QUADRATIC POINTS ON INTERSECTIONS OF TWO QUADRICS
BRENDAN CREUTZ AND BIANCA VIRAY

ABSTRACT. We prove that a smooth complete intersection of two quadrics of dimension at
least 2 over a number field has index dividing 2, i.e., that it possesses a rational 0-cycle of
degree 2.

1. INTRODUCTION

The index of a variety over a field & is the greatest common divisor of the degrees [k(x) : k]
ranging over the residue fields k(z) of the (zero-dimensional) closed points = of the variety.
Equivalently, the index is the smallest positive degree of a k-rational 0-cycle.

Let X C P} be a smooth complete intersection of two quadrics over a field k of character-
istic not equal to 2. Then the index of X necessarily divides 4, because intersecting with a
plane yields a O-cycle of degree 4. In general, this is the best possible bound. Indeed, there
are examples with index 4 over local and global fields when n = 3 [LT58, Theorem 7| and
over fields of characteristic 0 when n = 4, as we show in Theorem

Our main result is the following sharp bound on the index when n > 4 and k is a number
field or a local field.

Theorem 1.1. Let X be a smooth complete intersection of two quadrics in P} with n > 4
and assume that k is either a number field or a local field. Then the index of X divides 2.

This result allows us to complete the list of integers which occur as the index of a del
Pezzo surface over a local field or a number field (See Section [7.4). It also allows us to
deduce nontrivial index bounds for other interesting classes of varieties. In particular, if C'/k
is a genus 2 curve over a number field with a rational Weierstrass point, then it follows from
the result above that any torsor of period 2 under the Jacobian of C' has index dividing 8 (see
Theorem and the corresponding Kummer variety, which is an intersection of 3 quadrics
in P, has index dividing 4 (see Remark . Again, these results fail for arbitrary fields
(see Remark[7.8). Theorem below shows that Theorem also holds for global function
fields of odd characteristic when n > 5 and conditionally in a number of cases when n > 4.

Theorems of Amer, Brumer and Springer [Ame76,Bru78|[Spr56| show that, for X as above,
index 1 is equivalent to the existence of a k-rational point. Analogously one can ask if index
2 implies the existence of a closed point of degree 2. Colliot-Thélene has recently sketched
an argument that if X is a smooth complete intersection of two quadrics in P* over a field
of characteristic 0 and X has index 2, then X has a closed point of degree 14,6 or 2. Our
next result identifies conditions under which we can prove that a smooth intersection of two
quadrics in P" has a closed point of degree 2. In order to state it we introduce the following
notation: We say that a global field k satisfies (%) if Brauer-Manin is the only obstruction
to the Hasse principle for del Pezzo surfaces of degree 4 over all quadratic extensions of k.
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Theorem 1.2. Let n > 4 and let X C P} be a smooth complete intersection of two quadrics
over a field k. In any of the following cases there is a quadratic extension K/k such that
X(K) # 0:
(1) k is a local field and n > 4;
(2) k is a global function field and n > 5;
(3) k is a global function field of characteristic 2 and n = 4;
(4) k is a number field that satisfies Schinzel’s hypothesis and n > 5;
(5) k is a global field that satisfies (x) or a number field that satisfies Schinzel’s hypothesis,
n = 4 and the following holds: for any quadratic field extension L/k and rank 4
quadric Q C P} such that X = Nyegar/mo(Q) and Normy,y, (disc(Q)) € k™2, we
have that Q fails to have smooth local points at an even number of primes of L.

When n = 4, there are exactly five rank 4 quadrics in the pencil of quadrics containing X
(see Section [ for details). The condition in case (5]) holds for most intersections of quadrics
and can be easily checked. In particular, it is satisfied if there is no pair of Galois conjugate
rank 4 quadrics in the pencil or if X has points everywhere locally (for then any quadric
containing X will have points over all completions). In fact, if X is assumed everywhere
locally solvable, the proofs of our main results become much easier (See Corollary and
Remark [4.§). For further details of the cases covered (and not covered) in case (]), see
Remark [6.2] and Section [Z.1l

Theorem naturally raises the question of whether the parity condition is necessary.
We have constructed many examples that fail this parity condition, but in each we have
found an ad hoc proof that (%) implies the existence of a quadratic point. Based on our
results and this extensive numerical evidence, we expect the following question to have a
positive answer.

Question 1.3. Does every complete intersection of 2 quadrics X C P} over a number field
k possess a K-rational point for some quadratic extension K/k?

One can also pose this question for other classes of fields, e.g., C, fields. Over C}5 fields,
the question has a negative answer (see Section for examples), but it is open for Cs fields.

1.1. Obstructions to index 1 over local and global fields. Over local and global fields,
necessary and sufficient conditions for an intersection of two quadrics to have index 1 (equiva-
lently, to have a rational point) have been well studied. When £ is a local field and n < 7 there
are examples with X (k) = () (which necessarily have index greater than 1), while for n > 8
and k a p-adic field, X (k) # 0 [Dem56]. For & a number field, Colliot-Thélene, Sansuc and
Swinnerton-Dyer conjecture that a smooth complete intersection of quadrics in P} satisfies
the Hasse principle as soon as n > 5 [CTSSD87b|, §16]. For n > 8, the conjecture is proven
in [CTSSD87al|CTSSD87b| and this has been extended to n > 7 by Heath-Brown [HB18].
The analogue of this conjecture over global function fields of odd characteristic has been
established by Tian [Tial7], allowing us to deduce case from case of Theorem (1.2}
When n = 4 (in which case X is a del Pezzo surface of degree 4), the Hasse principle
can fail [BSD75]. Colliot-Thélene and Sansuc have conjectured that this failure is always
explained by the Brauer-Manin obstruction [CTS80|. This conjecture implies that all number
fields satisfy the condition (x) appearing in Theorem . Most cases of the n = 4
conjecture have been proven conditionally on Schinzel’s hypothesis and the finiteness of Tate-
Shafarevich groups of elliptic curves by Wittenberg [Wit07]. This also gives a conditional
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proof of the Hasse principle when n > 5 as this can be reduced to cases of the n = 4
conjecture which are covered by Wittenberg’s result.

1.2. Outline of the proof of Theorems and [1.2] Using an argument of Wittenberg
[Wit07] (which we review in Section [6.2)), we can reduce to the case n = 4, when X is a del
Pezzo surface of degree 4.

In Section [2| we prove that any del Pezzo surface of degree 4 over a local field must have
points over some quadratic extension, which proves Theorem and the local case of
Theorem Our approach uses the theorems of Amer, Brumer, and Springer to reduce
to the case where no integral model of X has a special fiber that is split (i.e., contains a
geometrically integral open subscheme) over a quadratic extension. We then use semistable
models of degree 4 del Pezzo surfaces, introduced by Tian [Tial7], to directly show that the
remaining types of degree 4 del Pezzo surfaces obtain points over every ramified quadratic
extension of k.

In Section we give an easy generalization of a result in [DD1§|, showing that, for k a
field of characteristic 2, any del Pezzo surface of degree 4 obtains a point over k'/2. For local
and global fields of characteristic 2 we have [k'/? : k] = 2, so this proves Theorem and
gives an alternate proof of Theorem in characteristic 2. Thus, for the remainder of
the paper, it suffices to assume that k is of characteristic different from 2.

Over a global field, the results of Section [2| show that after base change to a suitable qua-
dratic extension X becomes everywhere locally solvable. While it is also true that the Brauer
group of X becomes constant after a suitable quadratic extension (this can be deduced from
the explicit calculation of Br(X)/Bro(X) in [VAV14]), one cannot deduce that Theorem 1.2
holds for fields k satisfying (%) directly from case in this way because, in general, there
is no quadratic extension K/k for which X is locally solvable and the Brauer group of Xg
is trivial modulo constant algebras (See Example .

To obtain our results when k is a global field of characteristic not equal to 2 we study the
arithmetic of the symmetric square of X, which is birational to the variety G parameterizing
lines on the quadrics in the pencil of quadrics in P} containing X (see Section [4| for more
details). In Section , we develop the main tools for studying the arithmetic of G over a global
field. We determine explicit central simple algebras over the function field of G representing
the Brauer group of G modulo constant algebras and then develop techniques to calculate
the evaluation maps of these central simple algebras at several types of local points.

Theorem implies that G is everywhere locally solvable. The results of Section
are used in Section [6] to show further that there is always an adelic 0-cycle of degree 1 on
G orthogonal to the Brauer group and, under the hypothesis of Theorem , that there
is an adelic point on G orthogonal to the Brauer group. This is perhaps surprising given
that in this case the Brauer group of G can contain nonconstant algebras and in general can
obstruct weak approximation on G (see Corollary [6.3) and Example [6.4)).

The variety of lines on a smooth quadric 3-fold is a Severi-Brauer 3-fold, so the arithmetic
of G is amenable to the fibration method, as first observed in |[CTS82]. Results of [CTSD94]
show that, in the number field case, the vanishing of the Brauer-Manin obstruction on G
implies the existence of a O-cycle of degree 1 on G and, conditionally on Schinzel’s hypothesis,
a k-rational point on G. This yields a 0-cycle of degree 2 on X and, under the hypothesis
of Theorem , a quadratic point on X if we assume Schinzel’s hypothesis. To the best

of our knowledge the function field analogue of these results based on the fibration method
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have not been established. This prevents us from considering global function fields in the
n = 4 case of Theorem [L.1]

One can ask whether index(G) = 1 always implies that G has a rational point (when & is
a global field this is equivalent to Question . Our results do not answer this question,
but they do show that a stronger condition on 0-cycles fails over p-adic fields. Namely, G
can contain 0-cycles of degree 1 that are not rationally equivalent to a rational point (See
Remark [7.4]([1))).

To deduce the results in case of Theorem assuming that k satisfies (x) (without
assuming Schinzel), we make use of Proposition%, which may be of interest in its own
right. It relates the Brauer-Manin obstruction on the symmetric square of a variety that
has finite Brauer group (modulo constant algebras) to the Brauer-Manin obstruction over
quadratic extensions. (More generally, in Section [3| we collect results relating the Brauer-
Manin obstruction on a nice variety Y to the Brauer-Manin over an extension which may
also be of independent interest.) In a similar spirit, we answer a question posed in [CTP00|
concerning Brauer-Manin obstructions over extensions (see Remarks [7.4[[2)) and give an
example of a del Pezzo surface of degree 4 defined over Q which, for any finite extension
k/Q, has a Brauer-Manin obstruction to the existence of k-points if and only if & is of odd

degree over Q (See Section [7.2)).

Notation. For a field k we use k to denote a separable closure and Gy, := Gal(k/k) to denote
the absolute Galois group of k. In Sections[2] and [3| we allow k of arbitrary characteristic; in
the remainder of the paper we restrict to k of characteristic different from 2. For k-schemes
Y — Spec(k) and S — Spec(k) we define Yg := Y Xgpecry) S and Y =Y Xspeek Spec(k).
When S = Spec(A) is the spectrum of a k-algebra A, we use the notation Y4 := Yspec(a)-
A quadratic point on Y is a morphism of k-schemes Spec(K) — Y, where K is an étale
k-algebra of degree 2. In particular, K = k x k is allowed in which case Zx ~ Z x Z for any
k-subscheme Z C Y.

The Brauer group of a scheme Y is the étale cohomology group Br(Y) := HZ (Y, G,,); when
Y = Spec(R) is the spectrum of a ring R we define Br(R) := Br(Spec R). If sy : Y — Spec(k)
is a k-scheme, then Bro(Y') C Br(Y) is the image of the pullback map s} : Br(k) — Br(Y).
We use Bry(Y) to denote the kernel of the map Br(Y) — Br(Y). We recall that there is a
canonical injective map Bri(Y)/ Bro(Y) — H*(k, Pic(Y)) coming from the Hochschild-Serre
spectral sequence [CTS21, Prop. 4.3.2] and that this map is an isomorphism if H*(k, G,,,) = 0.

An element § € Br(Y) may be evaluated at a k-point y : Spec(k) — Y by pulling back
along y to obtain S(y) := y*f € Br(k). For a finite locally free morphism of schemes Y — Z
we use Cory/z: Br(Y) — Br(Z) to denote the corestriction map. When Y = Spec(A) and
Z = Spec(B) are affine schemes this is also denoted by Cory,p: Br(A) — Br(B).

A variety over k is a separated scheme of finite type over k. A variety is called nice if
it is smooth, projective and geometrically integral and is called split if it contains an open
subscheme that is geometrically integral.

If Y is an integral k-variety, k(Y') denotes its function field. More generally, if YV is a
finite union of integral k-varieties Y;, then k(Y) := [[k(Y;) is the ring of global sections
of the sheaf of total quotient rings. In particular, if a finite dimensional étale k-algebra A
decomposes as a product A =~ [] k; of finite field extensions of k£ and Y" is a reduced k-variety,
then k(YA> ~ H k(ij), and COI‘k(yA)/k(y) = z Cork(ykj)/k(y).
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For a global field k, we use ) to denote the set of primes of k. For a prime v € € we
use k, to denote the corresponding completion and for a k-scheme Y we set Y, :=Y},. We

use Ay to denote the adele ring of k. For a subgroup B C Br(Y), Y (A;)? C Y(A;) denotes
the set of adelic points orthogonal to B, i.e.,

Y (AP ={(y) €Y(A) : VBEB, Y invy,(B(y) =0}

vEQ

We define Y (A;)B" := YV (A,)B®).
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2. INTERSECTIONS OF QUADRICS IN P* OVER LOCAL FIELDS

Theorem 2.1. Let X C P} be a smooth complete intersection of two quadrics over a local
field k. There is a quadratic extension K/k such that X(K) # (.

Outline of proof of Theorem [2.1 In Section 2.1, we prove that if there exists an integral
model X C P* with split special fiber, then X (k) # (. We use this result to reduce to the
case that the special fiber is a union of four planes permuted transitively by the Galois group.
We then use the geometric classification results in Section together with the existence of
semistable models proved by Tian [Tial7] (following Kolldr [Kol97]) to give explicit models of
the remaining cases in Section 2.4] Next, we study these explicit models and show directly
that over every ramified quadratic extension there is a change of coordinates so that the
model has split special fiber. Thus, by the results of Section [2.1] these models have points
over every ramified quadratic extension. The details of how the ingredients come together
are in Section 2.5

Remark 2.2. The methods of this proof are fairly flexible, but it does rely on two key
properties of finite fields: 1) There is a unique quartic extension of any finite field, it is
Galois, and the Galois group is cyclic; and 2) Every split variety over a finite field has index
1. If k is a complete field with respect to a discrete valuation and its residue field satisfies

the above two properties, then Theorem [2.1] holds over k.
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As mentioned in the introduction, we also give alternate proofs of Theorem [2.1| which work
in the case that k& has odd residue characteristic (Section and in the case that k has
characteristic 2 (Section ; this latter proof also holds for global fields of characteristic 2.

