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Abstract—To monitor RF activity and coordinate access to
a channel that is shared by heterogeneous wireless systems,
network administrators and/or users must be able to identify
observed transmissions rapidly and accurately. Recent research
shows that deep neural networks (DNNs) can identify the under-
lying waveform of an RF signal based on the in-phase/quadrature
(I/Q) samples without decoding them. Such DNNs take as input
a fixed-size window of I/Q samples. To utilize the temporal
features at various scales and improve the classification accuracy,
we propose a two-stage DNN classification structure. In the
first stage, DNN is designed to detect and classify long-term
periodic features, such as the cyclic prefix (CP). The output of
this classifier is then used as a latent variable for a second-
stage protocol (technology) classifier. To evaluate this model, we
consider spectrum sharing between Wi-Fi, LTE License Assisted
Access (LAA), and 5G NR-unlicensed(NR-U) over the unlicensed
5GHz bands. Compared to the ResNet-18-1D, the proposed two-
stage approach improves the classification accuracy from 71%
to 90% while reducing the trainable parameters from 3.8 to 1.8
million. As a result, our compact design is more accurate and
energy efficient than computational-intensive DNNs for mobile
devices.

Index Terms—Deep learning, signal classification, waveform
coexistence, spectrum sharing

I. INTRODUCTION

The demand for wireless capacity continues to outgrow
spectrum availability, especially at low and mid bands (e.g.,
sub-7 GHz). To efficiently utilize the allocated spectrum,
various spectrum-sharing architectures have been proposed [1].
For example, in the Citizens Broadband Radio Service
(CBRS), a three-tier access system is employed, which enables
commercial users to share spectrum with incumbent federal
and non-federal users [2]. A dynamic frequency selection
approach was adopted for the Unlicensed National Information
Infrastructure (UNII) bands, permitting LTE License Assisted
Access (LAA) and 5G NR-unlicensed (NR-U) cellular tech-
nologies to share these bands with Wi-Fi devices [3]. Spectrum
sharing and coexistence inevitably introduces interference
among users. Therefore, it is critical for network coordinators
to rapidly classify observed signals for the purpose of reducing
interference and assigning fair channel access.

Identifying the waveforms of heterogeneous protocols is
difficult unless the given contending device is equipped with
multiple radios. Deep neural networks (DNNs) are designed
and proven to complete multi-class detection accurately. In
contrast to traditional waveform-based sensing methods, DNN

classifiers do not require prior knowledge about the protocol
or devices and are efficient for signal detection in shared
bands. In our paper, we investigate the DNN for heterogeneous
wireless technology! classification over a shared spectrum,
focusing on Wi-Fi, LTE-LAA, and 5G NR-U in the unlicensed
5 GHz bands as an example.

Several DNNs have been recently proposed to classify RF
signals based on received in-phase/quadrature (I/Q) samples
[4]-[8]. These approaches take a fixed-size window to sample
the I/Q stream and use these samples to train the DNN.
Generally, a shorter window captures short-term changes in
the sequence and is able to detect the signal faster. How-
ever, the cyclic features often occur at longer time scales
than a typical window of I/Q samples fed into a classical
signal classifier. In addition, a longer window includes more
information embedded in the waveform, such as periodicity
of the cyclic prefix (CP) in OFDM waveforms, the regularly
inserted pilot messages in the time-frequency resource map
of the OFDMA schedule, and the alternating pattern of the
time-division duplexing (TDD) cycle. In our work, we propose
a two-stage classification structure to approximate the cyclic
feature on a large scale and then use them for wireless protocol
classification with a short sampling window size. In other
words, we aim to capture additional temporal features in
different scales for an accurate protocol classifier.

