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Abstract. We give a simple, elementary proof that a uniform
algebra is weakly sequentially complete if and only if it is finite-
dimensional.

1. The Result

For X a compact Hausdorff space, we denote by C(X) the algebra
of all continuous complex-valued functions on X with the supremum
norm ∥f∥X = sup{|f(x)| : x ∈ X}. A uniform algebra on X is a closed
subalgebra of C(X) that contains the constant functions and separates
the points of X. On every compact Hausdorff space X there is the
trivial example of a uniform algebra, namely C(X) itself. By the Stone-
Weierstrass theorem, C(X) is the only self-adjoint uniform algebra on
the space X. However, there are many other (nonself-adjoint) uniform
algebras. A typical example is the disc algebra which consists of the
continuous complex-valued functions on the closed unit disc that are
holomorphic on the open unit disc. The uniform algebras form a class of
Banach algebras that is important both in the field of Banach algebras
and in complex analysis, and uniform algebras also have applications
to operator theory. In this paper we consider certain Banach space
properties of uniform algebras, primarily weak sequential completeness
and reflexivity. (These terms are defined in the next section.)

Every weakly sequentially complete uniform algebra is finite-dimensional.
Although this fact is known to a few experts, the result is certainly not
well known and seems not to be explicitly stated in the literature. In
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this paper we present a simple, elementary proof of the result. A differ-
ent proof, using Arens regularity and bounded approximate identities,
is given in the forthcoming book of Garth Dales and Ali Ülger [4, Sec-
tion 3.6]. An anonymous referee has pointed out that using results
in the literature a stronger statement can be obtained: every infinite-
dimensional uniform algebra contains an isometric copy of the Banach
space c of all convergent sequences of complex numbers. We give the
referee’s argument near the end of the paper.

Theorem 1.1. Every weakly sequentially complete uniform algebra is

finite-dimensional.

Since every reflexive Banach space is weakly sequentially complete,
we have the following as an immediate consequence.

Corollary 1.2. For a uniform algebra A, the following are equivalent.

(a) A is weakly sequentially complete.

(b) A is reflexive.

(c) A is finite-dimensional.

The fact that every reflexive uniform algebra is finite-dimensional
does appear in the literature. However, the only explicit mention of
this fact that we have found in the literature is at the very end of the
paper [6] where the result is obtained as a consequence of the general
theory developed in that paper concerning a representation due to Asi-
mow [1] of a uniform algebra as a space of affine functions. A closely
related result, which we will discuss at the end of our paper, appears
in the paper [2] of Paul Beneker and Jan Wiegerinck: no separable
infinite-dimensional uniform algebra is a dual space. The fact that ev-
ery reflexive uniform algebra is finite-dimensional follows immediately
since every infinite-dimensional uniform algebra contains a separable
infinite-dimensional uniform algebra.

One can also consider what are sometimes called nonunital uniform

algebras . These algebras are roughly the analogues on noncompact
locally compact Hausdorff spaces of the uniform algebras on compact
Hausdorff spaces. (The precise definition is given in the next section.)
Every nonunital uniform algebra is, in fact, a maximal ideal in a uni-
form algebra, and hence is, in particular, a codimension 1 subspace of
a uniform algebra. Since it is easily proven that the failure of weak
sequential completeness is inherited by finite codimensional subspaces,
it follows at once that the above results hold also for nonunital uniform
algebras.

It should be noted that the above results do not extend to general
semisimple commutative Banach algebras. For instance, for 1 ≤ p ≤
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∞, the Banach space ℓp of pth-power summable sequences of complex
numbers is a Banach algebra under coordinatewise multiplication and is
of course well known to be reflexive for 1 < p < ∞; for p = 1 the space
is nonreflexive but is weakly sequentially complete [11, p. 140]. Also for
G an infinite locally compact abelian group, the Banach space L1(G) is
a Banach algebra with convolution as multiplication and is nonreflexive
but is weakly sequentially complete [11, p. 140]. All of these Banach
algebras are nonunital, with the exception of the algebras L1(G) for G a
discrete group. However, adjoining an identity in the usual way where
necessary, one obtains from them unital Banach algebras with the same
properties with regard to reflexivity and weak sequential completeness.

In the next section, which can be skipped by those well versed in basic
uniform algebra and Banach space concepts, we recall some definitions.
The proof of Theorem 1.1 is then presented in Section 3. A proof of
the stronger statement that every infinite-dimensional uniform algebra
contains an isometric copy of the Banach space c is given in Section 4.
In the concluding Section 5 we discuss the theorem of Beneker and
Wiegerinck that no separable infinite-dimensional uniform algebra is a
dual space.

