.

Lemma 7.1. If v ∈ R′
T is such that Tv is irreducible, kv has odd residue characteristic and

X(k(Tv)) = ∅, then βT : G(kv)→ Br(kv) is constant.

Proof. Suppose X(k(Tv)) = ∅ and let y ∈ G(kv). Then y corresponds to a quadratic point
Spec(K) → X, with K/kv a quadratic field extension such that K ̸= k(Tv). Since kv
has odd residue characteristic, k(TL) is the compositum of all quadratic extensions of kv. In
particular, it must contain a square root of εT (since εT ∈ k×

v k(Tv)
×2). Therefore, Lemma 5.11

applies, and its conclusion shows that βT(y) does not depend on y. □

In contrast, the following lemma shows that for X (in place of G) nonconstancy of an
evaluation map over an extension of kv does imply nonconstancy over kv.

Lemma 7.2. Let X be a del Pezzo surface of degree 4 over a local field k of characteristic
not equal to 2 such that X(k) ̸= ∅. If α ∈ Br(X) is such that invk ◦α : X(k) → Q/Z is
constant, then for all finite extensions K/k, invK ◦αK : X(K)→ Q/Z is constant and equal
to [K : k](invk ◦α).

Remark 7.3. In the case that kv has odd residue characteristic, Tv is irreducible, εTv ∈ k×2
v ,

and invv(C ′T) ̸= 0, Lemma 7.2 can be used to prove the converse of Lemma 7.1. Namely, if
βT is constant on kv-points, then X(k(Tv)) must be empty.

Proof. Let P ∈ X(k). By [SS91, Lemma 4.4] (which follows from [CTC79, Theorem C]),
every 0-cycle of degree 0 on X is linearly equivalent to Q−P for some Q ∈ X(k). Therefore,
for any closed point R on X, there is some Q ∈ X(k) such that R ∼ Q + (deg(R) − 1)P .
Since evaluation of Brauer classes factors through rational equivalence and by assumption
α(P ) = α(Q), we see that invK ◦αK = [K : k](invk ◦α) for any extension K/k. □

Remarks 7.4.

(1) The result of [CTC79] used in the proof above shows that every 0-cycle of degree
1 on a conic bundle with 5 or fewer degenerate fibers is rationally equivalent to
a rational point. The example mentioned just before Lemma 7.1 shows that this
does not extend to more general Severi-Brauer bundles (at least over a p-adic fields).
Indeed, evaluation of Brauer classes factors through rational equivalence and in the
example there is a Brauer class on G which is nonconstant on 0-cycles of degree 1,
but is constant on rational points. An example of a Severi-Brauer bundle (in fact
a conic bundle) with a 0-cycle of degree 1 but no rational point was constructed by
Colliot-Thélène and Coray [CTC79, Section 5]; in this example the conic bundle has
6 singular fibers.
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(2) IfX/k is a del Pezzo surface of degree 4 over a number field which is a counterexample
to the Hasse principle explained by the Brauer-Manin obstruction, then as shown
in [CTP00, Section 3.5] there exists α ∈ Br(X) such that X(Ak)

α = ∅ (a priori
multiple elements of Br(X) might be required to give the obstruction). An immediate
consequence of Lemma 7.2 is that over any odd degree extensionK/k the same Brauer
class will give an obstruction, i.e., XK(AK)

αK = ∅. This answers a question posed
in [CTP00, Remark 3, p. 95]. In particular, this shows that the conjecture that all
failures of the Hasse principle for del Pezzo surfaces of degree 4 are explained by
the Brauer-Manin obstruction is compatible with the theorems of Amer, Brumer and
Springer [Ame76,Bru78,Spr56] which imply that an intersection of two quadrics with
index 1 has a rational point.

7.2. A degree 4 del Pezzo surface with obstructions only over odd degree exten-
sions.

Proposition 7.5. Let X/Q be the del Pezzo surface of degree 4 given by the vanishing of

Q0 = (x0 + x1)(x0 + 2x1)− x2
2 + 5x2

4 , and Q1 = 2(x0x1 − x2
2 + 5x2

3) .

For any finite extension K/Q we have XK(AK)
Br = ∅ if and only if [K : Q] is odd.

Proof. This surface was considered by Birch and Swinnerton-Dyer [BSD75] who showed that
X is a counterexample to the Hasse principle explained by the Brauer-Manin obstruction.
It follows from Lemma 7.2 that for any K with [K : Q] odd, XK is also a counterexample
to the Hasse principle explained by the Brauer-Manin obstruction.