In a 5G NR waveform, the CP is inserted after each OFDM
symbol. The symbol duration (including the CP) ranges from
4.47 psec to 71.4 psec, depending on the numerology (equiv-
alently, the subcarrier spacing). At a sampling rate of 100
M samples/sec, these symbol durations correspond to 447 to
7140 samples. Even if one were to reduce the sampling rate by
an order of magnitude (i.e., 10 M samples/sec), thousands of
samples per window are still needed to capture multiple CPs
for use in one classification instance. Hence, the window sizes
of 128 or 512 I/Q pairs, as utilized in [4], [5], are inadequate
for capturing temporal correlations associated with CP. In
this paper, we first investigate the feasibility of CP duration
approximation with a sufficient long sampling window. By
incorporating additional temporal features from CP estimation
with raw I/Q samples, we show that the protocol classification
accuracy effectively gets enhanced.

'We use wireless protocol and wireless technology interchangeably in our
paper.
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Fig. 1. Example of OFDM cyclic prefix.

Even though there are other advanced DNN structures for
accurate classification, these structures usually require more
computational resources. In [9], the author proposes to use
the number of trainable parameters to compare the complexity
of models. The more parameters indicate more energy con-
sumption and more memories required. In wireless mobile
networks, such complexity and consumption are practical
concerns. Our proposed structure shows that a concise multi-
layer perceptron (MLP) with a few trainable parameters can
achieve high accuracy, making DNN classifiers feasible for
deployment in wireless networks.

II. CycLIC PREFIX FOR WIRELESS TECHNOLOGIES

CP acts as a buffer region or guard interval to protect
the OFDM signals from inter-symbol interference, as shown
in Figure 1. It repeats the end of the symbol so the linear
convolution of a frequency-selective multi-path channel can be
modeled as circular convolution, which in turn may transform
to the frequency domain via a discrete Fourier transform.
LTE waveforms have a subcarrier spacing (SCS) of 15 kHz
with two optional CP durations corresponding to normal
and extended CPs. The normal CP is intended to support
propagation conditions with a delay spread up to 4.7 us, while
the extended CP support up to 16.7 us. In general, the normal
CP is more commonly found. There are 10 subframes in a 10-
msec LTE frame, and each subframe contains 6 or 7 OFDM
symbols, depending on whether a normal or extended CP is
used. In the case of a normal CP, the first symbol has a duration
of 5.2 us while the remaining 6 symbols have durations of 4.69
s each. For simplicity, we treat both as one CP type. The CP
parameters for LTE are summarized in Table 1.

TABLE I
CP AND SYMBOL DURATIONS FOR VARIOUS TYPES OF LTE SIGNALS

[ LTE ]
15 KHz
7/6 (normal/extended CP)
5.2 ps (first symbol)/
4.69 us (six following symbols)
16.67 us
66.67 us

Subcarrier Spacing
OFDM Symbols/Subframe

CP Length (Normal)

CP Length (Extended)
Symbol Duration (without CP)

3GPP standards define several 5G NR waveforms with dif-
ferent CP and symbol durations, depending on the numerology
(or SCS), as shown in Table II. Some of these durations
are meant for Frequency Range 2 (FR2), which is mmWave
spectrum. Given that we focus on spectrum sharing with LTE
and Wi-Fi, we only consider a subset of the 5G NR CPs in

FR1 (“sub-6 GHz bands”). Note when SCS = 60 kHz, the
CP duration have two options depending on the normal or
extended settings, similar to the LTE. Other than that, one
SCS has only one corresponding CP duration setting.

TABLE II
CP AND SYMBOL DURATION FOR VARIOUS TYPES OF 5G NR SIGNALS (I
IS THE INDEX OF AN OFDM SYMBOL IN A FRAME)

\ 5G NR |
SCS Duration CP for Long Symbols CP for Other Symbols
15 KHz 66.67 s 5.2 ps (fori=0or 7) 4.69 s
30 KHz 33.33 us 2.86 us (for i = 0 or 14) 2.34 us
1.69 us (NCP), 4.17 .17 ps (NCP),
60 KHz | 1667 s |\ BCP), for i = 0 or 28 4.17 ps (ECP)
120 KHz 8.33 us 1.11 ps (for i = 0 or 56) 0.59 us
240 KHz 4.17 ps 0.81 ps (for i =0 or 112) 0.29 us

Wi-Fi signals also have cyclic features, called guard inter-
vals (GIs). For instance, in Wi-Fi 5, specified by the IEEE
802.11ac standard, long and short GIs can be used, with
corresponding durations of 0.8 and 0.4 us, respectively. In both
cases, the OFDM symbol duration without the GI is 3.2 us.
Wi-Fi 6, as specified by the IEEE 802.11ax standard, uses a
much longer symbol duration of 12.8 us and, correspondingly,
a smaller SCS of 78.125 kHz. Three different GIs are available,
as shown in Table III.

