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Abstract

Plant roots navigate the soil ecosystem with each cell type uniquely responding to environmental stimuli. Below ground, the plant’s
response to its surroundings is orchestrated at the cellular level, including morphological and molecular adaptations that shape root
system architecture as well as tissue and organ functionality. Our understanding of the transcriptional responses at cell type
resolution has been profoundly enhanced by studies of the model plant Arabidopsis thaliana. However, both a comprehensive view of
the transcriptional basis of these cellular responses to single and combinatorial environmental cues in diverse plant species remains
elusive. In this review, we highlight the ability of root cell types to undergo specific anatomical or morphological changes in response
to abiotic and biotic stresses or cues and how they collectively contribute to the plant’s overall physiology. We further explore
interconnections between stress and the temporal nature of developmental pathways and discuss examples of how this
transcriptional reprogramming influences cell type identity and function. Finally, we highlight the power of single-cell and spatial
transcriptomic approaches to refine our understanding of how environmental factors fine tune root spatiotemporal development.
These complex root system responses underscore the importance of spatiotemporal transcriptional mapping, with significant

implications for enhanced agricultural resilience.

Introduction

Plant roots, often buried deep in the soil, are composed of multiple
cell types that collectively form an organ that provides nutrients
and support for plant growth and development. These hidden
structures perform many essential functions, including providing
mechanical stability and facilitating the absorption of water and
nutrients from the soil and transporting them into above-ground
tissues. Roots also serve as the gateway to interactions with the
surrounding complex soil environment known as the rhizosphere.
Here, roots are constantly challenged by a variety of biotic and
abiotic stimuli. Biotic interactions include beneficial symbiotic as-
sociations with mycorrhizal fungi and nitrogen-fixing bacteria
and potentially detrimental encounters with pathogens, para-
sites, and herbivores. Abiotic stressors, in contrast, arise from
nonliving factors such as drought, salinity, extreme tempera-
tures, and soil contaminants. Root architecture and anatomy
are dynamically modulated by these environmental cues. These
changes often represent adaptive strategies aimed at enhancing
the plant’s chances of survival. The molecular basis for this devel-
opmental plasticity includes cellular reprogramming of cell popu-
lations, which result in the production of an optimal root system
to face a given environmental perturbation.

The most characterized root at the cellular and transcriptional
level is that of Arabidopsis thaliana due to its simplicity in develop-
mental patterning. The root stem cell niche gives rise to 5 different
tissues that form the majority of the root and that are largely pat-
terned with radial symmetry. The outermost tissue is the epider-
mis, composed of hair cells (trichoblasts) and nonhair cells
(atrichoblasts), followed by 1 (in Arabidopsis) and up to several
layers of cortex cells; the endodermis; pericycle (including xylem
pole pericycle and phloem pole pericycle cells); as well as vascular

tissue, which is comprised of xylem, phloem, and procambium.
Vascular cells have diverse patterning dependent on the species.
The stele is comprised of pericycle and vascular tissue. Along
the root’s longitudinal axis, cell types undergo development in 3
developmental zones. The meristematic zone consists of rapidly
proliferating cells. Cells then transition into the elongation zone,
where they expand in size. Ultimately, cells progress into the dif-
ferentiation zone, where they acquire their final developmental
characteristics required to carry out their respective functions.
To adapt to challenges in their underground environment, each
of the root cell layers functions as an environmental sensor, and
as such, the development of each cell type is interdependent
with its surroundings. Each cell type relies on a complex gene reg-
ulatory network that is finely calibrated by environmental signals.
These sophisticated networks govern cell type-specific adapta-
tions to both abiotic and biotic stresses. Bulk transcriptomic stud-
ies have provided insight in understanding root system plasticity
at the tissue and organ level. While several studies have explored
cell type resolution transcriptional responses to specific external
factors, there still remains a significant gap in systematic elucida-
tion of mechanisms underlying cell type-specific transcriptional
reprogramming in response to single and combinatorial stresses.
Bridging this gap necessitated the development of methodologies
for higher-spatiotemporal resolution profiling that is amenable
to different plant species. Recent technological advancements
that enable transcriptome surveys at single-cell resolution have
begun to close this gap. Of particular interest are cases where
they are used to interrogate how environmental stressors impact
cellidentities and states. Elaboration of such single-cell omics da-
tasets to include stress responsiveness at cellular resolution in
crops are particularly important to inform cell and tissue-specific
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Advances Box

e Root cell type-specific transcriptional responses:
Emerging research has elucidated the unique ways in
which individual root cell types of plants react to envi-
ronmental stresses. This shift from viewing the root as
a homogenous response unit to recognizing the cell-
specific responses offers a deeper understanding of
plant resilience and adaptation. Most, but not all, re-
sponses are divergent across cell types.

¢ Breakthrough techniques for cell-specific analysis:
Advanced techniques such as single-cell or nucleus
RNA sequencing have enabled, at an unprecedented res-
olution, the study of how individual cell types within
plant roots respond to various external factors.

