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Abstract—With the increasing demand for wireless capacity,
multiple wireless technologies will inevitably coexist over shared
bands. Successive interference cancellation (SIC) is a promising
technique for improving spectrum utilization by utilizing the
difference in the powers of concurrently received signals. How-
ever, enabling SIC over a shared band faces several challenges,
related to the heterogeneity of the coexisting technologies, the
unknown powers of received signals, and the uncoordinated and
asynchronous nature of transmissions. Traditional SIC (T-SIC)
receivers cannot simultaneously achieve low decoding latency
and low decoding bit error rate (BER). To address these
challenges, we propose DL-SIC, a deep learning approach for
accelerating the operation of an SIC receiver. DL-SIC includes a
deep learning-based protocol detector for identifying overlapping
packets, as well as a deep learning-based SIC classifier for
accurate determination of the SIC decoding order in scenarios
where the relative strengths of the signals are unknown. We con-
duct simulations and over-the-air (OTA) experiments to evaluate
DL-SIC, and compare it with two T-SIC approaches, T-SIC;
and T-SIC;. Our simulation results clearly indicate that DL-
SIC can simultaneously achieve low decoding latency and low
decoding BER. Specifically, DL-SIC reduces decoding latency by
75.41% in the worst-case scenario and 84.44% in the best-case
scenario compared to T-SIC;. Furthermore, with a probability of
approximately 60%, DL-SIC reduces decoding BER from 10! to
10~* compared to T-SIC.. Our OTA experiments further confirm
the feasibility of DL-SIC.

Index Terms—Spectrum sharing, successive interference can-
cellation, deep learning, SIC decoding order.

I. INTRODUCTION

To cope with the growing demand for mobile data and the
limited availability of licensed spectrum, both LTE and 5G
systems have expanded their operations into the unlicensed 5
GHz and 6 GHz bands. A key requirement for such unlicensed
operation is ensuring fair and harmonious coexistence with
other incumbents, particularly Wi-Fi systems. For LTE, 3GPP
standardized the License Assisted Access (LAA) [1], which
employs a Listen-Before-Talk (LBT) mechanism at the MAC
layer to coordinate access to the unlicensed channels. In
Release 16, 3GPP introduced 5G New Radio Unlicensed (NR-
U) [2] for unlicensed operation in the 5 GHz and 6 GHz bands.

With these heterogeneous technologies (i.e., Wi-Fi, LTE-
LAA, 5G NR-UY) sharing the same band, collision avoidance-
based MAC protocols, such as LBT and carrier sense multi-
ple access with collision avoidance (CSMA/CA), are often
adopted. However, these protocols are known to suffer from

'For simplicity, in this paper, we use LAA, LTE, and LTE-LAA, inter-
changeably. The same is true for NR-U, 5G, and NR.

low channel utilization [3]. To improve spectrum utilization,
concurrent transmissions from heterogeneous systems may
be allowed [4]-[7], which requires interference resolution
strategies to mitigate cross-technology interference. Existing
approaches for dealing with interference from heterogeneous
technologies are mainly based on multiple-input multiple-
output (MIMO) [4] and successive interference cancellation
(SIC) [6], [7]. In contrast to a MIMO approach, SIC [7]
does not require a multi-antenna capability; instead, it exploits
the difference in the powers of concurrently received packets
to decode these packets. The fundamental idea behind SIC
is to sequentially decode received signals while iteratively
canceling previously decoded ones.

A. Challenges and Motivation

Traditional SIC (T-SIC) receivers were originally developed
for homogeneous (same-technology) coexistence [8], but later
extended to heterogeneous coexistence of Wi-Fi/ZigBee [6]
and LTE/Wi-Fi [7]. To motivate our work, we first describe
how a T-SIC receiver may be extended to handle heteroge-
neous coexistence of Wi-Fi, LTE, and 5G NR protocols, using
the example in Fig. 1. Depending on the assumed hardware
capability, we consider two possible ways to implement a T-
SIC receiver (other variations may also be envisioned):