TABLE III
CP AND GI DURATIONS FOR VARIOUS TYPES OF WI-FI 5/6 SIGNALS

[ 802.11ac (Wi-Fi 5) [ 802.11ax (Wi-Fi 6/6E) |

Symbol Duration 3.2 us Symbol Duration 12.8 us

Subcarrier Spacing | 312.5 KHz | Subcarrier Spacing | 78.125 KHz
Long GI 0.8 us Normal GI 0.8 us
Short GI 0.4 ps Double GI 1.6 us
Quadruple GI 3.2 ps

III. WIRELESS TECHNOLOGY CLASSIFIER DESIGN WITH
CP AS LATENT VECTOR

Our wireless technology classifier employs a two-stage
prediction approach. The protocol prediction hinges on two
consecutive classifiers functioning at distinct time scales, as
depicted in Figure 2. In the initial stage, the CP/symbol
duration classifier? utilizes a lengthy window W,,, illustrated
in black, to sample the I/Q stream. Subsequently, the protocol
classifier in the second stage utilizes a shorter window W*,
indicated in red, to predict the protocol type of the received
signal. For regular classifiers in [4]-[8], the window size is
equivalent to W*. In contrast, our two-stage approach approx-
imates the CP types from W, and generates the prediction as
the latent variable for protocol classification. Such latent vector
is padded, reshaped, and appended to W*, forming W* + N
input to the second (protocol) classifier, as shown in green,
where N depends on the number of CP types. In our work,
we consider that the sampling windows are non-overlapping

2For simplicity, we abbreviate the CP/symbol duration classifier as the CP
classifier in our paper.



for both the CP and protocol classifiers. Because ¥
the same latent vector will be used for multiple inste
second classifier. For simplicity, we set W, to be
multiple of W*.

A. Training and Testing Process

We split the data into non-overlapping two sets,
of data is for training and the rest 20% is for test
are two stages in the training process. In the first
I/Q pairs are sampled into windows of W,,. Thes
are used to train the CP classifier with CP labels. ¥
the trained classifier to generate the CP predictic
training set. These predictions are the latent vect
next stage classifier. In the second stage, we train tl
classifier using the I/Q pairs and latent vectors within W*+4N .
Correspondingly, the labels become the protocol types. During
the testing phase, we also evaluate our model in two stages.
Firstly, the trained CP classifier uses the 1/Q pairs within W,
to generate latent vectors for the testing set. After that, the
I/Q pairs associated with latent vectors (W* + N) are used
as input for protocol classification. Finally, we compare the
output of the second-stage classifier with the true protocol
label to evaluate our model’s accuracy.

B. Cyclic Prefix Assisted (CyPA) Latent Vector

A DNN can be represented by the mapping z = g(z;0),
where z is a window of I/Q samples and 6 is the set of
learnable DNN parameters. The input z is in R2*W  where
W is the window size (in consecutive samples) and the
first (second) row represents the sequence of I (Q) values,
respectively. The output z is in R, and K is the number of
classes. The input matrix x is passed through the DNN and is
represented by a feature vector that is the result of a projection
and nonlinear (activation) function, ¢(-). For our CP classifier,
the activation function for the last layer (i.e., output layer) is
the softmax function o: o(z); = Zf?;:ez:

Where ¢ € {1,2,..,.K} = K. ‘After activation function,
the classifier output results {o(2)1,0(2)2,...,0(2)k }. These
results have been normalized by softmax function so we
treat them as the confidence for each CP class. To gener-
ate the prediction, the classifier assigns a label f(z;0) =
argmaxy (o (2)y) to the received input, where k € K. To make
use of the hard outcome and keep it the same length of as the
confidence vector, we apply one-hot encoding [10]. Such a
output vector consists of all ‘0’s except for one element that
has a value ‘1°. The location of bit ‘1’ within the output vector
indicates the most likely CP type. These two types of output
of the CP classifier are used as the latent vector that consists
of either probabilities (soft outcome) or binary values (hard
outcome), indicating the CP duration belongs to a given type.