¢ Understanding cell identity and stress response: The
identity of a root cell plays a crucial role in dictating its
transcriptional response to stress. This insight empha-
sizes the importance of developmental regulators in
maintaining cell identity under stress, enabling precise,
cell-specific responses to environmental challenges.

* sn/scRNA-seq insights: sn/scRNA-seq has emerged as a
key tool in plant research, offering insights into distinct
transcriptional states of cells with the same identity, es-
pecially in their response to environmental stress, re-
vealing complexities previously impossible with bulk
analyses.

e Spatially resolved transcriptomics: Combining cell-
specific RNA sequencing with spatial transcriptomics
has provided a spatial map of specific plant root zones
and cell types that interact with symbiotic partners,
underscoring the potential of these technologies to re-
veal novel aspects of root cell type responses to external
factors.
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targets to enhance stress resilience with minimal undesirable
pleiotropic effects.

This review aims to provide an overview of how different plant
root cell types respond to various abiotic and biotic stimuli. By ex-
amining cell type-specific anatomical, morphological, and tran-
scriptional changes, we highlight the dynamic nature of these
responses. We also explore advancements in single-cell and spa-
tial transcriptomic approaches that offer new insights into these
processes, emphasizing their implications for understanding
plant-environment interactions.

Root cell type-specific adaptive responses to
environment

Root cellular morphology and cell wall composition vary between
different cell types in an individual plant and between species.
This inherent variability primes each cell type to display a unique
and tailored response to the environment throughout development.
Plants adapt to unique and diverse environments; thus, evolution
has likely shaped a multitude of cellular strategies. As the outer-
most root cell layer, epidermal cells play a pivotal role as the pri-
mary interface with the soil environment (Fig. 1). Epidermal root
hairs are specialized single-celled cylindrical projections of the epi-
dermis (Cormack 1949; Salazar-Henao et al. 2016) that are strongly
responsive to environmental factors. To optimize nutrient ion and
water uptake, root hair specification and elongation are modulated
in response to available soil resources. Notably, these include min-
eral nutrients with low mobility in most soil systems, including in-
organic phosphate (Pi) (Bates and Lynch 1996), nitrogen (N), calcium
(Ca), sulfur (S), sodium (Na) (Libault et al. 2010; Salazar-Henao et al.
2016), and manganese (Mn) (Yangetal. 2008), as well as fluctuations
in temperature (Fan et al. 2022). The mode of root hair cellular dif-
ferentiation response is matched to the type of stress the root expe-
riences, depending on the species. Root hair specification and
elongation, for example, is stimulated in low-phosphate condi-
tions in Arabidopsis, tomato, maize, and citrus (Bates and
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Figure 1. Root cell type-specific anatomical and morphological responses to stresses. Schematic representation of a plant root cross-section
highlighting modes of adaptations of different root cell layers to select environmental factors.
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Lynch 1996; Zhu et al. 2005; Cao et al. 2013; Demirer et al. 2023)
while under salt stress, both these developmental processes are
suppressed in Arabidopsis and rice (Wanget al. 2008; Robin et al.
2016). Epidermal cells are also responsible for detecting and ini-
tiating subsequent signal transduction processes. An example
of this is root halotropism or “salt-avoidance” (Sun et al. 2008).
Under salt stress (NaCl), plant roots can override their gravi-
tropic responses through anisotropic epidermal cell expansion
(Yu et al. 2022). This is facilitated by auxin redistribution via
salt-induced endocytosis of PIN-FORMED (PIN2) auxin carrier
proteins in the epidermal cell membrane facing the higher salt
concentrations (Galvan-Ampudia et al. 2013), accompanied
by microtubule reorientation that guides microfibril deposition
pattern (Yu et al. 2022). These coordinated epidermal-specific
changes redirect growth of roots away from the high-salt
environment.

The exodermal layer is located underneath the epidermis and
is considered the outermost cortex layer (Kajala et al. 2021)
(Fig. 1). This cell type has gained less attention in recent decades
as it is absent in the model plant Arabidopsis but is present in
most angiosperms (Perumalla et al. 2008). Similar to the endoder-
mis, the exodermis is reported to contain both lignified and suber-
ized cell walls (Perumalla et al. 2008; Kajala et al. 2021; Manzano
et al. 2022; Canté-Pastor et al. 2024). These chemical structures
in the exodermal cell wall are largely presumed to act as apoplas-
tic barriers, regulating radial water and solute transport in the
root (Hose et al. 2001; Enstone et al. 2002). Exodermal barriers
are highly responsive to extreme environments through modifica-
tions in the amount of these polymers deposited under stress
(Soukup et al. 2007; Shao et al. 2021; Canté-Pastor et al. 2024).
Interestingly, certain plant species lacking an exodermis under
optimal growth conditions can deposit suberin lamellae in the
outer cortex cell layer in response to stress as seen in cotton and
barley under high salt and osmotic stress, respectively
(Reinhardt and Rost 1995; Kreszies et al. 2020).