2.1. Intersections of quadrics with split special fiber.

Proposition 2.3. Let k be a nonarchimedean local field, let O denote the valuation ring
of k, and let X/k smooth complete intersection of quadrics in P}. Assume there exists an
integral model X/O such that the special fiber is split (i.e., contains a geometrically integral
open subscheme). Then X (k) # 0.

Proof. Since the special fiber is split, it contains a geometrically integral open subscheme
U°/F. By the Hasse-Weil bounds, U° contains a smooth F’-point for all extensions with
sufficiently large cardinality. In particular, there exists an extension F'/IF of odd degree
where U° has a smooth F’-point. Thus, by Hensel’s Lemma, X has a k’-point for k'/k
an unramified extension of odd degree. Since X is an intersection of two quadrics, the
theorems of Amer, Brumer and Springer [Ame76|, Bru78,/Spr56] then imply that X (k) # (.
(In characteristic 2, see [EKMO8, Cor. 18.5 and Thm. 17.14] for proofs of the Amer, Brumer
and Springer theorems; the Amer and Brumer theorem in characteristic 2 is attributed to
an unpublished preprint of Leep.) O

2.2. Ranks of a quadratic forms in arbitrary characteristic. Let ¢ be a quadratic
form on a vector space V' over a field F'. Then (by definition) the mapping B, : V xV — F
given by B,(z,y) = q(x +y) — q(x) — ¢q(y) is bilinear. We say that ¢ is regular if the set
{r eV : g(z) =0and Vy € V, B,(z,y) = 0} contains only the zero vector in V. (If the
characteristic of F' is not 2, then the condition ¢(x) = 0 is superfluous.) We say that ¢ is
geometrically regular if its base change to the algebraic closure of F' is regular. Such forms are
called nondegenerate in [EKMOS8, Definition 7.17]. A quadratic form ¢ on a vector space of
dimension at least 2 is geometrically regular if and only if the quadric Q in P(V') defined by
the vanishing of ¢ is geometrically regular or, equivalently, smooth (see [EKMOS8, Proposition
22.1]).

The rank of a quadratic form ¢ is the largest integer m such that there is a subspace
W C V of dimension m such that the restriction of ¢ to W is geometrically regular, i.e.,
such that the intersection of Q with the linear space corresponding to W is smooth. The
rank of a quadric in P" is defined to be the rank of any quadratic form defining it. If F' has
characteristic different from 2, then the rank of ¢ is the same as the rank of a symmetric
matrix associated to B,.

If char(F) = 2, then the rank of ¢ is not necessarily equal to the rank of (a matrix
associated to) By, but the definition yields the lower bound rank(B,) < rank(g). The possible
discrepancy between these two ranks is due to the fact that B,(z,z) = q(22) — 2¢(z) = 0
for all x € V. Thus a matrix associated to B, has zeros along the diagonal and so is skew-
symmetric (and symmetric). Skew symmetric matrices always have even rank, but quadratic
forms can have odd rank (e.g., ¢ = 22 has rank 1).

Over an algebraically closed field a quadratic form ¢ has rank 2n if and only there is a
change of coordinates such that ¢ = zyx9 + 2324 + - -+ + X9,_1%9,, and rank(q) = 2n + 1 if

and only if there is a change of coordinates such that ¢ = 22 + v 29 + T334 + - - - + Ton_1T2,
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(see [EKMOS|, Props. 7.29 and 7.31 and Ex. 7.34])[T It follows from this characterization
that a quadric in P" of rank 1 with n > 1 is not geometrically reduced and a quadric in P"
of rank 2 with n > 2 is not geometrically irreducible.

It also follows that, for a quadratic form ¢ over an algebraically closed field, the rank is the
smallest integer r such that there exists a linear change of variables under which ¢ becomes a
quadratic form in the variables xy, ..., z, alone. This is the definition of rank used in [HB18].
We will only require the equivalence of these definitions over algebraically closed fields, but
we note that they are also equivalent if the field is not of characteristic 2 (by the well known
fact that ¢ can be diagonalized) or if the field is perfect of characteristic 2 (as follows from
[EKMO8, Proposition 7.31] using that in this case c;z?+- - -+csx? = (01/2:1:14—- « ‘—i—ci/QxS)Q). In
general, the two notions differ as seen by considering the rank 1 form z24tx2 = (2, +t'/%1,)?
over Fy(t) for which there is no Fy(t)-linear change of variables writing it as a form in 1
variable.

Lemma 2.4. Suppose q and q are quadratic forms of rank r(q) and r(q), respectively, over
a field F. Thenr(q L q) =1(q) +1(q) except when char(F) =2 and r(q) and r(q) are both
odd, in which case r(q L q) =r(q) +r(q) — 1.

Proof. For char(F) # 2 see [EKMO§, Prop. 7.29]. For char(F) = 2 this follows from
[EKMO8, Proposition 7.31 and Remark 7.21] and the fact that an orthogonal direct sum of
rank 1 forms has rank 1 (cf. [EKMOS8, Remark 7.24]). O

2.3. Intersections of two quadrics with many irreducible components.

Lemma 2.5. Let X C P* be a reduced complete intersection of two quadrics over an alge-
braically closed field. If X s reducible, then X contains a 2-plane or an irreducible quadric
surface. In addition:

(1) if X contains an irreducible quadric surface, then X is the union of two quadric
surfaces (with one possibly reducible) and X is contained in a rank 2 quadric; and

(2) if X contains two distinct 2-planes Py, Py, then X is either the union of four distinct
2-planes or the union of Py and Py with an irreducible quadric surface.

Proof. The components of this proof can be found in [CTSSD87al Section 1] and [HB18|
Proof of Lemma 3.2]. We repeat them here for the reader’s convenience.
The degrees of the irreducible components of X sum to 4, so we consider the partitions

3+1,2+4+2,24+1+1, 1+1+1+1.

In any of these cases, X contains a surface of degree 1 (i.e., a 2-plane) or a surface of degree
2 (i.e., a quadric surface). To complete the proof, it remains to show that if X contains an
irreducible quadric surface, then X is contained in a rank 2 quadric, and in the case of the
partition 2 4 1 + 1, the union of the two planes is a quadric surface, i.e., is contained in a
hyperplane.

Assume that X contains an irreducible quadric surface, given by the vanishing of a qua-
dratic form ¢ and a linear form ¢. The rank of ¢ cannot be 1 because X is reduced and the
rank of ¢ cannot be 2 because the quadric surface is irreducible. So ¢ must have rank at
least 3. Then the quadratic forms defining X must be of the form cq+ ¢¢', for some constant

IThis characterization shows that, in general, the rank of the symmetric bilinear form can only differ from
the rank of the quadratic form by 1, namely that rank(B,) < rank(g) < rank(B,) + 1.
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¢ and some linear form ¢. There will be some linear combination of these where ¢ = 0, and
so X is cut out by the ideal

<€€/a q+ €£”> = <€7 q> ) <€/7 q+ Eé”))

for some linear forms ¢, ¢”. The first factor gives our original quadric surface, the resid-
ual factor will give a (possibly reducible) quadric surface, and V' (¢¢') is a rank 2 quadric
hypersurface containing X . O

Lemma 2.6. Let X C P* be a complete intersection of two quadrics over an algebraically
closed field. If X is the union of 4 distinct planes, then X is a cone and X is contained in
a quadric hypersurface of rank 2. If, in addition, X has a unique cone point and there is
cyclic subgroup of Aut(X) acting transitively on the irreducible components of X, then, up
to an automorphism of P, X = V(xgxy, 1o73) C P4

Proof. After a change of coordinates, we may assume that one of the planes is V(xq, z1). If
all pairs of the planes meet in a hne then we may assume that one of the other planes is
V (o, x2). Thus, X must be defined by x¢l = x0€+ 2129 = 0 for some linear forms ¢, {. Note
that zof has rank 2. If xg, z1, 22, ¢, { are linearly dependent, then X is a cone. If g, 1, 29, ¢, (
are linearly independent, then, Wlthout loss of generality, we may assume that ¢ = x5 and
= x4, SO

X = V((L’()ZE37 Ty -+ $1$2> = V([Eo, .Tl) U V(xo, Ig) U V(Ig, o4 + I'LTQ).

This is not a union of four planes, so we have a contradiction.

If any pair of the planes meet in a point (in which case any cone point would be unique),
then we may instead assume that one of the other planes is V(x2, z3). Under these assump-
tions X must be the intersection of V(a;xoxs + bjxoxs + c;x129 + dizy23) for ¢ = 0,1 and
some a;, b;, ¢;, d;. In particular, X is a cone. In addition, if (ag,dp), (a1,d;) are linearly in-
dependent, then one of the defining equations can be taken to be a rank 2 quadric divisible
by x;, and similarly if (bo, co), (b1, 1) are linearly independent. Thus, it remains to consider
the case that X = V(axozy + dry23, brors + cr125), With abed # 0. Then

be (azxgry + dryxs) + Vabed (brors + cryzs) = <\/5be +V bcdm) (ﬁcxg + v bcda:3> ,

and so X is contained in a rank 2 quadric.

It remains to show that if X has a unique cone point and admits a transitive cyclic action
on its irreducible components, then, up to an automorphism of P4, X = V(zoxy, zox3) C PL
Without loss of generality, we may assume the cone point is [0:0:0:0: 1], and so X is a
cone over an intersection of quadrics in P3, which is a curve Z of arithmetic genus 1. Since
by assumption X is a union of 4 planes, Z must be the union of 4 lines. Furthermore, since
X has a unique cone point, the four lines of Z cannot all meet. This combined with the
transitive Z /47Z-action then implies that any triple of the lines cannot meet. By enumerating
the possible intersection configurations, one can check that the only arrangement of lines with
a transitive Z/4Z-action, with no triple meeting, and whose union is a curve of genus 1 is
a 4-gon, i.e., a cycle of rational curves, where each curve meets exactly two of the others.
After a change of coordinates, we may assume that the intersections are

PiNP, =V (xg,x1,%2), PPNPy = V(x, 21, 23), PsNPy = V (20, 22, 23), PLNPy = V (21, 22, 73),
so X = V(xgzg, x123). O



Corollary 2.7. Let X C P} be a geometrically reduced complete intersection of two quadrics
over a field k. If X is nonsplit, then X is contained in a rank 2 quadric.

Proof. Assume X is nonsplit. Since X is geometrically reduced and nonsplit, it must be
geometrically reducible, and so reducible over a separable closure. Thus the absolute Galois
group of k acts on the geometric components. Since X is nonsplit, none of the components
are fixed by Galois, and so, by Lemma X is geometrically either the union of two
irreducible quadric surfaces or the union of four planes. In the first case, Lemma gives
the result, and in the second Lemma does. O

2.4. Semistable models. Following work of Kolldr [Kol97] in the case of hypersurfaces,
Tian [Tial7, Section 2.1] has defined a notion of semistability for intersections of two quadrics
over discrete valuation rings. This notion of semistability allows one to find a model of X
whose special fiber is fairly well controlled.

Before stating our results, we first review some of the definitions from Tian’s semistability
machinery. Suppose k is a nonarchimedean local field with ring of integers O and residue
field F. We will use 7 to denote a uniformizer. Let X C P¢, be an intersection of two quadrics.
Given X, we can associate a 2 x 15 matrix A such that each row is the coefficient vector
of the corresponding defining equation for X. Note that changing the defining equations
corresponds to multiplying A on the left by an element of GLy(O). Thus, up to this GLso-
action, we have a well-defined matrix Axy.

Given an nonnegative integer weight vector w € N°, we define the change of coordinates
fw: PYH = P4, x; — 7ix;. Then we define the multiplicity of X with respect to w to be

multy, (X) := min{v(m) : mis a 2 x 2 minor of A x},

where v denotes the valuation on O. Then X is said to be semistable if for all weight vectors
w and all automorphisms g € Aut(P%,) = PGL5(0O), we have

multy (g(X)) < % (Z wl-) :

By |Tial7, Theorem 2.7], any smooth intersection of two quadrics X C P} has a semistable
integral model. For more details, see [Tial7, Section 2.1 and 2.4].
We will also make use of the following results from [Tial7].

Lemma 2.8. Let k be a nonarchimedean local field, let O denote the valuation ring of k,
let F denote the residue field of k, and let X C P} be a smooth complete intersection of two
quadrics. Let X C P} be a semistable model of X (which exists by [Tial7, Theorem 2.7]).
Then:

(1) [Tial7, Lemma 2.9] The special fiber of X is a complete intersection of two quadrics.

(2) [Tial7, Lemma 2.22(1)] The special fiber is not contained in a reducible quadric hy-
persurface defined over IF.

(3) |Tial7, Lemma 2.22(2)] The special fiber does not contain a plane defined over F.

(4) |Tial7, Lemma 2.22(4)] The special fiber is reduced.

Remark 2.9. In [Tial7, Sections 2.2 — 2.4|, Tian works over local function fields, but as
noted in [Tial7, beginning of Section 2.2, the proofs go through essentially verbatim for

any nonarchimedean local field. In [Tial7, Section 2.4] (in which [Tial7, Lemma 2.22] is
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stated and proved), Tian adds the hypothesis that the residue field has odd characteristic,
and so freely interchanges smooth and nonsingular. However, no assumption on the residue
characteristic is needed for the proofs of [Tial7, Lemma 2.22 (1), (2), and (4)]. For the sake
of completeness, we repeat Tian’s proof of Lemma —.

Proof. If the special fiber is contained in a reducible quadric hypersurface defined over F,
then, after possibly changing variables, one of the quadrics defining X must be of the form
Tox1 + 7, in which case mult (1 0,0,0,0)(X) > 1. However, since X is assumed to be semistable
we must have multq,0,0,0,0)(X) < %, resulting in a contradiction. This proves . Similarly,
if the special fiber contains a linear subspace of dimension 2 defined over F, which we may
assume is V' (zg, 21), then mult(; 1,0,0,0)(X) > 2. However, the semistability hypothesis implies
that mult(;1,0,0,0)(X) < @ = %, giving a contradication. Thus, we conclude .

Now we prove (4f). By [Tial7, Lemma 2.9], the special fiber is a complete intersection, so
the special fiber is reduced if and only if all geometric irreducible components are reduced.
Assume that the special fiber has a nonreduced geometric irreducible component. Since the

special fiber has degree 4 and contains no plane defined over [F, the only possibilities are:

(a) a quadric surface of multiplicity 2, or
(b) a union of two conjugate planes, each with multiplicity 2.