C. Hyperparameters for Classifiers

We use MLPs for both the CP and protocol classifiers. The
CP classifier includes four layers with sizes 512, 256, 64, and
7. In contrast, the protocol classifier has the same structure
except three neurons in the output layer. This is because

==1 Input Window :‘“‘,
L__! for CP Classifier L--!
with Size of W,

Input Window for Protocol 1 Input Window for Protocol
Classifier without Latent Vector | __! Classifier with Latent Vector
with Size of W* with Size of W* + N

Protocol Classifier

[

CP/Symbol
Duration Classifier N Depends on the

Number of CP Classes

Window Shift on
1/Q Stream

Appending Latent Vector

Fig. 2. Overall structure of the two-stage protocol classifier.

TABLE IV
HYPERPARAMETERS FOR PROPOSED TWO-STAGE CLASSIFICATION
STRUCTURE
Activation Function ReLU
Loss Categorical Cross-entropy
Overfitting Prevention | Early Stopping (Patience = 10)
Batch Size 512
Optimizer Adam
Max Training Epochs 100

we consider three possible protocols associated with seven
types of CPs. Other hyperparameters for classifier training
are summarized in Table IV. We’ve studied the performance
with/without dropout and normalization in these classifiers. We
found both to have negligible impact on the classification ac-
curacy. For brevity, we present the results when normalization
and dropout are not performed.

IV. DATA GENERATION

Data generation for the three technologies is conducted
using Matlab LTE, 5G, and WLAN communication toolboxes.
We produce a dataset for 7 different CP “types”: two related
to LTE signals (Normal and Extended CPs), two to 5G NR
signals (15 kHz and 30 kHz SCS), two to 802.11ax signals
(Normal and Double GIs), and one to 802.11ac signals (long
GI). For each type of CP, we generate 15 AWGN channel
realizations, where 12 are used for training and 3 for testing.
Each realization includes about 300, 000 I/Q pairs. Among the
three types of signals, LTE with Extended CP has the longest
OFDM+CP duration (83.34 us). At a sampling rate of 30.72
MS/sec, this duration corresponds to about 2560 I/Q samples.
Thus, we set W,, = 2560, which ensures that any window
sample will cover at least one OFDM duration plus its CP or
GI for all protocols. Considering non-overlapping windows,
each realization results in 307200/2560=120 windows, ending
with 1,440 sample windows for training and 360 sample
windows for testing for each CP type. In total, we have
10,080 and 2,520 windows of samples for training and testing,
respectively, across all 7 CP types. These CP types correspond
to the SCS value by definition.

The channel realizations are produced at SNR = 15 dB,
where the SNR value is controlled by channel noise. The 1/Q



samples (with noise included) are normalized by their mean
energy over the whole realization. Since our final objective
is detecting the wireless protocol types, we restrain the same
bandwidth of 20 MHz and the same modulation scheme of
64-QAM for all three protocols to eliminate their impact.
Some other parameter values are selected to ensure that the
realizations of different technologies are equal in length, as
measured in the number of I/Q samples/realization. While
this is not a requirement, it ensures the results for different
technologies have the same statistical confidence.