Extensive variation in the number of cortex cell files is present
within and between plant species. While Arabidopsis is composed
of a single cortex layer, many crop species, including maize, rice,
and tomato, have multiple cortex cell files (Rebouillat et al. 2009;
Burton et al. 2013; Ron et al. 2013). Anatomical differences in the
number and size of the cortical cells are associated with a variety
of beneficial physiological adaptations in plants. For example,
larger cortical cell size in maize genotypes is associated with de-
creased root respiration, increased rooting depth, and enhanced
water uptake under water-limiting conditions (Chimungu et al.
2014a, 2014b). Beyond anatomical differences, cortical differen-
tiation programs display plasticity in response to growth condi-
tions. In Arabidopsis, low phosphate levels trigger increased
radial divisions in the cortex layer, leading to a greater number
of cortical cell files and thus more cortical cell junctions. This
presumably causes more epidermal cells to receive the positional
cue for trichoblast fate, resulting in higher root hair density
(Cederholm and Benfey 2015). Cortex cells also undergo aerenchy-
ma or air space formation. Under anoxic conditions, aerenchyma
formation is induced as cortex cells undergo programmed cell
death (lysigenous aerenchyma), creating large air-filled spaces
in many crop species (Drew et al. 2000; Nishiuchi et al. 2012).
This increased air space facilitates gas exchange and oxygen dif-
fusion to the submerged parts of the root. Maize genotypes with
increased aerenchyma are also associated with drought tolerance
(Zhu et al. 2010). In addition to its formation in anoxic conditions,
in wheat, root cortical aerenchyma is also induced in response to
soil compaction (Fig. 1) (Colombi and Walter 2017).

Surrounding the stelar tissue is the endodermis (Fig. 1).
Endodermal differentiation involves cell wall modifications in
the form of the Casparian strip and suberin lamellae. The
Casparian strip is a lignin-rich structure deposited in a discrete
domain along the central axis of endodermal cells, which acts
as an apoplastic barrier from the cortex into the central vascular
tissue and vice versa (Alassimone et al. 2010; Naseer et al. 2012).
Following Casparian strip synthesis and deposition, hydrophobic
suberin lamellae are deposited on the entire cell surface, creating
a diffusion barrier for the transcellular pathway (Robbins et al.
2014; Andersen et al. 2015; Shukla et al. 2021). Similar to the exo-
dermis, external factors influence the development of the endo-
dermal Casparian strip and suberin lamellae. These include salt
and drought, which, through the plant hormones abscisic acid
(ABA) and ethylene, regulate the biosynthesis and degradation
of endodermal suberin lamellae in response to nutrient stress
(Barberon et al. 2016). For instance, in response to salt stress,
the Casparian strip matures earlier in Arabidopsis, cotton, and
maize endodermal cells (Reinhardt and Rost 1995; Karahara
etal. 2004; Barberon et al. 2016). Collectively, these cellular differ-
entiation features constitute physiologically relevant responses,
mediated by endodermal cells, that contribute to overall root
function in different environments.

The pericycle is the outermost radial cell layer surrounding the
vascular cylinder (Fig. 1). This cell type is unique in that it retains
pluripotency and hence can continuously form new tissues. In
Arabidopsis, a few prepatterned pericycle cells known as “founder
cells” adjacent to the xylem poles are sites of lateral root initiation
and emergence (although not applicable to all vascular plants),
commonly known as root branching (De Smet et al. 2006;
Moreno-Risueno et al. 2010; Santos Teixeira and Ten Tusscher
2019). Lateral root formation is a key developmental mechanism
to increase the root system’s surface area, thereby enhancing its
adaptability to the soil environment. External factors—such as
soil moisture and nutrient availability, including nitrogen, potas-
sium, and phosphate—impact the process of root branching
(zhang and Forde 2000; Armengaud et al. 2004; Miura et al.
2011). Arabidopsis seedlings cease lateral root elongation in
potassium-deficient media, whereas low nitrogen and phosphate
promote lateral root formation and elongation to scavenge avail-
able soil resources (Zhang and Forde 2000; Armengaud et al. 2004;
Pérez-Torres et al. 2008; Miura et al. 2011; Pélissier et al. 2021).
Local repression of lateral root initiation is observed in cereal
crops (maize and barley), as well as Arabidopsis, when the root
is exposed to small air macropores in soil environment, inducing
a transient and local water deficit. This adaptive response at a
macroscale is known as xerobranching and is mediated by ABA
signaling and auxin (Orman-Ligeza et al. 2018).

