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Abstract

We introduce a lattice framework that incorporates elements of Flory-Huggins so-

lution theory and the q-state Potts model to study the phase behavior of polymer

solutions and single-chain conformational characteristics. Without empirically intro-

ducing temperature-dependent interaction parameters, standard Flory-Huggins theory

describes systems that are either homogeneous across temperatures or exhibit upper

critical solution temperatures. The proposed Flory-Huggins-Potts framework extends

these capabilities by predicting lower critical solution temperatures, miscibility loops,

and hourglass-shaped spindle curves. We particularly show that including orientation-

dependent interactions, specifically between monomer segments and solvent particles,

is alone sufficient to observe such phase behavior. Signatures of emergent phase be-

havior are found in single-chain Monte Carlo simulations, which display heating- and

cooling-induced coil-globule transitions linked to energy fluctuations. The framework

also capably describes a range of experimental systems. Importantly, and by contrast

to many prior theoretical approaches, the framework does not employ any temperature-

or composition-dependent parameters. This work provides new insights regarding the

microscopic physics that underpin complex thermoresponsive behavior in polymers.
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Thermoresponsive polymers (TRPs) drastically alter structure, functionality, and/or sta-

bility upon changes in temperature.1–3 They are appealing candidates for many applications,

such as drug delivery, sensing, and purification.4–12 Their physics also have implications for

biological systems, with parallels to cold and warm denaturation of proteins, the hydropho-

bic effect, the formation of biomolecular condensates, and folding of DNA/RNA nanostruc-

tures.13–22 Manipulating how polymer-based materials respond to temperature could also

enhance control over supramolecular assemblies and improve particle engineering.23–25 Con-

sequently, understanding and modeling TRPs is of significant interest.

No self-contained theoretical framework currently captures the range of behaviors ob-

served in TRPs. Flory-Huggins solution theory26,27 (FH) is a simple conceptual starting

point, but balancing short-ranged interactions against chain and solvent entropy only yields

upper critical solution temperatures (UCST) and heating-induced globule-coil transitions

(GCT).26–29 Emergence of lower critical solution temperatures (LCST) or heating-induced

coil-globule transitions (CGT) has been addressed by theoretical extensions,30–45 which ei-

ther introduce adjustable parameters or impose ad hoc temperature-dependence to existing

ones. Some representative strategies include utilizing void sites and instituting surface-area

effect corrections,31 incorporating secondary lattices with temperature-dependent perturba-

tive interactions,42,44 invoking specific associative interactions,46 or prescribing an equation

of state.34,44,45 Although these approaches are powerful and expressive, they often lack a

firm microscopic basis, which inhibits validation, extension, interpretation, and application.

By contrast, molecular simulation analysis has pointed to molecular size effects, hydrogen-

bonding, and other orientation-dependent interactions as important for thermoresponsive

behavior.16,47–55 However, the chemical specificity obfuscates general comprehension and

presents little opportunity to isolate the minimal and necessary set of interactions. Thus,

questions remain regarding the microscopic physics of TRPs.

In this Letter, we introduce a minimal framework that combines elements of Flory-

Huggins theory26,27 and the q-states Potts model56,57 to understand phase behavior and
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the CGT in TRPs. A key feature of this Flory-Huggins-Potts (FHP) framework is that all

model parameters are linked to a Hamiltonian that transparently depends on pairwise in-

teraction energies amongst monomer and solvent particles. By consequence, derived models

are free of temperature- and composition-dependent parameters, permitting both analytical

analysis and commensurate investigation with molecular simulation. Mean-field analysis re-

veals that asymmetry in monomer-solvent interactions is alone sufficient to produce intricate

phase behavior, such as miscibility loops and hourglass-shaped phase envelopes, which are

not captured by native FH. Furthermore, Monte Carlo simulations establish a connection

between anticipated phase behavior and single-chain conformational characteristics, which

enables microscopic analysis that extends our mean-field understanding. The FHP frame-

work is also shown to reproduce diverse phase-coexistence data for several experimental

systems. These findings not only highlight energetic asymmetries as important physics un-

derlying TRPs but also establish a self-contained, conceptual framework that may be broadly

applied to TRPs or extended to other stimuli-responsive systems.