Note that in case @, the two planes must meet in a line, as otherwise a general hyperplane
section would be the union of two skew double lines, which is not possible. Thus, case @ is
subsumed by case @, and so the reduced special fiber is given by the vanishing of a linear
form ¢ and a quadratic form ¢. Hence, the special fiber is defined by quadratic forms of the
form 00y, 05 + g for some linear forms /1, {5, which contradicts ([2). OJ

Proposition 2.10. Let k be a nonarchimedean local field, let O denote the valuation ring of
k, let F denote the residue field of k, and let X C P} be smooth complete intersection of two
quadrics. Let X C P} be a semistable model of X (which exists by [Tial7, Theorem 2.7]).
Assume that the special fiber of X/O is geometrically the union of four 2-planes and that the
Galois group acts transitively on the four 2-planes. Then, for any choice of uniformizer w,
X must be given by the vanishing of quadratic forms of the shape:

q(zo, ..., x3) + 7" x4l(20, ..., 23), and §(xo, ..., 13) + 7T] + 7Tn$C4Z($0, e, T3), (2.1)
(with m,n positive integers, and q,§ quadratic forms such that every F-linear combination
of ¢ and § modulo 7 has rank at least 2); or

9(wo, 21, w2) + Th(xs, x4) + T @3l3 (20, 1, T2) + Tx4ly(T0, 71, 22), and

i i . . (2:2)
G(xo, k1, x2) + Th(xs, x4) + Tx3l5(20, T1, T2) + 7Td374€4($0, T1,T2),

(with a,b, c,d positive inlegers, Ei,zi linear forms and g, g, h,ﬁ quadratic forms such that
every F-linear combination of g and g modulo 7 has rank at least 2 and every F-linear
combination of h and h modulo m has rank at least 1).

Proof. By Lemma , the special fiber must be isomorphic (over F) to V(xx1, m93) or a
cone over a complete intersection of two quadrics in P? (i.e., a complete intersection of two
conics).

Let us first assume that the special fiber is geometrically isomorphic to V(zoz1, z973).

Note that this variety has a unique singular point, the cone point, so it must be defined over
10



F. After a change of coordinates, we may assume the cone point reduces to V' (xg, 1, 22, x3)
and hence X is given by

Q(x(h s al‘S) + 7Tm$4€(l‘07 s 7564)’ and Q(l'o, s ,Z[‘g) + 7Tnx4€(x07 s ,ZE4),

for some integers m,n > 1, quadratic forms ¢, ¢ and linear forms ¢, { that are nonzero modulo
7. We will first use the semistability of X for the weight vector w := (1,1,1,1,0) to show

that one of 7™ or 7" must evaluate to a uniformizer at [0:0:0: 0 : 1]. Note that Agex
has the following form

mlcoefs(q) 7Ty wmTYy Mty amtley gy
nlcoefs(q) w7y wnTH, an T, an Ty wndy )

where ¢ = ), Gy, U = > l;z; and coefs(q), coefs(g) denote the coefficient vectors of ¢, §
respectively. Hence, using the strong triangle equality and the definition of multiplicity, one
can compute that multy, (X) > min(4, 24+m-+v(£y), 2+n+v(fy)). However, the semistability
assumption implies that multy (X) < w = 18 and so min(m + v({y), n + v(ly)) = 1.
Thus, after renaming ¢, q and ¢,¢ and possibly scaling the equations, we may assume the
equations are of the form:

q(zo, ..., x3) + 7T x4l(20, ..., 73), and §(xo, ..., x3) + 7 24l(20, . .., 23) + TTI.
To see that every F-linear combination of ¢ and § modulo 7 is rank at least 2, recall that the
variety defined by ¢ and § modulo 7 is geometrically isomorphic to V (zgz1, z223) and note
that axgx; + brors has rank 4 for all a, b # 0.
Now assume that the special fiber is a cone over a complete intersection of two quadrics
in P2. Then, up to a change of variables, X must be given by quadratic forms of the shape

g(xo, 21, ) + 7" h(3, 14) + T 23l5(20, 11, T2) + 7rbx4€4(xo, Ty, T9), and
G(xo, 21, x2) + Wmfb(%, xy) + 7Tc$3z3(950, x1,%2) + 7Td$4z4($0, x1, Za),

where a, b, ¢, d, m, m are positive integers, g, g, h, h are quadratic forms, and ¢;, {; are linear
forms. Since, by assumption, the special fiber is reduced, the complete intersection in IP’%
defined by the vanishing of ¢ and § modulo 7 must also be reduced. This complete inter-
section is therefore, geometrically, a set of 4 non-colinear points in JP’%. These points are not

contained in any quadric of rank 1 so every F-linear combination of ¢ and § modulo 7 has
rank at least 2. B

To complete the proof, we need to show that m = m = 1 and that h, h are linearly
independent modulo 7. We will again use our semistability hypothesis. Consider the
weight vector w = (1,1,1,0,0). One can compute that multy(X) is at least min{4, m +
m,2 + m,2 + m} and, in addition, if A and h are linearly dependent modulo m, then
multy (X) > min{4, m+m-+1,2+m,2+m}. However, the semistability assumption implies
that multy (X) < 4'(12& = L2, Thus, we must have that i and h are linearly independent
modulo 7, and m + m = 2, which implies that m =m = 1. 0

2.5. Proof of Theorem If k is archimedean, then [k : k] < 2 so the result is immediate.
Henceforth we assume that £ is nonarchimedean, and we write O for the valuation ring
of k and F for the residue field of k. By [Tial7, Theorem 2.7], there is a linear change

of coordinates on P} such that the resulting integral model X C P{, of X is semistable.
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In particular, by Lemma [2.8] the special fiber of X is a reduced complete intersection of
quadrics.

If the special fiber of X is split, then the desired result follows from Proposition 2.3 If
the special fiber of X is not split, but becomes split over the quadratic extension of I, then
we may apply Proposition over k', the unique quadratic unramified extension of k, and
conclude that X (&) # 0.

Thus, we have reduced to the case that the special fiber X° of X is nonsplit and remains
nonsplit over the unique quadratic extension F'/F. Since F is perfect and X° is reduced, X°
must be geometrically reduced. Therefore X° must be geometrically reducible and Gal(F/F’)
must act nontrivially on the components. By Lemma , this is possible only if Xz is the

union of four 2-planes. Furthermore, the current assumptions imply that Gal(F/F) must act
transitively on the four 2-planes. Thus, by Proposition [2.10] we may assume that X is given
by quadrics as in or .

Consider a ramified quadratic extension k'/k and let w be a uniformizer of k. First
assume that X is given by equations of the form . Over k' we may absorb a w into x4
and obtain the model X'/O" (where O’ is the valuation ring of &'):

q(wo, ..., x3) +u"@” Tayl(zg, ..., x3), and
- (2.3)

q(zo, ..., x3) +u"w twgl(xg,. .., x3) + urs,

where u is the unit such that uw? = 7. Every F-linear combination of the forms in (2.3)
modulo t is an orthogonal sum of an F-linear combination of ¢ and § modulo @ (which has
rank at least 2 by (2.1)) with a quadratic form of rank 1. It follows from Lemma that
every F-linear combination of the forms in modulo w has rank at least 3. Thus, by
Corollary 2.7 the special fiber of X' is split, so, by Proposition X' has a k'-point.

Now assume that X is given by equations of the form . Then, we may absorb a w
into x3 and x; and obtain the model X'/O given by

9(xo, T1,xa) + uh(z3, 24) + u“wQ“_lxgﬁg(:Eo, T1,To) + ubwzb_1x4€4(xo, r1, %), and

. ~ - (2.4)
G(x0, 21, T2) + uh(xs, 14) + u‘w Tasls(20, 11, T2) + udw2d’1x4€4(x0, T, Ta),

where u is the unit such that uww? = 7. Then every F-linear combination of the forms
in modulo w is an orthogonal direct sum of an F-linear combination of ¢ and § modulo
@ (which is a form of rank 2 or 3) with an F-linear combination of & and A modulo w (which
is a form of rank 1 or 2). Thus, by Lemma , every F-linear combination of the forms
in (2.4) modulo w has rank at least 3. Hence, by Corollary , the special fiber of X' is
split, and so X has a k’-point, by Proposition [2.3] ([l

2.6. Alternate proof in characteristic 2. The following is a slight generalization of
[DD18, Theorem 4.4].

Proposition 2.11. Suppose k is a field of characteristic 2 and X C P, is smooth complete
intersection of two quadrics. Then X (k%) # 0. In particular, if k is a local or global field

of characteristic 2, then X contains a point defined over the quadratic extension kY/? of k.
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Proof. By [DD18, Theorem 1.1], X can be defined by the vanishing of quadratic forms of
the form

aoxg + a12] + apws + 31 + 2405, and
bol’g + bll’% + ng% + .%'363 + I4£4

where a;,b; € k and ¢; € k[xg,...,z4] are linear forms. In particular, the intersection of X
with the plane V' (z3, z4) is an intersection of two conics in P? neither of which is geometrically
reduced. The reduced subschemes of the base changes of these conics to the algebraic closure
are the lines V(a(l]/2x0 + a}/gxl + aéﬂxg) and V(b(l)/2x0 + b}ﬂxl + b;/ng), which are defined
over k2. Their intersection yields a k'/?-point on X.

It remains to show that [k'/2 : k] = 2 when k is a local or global field of characteristic 2. If
k is local, then k = F((t)) with [F a finite field of characteristic 2 and k'/2 = F((¢'/?)) which
is clearly an extension of degree 2. Similarly, if & = F(¢) is a global function field of genus 0
and characteristic 2, then k'/2 = F(¢!/2) is clearly a degree 2 extension. For a general global
field k of characteristic 2, which is necessarily a finite extension of ky = F(¢) with F finite
characteristic 2, we may reduce to the genus 0 case as follows (cf. |[BM40, Theorem 3]).
Frobenius gives an isomorphism F : k'/? — k which restricts to an isomorphism k:é/ 2 ko,
and so [kV/2 : k)] = [k : ko]. Since k and kt/? are both intermediate fields of the extension
ko C k'/? we have

[kl/Q . k][k, : kO] — [kl/Z : ké/?][kl/Q ]{30]
Taken together these observations show that [k'/2 : k] = [ké/z o). -

3. BRAUER-MANIN OBSTRUCTIONS OVER EXTENSIONS

In this section, we prove some general results relating the Brauer-Manin obstruction on a
nice variety Y to the Brauer-Manin obstruction over an extension. Moreover, for quadratic
extensions, we relate the Brauer-Manin obstruction on (a desingularization of) the symmetric
square to the Brauer-Manin obstruction over quadratic extensions.

Lemma 3.1. Let Y/k be a nice variety over a global field k, let K/k be a finite extension,
and let B be a subset of Br(Yx). Then Y (Ay)Cx+B) € Y (Ag)?. In particular,

(1) if Y(Ay)P" # 0, then Y (Ag)B # 0, and

(2) for any d | [K : k], Y(Ay) C Yi(Ag)ResrseBrld],

Proof. By |[CTS21, Prop. 3.8.1], for any o € Br(Yx) and for any local point P, € Y (k,), w
have (Cory, /v ())(P,) = Corg, /i, ((Py)), where K, = K ®y, k,. Thus, for (P,) € Y( k)

Z inv, (Cory, v (a)(P,)) = Z inv, (Corg, sk, (@ Z Z inv,, (a(F))

vEQ, vEQ vEQ WEQ K WV

(where the last equality follows from the equality of maps inv,, = inv, o Corg, s, for any
prime w|v), and so Y (A;) /¢ C YV (Ag)®. The general statement follows by considering
the intersection of Y (Ag)* for all « € B.

It remains to prove statements and (2). The first follows from taking B = Br(Y)
and observing that Y (AP ¢ Y(A,)Cx/x@B0K) - and the second follows from taking
B = Resg, Br(Y)[d] and using that Corg /i, o Resg/r, = [K : k. O
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Remark 3.2. Yang Cao has given an alternative proof of Lemma which also yields a
similar statement for the étale-Brauer obstruction. This will appear in forthcoming work of
Yang Cao and Yongqi Liang |CL].

The following lemma and corollary extend techniques of Kanevsky in the case of cubic
surfaces [Kan87).

Lemma 3.3. Let Y be a nice variety over a field k such that H*(k,G,,) = 0. Assume that:
(1) Pic(Y) is finitely generated and torsion free,
(2) Br(Y) is finite, and
(3) Br(Y) — Br(Y)% is surjective.
Then there is a finite Galois extension ki /k such that for all extensions K /k linearly disjoint
from ki the map Resk ), Br(Y)/Bro(Y) — Br(Yx)/ Bro(Yx) is surjective.

Proof. The assumption H*(k,G,,) = 0 implies that the injective map Bri(Y)/Bro(Y) —
H'(k, Pic(Y)) coming from the Hochschild-Serre spectral sequence [CTS21, Prop. 4.3.2] is
an isomorphism. Assumption () implies that H'(k, Pic(Y)) ~ H'(ko/k, Pic(Y)) for some
finite Galois extension kq/k. By assumption , there is a finite Galois extension k; /ky such

that Resg, : Br(Yy,) — Br(Y) is surjective. Now suppose K/k is linearly disjoint from £;.
In particular, K is linearly disjoint from ko, so Resg/x: Bri(Y)/Bro(Y) ~ H'(k, Pic(Y)) —
H'(K,Pic(Y)) ~ Bri(Yx)/ Bro(Yx) is an isomorphism. So it will suffice to show that Br(Y)
and Br(Yx) have the same image in Br(Y). Since Br(Y},) — Br(Y) is surjective, the image
of Br(Yx) — Br(Y) is contained in Br(Y)%x N Br(Y)%, which is equal to Br(Y )%, since
ki and K are linearly disjoint. Thus, by assumption (3), Br(Y") and Br(Yx) have the same
image in Br(Y). O

Corollary 3.4. If Y is a nice variety over a global field k such that Y (Ay) # 0 and
Br(Y)/Bro(Y) is generated by the image of Br(Y)[d], then for any extension K/k of de-
gree d, Yic(Ag )R/ B L Moreover, if Y satisfies the conditions of Lemma then

there is a finite extension ki/k such that for any degree d extension K/k which is linearly
disjoint from ki we have Yi (Ag)B" # 0. O

Proof. For a global field k we have H*(k,G,,,) = 0. So the corollary follows immediately from

Lemmas and . O

Remark 3.5. If Y C P} is smooth complete intersection of two quadrics over a global field & of
characteristic not equal to 2 and Y is everywhere locally solvable, then the corollary applies
with d = 2. This gives a proof of the n = 4 case of Theorem under the additional
hypothesis of local solubility. Note that local solubility is used here in two distinct ways.
First it ensures that Br(Y)/Brg(Y) is generated by the image of Br(Y)[2] (which is not
the case in general even though Br(Y)/Bro(Y) is 2-torsion) [VAV14, Thm. 3.4]. Second,
it implies that the canonical maps Br(k) — Brg(Y') are isomorphisms, locally and globally.
This is used implicitly in the proof of Lemma [3.1] In general, Br(k) — Bro(Y) need not
be injective (see Lemma for a description of the kernel when Y is a del Pezzo surface of
degree 4) and so Resg/; does not necessarily annihilate [/ : k]-torsion elements of Bro(Y).
Consequently, the exact sequence

0 — Br(k) = @ Br(k,) = Q/Z — 0
14



of global class field theory has no analogue for Bry(Y).