Deep within the root is the vascular tissue, a transport system
composed of 2 functionally distinct cell types and tissues: xylem
and phloem, and their stem cells collectively termed the pro-
cambium (Fig. 1). Xylem cells are composed of 2 types: proto-
and metaxylem. Protoxylem are developed earlier in root develop-
ment and are characterized by spiral, helical, or annular secon-
dary cell wall thickenings. Metaxylem develop later with
characteristic pitted and heavily lignified secondary cell walls,
which are dead at maturity and resemble hollow tubes (Kubo
et al. 2005; Ruzicka et al. 2015). Water and minerals are trans-
ported through xylem cells from the root to the shoot.
Conversely, phloem distributes photosynthate from “source” to
“sink” tissues (Lucas et al. 2013). Xylem differentiation is plastic
and responds to environmental cues such as water limitation
and salinity. In Arabidopsis, under water deficit stress, metaxylem
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differentiates closer to the root tip, while extra protoxylem cell
files differentiate in the root tip. These developmental responses
are mediated by ABA-induced regulation of miR165, which ulti-
mately regulates class III homeodomain leucine zipper tran-
scription factors transcript abundance, resulting in protoxylem
specification instead of metaxylem (Ramachandran et al. 2018,
2021; Bloch et al. 2019). In several dicot species salinity inhibits
local protoxylem differentiation via a DELLA-mediated repres-
sion of gibberellic acid signaling. This reduction promotes ex-
pression of the xylem master regulator VASCULAR
NAC_DOMAIN 6 (VND6), leading to the discontinuous formation
of protoxylem cell files. Notably, this developmental response
is correlated with salt tolerance (Augstein and Carlsbecker
2022). The plasticity of vascular system differentiation in re-
sponse to external stimuli is also evident during secondary
growth in woody species. For instance, Populus produces xylem
vessel elements with narrow lumens under drought to mitigate
cavitation and hydraulic failure (Rodriguez-Zaccaro and
Groover 2019; Rodriguez-Zaccaro et al. 2021).

Similar to the role of xylem cells in transporting water and min-
erals, sieve elements within phloem tissue are crucial for distrib-
uting photosynthates and nutrients to the developing tissues, as
well as delivery of intracellular and long-distance signals, which
is required for systemic adaptation to stress conditions (Ham
and Lucas 2014). Shoot-derived mobile RNAs mediate plant re-
sponses to abiotic stresses through phloem transport (Liu et al.
2023). Phloem cells can also change their structure in response
to stress. During heat stress, phloem unloading is modulated by
accumulation of callose around plasmodesmata at the junctions
between sieve elements and phloem pole pericycle. This accumu-
lation restricts the flow through plasmodesmata, reducing
phloem unloading activity and subsequent inhibition of root
growth (Liu et al. 2022b). Thus, from the outermost epidermal
cells to the inner vascular tissue, each root cell type undergoes dy-
namic, diverse, and specialized responses to environmental cues
to optimize their function to mitigate environmental challenges

(Fig. 1).

Root cell type-specific transcriptional dynamics in
response to the environment

Every cell type in a plant root has the same genetic makeup, yet
they develop unique phenotypes in response to various environ-
mental stimuli. Traditionally, these cell type-specific phenotypes
have been studied by examining cell structure and form. Itis im-
portant to note, however, that lack of a morphological or observ-
able phenotype does not necessarily indicate a corresponding
absence of a molecular or transcriptional response (Brady et al.
2011). Examination of such subtle transcriptional changes within
individual cell types were first revealed by the use of innovative
techniques (fluorescent activated cell sorting, laser capture mi-
crodissection, translating ribosome affinity purification, isolation
of nuclei tagged in individual cell types) coupled with microarray
or RNA sequencing analysis, facilitating transcriptome-scale cell
type-specific investigations (Fig. 2) (Birnbaum et al. 2003; Day
et al. 2005; Zanetti et al. 2005; Dinneny et al. 2008; Gifford et al.
2008; Deal and Henikoff 2011). These methodologies provided a
fundamental framework to understand how plant root cell types
respond to diverse factors and transcriptionally integrate these
responses (Dinneny et al. 2008; Gifford et al. 2008; Long et al.
2010; Iyer-Pascuzzi et al. 2011).

Before this era, whole root transcriptional studies operated
under the assumption that the root was a single unit of

transcriptional response (Fig. 2). However, transcriptome profiling
of Arabidopsis root cell types grown with a high salt (NaCl) concen-
tration revealed very few genes whose expression significantly
changed in all cell layers (Dinneny et al. 2008). Correspondingly,
the majority of differentially expressed genes were cell type and de-
velopmental zone specific, with the cortex layer being the most
transcriptionally responsive, as determined by the number of de-
tected differentially expressed genes (Fig. 3A). Using epidermal-
patterning mutants, Dinneny et al. (2008) highlighted the role of
cell fate regulators within an individual cell type in response to
salt stress. Indeed, there were sets of genes whose differential ex-
pression under stress was dependent on correct epidermal specifi-
cation and patterning (Dinneny et al. 2008). These cortex- and
epidermis-specific observations interestingly align with cell layers
involved in root halotropism response, where an ABA-activated
protein kinase SnRK2.6 drives cortical MT reorientation at the
root transition zone to slightly increase volume in the cortex and
epidermis of Arabidopsis (Yu et al. 2022). Likewise, iron deficiency
elicits cell type or tissue-specific transcriptional responses, with
the stele as the most responsive (Dinneny et al. 2008; Long et al.
2010). This observation aligns with nitrogen deficiency responses
(Gifford et al. 2008) and is attributed to the stele’s critical role as
the transport hub of plant roots (Fig. 3A). The significant enrich-
ment of differentially expressed transcription factors within the
pericycle during iron deficiency was used to generate a hypothesis
that pericycle-specific transcription factors coordinate the iron de-
ficiency response. The transcription factor POPEYE, whose expres-
sion is induced under iron deficit, was functionally validated as a
regulator of iron homeostasis between the root’s outer layers and
the stele (Long et al. 2010).