(1) T-SIC;: In this approach, cross-technology interference
cancellation is performed after a frame is fully received and
correctly decoded. As a result, in the worst-case, all possi-
ble SIC decoding orders may end up being considered. To
illustrate, consider the situation in Fig. 1. After receiving a
signal at time ?;, the T-SIC; receiver initiates three parallel
detection processes, one per protocol, using auto-correlation
an/or cross-correlation techniques. In this example, the LTE
detector will be triggered first, and an LTE decoding process
will commence right after ¢;. Even though the three frame
detectors may remain active while the LTE frame is being
decoded, no action will be taken until the completion of this
frame (at time t; = t;+ 10 msec). If at {5 LTE decoding
is successful (based on the outcome of the CRC), the T-SIC;
receiver will reconstruct the LTE signal and subtract it from the
received composite signal. T-SIC; will then attempt to decode
the next frame, as identified by one of the three detectors.
In this example, it will be a Wi-Fi signal that starts at ¢o.
The same process is repeated. Note that additional samples
that are received after {5 need to be stored to facilitate the
decoding of frames that last beyond 5 (as is the case for the



LTE Frame | LTE Frame |

Wi-Fi Frame

| Wi-Fi Frame | | Wi-Fi Frame |

5GNRFrame | [ senrFrame |

ity t3 ty ts Time

Fig. 1: Example of concurrent and asynchronous transmissions
of Wi-Fi, LTE-LAA, and 5G NR-U. Frames have different
received powers.

5G NR frame in this figure). If the decoding of any given
frame fails, the T-SIC; will consider a different SIC decoding
order. For instance, if at ¢5, LTE frame decoding fails (as
indicated by CRC failure), the T-SIC; receiver will attempt to
decode the Wi-Fi signal first, starting from the samples at to.
After fully decoding the Wi-Fi frame at t4, if this decoding
is successful, T-SIC; will subtract the Wi-Fi signal from the
composite and will attempt to decode an LTE frame using
the remaining samples, starting from the samples at ¢;. The
overall decoding latency for T-SIC; can be significant due to
its exhaustive nature (more on this in subsequent sections).

(2) T-SICy: In this approach, frame decoding is initiated
once the signal of any protocol has been detected. As a
result, multiple decoding processes may overlap in time,
regardless of the relative strengths of the constituent signals.
During the decoding of a given frame, decoded “chunks” from
previously initiated decoding processes will be subtracted from
the composite before the decoding of the current frame takes
place, even if such chunks eventually fail the decoding process
in their own respective decoders (at the time the frames are
completely received). To illustrate, consider the situation in
Fig. 1. Three frame detection processes will be simultaneously
executed, one per protocol type. At ¢1, an LTE signal will be
detected, triggering an LTE decoding process. At to, a Wi-Fi
signal may be detected by the second detector (in general, the
detection threshold is much lower than the decoding threshold,
so a weak non-decodable Wi-Fi signal may still be detectable).
In contrast to T-SIC;, Wi-Fi frame decoding will commence
at this point, after subtracting a decoded chunk of the LTE
signal that starts at ¢5. A chunk here corresponds to a small
portion of a frame, such as a subframe (1 msec). Thus, the
decoding of the Wi-Fi frame commences at time ¢ = to+ the
chunk duration. The process continues until the detection of
the 5G signal at f3. At that point, 5G frame decoding can
commence after subtracting chunks of partially decoded LTE
and Wi-Fi signals. Note that the reconstructed and removed
chunks may end up being inaccurate, but are still likely to
reduce the interference and improve the BER of the decoded
frame. Although this method has low decoding latency, it may
result in a high decoding error rate for the LTE frame if the
received signal strength (RSS) of Wi-Fi and 5G NR are higher
than that of LTE.

Designing a SIC receiver with both low decoding latency

and low decoding error rate is challenging for several reasons:

(1) It is difficult to identify the protocol types for concur-
rently transmitted packets in real-time, given that heteroge-
neous protocols’ transmissions in shared unlicensed bands are
random. T-SIC assumes that the protocol types for concur-
rently transmitted packets are known in advance [6], which is
impractical.

(2) Transmissions from different protocols are uncoordi-
nated and asynchronous. Additionally, the RSS values of het-
erogeneous protocols’ packets are unknown and may change
due to channel fading and mobility, significantly impacting the
real-time decoding order. T-SIC assumes a certain power order
of the received signals [9], [10], which is impractical.