The following proposition relates the Brauer-Manin obstruction over quadratic extensions
to the Brauer-Manin obstruction on the symmetric square. Note that while the symmetric
square Sym?*(Y') is singular if Y has dimension at least 2, there exists a smooth projective
model Y over any field of characteristic different from 2 (see the proof of part of the
proposition for details).

Proposition 3.6. Let k be a field of characteristic different from 2, let Y/k be a nice variety
of dimension at least 2 with torsion free geometric Picard group, and let Y® be a smooth
projective model of the symmetric square of Y over k.

(1) The rational map Y? — Sym?*(Y) -+ Y induces a corestriction map
Coryz2/ye): Br(Y?) — Br(Y®)

on the Brauer groups of the varieties. Furthermore, if w1 denotes projection onto the
first factor of Y2 =Y x Y, then the composition Cory2,y 2 omy : Br(Y) — Br(Y®)
induces an injective map

CBri(Y)  Bri(Y®)
"Bro(Y)  Br(Y®)

(2) Let oo € Br(Y) and let § = Coryz )y oni(a) € Br(Y®)). There exists a dense open
U CY® such that for anyy € U, y corresponds to a quadratic point §j: Spec(K) —
Y for some degree 2 étale k(y)-algebra K and we have 5(y) = Corg k() (a(7)).

(3) Suppose k is a global field, Br(Y)/Bro(Y) is finite and let B C Br(Y®)/Bro(Y®)
denote the image of Coryz vy omy modulo constant algebras. If there exists a qua-
dratic extension K/k such that Yic(Ag)Resx/BOD) L then Y (AL)E £ 0.

(4) Let B C Br(Y®)/Bro(Y?) denote the image of Coryzy@ omy modulo constant
algebras. Suppose that k is a global field, that Y (AL)? # 0, and that Y satisfies
the hypotheses of Lemma |3.5. Then there exists a finite set S C Sy, degree 2 étale
k,-algebras K, /k, for v € S and a finite extension ki /k such that for any quadratic
extension K/k that is linearly disjoint from ki and such that K @ k, ~ K, forv € S

we have Yi (Ag)B" # 0. In particular, there are infinitely many quadratic extensions
K/k such that Yi (Ag )P # 0.

Proof. (1): Let A = {(y,y) : y € Y} C Y? denote the diagonal subscheme and let
Bla Y2 denote the blow-up of Y along A. Observe that the Ss-action on Y? extends to an
action on Bla Y2 whose fixed locus is the exceptional divisor Ea; we claim that the quotient
(Bla Y?)/S, is smooth (equivalently geometrically regular). Since Bla Y? is smooth, the
quotient (Bla Y?)/S, is automatically smooth away from the branch locus. Let y € Ea.
Since E is a divisor, the involution acts as a pseudo-reflection on the geometric tangent
space of y. Since the order of the group acting is not divisible by the characteristic of k,
the Chevalley-Shephard-Todd theorem (see, e.g., [Smi85|) implies that the dimensions of the
geometric tangent spaces of y and its image in the quotient are equal. Hence the quotient is

smooth at the image of y.
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Consider the following commutative diagram.

Bla Y2 —— (Bla Y2)/S,

| l

Y2 ——— Sym?Y

The left vertical map is birational by definition, and since Y2 — Sym? Y is generically degree
2, the right vertical map is also birational. The top horizontal map is flat of degree 2 [SP| Tag
00R4], so we have a corestriction morphism Br(Bla Y?) — Br((Bla Y?)/S;) that extends to
the corestriction map on function fields [CTS21, Section 3.8]. Since the Brauer group of
smooth projective varieties is a birational invariant (and pullback along any birational map
gives an isomorphism) |[CTS21, Corollary 6.2.11], this yields the first claim.

It remains to prove injectivity of the induced map ¢ on the quotient Br;(Y)/ Bro(Y). Since
k(Y?) is Galois over k(Y ?)) with Galois group generated by the involution ¢ interchanging
the factors of Y x Y, by [GS06, Chapter 3, Exercise 3], the composition

Resk(y2)/k(y(2)) o Cork(y2)/k(y(2)) : Br(k(Y2)) — Br (k(Y2>)

is given by z +— z+0(z). We may then deduce that the same formula holds for the composi-
tion Resy2 jy-@ 0 Corys y@ : Br(Y?) — Br(Y?) by evaluating at generic points [CTS21, The-
orem 3.5.4]. Therefore, the composition Res o Cor o7} is equal to the diagonal map Br(Y) —
Br(Y) @ Br(Y) — Br(Y?) sending « to i + o(mja) = 7ia + mha.

If Pic(Y) is torsion free, then Pic(Y) @ Pic(Y) ~ Pic(?2) (see [SZ14, Prop. 1.7]). So
the diagonal map together with the Hochschild-Serre spectral sequence gives a commutative
diagram

H' (k, Pic(Y)) — H'(k, Pic(Y))®2 =———— H'(k, Pic(Y"))

J J

Bry(Y)/ Bry(Y) — (Bry(Y)/Bro(Y))®* —— Bry(Y?)/ Bro(Y?).

As the composition along the top row is injective, the same must be true of the composition
along the bottom row. This composition is induced by Res o Cor o] and it factors through
the map ¢ in the last statement of , so ¢ must also be injective.

([@): Since Y® is birational to Sym® Y, there is an open set U C Y® that is isomorphic to
an open set of the regular locus of Sym?Y’, i.e., the image of Y2 — A. For y € U, we obtain
7 by taking the preimage of y under Y2 — Sym?Y --» Y® . The points y and ¢ fit into a
commutative diagram displayed on the left below. This induces the diagram displayed on
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the right. Commutativity of the latter gives the result.

Y

Spec(k(y)) —— Y Br(k(y)) +——— Br(Y @

] co] ]cm

[y) ——Y = Br(f~'(y)) «— Br(Y x Y)

b

Br(K) e Br(Y)

Spec(K) v,

: Suppose that K/k is a quadratic extension, Yy (Ag )ReSK/k (Br(Y) £ () and that 8 =
Coryzy e (17 (a)) € Br(Y®) represents a class in B that is the image of o € Br(Y). Since
Br(Y)/ Bry(Y) is finite, Vi (A g )Rex/+Br () is an open subset of Y (Ag) in the adelic topol-
ogy which we have assumed is nonempty. So for any v € €2, the image of the projection map
Yie (A g )Resw/n(Br(Y) [L., Yr(Ky) =Y (K ®k,) is a nonempty open subset and therefore
contains a quadratic point g, : Spec(K ® k,) — Y corresponding to a point y, € U(k,),
where U is the open set from . For the case that v does not split in K we are using the
fact that Y (K,) # Y (k,) since k, is a local field (see, e.g., [LL18, Proposition 8.3]). By
we have

Z inv, 5(y,) = Z inv, Corgek, /k, ((¥)) = 0.
vEN vEQy
So the adelic point y = (yv) € Y®(Ay) is orthogonal to f3.

[@): Suppose Y@ (A;)B £ 0. The hypothesis in Lemma implies that Br(Y)/Bry(Y)
and, hence, B is finite. Thus, Y®(A;)? is open and, arguing as in ([3). we see that, for
each v € (Y, its image in Y(kv) contains a point y, € U(k,) corresponding to a quadratic
point g,: Spec(K,) — Y, where K, is an étale k,-algebra of degree 2. Moreover, by
if @ € Br(Y) and 8 = Coryz2,y e (7] (a)), then B(y,) = Corg,k,(a(y,)). By assumption
> veq, 10V B(Yy) = 0, 50 (7, )veq, is an effective adelic O-cycle of degree 2 on Y which is
orthogonal to the Brauer group of Y. Under the additional hypotheses of (4)), Br(Y)/ Bro(Y)
is finite and, by Lemma m there is an extension k;/k such that for K / k hnearly disjoint

from k1, Resg/i: Br(Y) — Br(Yx)/ Bro(Yk) is surjective. Moreover, for any set o, ..., o, €
Br(Y') of representatives for Br(Y')/Bro(Y'), there is a finite set S C € such that for all
i=1,...,n and all v € S the evaluation maps inv, o«;: Y (k,) — Q/Z are constant (see

[CTS13, Lemma 1.2 & Theorem 3.1]). In particular Y (k,) # 0 for v ¢ S. Let K/k be a
quadratic extension linearly disjoint from k; and such that K ® k, ~ K, for v € S. By
weak approximation on £* the map k> /k*? — [Les k/ kX2 is surjective for any finite set

of primes S C {2, so such extensions K/k do in fact exist. Any adelic point (2 )wea, €
Vi (Ar) such that g, = >_,, & for v € S will be orthogonal to Br(Y). O

4. PENCILS OF QUADRICS IN P* AND ASSOCIATED OBJECTS

Let Q@ C P* x P! be a pencil of quadrics, i.e., the zero locus of a bihomogeneous polynomial
Q of degree (2,1), defined over a field k of characteristic different from 2. If the projection
map Q — P! is generically smooth, then we may naturally associate three objects. First,

we may consider the base locus X = Xo C P* of the pencil of quadrics, i.e., Nyep1 Q;, where
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Q; C P* denotes the fiber over t € P!. This is a degree 4 projective surface. Second, we
may consider the subscheme § C P! parameterizing the singular quadrics in the pencil. If
@ is any degree (2,1) form defining Q, then 8 is given by the vanishing of det(My), where
Mg denotes the symmetric matrix corresponding to () considered as a quadratic form whose
coefficients are linear polynomials in the homogeneous coordinate ring of P*. Since Q — P!
is generically smooth, 8§ C P! is a degree 5 subscheme. Third, we may consider the fourfold
G = Go — P! that parametrizes lines on quadrics in the pencil; the generic fiber of G is a
Severi-Brauer variety with index dividing 4 and order dividing 2 [EKMO0S8, Ex. 85.4].

Remark 4.1. Over a field of characteristic 2, det(M) is identically 0 since Mg, is a 5x5 skew-
symmetric matrix, and so the correspondences between these objects already fails. Due to
this, the assumption that k& has characteristic different from 2 will remain in force for the
remainder of the paper.

Each of these objects has been well-studied, and their conditions for smoothness are known
to be closely related.

Proposition 4.2. Let Q C P* x P! be a pencil of quadrics over a field of characteristic
different from 2. Then the following are equivalent:

(1) The base locus X is smooth and purely of dimension 2, in which case X is a del Pezzo
surface of degree 4;

(2) The degree 5 subscheme 8§ C P! is reduced;

(3) For every s € 8, the fiber Qs is rank 4 and the vertez of Qs does not lie on any other
quadric in the pencil; and

(4) The fourfold G is smooth, the map G — P is smooth away from 8, and above § the
fibers are geometrically reducible.

Proof. The equivalence of conditions (), (2)), and is given by [Rei72, Prop. 2.1]. The
equivalence of (4] with any (equivalently all) of the others is given by |Rei72, Thm. 1.10]. O

Definition 4.3. A pencil of quadrics Q over a field of characteristic different from 2 satisfies
(1) if any of the equivalent conditions in Proposition hold. Given a pencil Q satisfying
(1), we define s € k(8)/k(8)*? to be the discriminant of a smooth hyperplane section of Qs;
note that the square class of the discriminant does not depend on the choice of hyperplane,
nor on the choice of a defining equation for Qs.

Given a pencil of quadrics satisfying (1), there are even stronger connections among these
three objects.

Proposition 4.4. Let Q be a pencil of quadrics satisfying (1). Let X = Xo,G = Go, and
(S, Eg) = (SQ, 839).
(1) The variety G is birational to the symmetric square Sym?*(X) of X. Moreover, G(k) #

0 if and only if X(K) # 0 for some quadratic extension K/k.
(2) The residues of the Brauer class |Gyp1)] € Brk(P') are

es € k(8)"/k(8)* ~ H' (k(8),12/2) ¢ @D H'(k(t).Q/2).
te(®H)()

In particular, Normys) /i (cs) € k™2
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(3) Given a pair (8',es) where 8' C P! is a reduced degree 5 subscheme and a class
es € k(8')*/k(8")*? of square norm, there exists a unique (up to isomorphism) pencil
of quadrics Q such that (8',es) = (8g,¢es,). Thus, for anyt € P' =8, [G,] € Br(k(t))
is determined by (8,¢s).

Remark 4.5. The second statement of Part provides an alternate proof of a proposition
by Wittenberg [Wit07, Prop. 3.39].

Proof. (I)): Consider a point (z,z') € X x X — A, where A denotes the diagonal image of
X, and let £, .y be the line joining them. For generic (z, ") the line £, ., is not contained
in X, in which case we claim that {y, ;. lies on a quadric in the pencil containing X. This
quadric will be unique since a line that is contained in more than one quadric in the pencil lies
on X. To see that {y, . is contained in some quadric note that the intersections Q; N £y, .1}
determine a nonzero pencil of binary quadrics (i.e., quadrics in P') that all contain z and
2’. The singular binary quadrics of this pencil are rank at most 1 and contain the distinct
points z and 2’ so they must be identically 0 on £, ..
Therefore, we have a rational map

f: X x X --» g, (LIZ',QZ/) — (t{z’ml},g{%z/}),

defined on the locus of pairs (z,2) € X x X — A such that the line {, ., is not contained
in X, where tg; .} € P! is such that lizay C Qt{m,}. Noting that a line ¢ C Q; which is not
contained in X intersects X in 0-dimensional scheme of degree 2 we see that f is dominant,
generically of degree 2, and factors through the symmetric square of X. Thus, the induced
map Sym? X --» G is birational.

If G(k) # 0, then the Lang-Nishimura Theorem (see, e.g., [Pool7, Theorem 3.6.11]) (which
applies since G is smooth) implies that Sym?(X)(k) # () and, consequently, that there is a
quadratic point on X. In particular, there is a quadratic extension K/k with X(K) #
(). Conversely, if X(K) # () for some quadratic extension K/k, then X (K) is infinite by
[SS91], Theorem (0.1)]. The line through any Galois stable pair of distinct points gives a
k-rational point on G.