Three key biological insights have emerged from studying the
transcriptional behavior of specific root cell types in response to
external nutrient stressors. First, there is little evidence for con-
servation of a universal transcriptional stress response across dis-
tinct cell types undergoing the same stress. Although a very
minimal shared transcriptional stress response is present, it can-
not be generalized across all cell types. Second, the identity of a
cell can dictate the specific gene sets that are activated or re-
pressed in response to a particular stress as demonstrated by dis-
tinct functional gene categories enriched in each cell type under
various stress conditions (Dinneny et al. 2008; lyer-Pascuzzi
et al. 2011). This point is interrelated with the first, as the cell
type-specific transcriptional responses are developmentally de-
termined and result in the lack of a universal stress response
across different cell types. Further, “response nonredundancy,”
where expression of individual transcripts within a functional
group is highly cell type specific, enables specialization of cell-
type activity while maintaining shared functional responses
(Walker et al. 2017). Lastly, a group of developmental regulators
appears to maintain stable expression patterns, unaffected by
the environment, thereby sustaining cell identity and triggering
cell-specific responses to stimuli. Furthermore, there is a portion
of the transcriptome that remains nonplastic and conserved in
multiple cell types, regardless of environmental stimuli, such as
housekeeping genes, which are essential for maintaining basic
cellular functions (Reynoso et al. 2022).

The impact of scRNA-Seq on understanding plant
transcriptional responses to stress

In recent years, single-cell RNA sequencing (scRNA-seq) has
emerged as a powerful technique in plant research, enabling the
capture of transcriptome dynamics of individual cells within a
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Figure 2. Overview of transcriptomic approaches used for analysis of root stress response. A) Root system facing multiple biotic and abiotic stressors in
the soil environment. B) Increasing resolution of transcriptomic methods. The progression moves from the entire root tissue, through intermediate
resolutions examining specific cell populations, to the highest resolution of sc/snRNA-Seq, capturing individual cells. C) Workflow illustrating the
processing for different techniques. Bulk root tissue analysis processes total RNA yielding an average stress response across all cell types. FACS: Allows
for theisolation of specific cell types based on fluorescence markers. Advantage: High specificity in sorting. Disadvantage: Requires fluorescent markers
and cell dissociation, which can alter gene expression. TRAP-Seq pools multiple cells of a single type. Advantage: Focuses on actively translated genes.
Disadvantage: Requires marker lines expressing tagged ribosomes. sc/snRNA-Seq involves partitioning individual cells/nuclei using a microfluidic
device to capture a detailed stress response profile from each cell. sScRNA-Seq advantage: Provides a comprehensive transcriptome profile of individual
cells, capturing both nuclear and cytoplasmic. Disadvantage: Requires cell dissociation, which can induce stress responses. It can also be challenging to
isolate specific plant cell types due to the rigid cell walls or their size. snRNA-Seq advantage: Bypasses the need for cell dissociation, preserving the
transcriptional state without the stress of cell wall digestion. This method is particularly useful for fixed or frozen samples and for plant cells with rigid
secondary cell walls. D) Comparisons of the resolution of gene expression data obtained from the various transcriptome techniques. Figure created
with Biorender.com.

tissue across multiple species, including Arabidopsis, maize, rice,
tomato, tobacco, poplar, sorghum, and setaria (Efroni et al. 2016;
Shulse et al. 2019; Song et al. 2020; Dorrity et al. 2021; Kim et al.
2021; Ortiz-Ramirez et al. 2021; Seyfferth et al. 2021; Xu et al.
2021; Kang et al. 2022; Shahan et al. 2022; Xie et al. 2022;
Guillotin et al. 2023; Lee et al. 2023; Canté-Pastor et al. 2024).
This technique provides unparalleled insight into the

transcriptional heterogeneity, or distinct transcriptional states,
among cells of the same identity, surpassing the capabilities of
earlier methods thatisolated entire cell types (Fig. 2). This hetero-
geneity is particularly relevant when considering cell-specific re-
sponses to environmental stress. Traditional methods could not
capture these subtle yet significant differences in how individual
cells with the same identity may respond differently to a given

¥20z Jequisides /g uo1senb Aq g¥£6G.2/Gzyeen/sAydid/g60L 0L /10p/elone-soueape/sAyd|d/woo dno-olwspeoe//:sdiy wols pspeojumoq


http://Biorender.com

6 | Plant Physiology, 2024, Vol. 00, No. 0

Most Responsive Cell Layers

HSP mediated
response

C
: Jolelse]s!
K% :
D :
o .
Y ]
o :
ARE: :
|| 3||le| :
ol | g||8]
Q Sll=] - —
083 a8 + [=]||o
; ©
L o]
1 . o
R
Hair cells i Mesophyll cells