(3) T-SIC; incurs a large decoding delay to obtain the
SIC decoding order information, whereas T-SICs can decode
packets in real-time, it may induce a high decoding error rate.
This inherent trade-off between decoding latency and decoding
error rate in T-SIC stems from not being able to identify the
correct decoding order in real-time.

Therefore, a novel SIC architecture is needed to determine
the SIC decoding order rapidly and efficiently.

B. Contributions

Our main contributions are summarized as follows:

(1) We introduce a novel DL-SIC receiver, which is com-
prised of a protocol detector and a SIC decoding order
classifier. DL-SIC utilizes deep learning techniques to identify
the protocol types and correct decoding order in real-time.
We evaluate the performance of the proposed DL-SIC via
extensive simulations.

(2) We analyze the decoding latency of both DL-SIC and
T-SIC; in a three-protocol coexistence scenario (Wi-Fi, LTE,
and 5G NR). Simulation results show that DL-SIC reduces
the decoding latency by 75.41% to 84.44%, depending on the
packet detection order and RSS order. Additionally, with a
probability of approximately 60%, DL-SIC reduces decoding
bit error rate from 10~! to 10~* compared to T-SIC,.

(3) We validate the performance of DL-SIC using OTA
experiments with USRPs (software-defined radio devices) for
LTE/Wi-Fi spectrum sharing, demonstrating the practical fea-
sibility of DL-SIC.

II. DL-SIC ARCHITECTURE
A. System Model

Without loss of generality, we consider a heterogeneous
coexistence scenario consisting of Wi-Fi, LTE-LAA, and 5G
NR-U operating over the same 5 GHz unlicensed bands.
Concurrent transmissions may occur due to hidden terminal
problems or specific transmission strategies [4], [7]. Further-
more, receivers are capable of SIC decoding [7]. We focus on
downlink transmissions and assume unsaturated traffic. The
received signal at a given receiver is represented by:

y(t) = hwiri(t) ® zwiri(t) + hure(t) ® oie(t)

+ () @ g (1) + (1), M
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Fig. 2: Block diagram of DL-SIC, shaded boxes are new
functions introduced by DL-SIC.

where zwiri(t), z1rE(t), and zNg (t) are the transmitted signals
of Wi-Fi, LTE, and 5G NR, respectively, at time ¢t. The
corresponding channels are denoted by hwigi(t), hire(t), and
har(t). n(t) represents the thermal noise and other unac-
counted interference. It is important to note that since the
transmissions of all links are unsaturated, xwig(t), zrTE(L),
and xnr(t) may be inactive at certain time .

B. DL-SIC Design

1) Design Overview: The block diagram of DL-SIC is
given in Fig. 2, which includes a protocol detector and a
SIC decoding order classifier, built on top of a traditional
SIC receiver. Both components are based on deep learning.
Upon sampling the received signal, the DL-SIC receiver feeds
a window of baseband I/Q samples into the protocol detector,
which identifies the protocol type(s) of the constituent signals.
In the case of concurrent transmissions, multiple protocols
will be identified. The output of the protocol detector is then
used to select one of several classifiers, where each classifier
predicts the decoding order of the mixed signals. Finally,
the DL-SIC receiver decodes the mixed signals based on the
predicted decoding order. If only one protocol is detected, the
DL-SIC receiver decodes the signal following traditional SIC
decoding procedures without utilizing the SIC decoding order
classifier.

TABLE I: Layers Configuration of Adopted Neural Networks.

CNN Architecture
Conv2D, 128 neurons, with Average Pooling
Conv2D, 128 neurons, with Average Pooling
Flatten
Fully-connected, 128 neurons
Fully-connected, 128 neurons
Output, Number of Classes

GRU Arechitecture
GRU, 128 neurons
GRU, 128 neurons
Flatten
Fully-connected, 128 neurons
Fully-connected, 128 neurons
Output, Number of Classes

Both the protocol detector and SIC decoding order classifier
can utilize three classic neural network (NN) architectures:
Multi-Layer Perceptron (MLP), Convolutional Neural Net-
work (CNN), and Gated Recurrent Unit (GRU) [11]. Note
that Long Short-Term Memory (LSTM) [11] and GRU are
two commonly used architectures in Recurrent Neural Net-
works (RNNs). Without loss of generality, we adopt GRU in
this paper. The selection of these specific NN architectures
for DL-SIC is underpinned by their representation and their
widespread applicability across domains like image and RF
signal classification, as well as sequential data analysis and
prediction. The layers configuration of adopted NNs are shown
in Table I. To facilitate a meaningful comparison between
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Fig. 3: Deep learning-based protocol detector.