2. Definitions

Recall from the introduction that a uniform algebra on a compact
Hausdorff space X is an algebra of continuous complex-valued func-
tions on X that contains the constant functions, separates the points
of X, and is (uniformly) closed in the algebra C(X) of all continuous
complex-valued functions on X. For Y a noncompact, locally com-
pact Hausdorff space, we denote by C0(Y ) the algebra of continuous
complex-valued functions on Y that vanish at infinity, equipped with
the supremum norm. By a nonunital uniform algebra B on Y we mean
a closed subalgebra of C0(Y ) that strongly separates points in the sense
that for every pair of distinct points x and y in Y there is a function f

in B such that f(x) ̸= f(y) and f(x) ̸= 0. If B is a nonunital uniform
algebra on Y , then the linear span of B and the constant functions on
Y forms a unital Banach algebra that can be identified with a uniform
algebra A on the one-point compactification of Y , and under this iden-
tification B is the maximal ideal of A consisting of the functions in A

that vanish at infinity.
Let A be a uniform algebra on a compact Hausdorff space X. A

closed subset E of X is a peak set for A if there is a function f ∈ A

such that f(x) = 1 for all x ∈ E and |f(y)| < 1 for all y ∈ X \ E.
Such a function f is said to peak on E. A generalized peak set is an
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intersection of peak sets. A point p in X is a peak point if the singleton
set {p} is a peak set, and p is a generalized peak point if {p} is a
generalized peak set. A closed subset E of X is an interpolation set

for A if A|E = C(E), where A|E denotes the algebra of restrictions of
functions in A to E. The set E is a peak interpolation set for A if E is
both a peak set and an interpolation set for A. For Λ a bounded linear
functional on A, we say that a complex regular Borel measure µ on X

represents Λ if Λ(f) =
∫

f dµ for every f ∈ A.
A Banach space A is reflexive if the canonical embedding of A into

its double dual A∗∗ is a bijection. The Banach space A is weakly se-

quentially complete if every weakly Cauchy sequence in A is weakly
convergent in A. More explicitly the condition is this: for each se-
quence (xn) in A such that (Λxn) converges for every Λ in the dual
space A∗, there exists an element x in A such that Λxn → Λx for every
Λ in A∗.

3. The Proof

Our proof of Theorem 1.1 hinges on the following lemma.

Lemma 3.1. Every infinite-dimensional uniform algebra has a peak

set that is not open.

The proof of the above lemma uses two preliminary lemmas.

Lemma 3.2. Let A be a uniform algebra on a compact Hausdorff space

X, and let P be an open peak set for A. Then the characteristic function

of P lies in A.

Proof. Choose a function f that peaks on P . Then the sequence (fn)
of powers of f converges uniformly to the characteristic function χP of
P , and hence χP lies in A. □

Lemma 3.3. Every infinite compact Hausdorff space X contains a

closed Gδ-set that is not open.

Proof. Let {xn} be a countably infinite subset of X. For each n =
1, 2, 3, . . . choose by Urysohn’s lemma a continuous function fn : X →
[0, 1] such that fn(xk) = 0 for k < n and fn(xn) = 1. Let F : X →
[0, 1]ω be given by F (x) =

(

fn(x)
)

∞

n=1
. Then F (xm) ̸= F (xn) for all

m ̸= n. Thus the collection {F−1(t) : t ∈ [0, 1]ω} is infinite. Each of
the sets F−1(t) is a closed Gδ-set because F is continuous and [0, 1]ω is
metrizable. Since these sets form an infinite collection of disjoint sets
that cover X, they cannot all be open, by the compactness of X. □



WEAK SEQUENTIAL COMPLETENESS OF UNIFORM ALGEBRAS 5

Proof of Lemma 3.1. Let A be an infinite-dimensional uniform algebra
on a compact Hausdorff space X.

In case A = C(X), the result follows immediately from Lemma 3.3,
since in that case it follows from Urysohn’s lemma that the peak sets
of A are exactly the closed Gδ-sets in X (see for instance [7, Section 33,
exercise 4]).

Now consider the case when A is a proper subalgebra of C(X).
In that case, by the Bishop antisymmetric decomposition [3, Theo-
rem 2.7.5] there is a maximal set of antisymmetry E for A that has
more than one point. Since every maximal set of antisymmetry is a
generalized peak set, and every generalized peak set contains a gener-
alized peak point (see the proof of [3, Corollary 2.4.6]), E contains a
generalized peak point p. Choose a peak set P for A such that p ∈ P

but P ⊉ E. The set P is not open in X, for if it were then the char-
acteristic function of P would be in A by Lemma 3.2, which would
contradict that E is a set of antisymmetry for A. □

Proof of Theorem 1.1. Let A be an infinite-dimensional uniform alge-
bra on a compact Hausdorff space X. By Lemma 3.1, there exists a
peak set P for A that is not open. Choose a function f ∈ A that peaks
on P .

For a bounded linear functional Λ on A, and a complex regular Borel
measure µ on X that represents Λ, we have by the Lebesgue dominated
convergence theorem that

(1) Λ(fn) =

∫

fn dµ → µ(P ) as n → ∞.

Thus the sequence (fn)∞n=1
in A is weakly Cauchy. Furthermore (1)

shows that, regarded as a sequence in the double dual A∗∗, the sequence
(fn)∞n=1

is weak*-convergent to a functional Φ ∈ A∗∗ that satisfies the
equation Φ(Λ) = µ(P ) for every functional Λ ∈ A∗ and every regular
Borel measure µ that represents Λ.