Stress-induced Distinct Cell States
Within Cells of the Same Identity

B
10
Cell type A ! / ,'I
~ Treatment -° ) .
1 ’ pseudotime
o 10
<
= ||
) I
‘\ l’ /". ..~ A
\ ’ 1 . 1
. \ .'.o:o. I Cell type A !
?" ®." control 0
-1 0 -
10 UMAP - 1 10
Spatially Resolved Cell Type
Stress Response
D

t-SNE2

Colonized cell types/states
can be mapped in their
original context

Tissue
Fixation

Barcoded
spots
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nitrogen deficiency (Gifford et al. 2008), while the cortex is the most responsive under salinity (Dinneny et al. 2008). In contrast, heat stress can trigger a
universal heat shock protein (HSP)-mediated transcriptional response across all cell layers (Jean-Baptiste et al. 2019). B) Schematic of a uniform
manifold approximation and projection (UMAP) showing stress-induced distinct cellular states within cells of the same identity (Zhu et al. 2023). C) Bar
graph depicting the shift in cell population dynamics in response to external stimuli, with an increase in hair cell population with sucrose
supplementation (Shulse et al. 2019) and a decrease in mesophyll cell population under sodium stress (Wang et al. 2021). D) Integrating snRNA-Seq in
root tissue colonized by arbuscular mycorrhizal fungi (AMF+) with spatial transcriptomics enabled mapping of the colonization responses to their
original spatial context within colonized root tissue to identify localized and colonization stage-specific transcriptional responses (Serrano et al. 2024).

Figure created with Biorender.com.

stimulus. scRNA-seq can overcome this limitation by identifying
rare or transient subpopulations of cells with unique molecular
signatures that are important to understand a plant’s response
mechanisms. For example, a group of cells within a tissue may ex-
hibit different transcriptional responses or states to a particular

stress compared with identical neighboring cells, a complexity
that only scRNA-seq can resolve. Furthermore, the integration
of pseudotime algorithms with scRNA-seq data allows recon-
struction of developmental trajectories to capture possible
stress-induced cellular heterogeneity in a temporal manner
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(Fig. 3B). An excellent example of single-cell transcriptomic profil-
ing’s ability to discern cellular transcriptional heterogeneity is il-
lustrated through the interactions between Arabidopsis and the
pathogen Pseudomonas syringae. The continuum of disease pro-
gression within the leaf was shown to gradually transition from
an immune state to a susceptible state during the continuum of
infection. Further, some cells were immediately transcriptionally
responsive to pathogen invasion, while others responded at a later
stage (Zhu et al. 2023).

In contrast to the many cell type-resolution maps of root devel-
opment, fewer scRNA-seq studies have concentrated on cell-
specific transcriptional responses to abiotic stresses (Jean-Baptiste
et al. 2019; Wendrich et al. 2020; Wang et al. 2021). Jean-Baptiste
et al. (2019) subjected whole seedlings to heat stress and analyzed
the outcome using single-cell RNA sequencing. Contrary to the prior
observations of little to no whole root transcriptional responses
(Dinneny et al. 2008; Iyer-Pascuzzi et al. 2011), this study discovered
that canonical heat-shock genes were predominantly differentially
expressed across all cell types (Fig. 3A). They also observed cell-
specific responses; hair cells showed an enriched response of genes
associated with ribosomes and RNA methylation. In contrast, stele
cells showed varied expression in genes associated with cell wall or-
ganization and biogenesis, while endodermis cells demonstrated
distinct expression patterns in genes linked to chemical and
stress response stimuli, as well as in nitrate and anion transport.
The pan-root transcriptional responsiveness of heat shock genes
demonstrates that although most stress-induced responses are
cell type specific, this is not always the rule.

Wang et al. (2021) expanded the scope of single cell research to a
crop species by examining the transcriptional response of rice seed-
lings to a broader spectrum of abiotic stress conditions: low nitro-
gen, high salinity, and iron deficiency. In response to each
individual stress, again a significant proportion of differentially ex-
pressed genes was within a specific cell type (Wang et al. 2021).
Despite this predominant mode of responsiveness, some common
responses were also observed—not only in roots but also in leaves.
Besides these cell type—specific transcriptional responses, a propor-
tional change in the size of cell populations was also observed.
Specifically, a decrease in the mesophyll cell population size was
observed under high salinity (Fig. 3C). In contrast, the mesophyll
cell population size remained largely unchanged under iron
deficiency and low nitrogen (Wang et al. 2021). This suggests a
stress-induced adaptation in specification or maintenance of mes-
ophyll cell identity or of cell proliferation. Further probing of the
molecular basis underlying this proportional shift indicated that
high-salinity treatment altered mesophyll cell expression profiles
at different developmental stages, disrupting their normal matura-
tion and reducing the cell population (Wang et al. 2021). A similar
phenomenon was observed by Shulse and colleagues (2019) regard-
ing sucrose supplementation of Arabidopsis roots. Here, a strong
enrichment of the hair cell population was observed in response
to sucrose while there was an enrichment of the meristematic
cell population without sucrose (Shulse et al. 2019) (Fig. 3C).