MLP and CNN (or GRU) architectures, we replace the two
convolutional (or GRU) layers with two fully connected layers
and adopt 128 neurons in each layer of the MLP architecture.

The DL-SIC receiver is capable of effectively detecting
mixed waveform patterns that change dynamically in the time
domain. Moreover, it can determine the SIC decoding order
of constituent signals in an adaptive manner without requiring
any prior knowledge of their RSS.

2) Protocol Detector: The 1/Q samples in each sampling
window vary over time due to the asynchronous transmissions
of various protocols. In our three-protocol scenario, there are
eight possible classes (combinations): Noise only, Wi-Fi only,
LTE only, 5G NR only, Wi-Fi + LTE, Wi-Fi + 5G NR, LTE
+ 5G NR, and Wi-Fi + LTE + 5G NR.

Fig. 3 provides an overview of the protocol detector and its
relationship with other components in DL-SIC. SIC is unnec-
essary if the protocol detector predicts only one technology,
such as Labels 1, 2, and 3 depicted in Fig. 3. However, if
the protocol detector predicts concurrent transmissions (e.g.,
Label 4 to Label 7 in Fig. 3), an SIC decoding order classifier
is further employed to intelligently and swiftly determine the
SIC decoding order for the detected mixed protocols.

3) SIC Decoding Order Classifier: Denoting the number
of signal components for one sampling window as N, we
propose two neural network structures for implementing the
SIC decoding order classifier.

Single Classifier Structure: A single classifier can be
designed to predict the SIC decoding order for the scenario
of N mixed signals. For instance, when N = 3, the number
of all possible SIC decoding orders is 16. It can be shown

N
that this number grows approximately as O(ﬁ) [12].
Consequently, this approach results in a massive number of
training parameters in one neural network.

Multi-stage Classifiers Structure: To address the complex-
ity of the single classifier structure, we propose a hierarchical
model consisting of multi-stage classifiers. Fig. 4 provides an
example of the multi-stage SIC decoding order classifier for
N = 3, where the decoding order is Wi-Fi — LTE — 5G NR.
In this structure, each stage of the classifier predicts which
signal (Wi-Fi, LTE, or 5G NR) can be successfully decoded,
given the prior decoding information. If the first stage predicts
successful SIC decoding for a given protocol, then another
classifier is used to determine the next signal to be decoded.
This process continues until the SIC decoding order for all
signals is determined, or none of the signals can be decoded
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Fig. 4: An example of the multi-stage SIC decoding order
classifier with N = 3, where the decoding order is Wi-Fi —
LTE — 5G NR.

in any stage of the classifier.

4) Decoding Latency Reduction of DL-SIC: As mentioned
previously, although T-SICs decodes all packets in real-time, it
suffers from a high decoding bit error rate (BER) due to a fixed
decoding order. Therefore, this paper focuses on analyzing the
decoding latency of T-SIC; and DL-SIC, and comparing the
decoding BER of T-SIC; and DL-SIC in Section III.

Best-Case Scenario for T-SIC;: Low decoding latency of
T-SIC; is achieved when the packet detection order matches
the successful decoding order. Fig. 5(a) illustrates this sce-
nario, where Packet 1 is the first to arrive and be detected
by T-SIC; among three packets. The dashed “P” block in the
figure represents packet detection. If RSS; > RSS, > RSS3,
Packet 1 can be successfully decoded. Once Packet 1 is
decoded and reconstructed, the T-SIC; receiver can proceed
with detecting and decoding the remaining packets. Thus, the
decoding latency of Packet 2 under this scenario is:

72(T-SICy) = t1,4 + t1,c — as, @)

where t; 4 represents the delay for decoding Packet 1, while
t1,. represents the delay for reconstructing Packet 1. as is the
difference between the arrival time of Packet 2 and Packet 1.