Since X is locally solvable over Q, Br(X)/Br0(X) is generated by the image of Br(X)[2].

The singular quadrics in the pencil lie above S(Q) = {0,±1, ±4
√
2+5
7
} ⊂ P1 and the corre-

sponding discriminants satisfy ε0 = ε1 = 5, ε−1 = −1 and N(ε(±4
√
2+5)/7) = −1. For any

K/Q linearly disjoint from k1 = Q(
√
−1,
√
2,
√
5), the restriction map induces an isomor-

phism Br(X)/Br0(X) ≃ Br(XK)/Br0(XK) and so XK(AK)
Br ̸= ∅ by Lemma 3.1(2). On the

other hand, if K/Q is not linearly disjoint from k1, we can check directly that X(K) ̸= ∅.
Indeed, K must contain Q(

√
d) for some d ∈ {−1,±2,±5,±10}. Over these quadratic fields

one can exhibit points:

(1 : 1 : 1 : 0 :
√
−1) , (1 : −2 : 2

√
2 :
√
2 : 1) , (4 : 9 : 6 : 0 : 5

√
−2) , (0 : 0 :

√
5 : 1 : 1) ,

(5 : 0 : 0 : 0 :
√
−5) , (2

√
10 : −

√
10 : 0 : 2 : 0) , (0 :

√
−10 : 0 : 0 : 2) . □

7.3. A degree 4 del Pezzo surface with index 4.

Theorem 7.6. There exists a del Pezzo surface X of degree 4 over a field k of characteristic
0 such that X has index 4.

Proof. Let k0 be an algebraically closed field of characteristic 0. For i = 1, . . . , 2g, set
ki := ki−1((ti)) and set k := k2g. By a result of Lang and Tate [LT58, p. 678], if A/k0
is an abelian variety of dimension g and n is an integer, then there exists a torsor under
Ak = A ×k0 Spec(k) of period n and index n2g. In particular, if C/k0 is any genus 2 curve,
then there exists a torsor under the Jacobian J = Jac(Ck) of Ck of period 2 and index 16.
Since C is defined over the algebraically closed field k0, it has a rational Weierstrass point
over k. As observed by Flynn [Fly09], and worked out in detail by Skorobogatov [Sko10], if
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Jλ is a 2-covering πλ : Jλ → J (i.e., a twist of [2] : J → J corresponding to λ ∈ H1(k, J [2])),
then there are morphisms

Jλ ← J̃λ → Zλ → Xλ ,

where J̃λ → Jλ is the blow up of Jλ at π−1
λ (0J), Zλ is the desingularized Kummer variety

associated to Jλ and Zλ → Xλ is a double cover of a del Pezzo surface of degree 4. In
particular, there is a degree 4 morphism J̃λ → Xλ. So the index of Xλ is at least index(Jλ)/4,
which will equal 4 for suitable choice of λ by the aforementioned result of Lang and Tate. □

Theorem 7.7. Suppose k is a number field and Y is a torsor of period 2 under the Jacobian
of a genus 2 curve over k with a rational Weierstrass point. The index of Y divides 8.

Proof. As in the proof of the previous theorem, the index of Y divides 4 index(X) for some
del Pezzo surface X of degree 4. The result follows from Theorem 1.1. □

Remarks 7.8.

(1) The conclusion of Theorem 7.7 was known to hold by work of Clark [Cla, Theorems 2
and 3] when k is a p-adic field and when k is a number field and Y is locally solvable.

(2) Arguing as in the proof of the theorem we see that the Kummer variety Zλ has index
dividing 4 when k is a local or global field. This is lower than one would expect,
given that Zλ is an intersection of 3 quadrics in P5

k.
(3) The result of Lang-Tate quoted in the proof above shows that over general fields of

characteristic 0, there are examples where Zλ and Y have index 8 and 16, respectively.
(4) In response to a preliminary report on this work by the authors, John Ottem sug-

gested the following alternate proof of Theorem 7.6 which gives an example over the
C3 field k(P3

C). Let D1, D2 ⊂ P3 × P4 be two general (2, 2) divisors over C, and let
Y = D1∩D2. Then, by the Lefschetz hyperplane theorem (applied twice), restriction

gives an isomorphism H4(P3×P4,Z) ∼→ H4(D1,Z)
∼→ H4(Y,Z). Note that the generic

fiber of the first projection is a del Pezzo surface of degree 4 over k(P3). Hence any
threefold V ⊂ Y can be expressed as aH2