: Let t € P!. By |[Rei72, Thms. 1.2 and 1.8], the fiber G; is smooth and geometrically
irreducible exactly when Q; has rank 5. Thus, for all t € P! — 8, the class [gk(pl)] has
trivial residue at ¢t. By Proposition and assumption (1), if t € §, then Q; has rank
4. If Q, is rank 4 and has square discriminant, then by [Rei72, Thm. 1.8] the fiber G, is
reducible and split over k(¢). If Q; is rank 4 and has nonsquare discriminant, then the same
result of Reid says that G, is irreducible and non-split over k(t), but becomes split over
the quadratic discriminant extension. Thus, the residue of [Gyp1)| at ¢ is the discriminant
of Q; [Fro97, Prop. 2.3]. By definition of &g, this gives the first statement. The second
statement now follows from the Faddeev exact sequence for Brk(P!) (see [GS06, Thm 6.4.5]
or (5.4)).

: The first statement is a theorem of Flynn [Fly09] which was expanded upon by
Skorobogatov [Sko10]. The second statement follows from the first together with the Faddeev
exact sequence for Br(k(P')) (see [GS06, Thm 6.4.5] or (5.4)). O

The proceeding proposition together with Theorem yields the following.

Corollary 4.6. Assume k is a local field of characteristic not equal to 2. For any pencil of
quadric threefolds @ — P satisfying (1), Go(k) # 0. O
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4.1. Notation. For a pencil of quadrics that satisfies (1) we will move freely between the
objects @, X = Xo,G = Gg, and (8,es) = (8g,¢€s,). We will assume that § C A' = P! — 0.
This can be arranged by an automorphism of P!, provided & has at least 5 elements. We
will write k[T] for the coordinate ring of A' and let f(7") be the unique monic polynomial
whose vanishing defines 8.

Let Qar € k(T)[xo, ..., x4] be a quadratic form whose coefficients are linear polynomials
in k[T and whose vanishing defines Q41 on A' C P!'. While Q41 is only defined up to
multiplication by an element of £*, none of our results depend on this choice. For a (possibly
reducible) subscheme T C A! = Spec(k[T]), the canonical map k[T] — k(T) can be applied
to the coefficients of Q41 to obtain a quadratic form Qg over the k-algebra k(T) whose
vanishing defines Qy = Q xp1 T. In particular, for a € k = A'(k), the form Q, is obtained
by evaluating the coefficients of Q41 at a. We define Qo = Q1 —Q, so that Qx1 = Qo+71TQ .

We will write 6 for the image of T in k(8) = k[T]/(f(T)). For a subscheme T C 8§ we

use € € 15((77)):2 - lli((g)xi to denote the discriminant corresponding to Q5. We will use N to

denote any map induced in an obvious way by the norm map Normys)x: k(8) — k. Note
that Normk(qy)/k(sq) = Normk(g)/k(eg) = N(Eg’).

4.2. Alternate proof of Theorem for odd residue characteristic. We now give
an alternate proof of Theorem (valid for local fields of odd residue characteristic) which
avoids the classificiation of reducible special fibers.

Proposition 4.7. Let X C P} be a smooth complete intersection of two quadrics over a
local field k of characteristic not equal to 2. Then X has index dividing 2. If the residue
characteristic of k is odd, then there is a quadratic extension K/k such that X has a K-point.

Proof. First let us prove that X has a quadratic point assuming that s € $(k) # (). After a
change of coordinates on the P! parameterizing the pencil and a change of coordinates on P4,
we may assume that s = 0, that Qo = Qo(zo, 1, T2, x3), and that Qo = Q (o, z1, T2, x3) +
23. If Qy contains a smooth k-point, then the line joining the vertex of Qy and this point
will intersect X in a degree 2 subscheme, which shows that X has a quadratic point. Thus,
we may restrict to the case that Qg has no smooth k-points.

Projection away from the vertex of Qy C P} gives a double cover X — Y := Qy NV (z4)
onto the quadric surface Y. Since Qp has no smooth k-points, Y (k) = (). We will prove that,
in this case, the branch curve C of the double cover X — Y has a quadratic point. Note that
by definition of the double cover, C' = X NV (z4) and so is a degree 4 genus 1 curve that is
the base locus of the pencil of quadric surfaces Q' — P! with Q} = Q; NV (z4). Moreover, C
is a 2-covering of the degree 2 genus one curve C’ given by the equation y* = det(M) where
M is the 4 x 4 symmetric matrix with entries in H’(Op1(1)) corresponding to a defining
equation for @' (see [AKM™01]).

Consider the fiber of C" — P! above 0. By definition of Q’, this is given by the equation
y* = disc(Qy N V(z4)). By assumption, Qy N V(z4) has no k-points. Since there is (up
to isomorphism) a unique rank 4 quadric over the local field & that is anisotropic and it
has square discriminant, we conclude that disc(Qy NV (z4)) is a square and so C'(k) # 0.
Consequently, C’ ~ Jac(C) and so the order of C' in H'(k, Jac(C)) divides 2. By a result
of Lichtenbaum [Lic68, Theorems 3 & 4] it follows that C has a point defined over some

quadratic extension of the local field k. The aforementioned result of Lichtenbaum is stated
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for k£ a p-adic field, but the proof works for any local field due to Milne’s extension of Tate’s
local duality results to positive characteristic [Mil06, Cor. 1.3.4, Rmk. 1.3.5, Thm. IIL.7.8].

Now we can deduce the statement in the proposition. The scheme 8§ C P} parameterizing
singular quadrics in the pencil has degree 5, so there is an odd degree extension k'/k such
that 8(k’) # (). By what we have shown above, X has a K-rational point for some quadratic
extension K /K. It follows that X has index at most 2. If the residue characteristic is odd,
then the inclusion k& C &’ induces an isomorphism k*/k*? ~ k> /k'*? so K contains a
quadratic extension ko /k as an odd index subfield. By the theorems of Amer, Brumer and
Springer [Ame76,Bru78|[Spr56], we have X (K) # () = X (k) # (), so X has a ko-point. [J

Remark 4.8. The preceding proof can be adapted to give an easy proof that a locally solvable
del Pezzo surface of degree 4 over a global field over a field of characteristic different from 2
must have index dividing 2. Indeed, over some odd degree extension X may be written as a
double cover of a quadric surface, which is known to satisfy the Hasse principle. Hence X
obtains a rational point over some extension of degree 2m with m odd.

5. ARITHMETIC OF THE SPACE OF LINES ON THE QUADRICS IN THE PENCIL

In this section we develop the main tools to prove Theorems and [1.2] over global fields
of characteristic not equal to 2. We maintain the notation defined in Section Specifically,
Q — P! is a pencil of quadrics in P} over a field k of characteristic not equal to 2 which
satisfies (1), and we let X = Xg, G = Gg and (e5,8) = (es,,80).

In Section 5.1} we compute Br(G)/ Bro(G) and construct explicit representatives in Br(G),
denoted by 7, which are determined by subsets T C 8 such that N(eg) € k*2. In Section |5.2]
we study the rank 4 quadrics Qg corresponding to subsets T C 8 such that N(ey) € k*2. We
use Clifford algebras associated to these rank 4 quadrics to define constant Brauer classes
Cy € Br(k) and we show how these are related to the kernel of the canonical map Br(k) —
Br(X). The two constructions come together in Sections where we show how the Cy
arise when evaluating By at certain local points of G (see Lemmas and . Finally,

in Section [5.4] we deduce consequences for the evaluation of S5 at adelic points of G.

5.1. The Brauer group of G. It follows from the Faddeev exact sequence (see [GS06, Thm
6.4.5]) that the homomorphism

7' k(8)* 3 & > Corysyu(e, T — 0) € Br(k(P'))
induces an isomorphism

v: ker (N: E((Ss)); = :2) ~ ker (Br(Pl —8)[2] =% Brk;[2]> , (5.1)

where co* denotes evaluation of the Brauer class at oo € P! — 8. Recall that N(gg) € k*? by

Proposition [4.4][2)).
Define 5 = 7*v: ker (N: LA N k{%) — Br(k(G)). For T C 8 such that N(eg) € k*2,

k(S)XQ
we set [y 1= B(e7).

Proposition 5.1. The map B induces a homomorphism

ker (N: Dies) — & /W) 4 Br(Q), (5.2)

sSES
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whose image surjects onto Br(G)/Bro(G). Furthermore, fs = [Goo] € Bro(G), and for all
T C 8 with N(eg) € k*% and g7 # 5 € k(8)* /k(8)*?, we have

By € Bro(G) C Br(G) <= By =0¢€Br(G) — &5 € k(T)*%

Corollary 5.2.

(1) Every nontrivial element of Br(G)/Bro(G) is represented by Py for some degree 2
subscheme T C 8 with N(eg) € k*2.
(2) Br(G)/ Bro(G) ~ (Z/2Z)" for some n € {0,1,2}.
(3) If Br(G)/ Bro(G) is not cyclic, then every degree 2 subscheme T C 8 with N(eg) € k*?
must be reducible.
(4) Let so € 8(k) be such that there exists an s’ € 8(k) with By, ) € Br(G) — Bro(G).
Then {Biso.sy : s € 8(k), N(egsy.53) € k**} generates Br(G)/Bro(G).
(5) There is a collection T of degree 2 subschemes of 8 and an element € € k*, such that
e N(eg) € kX2 for all T € T;
o {3y : T €T} generates Br(G)/ Bro(G);
e for all s € UserT, the image of € in k(s)* /k(s)*? is equal to €s; and
e for any extension L/k and any s € UgerT, € € k(s1)*? if and only if ¢ € k(s )*?
for all 8" € UgerT.
(6) Br(G)/Bro(G) ~ H'(k, Pic(X)).
(7) If k is a local or global field, then the injective map Br(X)/ Bro(X) — Br(G)/ Bry(G)
given by Proposition 1S an isomorphism.

Proof of Corollary[5.3. The proposition implies that s € Bro(G) and, for any T C 8 such
that N(eg) € k(7)*?, that By = Bs_g € Br(G)/Bro(G). Since 8 has degree 5, it follows that
every nontrivial element in Br(G)/ Brg(G) is represented by some Sy with deg(T) < 2. But
if T has degree 1, then e; = N(e7) € k*? and Sy = 0. Thus we have (I). In particular,
if Br(G) # BrgG, then {degs : s € 8} must be {3,2}, {3,1,1}, {2,2,1}, {2,1,1,1},
or {1,1,1,1,1}. Now a straightforward case by case analysis of the possible relations on
Dses(€5) DgesZ /27 allows one to deduce statements f. Given this characterization
of Br(G)/ Bro(G) in terms of degree 2 subschemes T C 8, ([5)) can be established using [VAV 14,
Lemma 3.1] for the existence of ¢ € k*. For @, we observe that [VAV14] Proof of Theorem
3.4] gives a description of H'(k,Pic X) in terms of degree two subschemes T C 8§ and the
square classes e; comparing this description with (5 gives the desired isomorphism. Finally,
when  is a local or global field, the injective map Br;(X)/ Bro(X) — H'(k, Pic(X)) coming
from the Hochschild-Serre spectral sequence |[CTS21, Prop. 4.3.2] is an isomorphism, so @
implies that the injective map Br(X)/Bro(X) — Br(G)/Bro(G) from Proposition is

also surjective. 0

Remark 5.3. If T C 8 is a degree 2 subscheme with N(e7) € k*2 such that the quadric Q7 has
a smooth k(T)-point, then [VAV14, Cor. 3.5] yields a rational map p: X --» P! such that
p*y(e7) € Br(X). One can show that the image of p*y(e7) under the map Br(X)/Bry(X) —
Br(G)/ Brg(G) given by Proposition is equal to the class of (7.

Proof of Proposition[5.1. Let n € P! be the generic point. Since G is smooth, Br(G) injects
into Br(G,). Further, by the Hochschild-Serre spectral sequence, we have an exact sequence

0 Pic(G,) = (Pic(G;) ™" = Br(k(n)) = ker (Br(g,) = Br(G,)) — H' (Giy: Pie(@y)
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Since G, is a Severi-Brauer variety, Pic(G,) ~ Z with trivial Galois action, and Br(G,) = 0.
Hence, the exact sequence simplifies to

*

Z — Br(k(n)) = Br(G,) — 0, (5.3)

where the first map sends 1 to [G,] € Br(k(n)). Thus, to determine Br(G), it suffices to
determine Br(G) N 7* Br(k(n)).

The projection map 7: G — P! induces the following commutative diagram of exact
sequences where the top row is the Faddeev exact sequence [GS06, Thm 6.4.5].

Br(k) —— Br(k(n)) — 2 @ H(k(t),Q/Z) —="0 H(k,Q/2)

te(P1)M
™ T, lw;ll (5.4)

Br(G) — Br(G,) —— @ P H'(k(z),Q/z),
tePl zeg)
w(x)=t

If t € P — 8, then the fiber G, is geometrically irreducible by Proposition and hence
mia H'(k(t),Q/Z) — H'(k(G:),Q/Z) is an injection. For t € 8, the fiber G, consists of two
split components that are conjugate over k( )(\VEL)-

Therefore, for t € 8, the kernel of 7*: H'(k(t),Q/Z) — H'(k(G,),Q/Z) is the 2-torsion
cyclic subgroup corresponding to the extension kNk(G;) = k(t)(y/g;). Moreover, the residues
of the kernel of 7j, are (9;) (ker(7,)) = (£¢)ies = €s € k(8)/k(8)*%. Thus, the commutativ-
ity of the above diagram shows that

ker ﬂkerZCork(t )k = ker (N @(5t> N k;X/k;XQ> ‘
t

tes

In particular, the image under 3 of ker (N: @, (e} — k*/k*?) is contained inside of Br(G).
Further, since 7, is surjective, the image of ker (N: @, (e¢) = k*/k*?) under /3 generates
Br(G)/ Bro(9)-

It remains to understand which subsets T C 8 give rise to 7 € Bro(G). If S5 € Bry(G),
then by definition of Bro(G) there exists A € Br(k) such that v(e7) — A € ker 7;,. By (5.3),
the kernel of 7y, is generated by [G,]. Thus, v(ey) = [G,] + A or v(ey) = A, where both
equalities are in Br(P! — 8). The final statement of the proposition follows from these
equalities after computing residues and evaluating at oco. 0

Recall that By, denotes the bilinear form corresponding to Q);.

Lemma 5.4. Let f: Sym*(X) --» G be the birational map given in Proposition and
let {x,2'} € Sym*(X) — Indet(f). Suppose that f({z,2'}) = (t,£) =y € G(k). Then
n(y) =t = [Bg,(z,2") : —Bg_(z,2")] € PX(k). If, moreover, T C 8 is such that N(eg) € k*?
and w(y) € TU {0}, then

Bgy (z, 2')
o) = Conenn (e0-5 255 )
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Proof. Observe that for any point ax + bz’ on the line /, , through = and 2" we have
Qi(ax +b2") = Bg,(ar +br', ax +b2') = a*Qy(z) + b*Qy(z') + 2abBg, (z,2') = 2abBg, (v, 7’) .