We next analyze the decoding latency of DL-SIC in this
scenario. As shown in Fig. 5(b), DL-SIC detects a weak Packet
2 at t; and determines the decoding order, which first decodes
Packet 1 and then Packet 2. The resulting decoding latency of
Packet 2 can be expressed as:

72 (DL-SIC) = tp., + — I (t1 d+ttie) — az, 3)

where tpr. is the processing latency of the DL-SIC, including
the testing latency of the protocol detector and the SIC
decoding order classifier. w is the sampling window size. L
is the packet length of Packet 1. “’ t1 4 and & t1 - represent
t) 4 and ¢} . in Fig. 5(b), which are the time needed to decode
and reconstruct Packet 1, respectively, during each sampling
window.

Worst-Case Scenario for T-SIC;: Fig. 6(a) illustrates the
worst-case scenario for T-SIC;, where the packet detection
order is reversed compared to the successful decoding order.
We analyze the decoding latency from the perspective of
Packet 1. Packet 1 is detected first, so the T-SIC; receiver
proceeds to decode Packet 1 and finds that the decoding is
unsuccessful due to subsequent strong overlapping transmis-
sions (e.g., Packet 2 and Packet 3 start to transmit during
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Packet 1), resulting in a decoding latency of ¢; 4. The T-SIC;
receiver then attempts to decode the second detected Packet 2,
which is still unsuccessful until it finds that Packet 3 should
be decoded first. Therefore, the decoding latency of Packet 1
in this scenario for T-SIC; can be obtained by summing up
the latency of all the above and is given by:

T1(T-SICy) = 2ty g+ 2o, g + to,c + 3.4 + t3.c. 4)

The DL-SIC, on the other hand, can quickly detect a
stronger signal at time ¢1, as illustrated in Fig. 6(b). Conse-
quently, after a latency of ¢pr, the DL-SIC switches to decode
Packet 2. Similarly, it switches to the updated decoding order
at time to + tpp. if Packet 3 arrives at ¢5. Therefore, the
decoding latency of Packet 1 can be expressed as:

L tag+tae). ()

(DL SIC) = 2lpL + —
Ly

L <t3d+t30)+



ITI. SIMULATION RESULTS

To train our neural network models in a supervised manner,
we construct labeled datasets by generating Wi-Fi 802.11ac,
LTE, and 5G NR waveforms using MATLAB WLAN, LTE,
and 5G communication toolboxes. All three waveforms have
the same bandwidth of 20 MHz. Each packet is transmitted
with one of the four MCS options: (QPSK, 1/2 rate), (QPSK,
3/4 rate), (16-QAM, 1/2 rate), (16-QAM, 3/4 rate). We
generate 3000 samples for each label, and randomly split
the dataset into 60%, 20%, and 20% for training, validation,
and testing, respectively. We use Keras to build our neural
networks, with a maximum training epoch of 50. In addition,
early stopping (with patience = 5) is applied to prevent
overfitting. We assume that the arrival time of Wi-Fi, LTE,
and 5G NR packets follows a Poisson distribution, while the
wireless channel of each waveform follows a Rayleigh fading
model. We also assume that the three transmitters (Wi-Fi, LTE,
and 5G NR) have the same distance to a common DL-SIC
receiver. Additionally, the transmission power of each packet
for all three protocols is uniformly sampled from a range of [8,
23] dBm [1], [13]. The datasets is available on the website?.

A. Performance of Protocol Detector

Fig. 7(a) shows the impact of different sampling window
sizes (w) on the overall classification accuracy of the protocol
detector. As expected, the classification accuracy increases
as w increases. All three neural networks achieve over 90%
classification accuracy when w is 1024.
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Fig. 7: Classification accuracy and average testing delay for
various DNN protocol detectors.