For x ∈ X, denote the point mass at x by δx. Denote the character-
istic function of the set P by χP . Then

(2) Φ(δx) = χP (x)

while for any function h ∈ A we have

(3)

∫

h dδx = h(x).

Since P is not open in X, the characteristic function χP is not con-
tinuous and hence is not in A. Consequently, equations (2) and (3)
show that the functional Φ ∈ A∗∗ is not induced by an element of A.
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We conclude that the weakly Cauchy sequence (fn)∞n=1
is not weakly-

convergent in A. □

4. Every infinite-dimensional uniform algebra contains c

In this section we give a proof of the following theorem along the
lines suggested by a referee.

Theorem 4.1. Every infinite-dimensional uniform algebra contains an

isometric copy of the Banach space c.

As mentioned in the introduction, this theorem strengthens The-
orem 1.1. To see this, first note that the Banach space c0 of se-
quences of complex numbers converging to zero is not weakly sequen-
tially complete because in c0 the sequence (1, 0, 0, 0, . . .), (1, 1, 0, 0, . . .),
(1, 1, 1, 0, . . .) is weakly Cauchy but not weakly convergent. Since every
norm-closed subspace of a weakly sequentially complete Banach space
is itself weakly sequentially complete, it follows immediately that a
weakly sequentially complete Banach space can not contain a copy of
c0, and hence can not contain a copy of c.

The proof of Theorem 4.1 uses the following two results. The first
of these is due to Alain Bernard while the second is due to Aleksander
Pe lczyński. Proofs of these results can be found in [10, pp. 217–219,
241–242].

Theorem 4.2. If A is a uniform algebra on an infinite compact metriz-

able space, then there exists an infinite peak interpolation set for A.

Theorem 4.3. Let A be a uniform algebra on a compact Hausdorff

space X, and let K be a peak interpolation set for A. Then there

exists a linear isometry L : C(K) → A such that (Lf)|K = f for all

f ∈ C(K).

We also use the following result which is surely known but whose
proof we include for the reader’s convenience.

Lemma 4.4. Let S be an infinite, compact metrizable space. Then

C(S) contains an isometric copy of the Banach space c.

Proof. Choose a sequence of distinct points sn in S converging to a
point s ∈ S. Set E = {sn : n = 1, 2, . . .} ∪ {s}. Clearly C(E) is
isometric to c, and by Theorem 4.3, for example, there is an isometric
copy of C(E) in C(S). □

Proof of Theorem 4.1. Let A be an infinite-dimensional uniform alge-
bra on a compact Hausdorff space X. By replacing A by a suitable
closed subalgebra, we may assume that A is separable and hence that



WEAK SEQUENTIAL COMPLETENESS OF UNIFORM ALGEBRAS 7

X is metrizable. Then by theorem 4.2, there exists an infinite subset
K of X such that K is a peak interpolation set for A. By Theorem 4.3,
there is an isometric copy of C(K) in A, and hence by Lemma 4.4, A
contains an isometric copy of c. □

5. No separable infinite-dimensional uniform algebra is a

dual space

By a theorem of Bessaga and Pe lczyński [5, Theorem 10, p. 48], if
the dual space of a Banach space contains an isomorphic copy of the
Banach space c0, then it contains an isomorphic copy of ℓ∞. (Two
Banach spaces are isomorphic if there is a linear homeomorphism be-
tween them. Isomorphic Banach spaces need not be isometric.) Thus
the following result of Beneker and Wiegerinck [2] follow immediately
from Theorem 4.1.

Theorem 5.1. No separable infinite-dimensional uniform algebra is a

dual space.

Note, however, that there are nonseparable uniform algebras that are
dual spaces. For instance, the uniform algebra C(βN) of all continuous
complex-valued functions on the Stone-Čech compactification of the
positive integers N can be identified with ℓ∞ and thus is isometrically
isomorphic to the dual of ℓ1.

Beneker and Wiegerinck obtained Theorem 5.1 as a corollary of
the main theorem of their paper [2] which concerns strongly exposed
points. A point f in the closed unit ball B of a Banach space A is
said to be strongly exposed if there exists Λ ∈ A∗ with the proper-
ties Λ(f) = ∥Λ∥ = 1 and for every sequence (gn)∞n=1

in A such that
limn→∞ Λ(gn) = limn→∞ ∥gn∥ = 1, we have limn→∞ gn = f in A.
Beneker and Wiegerinck’s main result [2] states that the unit ball of
an infinite-dimensional uniform algebra has no strongly exposed points.
As noted by Beneker and Wiegerinck, Theorem 5.1 follows immediately
since the the unit ball of a separable dual space is the closed convex
hull of its strongly exposed points [9]. A completely elementary proof
of a result stronger than the main theorem of [2] was later proven by
Olav Nygaard and Dirk Werner. Denoting the real part of a complex
number z by Re z, a slice of B is a set of the form

S(Λ, ε) = {g ∈ B : Re Λ(g) ≥ sup Re Λ(B) − ε},

for Λ ∈ A∗ and ε > 0. Nygaard and Werner [8] showed that every slice
of the closed unit ball of an infinte-dimensional uniform algebra has
diameter 2. There are thus several routes to proving Theorem 5.1.
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