V. PERFORMANCE EVALUATION

Our proposed CyPA structure includes two stages. In the
first stage, we use a CP/symbol duration classifier, as described
in Section III, to classify CP and generate latent variables.
We depict the classification results of the 7 CP types in
the confusion matrix shown in Figure 3. The CP classifier
can accurately detect the GI duration of a Wi-Fi signal with
100% accuracy. This can be explained by the fact that the
GI durations for Wi-Fi (0.8 or 1.6 ps) are quite distinct
and are much shorter than the CP durations used for LTE
and 5G NR. The classifier can also successfully distinguish
between Wi-Fi 6 and Wi-Fi 5, even if both have the same
GI duration of 0.8 us. In contrast, differentiating between the
CP durations of LTE and 5G NR is not as easy. In fact, the
average classification accuracy for the four CP types of LTE
and 5G NR is just 51.5%. The overall testing accuracy for the
CP classifier is 72.34%.

We also considered other state-of-art classifiers, including
LSTM, bidirectional RNN, VT-CNN2, and ResNet [4], [5],
[11]-[13]. However, these classifiers have limited accuracy
improvement but a much more significant increase in model
size. We compare these models with CyPA in Section V-C.
The inaccurate prediction also indicates that the regular DNN
structure is challenging to fully utilize the CP information.
As a result, we propose a two-stage design for protocol
classification, where we develop the second-stage classifier
using the latent variable generated from the CP classifier.

A. Precision, Recall, and F1 Score

We consider using precision, recall, and F1 score to eval-
uate the second-stage classifier. For each protocol, the result
becomes binary. There are True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN), four
types of classification depending on the actual and predicted
labels. Precision is defined as TP/(TP+FP) to illustrate the
accuracy among all positive predictions. In contrast, recall
equals TP/(TP+FN), showing accuracy among all actual pos-
itive inputs. A higher precision and recall represent a better
classifier. F1 score is generated from precision and recall as
2 x precision xrecall/(precision + recall). This is approximately
the harmonic mean of precision and recall. A high F1 score
indicates the classifier is less bias in FN and FP.

1) Evaluating the Performance of a Single-Stage Protocol
Classifier (without CP): Before we study the combined two-
classifier design, as a reference point we first study the

1.0
LTE CP=16.67 ps 0.10 0.14 021 0.00 0.00 0.00

LTE CP=4.69 pys- 0.17 ' 047 015 021 000 000 0.00 0.8

5G 30 KHz CP=2.86 psq 0.16 0.12 0.50 0.22 0.00 0.00 0.00
0.6

5G 15KHz CP=4.69 pus4 0.15 0.15 0.16 0.00 0.00 0.00
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Fig. 3. Confusion matrix for the CP classifier, considering 7 CP types (SNR
=15 dB).

TABLE V
PRECISION, RECALL AND F1 SCORE FOR CLASSIFIERS WITH DIFFERENT
CP TYPES AS LATENT VARIABLES

Metrics Protocol | Without CP (%) | With Hard CP (%) | With Soft CP(%)
LTE 63.52 64.15 79.61
Precision 5G 57.47 70.82 80.39
Wi-Fi 100 100 100
LTE 59.86 68.73 80.23
Recall 5G 61.17 66.37 79.76
Wi-Fi 100 100 100
LTE 61.65 66.36 79.92
F1 Score 5G 59.26 68.53 80.08
Wi-Fi 100 100 100

performance of a protocol classifier that does not rely on the
CP duration classifier, i.e., it only uses a single classification
stage. In this case, the protocol classifier has three possible
outcomes (labels): LTE, 5G, and Wi-Fi. The training and
testing data are the same as the ones used to study the 7-label
CP duration classifier, i.e., realizations of different variants of
the three protocols. We set W* = 2560. An MLP classifier is
used, and the corresponding results are presented as *Without
CP’ in Table V. Although the Wi-Fi signal can be accurately
identified, the classifier is not as accurate in differentiating
between LTE and 5G NR signals. The F1 score is only around
60% for these two labels, indicating the classifier has high FN
and FP predictions. The overall testing accuracy for the 3-label
protocol classifier is 77.17%.