Therefore, the line ¢y, .y is contained in the quadric Q, precisely when Bg,(z,2’) = 0. If
Bg,(z,2") = Bg.(x,2') = 0, then {{,,4 C X in which case f is not defined at {z,z'}.
Otherwise, the relation By, (z,2') := Bg,(x, ') + tBg.. (x,2') = 0 shows that t = w(y) € P*
must be equal to [Bg,(x,2') : —Bg. (z,2')].

For the second statement recall that fy = 7*y(es) = 7* Corys)x(er, T — 0), where T is
the coordinate on Spec(k[T]) = A' C P! and 6 is the image of T in k(8). We have

m(y) — 6 = _BQo(xvm/) + HBQoo(x7x/) _ BQS(‘T’xl)
Bg.. (x,x") Bg.. (x,x)

As 7(e) is unramified away from T we may evaluate at 7(y) to obtain

Bgg(z,2)
Br(y) = v(ex)(m(y)) = Corks)n (87, —m .
The projections of eg € @, s k(s)*/k(s)** onto the factors corresponding to s € § — T are
trivial. So

Bg,(z,2") Bo, (z,2')
_C _ bgsl\, —C _erm ) O
ﬂq(y) OT'k(8)/k <€7, —BQOC (x’ x/> Ork(7)/k | €75 BQoo (1‘7 x/)

5.2. Clifford algebras and Brauer classes. For a quadratic form F over a field of charac-
teristic not equal to 2 we use Clif(F) to denote the Clifford algebra of the restriction of F' to
a maximal regular subspace, and Clif(F’) to denote the corresponding even subalgebra. By
Witt’s Theorem [Lam05, Chap. I, Theorems 4.2 and 4.3], these do not depend on the choice
of maximal regular subspace. If F' has even rank, then Clif(F") is a central simple algebra,
which will be identified with its class in the Brauer group. This extends to quadratic forms
over finite étale algebras in the natural way, i.e., factor by factor.

In particular, we will consider Clif(Qy) € Br(k(T)) where Q7 is a quadratic form defining
the quadric Qg corresponding to a subscheme T C 8. This depends on the choice of quadratic
form as indicated by the following lemma.

Lemma 5.5. Let s € 8 and ¢ € k(s)*. Then
Clif(cQs) = Clif(Qs) + (g5, ¢) € Br(k(s)) .
Proof. This follows from a short calculation using [Lam05, Chap. V, Corollary 2.7]. 0J

€ k(§).

For a rank 4 quadric Q,, s € 8 with ¢, € k(s)*?, any quadratic form Q, defining Q, is a
constant multiple of the reduced norm form of a quaternion algebra whose class in Br(k(s)) is
equal to Clif(Qy) [EKMO8, Prop. 12.4]. The following lemma gives a description of Clif(Qs)
in cases when ¢, ¢ k(s)*%.

Lemma 5.6. Assume that there exists some s € 8 with e, ¢ k(s)*? such that Qg has a
smooth k(s)-point. Let Qs be a quadratic form whose vanishing definines Qs. Then for
any Gal(k(s))-stable pair {z,2'} C Q,(k) and any k(s)-linear form ¢ defining a hyperplane
tangent to Qs at a smooth point with ¢(x)l(x") # 0 we have the following equality in Br(k(s)):

i _ _BQs (z,2)
cile) = (582’4 o)



where Bg, denotes the bilinear form corresponding to Q.

Proof. By [VAV14] Lemma 2.1], for any ¢ = ¢, tangent to Qs at a smooth point, the quadric
Q, is defined by the vanishing of Q, = c(oly — (3 + gs@), for some linear forms ¢, ¢, {3 and
some ¢ € k(s)*. In particular, we have {o(z)l1(z) = lo(x)? — £43(x)? and similarly for z’.
Thus, we may compute:

_ Bg,(z,2') _ . lo(x)ly(x") + o2 )by () — 209(x)lo (") + 2e4l3(x)l5(2")
0(z)0(x') lo(z)lo(2)
_ b(a')? —ely(2)? | bo(w)? — esly(x)® la()la(a’ O3(z)l3(x")
N ( lo(2')? lo(x)? 250(1’)50(%') i 28850(1’)50(95'))
_ (k) GG . . (b)) G) :
N [(50(95) 50@')) ) (ﬁo(fc) fo(l‘/)) ] 7
which shows that (55, —%) = (&5, —c). Thus, it remains to relate the quaternion

algebra (g4, —c) to the Clifford algebra of Q)s. By [Lam05, Chap. V, Corollary 2.7],

CHf(Q.) = CHE(Qul 1) ® CHE(E - Qul ) ~ Ma(k) @ (—c ce.).
To complete the proof, we observe that (—c,ces) = (—c,e5) = (€5, —¢) € Br(k). O
Definition 5.7. Given T C 8 such that N(eg) € kX2, define
Cy := Cory(q)k(Clif(Q7)) € Br(k).

Remark 5.8. Even though Clif (@) may depend on the choice of quadratic form defining the
pencil, the condition N(eg) € k*? ensures that the class Cy does not. Indeed, if one computes
Cy using instead a form c@Qs which differs from Q5 by ¢ € k*, Lemma shows that the
result will differ by Corg)/i(e7, c) = (N(eg), ¢), which is trivial whenever N(eg) is a square.

Lemma 5.9. The kernel of the canonical map Br(k) — Br(X) is generated by
{C, : s €8 such that e, € k(s)**}.

Proof. By the exact sequence of low degree terms coming from the Hochschild-Serre spectral
sequence [CTS21, Prop. 4.3.2], the kernel of Br(k) — Br(X) is the image of the coker-
nel Pic(X) — Pic(X)%. By [VAV14, Prop. 2.3] (which relies on results from [KSTS89)]),
Pic(X)% is freely generated by the hyperplane section and, for every s € § such that
g5 € k(s)*?, the divisor class Normyx([Cs]) where Cy is obtained by intersecting X
with a plane contained in Q. Since the hyperplane section is k-rational, the cokernel of
Pic(X) — Pic(X)%* is generated by

{Normys),1([Cs]) : s € 8 such that e, € k(s)** and Q, contains no k-rational planes} .

By definition, the image of [Cs] in Br(k(s)) is the Severi-Brauer variety whose points param-

etrize representatives of the class [Cs]. Since g4 is a square, by [CTS93, Thm. 2.5|, Q, is a

cone over the surface Z; x Z,, where Z, is a smooth conic obtained by intersecting Q, with

a general 2-plane. Since planes in a fixed ruling on Q correspond to fibers in a projection

Zs X Zs — Zs, we deduce that [Cy] — Zs € Br(k(s)). By [EKMO§| Prop. 12.4] we also have

that Clif(Qs) = Z, € Br(k(s)). Hence, Normys)/x([Cs]) = Cory(s)/i(Clif(Qs)) = Cs. O
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5.3. Local evaluation maps.

Lemma 5.10. If there exists a degree 2 subscheme T C 8 such that for allt € T, g; € k(t)*?
and Qy has a smooth k(t)-point, then X (k) # (.

Proof. Let T(k) = {t1,t2}. The assumptions in the lemma imply that there are k(¢;)-rational
planes contained in Q;,. The intersection of one with X gives a k(;)-rational conic C; on
X. If t; ¢ T(k), then we replace Cy with the conjugate of Cy. Thus, the pair {Cy, Cy} are
Galois invariant. As computed in [VAV14, Proof of Proposition 2.2] we have C,.Cy = 1.
(We note that our Cy may be either Cy or Cf in the notation of [VAV14], but both have the
same intersection number with Cy.) Therefore the intersection of these divisors produces a
k-point on X. O

Lemma 5.11. Assume that k is a local field of characteristic not equal to 2 and let T C 8
be a degree 2 subscheme such that N(egz) € k*%. Then, for any quadratic extension K/k
with ex € k(T )*? and K # k(T), there exists y € G(k) corresponding to a quadratic point
Spec K — X. Moreover, for such vy,

fer ifey ¢ k(T
foly) = {0 if ey € K(T)

Proof. It X (k) # (), then for any nontrivial extension K/k we have X (k) C X (K) because
k is local (see, e.g., [LL18, Proposition 8.3]). Then any pair of Gal(K/k)-conjugate points
on X will give the required y € G(k). Now we prove the first statement in the case where
X (k) = 0. Over any local field, there is a unique rank 4 quadric (up to isomorphism) that
fails to have a point, and it has square discriminant. Furthermore, this anisotropic quadric
has a point over any quadratic extension of k(t).

If &; € k(t)*? for some t € T (equivalently, for all ¢ € T by Corollary ), then Q; may
not have a smooth k(¢)-point, but it will have a smooth point over any quadratic extension
of k(). If K/k is a quadratic extension different from k(7)/k, then k(T) will be a quadratic
extension of k(7) and hence we may apply Lemma . Moreover, since g5 € k(T)*2, by
definition, Sy = 0 € Br(G).

Now we consider the case when &; ¢ k(#)*2, so @; has nonsquare discriminant, and thus
is isotropic. Hence, Lemma [5.10| gives the existence of K-points on X for any K such that
ey € k(Tx)*2

Now suppose y corresponds to the line joining the K/k-conjugate points z,2’ € X(K),
with K satisfying the conditions of the lemma. By continuity of the evaluation map, we may
reduce to the case where 7m(y) # oo, m(y) € T. By Lemma |5.4f we have

ﬁﬂ'(ﬂ) = (577 —Bg, (.CE, x/)/BQoo (x, x/»
= COl"k(g')/k (87, _BQT (J}, .’L‘,)) + (Nk(fj)/k(gj), BQoo (l’, ZL’,))

= Coryk (67, —Bg, (@, 2")) (since N(eg) € k*?)
= Cork [(e7, by (z)ls(2")) + Clif (Qy)] (by Lemma
= COl"k(TK)/k (eq,l3(x)) + Cork(q)/k Clif(Qq)

= Cory(y)/r Clif (Q7) (since ey € k(Tg)*?)
=Cy (by Definition [5.7)) . O
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Lemma 5.12. Assume that k is a local field of characteristic not equal to 2. Suppose
s € 8(k) is such that Qs has a smooth k-point and let vy denote the vertex of Qs. For any
t € A (k) — {s} sufficiently close to s, we have

Gi(k)#£0 <= (g5t —35)=Clif(Qs) + (g5, —Qoo(vs)) in Br(k).

Remark 5.13. Note that by Lemma[5.5] the sum Clif(Q;) + (€5, —Qoo(vs)) appearing on the
right-hand side above does not depend on the choice of quadratic form defining the pencil.

Proof. Since t € A'(k) — {s} is sufficiently close to s and § is closed, we have ¢t ¢ § and Q;
has rank 5. So by [EKMO08, Ex. 85.4] the Severi-Brauer variety G; and the even Clifford
algebra Clify(Q;) (which is a central simple k-algebra) determine the same class in Br(k). In
particular, G,(k) # 0 if and only if Clifs(Q;) = 0 in Br(k).

Since X is smooth, Q;(vs) # 0. So the quadratic forms Q; and Q)L ®Q;
equivalent by [Lam05|, Chap. I, Cor 2.5]. Therefore,

Clifo(Q:) = Chf(—Q¢(vs) - Qtl(p,)+) (by [Lam05, Chap. V, Cor. 2.9])
= Clf (Q¢](pyy) + (disc(Q¢(r), —Qi(vs)) (by Lemma [5.5).

For t sufficiently close to s, the quadratic forms Q|1 and Q)= will be equivalent. For

such t, Clif (Q¢](,,)+) = Clif(Qs) € Br(k) and disc(Q; S<US>L) = disc(SQS) € k> /k*2. Hence
Clifo(Q) = CLE(Q,) + (4, —Qi(vs)) -

To complete the proof, we note that Q;(vs)= (Qs + (t — $)Qoo)(vs) = (t — ) Qoo (vs). O

(vs) are

Lemma 5.14. Assume that k is a local field of characteristic not equal to 2 and T C 8 is a
degree 2 subscheme with N(eg) € k*? and ey ¢ k(T)*2. Then there exists y € Gy(k(T)) such
that w(y) = T. Moreover, for any such y,

Cori(ny/k(Br(y)) = Cr + (6, —Ag N(Qwo(v7))) € Br(k),

where & € k* is an element whose image in k(T)* /k(T)*? represents ey, Ag is the discrim-

inant of k(T)/k (which we take to be 1 if T is reducible), and vy is the vertex of Q.

Proof. By [VAV14, Lemma 3.1] there exists € € k* such that e -&, € k(¢)*? for all t € T. Fix
a closed point s € 7, and let s’ be the unique k(s) point in Ty — {s}.

Since €4 € k(s)*?, Q, is a cone over an isotropic quadric and as such contains smooth k(s)-
points and k(s)-rational lines (passing through the vertex). Hence Gs(k(s)) is nonempty. By
the implicit function theorem, we can find ¢ € (P' — {s})(k(s)) arbitrarily close to s such
that Gi(k(s)) # 0. In addition, by Lemma and the fact that the evaluation map
B: G(k(s)) — Br(k(s)) is locally constant and constant on the fibers of 7 : G — P! (because
By is the pullback of a element of Br(k(P!))), we may choose such a ¢ sufficiently close to s
so that

(1) (et = s) = Clif(Qs) + (£, Qoo (vs)) € Br(k(s)),
(2) Br(Gs(k(s))) = br(Gi(k(s))) € Br(k(s)), and

(3) t — s’ and s — s represent the same class in k(s)*2.
Then for y; € Gs(k(s)) and y; € Gi(k(s)), we have

Br(y) = Br(yr) = (&, (t = s)(t — &) = Clif(Qs) + (£, =Qoo(vs)(s — &) € Br(k(s)).
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)) — G is such that m(y) = T. Then, because ¢ € k* we have
e, Normyg) k(s — 5')) = (¢, (s — s')(s' — s5)). It follows that
)=

Cory i [Clif (Q7) + (¢, Qoo (v7)) + (g, 5 — )]
— Corunyu (CHE(Qn)) + (& N(Quu(v0))) + (&, (s — )5/ — 8))
=Cr+ (6, N(Qw(v7))) + (g, —Ag) . O
5.4. Evaluation of Brauer classes on G(Ay).
Definition 5.15. Let k be a global field of characteristic not equal to 2. Given T C 8§ define
={v e Q:eq, €k(8,)* and Cy, # 0}.

Theorem 5.16. Assume that k is a global field of characteristic different from 2.

(1) There exists (y,) € G(Ax) such that for all degree 2 subschemes T C 8 with N(eg) €

kX2, we have Y7 o inv,(Br(ys)) = @ €Q/Z.

(2) For allt € 8(k) there exists (y,) € G(Ay) such that for all degree 2 subschemes T C &
with N(eg) € k** and t € T, we have Y7 .o invy(Br(y)) = % €Q/Z.