1 + bH1H2 + cH2
2 , where Hi denotes the

pullback of O(1) under the projection πi. Then the degree of V → P3 is given by

V.H3
1 = V.H3

1 .X = (aH2
1 + bH1H2 + cH2

2 ).H
3
1 .(2H1 + 2H2)

2,

which must be divisible by 4. Thus Yk(P3) has index 4. Note that to apply the
Lefschetz hyperplane theorem, we need dimDi > 5, so this argument does not extend
to k(P2

C).
This construction suggested by Ottem generalizes to arbitrary complete intersec-

tions. Namely, given a sequence of degrees (d1, . . . , dr) and an ambient dimension N ,
one can consider an intersection of general (d1, d1), (d2, d2), . . . , (dr, dr) hypersurfaces
in PM × PN . If M > N − r, then the same argument as above yields a (d1, . . . , dr)
smooth complete intersection Y ⊂ PN

k(PM ) with index d1d2 · · · dr.
(5) After viewing an early draft of this paper, Olivier Wittenberg shared a correspon-

dence of his from 2013 [Wit13] that provides yet another construction that proves
Theorem 7.6. Let k be any field of characteristic different 2 such that there exists a
quadric surface Q with no k-points that remains pointless after a quadratic extension
k′/k. Wittenberg’s construction gives an example over the field k((t)).

Let f be a general rank 2 quadric in P4 that splits over k′. Then for a general
quadric g, the intersection Q ∩ V (f + tg) is a smooth del Pezzo surface of degree 4
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that has index 4 over k((t)). Indeed, the smooth locus of the special fiber has index 4
by construction, so (for general enough g), the general fiber must also have index 4.
This construction of Wittenberg extends to give complete intersections of n quadrics
with index 2n (over fields of larger transcendence degree).

7.4. The index of a degree d del Pezzo surface. The following table gives sharp upper
bounds for the indices of degree d del Pezzo surfaces over local fields, number fields and
arbitrary fields of characteristic 0. The entries in the column d = 4 are a consequence of the
results in this paper, while for d ̸= 4, they can be deduced fairly easily from known results
as described below.

d 9 8 7 6 5 4 3 2 1

k arbitrary 3 4 1 6 1 4 [Thm. 7.6] 3 2 1
k a number field 3 2 1 6 1 2 [Thm. 1.1] 3 2 1

k a local field 3 2 1 2 or 3 1 2 [Thm. 1.1] 3 2 1

When d = 9, Y is a Severi-Brauer surface and so the index of Y divides 3 and examples
of index 3 exist whenever Br(k) contains an element of order 3.

When d = 8, Y = ResL/k(C) is the restriction of scalars of a conic C/L defined over a
degree 2 étale algebra L/k [Poo17, Prop. 9.4.12]. Since the conic has a point over some
quadratic extension L′/L, the index of Y divides 4 and over general fields there are examples
with index 4. Over local and global fields however, the index must divide 2. Indeed, in
this case C will have a point over a quadratic extension L′/L of the form L′ = k′ ⊗k L for
some quadratic extension k′/k. The universal property of restriction of scalars then gives
Y (k′) ̸= ∅, showing that the index divides 2.

When d = 7, Y (k) ̸= ∅ over any field k and so the index is always equal to 1. The same
applies to d = 1, 5 (see, e.g., [Poo17, Thm 9.4.8 and Section 9.4.11]).

For d = 6, Y is determined by a Gal(L/k)-stable triple of geometric points on a Severi-
Brauer surface S/L over a quadratic étale algebra L/k such that if S ̸≃ P2

L then the class of
S in the Brauer group does not lie in the image of Br(k) → Br(L) [Cor05]. If k is a local
field and L is a quadratic field extension, then the map Br(k) → Br(L) is an isomorphism,
so either S = P2

L (in which case Y has index dividing 2) or L = k×k in which case the index
of Y divides 3. One can construct examples of index 6 over number fields, by arranging to
have index 2 at one completion and index 3 at another.

For d = 3 and k local, index 1 implies the existence of a k-rational point [Cor76], and so a
cubic surface without points over some local field has index 3. This gives examples of index
3 over number fields as well.

For d = 2, index 2 examples can be obtained by blowing up a degree 4 del Pezzo surface
of index 2 at a quadratic point. By Theorems 1.1 and 1.2, any del Pezzo surface of degree 4
without points over a local field gives such an example. The surface considered in Section 7.2
gives an example over a number field.
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