In addition to the accuracy, we also consider the impact of
the window size on testing delay, which is related to tpp in
Eq. (3). The tests for all three neural networks are conducted
on an Intel CPU i9-10900K. Fig. 7(b) illustrates the average
testing delay for the DNN protocol detector under different w.
As w increases, the required testing time for DNN protocol
detectors also increases. The GRU model takes more time to
test the sample than the other two models when w is less than
or equal to 1000. On the other hand, the CNN model takes the
longest time when w exceeds 1000. Among all three models,
the MLP requires the least testing time under all window sizes.

B. Performance of SIC Decoding Classifier

Fig. 8 illustrates how the window size (w) affects both the
classification accuracy and average testing delay of SIC decod-

2wireless.ece.arizona.edu/software

ing order classifiers implemented with a CNN architecture. As
shown, both classification accuracy and testing delay increase
as w grows. This trade-off between accuracy and processing
delay suggests the importance of the window size selection for
the given application. Additionally, it is worth noting that the
total testing delay of multi-stage SIC decoding order classifiers

is generally higher than that of single classifier structure.
10
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Fig. 8: Classification accuracy and average testing delay for
SIC decoding order classifiers using CNN architecture.

Fig. 9 illustrates the performance of SIC decoding order
classifier with the single classifier structure using different
neural networks. We can see that CNN outperforms MLP and
GRU in terms of classification accuracy. Moreover, the testing
delay for all three neural networks increases as w increases.
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Fig. 9: Impact of different neural networks on the SIC decod-
ing order classifier with single classifier structure.

C. Performance Comparison of DL-SIC and T-SIC

Fig. 10(a) shows the impact of w on the average decoding
latency of DL-SIC and T-SICy, based on the analysis presented
in Section II-B4. The total process latency of deep learning
models (fpp) is obtained by summing the delay of protocol
detector and SIC decoding order classifier. The delay for
decoding and reconstructing packets (e.g., 1,4, t1,. of Eq.(2))
is obtained using MATLAB. In the best-case scenario, the
average decoding latency of T-SIC; is approximately 0.45
seconds, while DL-SIC achieves a decoding latency of 0.07
seconds when w equals 1024. In the worst-case scenario,
T-SIC; and DL-SIC achieve decoding latency of approxi-
mately 0.61 seconds and 0.15 seconds, respectively.

In Fig. 10(b), we compare the decoding bit error rate (BER)
of DL-SIC and T-SIC,;. We observe that DL-SIC achieves
significantly lower BER values for all three protocols, as
compared to T-SICs. This is because T-SIC, cannot obtain
the received signal strength (RSS) order information merely
by relying on auto-correlations or cross-correlations in T-
SIC receivers. It can be observed that with a probability
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Fig. 11: Experimental setup.

of approximately 60%, DL-SIC reduces decoding BER from
10~ to 10~* compared to T-SICs.

As mentioned in Section I, there is an inherent trade-off
between decoding latency and decoding BER in traditional
SIC receivers. Fig. 10 indicates that DL-SIC solves this trade-
off and simultaneously achieves low decoding latency and low
decoding BER.

IV. EXPERIMENTAL RESULTS

To evaluate the practicality of DL-SIC, we conduct over-
the-air (OTA) experiments using a wireless testbed that is
comprised of three National Instruments (NI) USRP 2921
devices: an LTE transmitter, a Wi-Fi transmitter, and a DL-
SIC receiver (see Fig. 11). We generate Wi-Fi 802.11ac
and LTE waveforms using MATLAB toolboxes, as in the
simulations. The generated waveforms are then upconverted
to a RF channel in the unlicensed band.

We first study the performance of the protocol detector
when trained and tested based on the experimental dataset
using CNN and w = 128. The confusion matrix is shown
in Fig. 12. Overall, the protocol detector achieves an average
classification accuracy above 78% for all labels.

Next, we evaluate the performance of SIC decoding order
classifier. There are five possible labels for the LTE/Wi-
Fi coexistence scenario: (1) Signal Undecodable, (2) LTE
Decodable Only, (3) LTE — Wi-Fi (LTE and Wi-Fi are both
decodable with the specified order), (4) Wi-Fi Decodable Only,
and (5) Wi-Fi — LTE. Fig. 13 shows the confusion matrix
of the SIC decoding order classifier with single classifier
structure, which accurately predicts all labels with an overall
classification accuracy of 88.7%. These results using exper-
imental data demonstrate the practical effectiveness of the
proposed DL-SIC classifiers.
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Fig. 12: Confusion matrix of protocol detector, trained and
tested with the experimental dataset using CNN and w = 128.
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Fig. 13: Confusion matrix of SIC decoding order classifier
with single classifier structure, trained and tested with the
experimental dataset using CNN and w = 128.