Proof. (1) It suffices to prove the result for {8y : T € T}, where T is a collection of
degree 2 subschemes of § as in Corollary , with corresponding ¢ € k£* simultaneously
representing the discriminants of all T € T.

We define an adelic point (y,) € G(Ay) as follows. For v € €, such that ¢ € k(T,)*? for
some J € T (equlvalently, for all T € T by Corollary -. let y, € G(k,) be any point
(which exists by Corollary [£.6). Note that if ¢ € k(T,)*?, then B‘I@k = 0 by Proposition5.1]
For each v € Q, with € ¢ k(iT )X2 for some (equivalently all) T € T, let y, € G(k,) be a point
corresponding to a k,(y/2)-point on X, as provided by Lemma . Note that Lemma m
further implies that for such y,, By(y,) = Cy, for all T € T. Thus, for any T € T we have

> v (Br(yn) = Y v, (Cr) = Y inv, (C) = #RT €Q/Z,

vEQy edk(T,)*2 e€k(Ty)*2

Suppose y: Spec(k(T
Cork(q)/k(e, S — S/) =

(
Corir) k(B (y)

where the penultimate equality follows from quadratic reciprocity.

(2) Let t € 8(k) and set € := &;. If t is not contained in any degree 2 subschemes T C 8
with N(eg) € 2, then we need only show that G(Ay) # 0, which follows from Corollary [4.6|
Thus, we may assume there is some degree 2 subscheme T C § containing t such that
N(eg) € k*2. For any such T we have ey = (g,¢e) € k(T)* /k(T)*? ~ k> /k*? x k™ /k*2.

We define an adelic point (y,) € G(Ay) as follows. For v € O such that ¢ € kX2, take y, to
be any point of G(k,) (which exists by Corollary [4.6]). For v € ;, such that € & k)2 we take
Yo € G(ky) to be any point such that 7(y,) € P'(k,) is close enough ¢ so that Lemma [5.12]
applies (note that Q, is a cone over an isotropic quadric surface so the hypothesis of the
Lemma [5.12] is satisfied) and so that, for all s € 8(k) — {t} with ee, € k2, (7 (y,) — s) and
(t — s) have the same class in k) /k) %

Suppose T = {s,t} C 8(k) is such that N(eg) € k*2. For v € €, such that € € k}? w
have inv, (By(y,)) = 0. For v € Q; such that & ¢ £ we have

invy (Br(ye)) = invy (e, (m(y) — 1)(7(y0) — 5))
= inv, (g, 7(yy) — t)) + inv, (g, — )

= inv, (Clif(Qy)) + inv, (e, —Quo(v4)) + inv, (e, t — s) (By Lemma :
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Since (&, —Qoo(v¢)(t — s)) is an element of Br(k), its local invariants sum to 0. Furthermore,
(6, —Qoo(vy)(t — 8)) has trivial invariant at all v € , where e € k2. Thus,

> vy (Br(y)) = D invy(Br(y) = Y invy(CLE(Q,) = Y inv,(ClLif(Q1)).

vEQ e¢kXx? e¢kX? ecky?

where the last equality follows from the fact that the local invariants of Clif(Q;) € Br(k)
sum to 0. For v € . such that g; € kX? we have inv, (Clif(Q;)) = inv,(C;,). Hence,

N v, () = Y v, (Gr,) = #QRt |

veEQy cekX?

The following lemma relates the set Ry to the condition given in () of Theorem .

€Q/Z. O

Lemma 5.17. Let k be a global field of characteristic not equal to 2 and T C 8§ a degree 2
subscheme such that N(eg) € k*2. Then v € Ry if and only if there are an odd number of
components of Qg, = Uy, e, Qs, which have no smooth k(t,)-point.

Proof. Let v € Q. First suppose that g5, € k(8,)*%. Then v ¢ Ry by definition. Note also
that for all t, € T,, &, & k(t,)*? (a priori this must hold for some t, € T,; the stronger
conclusion holds because T has degree 2 and N(ey) € k*?). Recall that there is a unique
anisotropic quadratic form of rank 4 over any local field and that it has square discriminant.
Hence, when e, & k(t,)*?, all components Q;, have smooth k(t,)-points.

Now suppose that ey, € k(8,)*?. As above &, € k(t,)*?, for each t, € T,. Then
the rank 4 quadratic forms ;, are equivalent to constant multiples of the norm forms
of the quaternion algebras Clif(Q;,) (see [EKMO8, Prop. 12.4]). In particular, Q; has
a smooth k(¢,)-point if and only if Clif(Q;,) = 0 € Br(k(¢,)). The corestriction maps
Cory(s,)/k, @ Br(k(t,)) — Br(k,) are isomorphisms, so Cy, = >, .o Cory,)/m, Clif(Q:,)
is nonzero if and only if there are an odd number of components of Qg with no smooth
k(t,)-points. By definition v € Ry if and only if Cy, # 0. O

Lemma 5.18. Assume that k is a global field of characteristic different from 2 and suppose
T C 8 is irreducible of degree 2 such that N(eg) € k*2. For any t € T(k(T)), the cardinalities
of the sets

Ry C Q. and R; C Qk(q)
have the same parity.

Proof. For a prime v € €2, we have e5 € k(T,)*? if and only if ¢; € k(¢)? for all (equivalently
some) w € Sy with w | v. For such v we have

inv,(Cr,) = inv,(Corm,k(CLf(Qq))) = > inv, (CLf(Qy)) = > _invy(Cy,).
w|v wlv

In particular, Cy, # 0 if and only if there are an odd number of primes w | v with C;, # 0. O
6. PROOFS OF THE MAIN THEOREMS

6.1. Corollaries of Theorem [5.16l

Corollary 6.1. Assume that k is a global field of characteristic not equal to 2 and that either

of the following conditions hold:
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(1) Every nontrivial element of Br(G)/ Bro(G) can be represented by Sy for some degree
2 subscheme T C 8 such that N(eg) € k*? and # Ry even; or

(2) Every nontrivial element of Br(G)/ Bro(G) can be represented by Sy for some degree
2 subscheme T= {t1,t2} C 8(k) such that N(eg) € k*2.

Then G(AR)B # 0.

Proof. If condition holds, then the corollary follows from Theorem . Now assume
condition ([2) holds and (|1)) fails. Then there exists a nontrivial element of Br(G) of the form
Brepy with t,t" € §(k) such that Ry has odd cardinality. Note that Ry .y is the symmetric
difference of R; and Ry. Thus, interchanging ¢ and ¢’ if needed we may assume R; has even
cardinality. Theorem then gives an adelic point orthogonal to all Sy such that T has
degree 2, contains ¢t and N(eg) € k*2. The result follows since Corollary shows that
such 7 generate Br(G)/ Bro(G). O

Remark 6.2. If both conditions of Corollary fail, then Br(G)/ Bro(G) ~ Z /27 by Corol-
lary and any Sy with T of degree 2 which represents the nontrivial class must have T
irreducible. Thus, 8 must contain an irreducible degree 2 subscheme T such that

° N(e’ff]) S ]fXQ,

o o5 ¢ k(T)"2,

o if #(8 —T)(k) =3, then g; ¢ k*? for all t € § — T, and

e #Ry is odd, which in particular implies that Qs has no smooth k(7T)-points.

Corollary 6.3. Assume that k is a global field of characteristic not equal to 2. Sup-
pose there is a degree 2 subscheme T C 8 with N(eg) € k*? such that Ry has odd car-
dinality.  Then G(Ap)B" # G(Ay) and there exists a quadratic extension K/k such that
Xr(Ag) # Xg(Ag)B = 0. In particular, G does not satisfy weak approzimation and there
exists quadratic extension K/k such that Xy has a Brauer-Manin obstruction to the Hasse
principle.

Proof. The first statement follows immediately from Theorem . For the second state-
ment we construct K by approximating fixed quadratic extensions of k, for the primes
vesS :={v: Xk, = 0or inv,o87: G(k,) — Q/Z is nonzero}. (In particular, by
Lemma and the definition of Cy, we will approximate K at every prime where Cy
ramifies.) For such v, if ¢ ¢ kX%, then we fix K, := k,(y/2). If v is such that ¢ € k%, then
we let K, be any quadratic extension such that X (K,) # (). Then Lemma implies that
for every v € S, there exists a y, € G(k,) corresponding to a quadratic point Spec K,, — X
and for all such y,, B7(y,) = Cq, if € € kX? and B7(y,) = 0 otherwise. Furthermore, for
v ¢ S (which necessarily means that Cy, = 0), our assumptions imply that X (K,) # () and
that f7(y,) = 0 for all y, € G(k,). Thus, for all (y,) € G(Ay) corresponding to an adelic
quadratic point Spec(Ax) — X we have

Zinvv Br(yy) = Z inv, Br(y,) = Z inv, Cy, = Z inv, Cy, = #ly € Q/Z.

2
v e¢kl? e¢hky? eeky?
By Proposition and Corollary @, this implies that X (Ag)B = 0. O
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Example 6.4. Let G — P! be the fibration of Severi-Brauer threefolds corresponding to the
pencil containing the quadrics given by the vanishing of the rank 4 forms

Qo = 1or, — 73 + a3, and
Q1 = ax] + bx] — abx; — 1

where a,b,e € k*. Then T = {0,1} C 8 is a degree 2 subscheme with ex = (¢,¢). Hence,
Corollaries and imply that G(AR)B" # 0. Note that Qy has smooth k-points, so
Ry=Ri={veQ : ¢ €kX? and inv,(a,b) # 0}. Clearly one can choose a,b,e so that Ry
has odd cardinality (e.g., for k =Q, a =3,b= 7,6 =2 we have Ry = {7}), in which case G
has a Brauer-Manin obstruction to weak approximation and the base locus X of the pencil
is a counterexample to the Hasse principle over some quadratic extension by Corollary|[6.3.

If 4 —ab € kX* — k*? for some prime v € Ry (which holds for the values indicated above),
then there ezists no quadratic extension K/k such that Xk is everywhere locally solvable
and Br(Xg) = Bro(Xk). To see this first observe that 4 — ab = &, is the discriminant of
the rank 4 quadric Q; = = (Q1 — abQqo) (here t = 1/(1 — ab) € 8(k)). Now note that if
a prime v € Ry splits in a quadratic extension K, then Xk is not locally solvable because
Q1 has no smooth K, -points for the primes w | v. On the other hand, Proposition
shows that By @ K € Br(Xg) lies in the subgroup Bro(Xx) if and only if ¢ € K*? (in
which case K = k(y/€) and all primes of Ry split in K) or es_g € k(8x)** (in which case
K = k(v/4 — ab) and so some prime of Ry splits in K by assumption). We conclude that if
K/k is a quadratic extension such that Sy ® K € Bro(Xk), then Xk (Ag) = 0.

Corollary 6.5. Assume that k is a global field of characteristic not equal to 2. There is an
adelic 0-cycle of degree 1 on G orthogonal to Br(G).

Proof. We may assume that G(A;)5 = () (for otherwise the Corollary holds immediately)
and hence, that the hypothesis of Corollary fails. As explained in Remark [6.2] this
implies that there is an irreducible degree 2 subscheme T C 8§ such that N(ey) € k*?,
er ¢ k(7)*? and Ry has odd cardinality. By Corollary [5.2|(3), the existence of such an
irreducible T implies that Br(G)/Bro(G) has order 2. Moreover, if t € T(k(T)) then, by
Lemma the set Ry C iy has odd cardinality. Thus, by Theorem applied over
k(T) we obtain an effective adelic O-cycle of degree 2 over k, denote it by (z,), such that
> veq, Vo (Br(20)) = 1/2. 1 (y,) € G(Ay) is any adelic point (which exists by Corollary {.6),
then (2, — ¥,) is an adelic O-cycle of degree 1 and, since G(A)®" = G(A;)?" = (), we have
Zueﬂk v, (Br(z0 — yo)) = Zver inv, (Br(2y)) — Zveﬂk inv, (By(y»)) =1/2-1/2=0. O

Remark 6.6. In the cases not already covered by Corollary [6.1] the proof above hinges on
constructing an adelic 0-cycle of degree 2 on G that is not orthogonal to the Brauer group.
Lemmal5.14|can be used to give an alternative construction of such a 0-cycle. See Section 7.1

6.2. Proof of Theorem [1.1 Let X’ C P} be a smooth complete intersection of two
quadrics over k. By Bertini’s theorem the intersection of X’ with a suitable linear sub-
space will yield a smooth complete intersection of two quadrics X C P4, If k is a local field,
then the result follows from Theorem 2.1l It remains to consider the case that k is a number
field. By Corollary [6.5] G has an adelic 0-cycle of degree 1 orthogonal to the Brauer group.
Since G is a pencil of Severi-Brauer varieties, [CTSD94, Theorem 5.1] shows that G has a

0-cycle of degree 1. By Proposition this gives a 0-cycle of degree 2 on X.
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6.3. Proof of Theorem [1.2] Let X’ C P} be a smooth complete intersection of two
quadrics over k. As noted above, X’ contains a smooth of two quadrics in P{. Thus,
Theorem implies that X’ contains a quadratic point when k is local. This proves Theo-
rem . Similarly, Theorem follows from Proposition m

Now assume k is global of characteristic not equal to 2. Theorem implies that there
is a quadratic extension K/k such that X/, is everywhere locally solvable. If k is a global
function field and n > 5, then X satisfies the Hasse principle by [Tial7]. This proves
Theorem .

We claim that (under the hypotheses of the theorem) X’ contains a smooth del Pezzo
surface X of degree 4 such that the corresponding Severi-Brauer pencil G has G(A)B # 0. If
n > 5, then by [Wit07], Section 3.5] the intersection of X’ with an appropriate linear subspace
is a smooth del Pezzo surface X of degree 4 with Br(X) = Bro(X). Corollary [5.2([7)) implies
that the corresponding G has Br(G)/Bro(G) = 0, so G(A;)B" # 0 by Corolla. When
n =4, X' = X is itself a smooth del Pezzo surface of degree 4. If all of the nontrivial elements
of Br(G)/Bro(G) can be represented by some [y with T reducible, then Corollary
implies that G(Ay)P" # 0. Otherwise, by Corollary [5.2} the order of Br(G)/Bro(G) divides
2 and any nontrivial element can be represented by Sy with T irreducible and N(eg) € k*2.
Any such element determines a quadratic extension L = k(7) and the assumption in case ({5
of the theorem is that the geometric components of Qg (which are defined over L) each fail
to have smooth local points at an even number of primes of L. By Lemma this implies
that Ry has even cardinality and so G(A)B" # () by Corollary .