2) Evaluating the Performance of the Two-Classifier Struc-
ture with Hard CP: We evaluate the overall performance of the
two-classifier design. We first train the CP classifier, as shown
in Figure 3. After that, we train the second (protocol) classifier
using the true values of the latent vector (binary). This is
because the true CP labels of the input are known during the
training phase. These labels provide more accurate information
for the protocol classifier training. However, during the testing,
we can only rely on the first classifier to predict values of
the latent vector (also binary). The classification accuracy is
summarized as *With Hard CP’ in Table V. Compared to a



1.0 - 1.0 1.0 -
/’ /’
/’ /’
L 0.8 -~ L 0.8 L 0.8 -~
© e © © "
< e - -4 L
Lo6] . Pt L2061 Lo0.6- Pt
= . e = = e
2 K e 2 . . 2 e
‘:I-J 0.44" =+ Macro Average (AUC = 0.90) ‘:I-J 0.4+ === Macro Average (AUC = 0.90) ‘:I-J 0.44 ===: Macro Average (AUC = 0.97)
E} —— LTE (AUC = 0.85) E} —— LTE (AUC = 0.85) E} —— LTE (AUC = 0.96)
= = =
0.2 —— 5G NR (AUC = 0.85) 0.2 —— 5G NR (AUC = 0.86) 0.2 —— 5G NR (AUC = 0.96)
Wi-Fi (AUC = 1.00) e Wi-Fi (AUC = 1.00) e Wi-Fi (AUC = 1.00)
0.0 T . . T 0.0 T . . T 0.0+ T . . T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(a)

False Positive Rate

False Positive Rate

(©)

Fig. 4. ROC curve for wireless technology (protocol) classifiers with different CP types as appended latent variables, trained and tested under data with
multiple CP types per protocol. (a) Without CP, (b) with hard CP, and (c) with soft CP.

protocol classifier without CP, appending hard CPs improves
the precision, recall, and F1 score for 5G signals by 13.35%,
5.2%, and 9.27%, respectively. The precision and F1 score
for LTE improves slightly, but the increment in the recall is
8.87%. In addition, the average accuracy over three classes
increases from 77.17% to 81.42%.

3) Evaluating the Performance of the Two-Classifier Struc-
ture with Soft CP: Although the appended latent vector
improves the classification accuracy, the appended vectors in
the training and testing phases are different (one is true while
the other is predicted). Instead, we consider appending the
predicted soft output of the first classifier to both training and
testing samples used in the second classifier. This approach
is justified by the fact that predictions on CP type are only
72.34% accurate on average, implying that the predicted and
true latent vectors can differ significantly, thus impairing
the second classifier. Even though the soft-predicted latent
vector is not 100% accurate during the training part, it still
approximates the distribution of the CP types. Using this
approach, we obtained the results as *With Soft CP’ in Table
V. The precision, recall, and F1 scores for LTE and 5G are
further improved by another 10% than hard CPs. On average,
the classification accuracy for the 2-classifier design increases
to 88.57%.

The above evaluation for the protocol classifier has a
window length of W* = 2056. However, in some cases,
predictions can be made based on a smaller window size.
Accordingly, we investigate the accuracy of protocol classi-
fication under two other values of W* (with W,, = 2560),
considering these three CP types, and show the results in
Figure 5. When W* = 512, we can see that the classification
accuracy improves from 71.75% when only one classifier is
used to 80.54% when appending hard CPs. It means the latent
variable about the CP generated from the first classifier is
valuable for the protocol classifier. Moreover, the accuracy
further improves to 89.99% when appending the soft CPs.
This indicates appending the confidence about the CP from the
first classifier can effectively enhance the accuracy of protocol
classification, even if the protocol classifier has a much shorter
window size. We further vary the length of such window, and
a similar trend is observed when W* = 640.
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Fig. 5. The impact of true and soft CP information on classification accuracy
of the protocol classifier.