V. RELATED WORK

A. Interference Cancellation Techniques

Existing techniques for interference cancellation (IC) be-
long to two main categories: Multiple-Input Multiple-Output
(MIMO) and Successive Interference Cancellation (SIC).

Gollakota et al. [14] proposed TIMO, a MIMO-based cross-
technology IC technique. It enables an 802.11 receiver to
successfully decode Wi-Fi signals even in the presence of
interference signals from other technologies by only measuring
the interference channel ratio. Yun et al. [4] proposed a
MIMO-based receiver that enables decoding of concurrent
transmissions of LTE and Wi-Fi signals. Their method em-
ploys iterative channel estimation for both LTE and WiFi
channels, utilizing the fact there are a small set of LTE
channels in the frequency domain that are not interfered by
Wi-Fi. Yang et al. [15] introduced ZIMO, enabling harmonious
coexistence of ZigBee and Wi-Fi networks.

On SIC, Guo et al. [7] adopted SIC to alleviate the cross-
technology interference caused by concurrent transmissions of
LTE and Wi-Fi within unlicensed bands. Yan et al. [6] imple-



mented a single-antenna SIC receiver for Zigbee/Wi-Fi coexis-
tence. Their scheme effectively mitigates the interference from
a stronger Wi-Fi signal, thereby facilitating the subsequent
decoding of the weaker ZigBee signal. Halperin et al. [8] im-
plemented a SIC receiver to decode simultaneous overlapping
transmissions from multiple asynchronous sources. However,
these works generally assume prior knowledge of the protocol
types for concurrently transmitting packets, or assume the RSS
order is known a priori (e.g., the power of Wi-Fi is always
stronger than ZigBee).

B. Signal Detection and Classification

Other works focused on detecting the type of interfering
technology or modulation scheme [16]-[20]. Hong et al. [16]
introduced a framework called DOF, which can accurately
detect coexisting radios in the shared spectrum. The authors
in [17], [18] proposed deep learning methods for modula-
tion classification. Zha et al. [19] investigated deep learning
approaches for both multi-signal detection and modulation
classification. The authors in [20] used deep neural networks
to detect coexisting signal types based on In-phase/Quadrature
(I/Q) samples without decoding them. A common idea un-
derlying these works is that they extract distinctive features
from diverse radios for signal detection. However, the above
techniques require a significant amount of time to detect
signal types, which is not applicable to real-time interference
cancellation.

C. Existing Deep Learning-aided SIC Solutions

Some recent works enhanced PHY-layer SIC decoding
performance using deep learning techniques. To solve the
practical issue that SIC is imperfect in non-orthogonal multiple
access (NOMA) systems, authors in [21], [22] proposed a
novel approach to approximate SIC decoding functions, such
as signal decoding and reconstruction, via deep neural net-
works. Motivated by the fact that the acquired channel state
information (CSI) by the receivers may be inaccurate, the
authors in [9], [10] introduced a deep learning-aided SIC,
which replaced the interference cancellation blocks of SIC
by deep neural networks. However, all the aforementioned
works consider homogeneous wireless technologies (where
there is only one type of signal), and they assume the SIC
decoding order is given or known, which are not applicable
to heterogeneous network coexistence.

VI. CONCLUSIONS AND FUTURE WORK

SIC has shown great potential in improving spectrum uti-
lization of cross-technology coexistence, utilizing the power
differences of concurrently transmitted signals. In this work,
we proposed DL-SIC, a deep learning-aided SIC approach.
The simulation results demonstrate that DL-SIC achieves
low decoding latency and low decoding BER simultaneously.
Extensive simulations and OTA experiments validate the ef-
fectiveness and practical feasibility of DL-SIC.

As future work, we will consider multi-links for each
protocol to generalize the proposed DL-SIC architecture.
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