In the context of a plant’s response to phosphate deprivation,
Wendrich et al. identified the critical role of the TARGET
OF MONOPTEROS 5/LONESOME HIGHWAY (TMOS5/LHW) tran-
scription factor complex (Wendrich et al. 2020). Through high-
resolution single-cell gene expression analysis of Arabidopsis
roots, this study demonstrated how the TMO5/LHW complex in-
creases root hair density in phosphate deficiency. This is achieved
by altering epidermal cell fate and length, thereby enhancing
phosphate foraging efficiency. This highlights a precise cellular
adaptation to nutrient stress, with the cytokinin pathway

connecting vascular cell perception of phosphate levels to tricho-
blast differentiation (Wendrich et al. 2020).

One of the advantages of scRNA-seq is the elucidation of
changes in transcriptional response in a single cell type’s develop-
mental trajectory. In principle, such a response is possible as ob-
served by Dinneny et al. (2008), where in response to salt stress
in Arabidopsis, the elongation zone was the most transcriptional-
ly responsive as defined by the number of significantly differen-
tially expressed genes (Dinneny et al. 2008). The changes in
meristematic cell population size identified by Shulse et al.
(2019) in the absence of sucrose further supports the observation
of changes in developmental time. Spatial context is equally im-
portantin plant-biotic interaction, where spatially confined dam-
age to specific subset of cells within the root are shown to be
sufficient to induce and propagate responsiveness in neighboring
nonresponsive cells (Zhou et al. 2020). However, a significant lim-
itation of scRNA-seq is its inability to maintain the spatial context
of cells. Once cells are dissociated from their native environment
for analysis, crucial spatial information is lost, making it challeng-
ing to comprehend how cells interact within their microenviron-
ment and collectively respond to external stimuli.

While the impact of scRNA-seq in plant research is significant,
limitations in its widespread adoption across plant species remain.
Therigid cell wall in plants varies in composition across cell types,
species, and environments and is dynamically modulated in re-
sponse to environmental stimuli. As in cell type-profiling methods
that require fluorescent activated cell sorting, scRNA-seq ap-
proaches require cell wall dissociation to release individual cells,
known as protoplasting. This process can introduce an extraction
bias toward cells that are more amenable to enzymatic digestion
or those located on the tissue’s outer layers and are more accessi-
ble to enzymes, potentially skewing the representation of certain
cell types or developmental stages. Moreover, the enzymatic diges-
tion process itself can result in stress-induced transcriptional re-
sponses and data artifacts that can in part be resolved by
identifying protoplasting-induced genes and removing these
from future analyses (Birnbaum et al. 2003; Canté-Pastor et al.
2024). If these protoplasting-induced genes are also important
for a cell type response, however, then they would not be identi-
fied. Plant cell size diversity also brings another layer of complex-
ity to single-cell analysis, as microfluidic platforms require some
uniformity in cell sizes (Whitesides 2006). The stringent require-
ment for a high quality and quantity of protoplasts extracted,
along with the high costs of specialized reagents and instru-
ments, further limits this technique’s applicability across plant
species and laboratories.

Single-nucleus RNA-seq (snRNA-seq) is an alternative for
single-cell transcriptomics in plants through isolated nuclei, of-
fering added advantages for studying fixed or frozen samples
without the need for protoplasting (Farmer et al. 2021; Marand
et al. 2021; Neumann et al. 2022). These are particularly of use
in studies focused on plant responses to external stimuli, where
the risk of triggering protoplasting-induced stress responses
similar to those being investigated are eliminated. This approach
further broadens the range of plant species, cell types, and cell
wall-based transcriptional reprogramming that can be analyzed.
However, there are trade-offs; nuclear transcripts often represent
a fraction of transcriptome in a cell, thus limiting the capture
of cytoplasmic transcripts or those with less nuclear abundance.
In line with this, the average number of genes detected in single-
nuclei profiling studies can be significantly lower compared with
those identified in single cells (Guillotin et al. 2023). Additionally,
single-nuclei datasets tend to produce fewer distinct cell clusters
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and often struggle to differentiate between closely related or
subcellular identities (Guillotin et al. 2023).

Benchmarking of single-cell relative to single-nuclei ap-
proaches is reviewed and extensively described in Grones et al.
2024 (Grones et al. 2024). Numerous platforms for both single-cell
and single-nucleus profiling are also available, and combinatorial
barcoding approaches effectively overcome the scalability and
cost limitations inherent to microfluidic methodologies (reviewed
in Grones et al. 2024). In combinatorial barcoding, each cell’'s
mRNA are uniquely tagged through multiple rounds of barcoding,
allowing for high-throughput analysis and sample multiplexing
without complex equipment. This approach allows for the simul-
taneous analysis of large numbers of samples and nuclei, making
large-scale projects possible and cost-effective. Additionally, the
ability to use fixed samples makes the protocol highly flexible
and enhances scalability. Although this approach remains to be
widely adopted in plant research, it has been successfully applied
in profiling chromatin accessibility at single-cell resolution in
Arabidopsis (Tu et al. 2022).