B. Receiver Operating Characteristic (ROC) Curve

We compare the ROC for these three CP types to illustrate
the diagnostic ability of the classifier as its discrimination
threshold is varied, as shown in Figure 4. The ROC curve is
plotted by True Positive Rate (TPR) and False Positive Rate
(FPR). The higher Area Under the Curve (AUC) means a better
model’s performance distinguishing between the positive and
negative classes. Among these three classes, the ROC curve for
Wi-Fi is perfect. This is because the Wi-Fi signal significantly
differs in the CP duration from cellular signals. It aligns with
the observation in Figure 3, where Wi-Fi signals have a 100%
classification accuracy. In addition, we observe that classifiers
without CP and with hard CP have a similar average AUC,
even if the appended hard CP improves the classification
accuracy. By including the soft CP, the average AUC is
improved to 0.97, bringing a better classification for both LTE
and 5G NR.

C. Trainable Parameters

Our CyPA design can effectively increase classification
accuracy. Meanwhile, the model is controlled to be compact
with less trainable parameters [9] than the other models. We
compared our model with some state-of-art approaches [4],
[5], [11]-[13] for three-label protocol classification with the
same dataset. Our CyPA design requires W,x = 2560; all the
rest classifiers also apply the window size of 2560 for the fair
comparison. ResNet [14] allows shortcut in DNN blocks and



TABLE VI
NUMBER OF PARAMETERS AND CORRESPONDING ACCURACY
COMPARISON

Method/Model Parameters | Testing Accuracy (%)
VT-CNN2 [4] 52,474,451 88.04
Bi-LSTM [5] 13,284,483 86.86
LSTM [11] 6,728,835 74.43
ResNet-50-1D [12] | 7,245,123 71.85
ResNet-18-1D [13] | 3,859,651 71.46
Ours 1,874,314 89.99

TABLE VII

PROTOCOL CLASSIFICATION ACCURACY COMPARISON UNDER
DIFFERENT W¢p

Wep | Accuracy without CP | Accuracy with Predicted CP (soft)
2560 77.17% 89.99%
3840 84.30% 94.01%
5120 85.47% 93.69%

facilitate the neural network to become deeper. However, such
an operation in the block reduces the size of the intermediate
output for the next layer due to the filter function. In our case,
the inputs have the size of 2 x W, and the shape of 2 does
not support the procedure as in the image inputs. Therefore,
we replace all Conv2D and Pooling2D layers to ConviD and
Pooling1D layers as authors did in [12]. We call the modified
model ResNet-1D and train them for protocol classification.

We summarize the parameters and testing accuracy of these
models in Table. Models with more parameters tend to have
higher accuracy for protocol classification. VI-CNN2 has the
most parameters with 88.04% accuracy. While bidirectional
LSTM has only one-quarter parameters of VI-CNN?2, it has a
less accurate prediction. LSTM and ResNet-50-1D reduce the
parameters to less than ten million, sacrificing the classification
accuracy to less than 80%. Comparing ResNet-18-1D with
ResNet-50-1D, the parameter amount gets reduced to almost
half, but the accuracy keeps similar. Among these model, our
design has the least parameters of 1,874,314 and achieve the
highest accuracy of 89.99%.

D. Impact of CP Window Size

We have evaluated the proposed approach with W, = 2560
to guarantee the CP window includes at least one cyclic period.
In addition to this window size, we extend our evaluation
to W, = 3840 and 5120, with the same neural network
structure as before. The results of the protocol classification
are summarized in Table VII. We observe that the longer W,
can improve the accuracy of the protocol classifier without CP
prediction. Moreover, the proposed CP prediction embedded
approach can still increase classification accuracy by around
10% in these CP window sizes. The accuracy improvement in
all three window sizes validates the effectiveness of the CyPA
design.

VI. DISCUSSIONS

Applying a CP-duration classifier as a first stage, followed
by a protocol classifier, leads to significant performance gain in

the classification accuracy. In addition, such a structure is more
resource efficient since it requires much fewer parameters than
DNN models with the similar accuracy performance. Although
we implement our approach to classifying LTE, 5G, and Wi-
Fi signals, such an idea can be used to classify other wireless
technologies with periodic frame/packet duration settings (e.g.,
WiMAX and Bluetooth). In addition to advantages, there are
also limitations in our work. For example, our results are all
based on the simulation data and have not considered real
channels. We will study and address these limitations in our
future work.
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