If £ is a number field for which Schinzel’s hypothesis holds, then it is a result of Serre that
the Brauer-Manin obstruction is the only obstruction to the Hasse principle for fibrations
of Severi-Brauer varieties (Serre’s result is unpublished, but a more general result [CTSD94,
Theorem 4.2] implies this result of Serre). In this case we obtain a k-point on G and,
consequently by Proposition 4.4 a quadratic point on X. To prove the result assuming &
satisfies (x) it is enough to find a quadratic extension K/k such that X (Ax)P" # (0. The
existence of such a K follows from Proposition , since as noted in Corollary @ the
map Br(X)/Brg(X) — Br(G)/Bry(G) given by Proposition is an isomorphism.

7. COMPLEMENTS AND REMARKS

7.1. Remarks on the cases not covered by Theorem [1.2] Suppose X is a del Pezzo
surface of degree 4 over a global field k of characteristic not equal to 2 with corresponding
Severi-Brauer pencil G such that the conditions of Corollary are not satisfied. As noted
in Remark (6.2 this implies that Br(G)/ Bro(G) is cyclic of order 2, with the nontrivial class
represented by By for an irreducible subscheme T C § of degree 2 with N(eg) € k%2 for which
# R+ is odd. By Corollary , B3 obstructs weak approximation and so G(A)®" # 0 if and
only if there exists a prime v € ; such that the evaluation map gy : G(k,) — Br(k,) is not
constant.

Let C5 := Cy + (6, —Ag N(Quo(v7))) € Br(k) be the class from Lemma and define
Ry ={ve : g7 ¢ k(8,)** and inv,(C}) # 0}.

Since Ry has odd cardinality, so too must Rf;. In particular, R} is nonempty. If T, is reducible
for a prime v € R, then Lemma shows that the evaluation map f7: G(k,) — Br(k,) is

nonconstant and so G(Ag)B" = G(A)%" #£ (. If T, is irreducible at v € RS, then Lemma
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shows that Gy @ k(T,): G(k(T,)) — Br(k(7,)) is nonconstant. Indeed the lemma gives a
k(T,)-point where Sy @ k(T,) takes the nonzero value Cy , but Sy ®k(T,) takes the value 0 at
any elements in the subset G(k,) C G(k(7,)). Unfortunately, this is not enough to conclude
that G(Ag)P" # 0 because f7: G(k,) — Br(k,) can still be constant. Using the lemma below
one can check that this occurs at v = 5 for the pencil of quadrics defined by

Qo = —552% + 21119 + 25 + 527 and Qo = 33z — 527 — 25 + 107374 .

We note, however, that in this example (and in all others with R; # () that we have con-
sidered) there is some prime w € €. (in this case w = 2) for which the evaluation map
By: G(ky) — Br(k,) is not constant and, hence, G(A)5" # .

Lemma 7.1. If v € Rf is such that T, is irreducible, k, has odd residue characteristic and
X(k(T,)) =0, then By: G(k,) — Br(k,) is constant.

Proof. Suppose X (k(T,)) = 0 and let y € G(k,). Then y corresponds to a quadratic point
Spec(K) — X, with K/k, a quadratic field extension such that K # k(7,). Since k,
has odd residue characteristic, k(T7) is the compositum of all quadratic extensions of k,. In
particular, it must contain a square root of e5 (since ey € kk(7T,)*?). Therefore, Lemma
applies, and its conclusion shows that S7(y) does not depend on y. 0]

In contrast, the following lemma shows that for X (in place of G) nonconstancy of an
evaluation map over an extension of k, does imply nonconstancy over k,.

Lemma 7.2. Let X be a del Pezzo surface of degree 4 over a local field k of characteristic
not equal to 2 such that X(k) # 0. If a € Br(X) is such that invyoa: X (k) — Q/Z is
constant, then for all finite extensions K/k, invg oo : X (K) — Q/Z is constant and equal
to [K : k](invy oa).

Remark 7.3. In the case that k, has odd residue characteristic, 7T, is irreducible, e, € kv“,
and inv,(C%) # 0, Lemma can be used to prove the converse of Lemma Namely, if
By is constant on k,-points, then X (k(7,)) must be empty.

Proof. Let P € X(k). By [SS91, Lemma 4.4] (which follows from [CTC79, Theorem C]),
every 0-cycle of degree 0 on X is linearly equivalent to @) — P for some @ € X (k). Therefore,
for any closed point R on X, there is some @) € X (k) such that R ~ @Q + (deg(R) — 1)P.
Since evaluation of Brauer classes factors through rational equivalence and by assumption
a(P) = a(Q), we see that invg oy = [K : k|(invy o) for any extension K/k. O

Remarks 7.4.

(1) The result of |[CTC79] used in the proof above shows that every 0O-cycle of degree
1 on a conic bundle with 5 or fewer degenerate fibers is rationally equivalent to
a rational point. The example mentioned just before Lemma shows that this
does not extend to more general Severi-Brauer bundles (at least over a p-adic fields).
Indeed, evaluation of Brauer classes factors through rational equivalence and in the
example there is a Brauer class on G which is nonconstant on 0-cycles of degree 1,
but is constant on rational points. An example of a Severi-Brauer bundle (in fact
a conic bundle) with a 0-cycle of degree 1 but no rational point was constructed by
Colliot-Thélene and Coray [CTC79, Section 5]; in this example the conic bundle has

6 singular fibers.
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(2) If X/k is a del Pezzo surface of degree 4 over a number field which is a counterexample
to the Hasse principle explained by the Brauer-Manin obstruction, then as shown
in [CTPO0, Section 3.5] there exists a € Br(X) such that X(A;)* = 0 (a priori
multiple elements of Br(X) might be required to give the obstruction). An immediate
consequence of Lemmais that over any odd degree extension K/k the same Brauer
class will give an obstruction, i.e., Xx(Ag)*< = (). This answers a question posed
in [CTP00, Remark 3, p. 95]. In particular, this shows that the conjecture that all
failures of the Hasse principle for del Pezzo surfaces of degree 4 are explained by
the Brauer-Manin obstruction is compatible with the theorems of Amer, Brumer and
Springer |[Ame76|, Bru78,[Spr56| which imply that an intersection of two quadrics with
index 1 has a rational point.

7.2. A degree 4 del Pezzo surface with obstructions only over odd degree exten-
sions.

Proposition 7.5. Let X/Q be the del Pezzo surface of degree 4 given by the vanishing of
Qo = (z0 + 71)(z0 +271) — 25 + 505, and Q) = 2(wowy — 75 + 523) .
For any finite extension K/Q we have Xy (Ag)B = 0 if and only if [K : Q] is odd.

Proof. This surface was considered by Birch and Swinnerton-Dyer [BSD75] who showed that
X is a counterexample to the Hasse principle explained by the Brauer-Manin obstruction.
It follows from Lemma that for any K with [K : Q] odd, Xk is also a counterexample
to the Hasse principle explained by the Brauer-Manin obstruction.

Since X is locally solvable over Q, Br(X)/ Brg(X) is generated by the image of Br(X)[2].
The singular quadrics in the pencil lie above 8(Q) = {0, £1, %} C P! and the corre-
sponding discriminants satisfy g = ¢ = 5, e_; = —1 and N(e(ﬂﬁ%)ﬁ) = —1. For any
K/Q linearly disjoint from &, = Q(v/—1,v/2,/5), the restriction map induces an isomor-
phism Br(X)/ Bro(X) ~ Br(Xx)/Bro(Xr) and so Xx (Ag)?" # 0 by Lemma[3.1j[2). On the
other hand, if K/Q is not linearly disjoint from kj, we can check directly that X (K) # (.
Indeed, K must contain Q(v/d) for some d € {—1,42, 45, £10}. Over these quadratic fields
one can exhibit points:

(1:1:1:0:v/=1),(1:=2:2v/2:v2:1),(4:9:6:0:5/=2), (0:0:V5:1:1),
(5:0:0:0:v/=5), (2V10: —v10:0:2:0), (0: vV/=10:0:0:2). O
7.3. A degree 4 del Pezzo surface with index 4.

Theorem 7.6. There exists a del Pezzo surface X of degree 4 over a field k of characteristic
0 such that X has index 4.

Proof. Let ky be an algebraically closed field of characteristic 0. For ¢ = 1,...,2¢, set
ki = ki_1((t;)) and set k := koy. By a result of Lang and Tate [LT58, p. 678], if A/kg
is an abelian variety of dimension g and n is an integer, then there exists a torsor under
A = A Xy, Spec(k) of period n and index n*. In particular, if C/ky is any genus 2 curve,
then there exists a torsor under the Jacobian J = Jac(Cy) of Cy of period 2 and index 16.
Since C'is defined over the algebraically closed field kg, it has a rational Weierstrass point

over k. As observed by Flynn [Fly09], and worked out in detail by Skorobogatov [Skol0], if
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Jy is a 2-covering 7y : Jy — J (i.e., a twist of [2] : J — J corresponding to A € H'(k, J[2])),
then there are morphisms

J)\<—:])\—>Z)\—>X,\,
where J A — Jy is the blow up of J at 7r;1(0 7), Zy is the desingularized Kummer variety
associated to J, and Z, — X, is a double cover of a del Pezzo surface of degree 4. In
particular, there is a degree 4 morphism Jx — X,. So the index of X, is at least index(Jy)/4,
which will equal 4 for suitable choice of A by the aforementioned result of Lang and Tate. [

Theorem 7.7. Suppose k is a number field and Y is a torsor of period 2 under the Jacobian
of a genus 2 curve over k with a rational Weierstrass point. The index of Y divides 8.

Proof. As in the proof of the previous theorem, the index of Y divides 4 index(X) for some
del Pezzo surface X of degree 4. The result follows from Theorem [I.1] O

Remarks 7.8.

(1) The conclusion of Theorem [7.7|was known to hold by work of Clark [Cla, Theorems 2
and 3] when £ is a p-adic field and when k is a number field and Y is locally solvable.

(2) Arguing as in the proof of the theorem we see that the Kummer variety Z, has index
dividing 4 when k is a local or global field. This is lower than one would expect,
given that Z) is an intersection of 3 quadrics in P3.

(3) The result of Lang-Tate quoted in the proof above shows that over general fields of
characteristic 0, there are examples where Z) and Y have index 8 and 16, respectively.

(4) In response to a preliminary report on this work by the authors, John Ottem sug-
gested the following alternate proof of Theorem which gives an example over the
Cs field k(P2). Let Dy, Dy C P2 x P* be two general (2,2) divisors over C, and let
Y = D;ND,. Then, by the Lefschetz hyperplane theorem (applied twice), restriction
gives an isomorphism H*(P3 x P4, Z) = H*(D;,Z) = H*(Y,Z). Note that the generic
fiber of the first projection is a del Pezzo surface of degree 4 over k(P?). Hence any
threefold V' C Y can be expressed as aHl2 + bH Hy + cH22, where H; denotes the
pullback of O(1) under the projection m;. Then the degree of V' — P3 is given by

V.H? =V.H} X = (aH? + bH,H, + cH2).H} (2H, + 2H,)?,

which must be divisible by 4. Thus Yys) has index 4. Note that to apply the
Lefschetz hyperplane theorem, we need dim D; > 5, so this argument does not extend
to k(P2).

This construction suggested by Ottem generalizes to arbitrary complete intersec-
tions. Namely, given a sequence of degrees (dy, ..., d,) and an ambient dimension N,
one can consider an intersection of general (dy,d;), (d2, ds), . .., (d,,d,) hypersurfaces
in P x PN, If M > N — r, then the same argument as above yields a (dy, ..., d,)
smooth complete intersection Y C ]P’f{V(PM) with index d;ds - - - d,.

(5) After viewing an early draft of this paper, Olivier Wittenberg shared a correspon-
dence of his from 2013 [Wit13] that provides yet another construction that proves
Theorem Let k be any field of characteristic different 2 such that there exists a
quadric surface () with no k-points that remains pointless after a quadratic extension
E'/k. Wittenberg’s construction gives an example over the field k((t)).

Let f be a general rank 2 quadric in P* that splits over . Then for a general

quadric g, the intersection @ NV (f + tg) is a smooth del Pezzo surface of degree 4
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that has index 4 over k((t)). Indeed, the smooth locus of the special fiber has index 4
by construction, so (for general enough g), the general fiber must also have index 4.
This construction of Wittenberg extends to give complete intersections of n quadrics
with index 2" (over fields of larger transcendence degree).

7.4. The index of a degree d del Pezzo surface. The following table gives sharp upper
bounds for the indices of degree d del Pezzo surfaces over local fields, number fields and
arbitrary fields of characteristic 0. The entries in the column d = 4 are a consequence of the
results in this paper, while for d # 4, they can be deduced fairly easily from known results
as described below.

| djo]8l7][6 [5]4 [3[2]1]
k arbitrary | 3[4 1|6 1|4 [Thm.[7.6] 3|21
k a number field | 32|16 1|2 [Thm.|1.1] |3 |21
kalocal field [ 32|1|20r3|1|2[Thm.[1.1] 3|21

When d =9, Y is a Severi-Brauer surface and so the index of Y divides 3 and examples
of index 3 exist whenever Br(k) contains an element of order 3.

When d = 8, Y = Resy/x(C) is the restriction of scalars of a conic C/L defined over a
degree 2 étale algebra L/k [Pool7, Prop. 9.4.12]. Since the conic has a point over some
quadratic extension L'/L, the index of Y divides 4 and over general fields there are examples
with index 4. Over local and global fields however, the index must divide 2. Indeed, in
this case C' will have a point over a quadratic extension L'/L of the form L' = k' ®; L for
some quadratic extension k’/k. The universal property of restriction of scalars then gives
Y (k') # 0, showing that the index divides 2.

When d = 7, Y (k) # () over any field k£ and so the index is always equal to 1. The same
applies to d = 1,5 (see, e.g., [Pool7, Thm 9.4.8 and Section 9.4.11]).

For d = 6, Y is determined by a Gal(L/k)-stable triple of geometric points on a Severi-
Brauer surface S/L over a quadratic étale algebra L/k such that if S 2 P? then the class of
S in the Brauer group does not lie in the image of Br(k) — Br(L) [Cor05]. If k is a local
field and L is a quadratic field extension, then the map Br(k) — Br(L) is an isomorphism,
so either S = P2 (in which case Y has index dividing 2) or L = k x k in which case the index
of Y divides 3. One can construct examples of index 6 over number fields, by arranging to
have index 2 at one completion and index 3 at another.

For d = 3 and k local, index 1 implies the existence of a k-rational point [Cor76], and so a
cubic surface without points over some local field has index 3. This gives examples of index
3 over number fields as well.

For d = 2, index 2 examples can be obtained by blowing up a degree 4 del Pezzo surface
of index 2 at a quadratic point. By Theorems and [1.2] any del Pezzo surface of degree 4
without points over a local field gives such an example. The surface considered in Section
gives an example over a number field.
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