Spatial transcriptomics is a complementary technology to sn/
scRNA-seq by preserving the spatial context of transcriptional pro-
files within tissues. This technology can pinpoint specific zones
within a cell type where stress responses are initiated and how
these signals propagate, potentially offering a 3-dimensional per-
spective on stress response. Despite its promise, spatial transcrip-
tomics is still in infancy in plant biology research, and it has been
utilized in only a handful of studies focusing mostly on plant devel-
opment or biotic interactions (Moreno-Villena et al. 2022; Liu et al.
2022a, 2022b; Xia et al. 2022; Nobori et al. 2023; Serrano et al. 2024).

A recent pioneering work combining these complementary
approaches—snRNA-seq and spatial RNA-seq—elucidated the
complex nature of interaction between the Medicago truncatula
root and a symbiotic partner, the arbuscular mycorrhizal fungus
(AMF) Rhizophagus irregularis, in a spatially resolved fashion
(Fig. 3D) (Serrano et al. 2024). Spatial transcriptomics allowed for si-
multaneous gene expression analysis of both the plant and AMF in
the colonized root zones, identifying clusters in the spatial dataset
with high expression levels of known colonization stage-specific
genes overlapping with AMF-responsive zones (Serrano et al.
2024). Fungal expression was also correlated with the presence of
arbuscules—branched structures formed by the differentiation of
fungal hyphae within the root cortical cells, which are central to
the nutrient and water exchange in the symbiotic relationship be-
tween AMF and plants. The spatial dynamics of the symbiosis were
mapped across individual root cross-sections by tracking the distri-
bution of marker genes indicative of early to late-stage coloniza-
tion. SnRNA-seq further identified a distinct “colonized cortex cell
cluster,” which, when integrated with the spatial dataset, discov-
ered hundreds of novel AMF-responsive M. truncatula genes that
could serve as a great resource for further research (Serrano et al.
2024). As of yet, there are no published studies to our knowledge
that have adopted a similar complementary approach with respect
to plant-abiotic factor interactions.

Conclusion and perspectives

The plant root system performs a multitude of critical functions,
from nutrient uptake to interactions with the surrounding soil
environment. Roots adapt dynamically to various challenges,
including biotic and abiotic stresses, such as microorganisms,
drought, and salinity, by altering their system and cellular architec-
ture as survival strategies. Each cell type within the root can exhibit
unique responses, dependent on the stimulus as well as the

Outstanding Questions Box

e How do cell identity regulators facilitate stress re-
sponses within a specific cell population of a given cell
type?

e What mechanisms underlie the dynamic shifts in cell
type differentiation observed in plant roots under vari-
ous stresses?

e What are the physiological implications of morphologi-
cal and molecular changes within individual cells?

e What cell-specific mechanisms enable stress-tolerant
species to survive adverse conditions?

e How do simultaneous multiple stresses impact the cell-
specific transcriptional responses in crops?

species, indicative of an evolutionarily derived adaptability
(Fig. 1). The molecular mechanisms underlying these adaptive
changes have been increasingly elucidated through cell type-
specific transcriptional methodologies. Our understanding of stress
response in plant roots is now recognized as the sum of cell type-
specific responses (Dinneny et al. 2008; Gifford et al. 2008; Long
et al. 2010; Iyer-Pascuzzi et al. 2011; Jean-Baptiste et al. 2019;
Wendrich et al. 2020; Wang et al. 2021; Zhu et al. 2023; Serrano
et al. 2024). The significance of cell identity in mediating stress re-
sponses is increasingly acknowledged, emphasizing the need for
further exploration of how known cell identity regulators function
within stress-responsive pathways. Observations of changes in the
size of specific cell populations under stresses like heat or salinity
in Arabidopsis roots and rice leaves point to dynamic shifts that oc-
cur in cell type differentiation, though the mechanisms and phys-
iological implications of these changes are not yet fully understood
(Dinneny et al. 2008; Iyer-Pascuzzi et al. 2011; Jean-Baptiste et al.
2019; Wendrich et al. 2020; Wang et al. 2021).

Integration of advanced omic tools in studying root-
environment interactions is critical to further advancing this
understanding. Spatially resolved, cell-specific transcriptional
maps can elucidate complex local intercellular communications
when facing environmental stress. Expanding this approach
beyond the model plant Arabidopsis to include other species will
enable utilization of the extensive genetic (both mutant and
population-scale) resources of diverse plant species (both stress
tolerant and susceptible), which is crucial to elucidate their toler-
ance mechanisms and to inform breeding strategies for stress re-
silience. Furthermore, it is essential to address the complexity of
real-world conditions where plants often simultaneously face
multiple stresses, such as drought combined with high tempera-
tures or salinity stress. Understanding how transcriptional pro-
files of individual cell types are reshaped when navigating these
multi-stress environments is crucial for developing crops that
can withstand such conditions, ensuring agricultural sustainabil-
ity in our changing climate.
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