We consider a lattice completely occupied by either solvent particles or monomer seg-

ments (Fig. 1a). Like FH, short-ranged, pairwise interactions exist between particles, and

polymers consist of bonded monomer segments. Like a q-state Potts model, particles possess

orientations that can influence pairwise energies. The system energy is

H =

short-range,
orientation-dependent interactions︷ ︸︸ ︷

1

2

n∑
i=1

∑
j∈N (i)

εFHP (αi, αj , σ̂i, σ̂j)+

excluded volume︷ ︸︸ ︷
Np∑
k=1

Nm−1∑
l=1

V
(
r⃗
(k)
l+1, r⃗

(k)
l

)
(1)

with

V
(
r⃗
(k)
l+1, r⃗

(k)
l

)
=


0 if

∣∣∣r⃗(k)l+1 − r⃗
(k)
l

∣∣∣ ∈ N (O)

∞ otherwise

(2)

where αi denotes the species (monomer or solvent) and σ̂i denotes the unit-vector orientation
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of the the particle occupying the ith lattice site; ε(·) is a pairwise energy function of such

variables; n is the total number of lattice sites; Np is the number of polymer chains; Nm is the

number of monomer segments per chain; N (i) denotes the “neighborhood” of the particle

i; r⃗
(k)
l is the position of the lth monomer segment in the kth polymer chain; and V (·) is a

potential function that ensures bonded monomer segments are within the neighborhood of

each other. On a simple cubic lattice, we consider the neighborhood of the origin N (O) to

consist of nearest, next-nearest, and next-next-nearest neighboring positions on the lattice,

which results in a coordination number of z = 26.

Figure 1: Schematic of the Flory-Huggins-Potts framework. (a) The local neighborhood of a site (red outline) for a simple cubic
lattice. Monomer (m) segments and bonds are in green, and solvent particles (s) are blue. (b, c) Two-dimensional illustrations
of possible manifestations of orientation-dependent interactions. In (b), aligned interactions are permitted with all neighboring
particles, which may capture physics akin to hydrogen-bond networks. In (c), aligned interactions are permitted with only
a subset of neighboring particles, which may reflect specific and exclusive associative interactions. In both panels, particles
adjoined by red lines in the shaded region can engage in aligned (∥) interactions; those adjoined by gray only exhibit misaligned
(∦) interactions.

To simplify, we decompose

ε(αi, αj, σ̂i, σ̂j) = ϵ∦αiαj
+ Λ(i, j)∆αiαj

(3)

where ∆αiαj
= ϵ

∥
αiαj − ϵ

∦
αiαj quantifies an asymmetry or difference for interactions between

species αi and αj in an “aligned” (∥) versus “misaligned” (∦) state, and misaligned and

aligned states are effectively set by a function Λ(i, j) ∈ [0, 1] . By convention, we presume

4



that ∆αiαj
≤ 0, such that that aligned interactions are energetically more favorable than

misaligned ones, if present. We envision that both ∆αiαj
and Λ(i, j) capture essential dif-

ferences in how particles (or groups thereof) may interact (e.g., due to preferred molecular

orientations or collective arrangements that constitute solvation motifs). Under this inter-

pretation, the FHP framework is an effective coarse-grained representation of the system, for

which each particle on a lattice site may represent one or many molecules, and the associated

orientations represent a collective behavior or configurational rearrangement the molecules

comprising the particle on that lattice site. Therefore, despite Eq. 1 featuring only pairwise

terms, εFHP (αi, αj, σ̂i, σ̂j) can approximate more complex many-body interactions through

the dependence on σ̂i and σ̂j.

For concreteness, we suggest two physically motivated manifestations of Λ, colloquially

referenced as correlation networks (Fig. 1b) and locking interactions (Fig. 1c). Inspired by

hydrogen-bonding networks,58 correlation-networks use

Λcorr(i, j) = Θ(σ̂i · σ̂j − δ), (4)

and inspired by specific associative interactions59,60 (e.g., hydrogen-bonding, metal–ligand,

screened electrostatics, or perhaps short-ranged dipole-dipole or π-π stacking), locking in-

teractions use

Λlock(i, j) = Θ(δ − [arccos (r̂ji · σ̂i) + arccos (r̂ij · σ̂j)]) (5)

where r̂ij =
r⃗i−r⃗j
|r⃗i−r⃗j | . In both Eqs. (4) and (5), Θ(·) denotes a Heaviside step function, such

that δ effectively determines a solid angle through which particle orientations are considered

aligned. A primary distinction between Λcorr and Λlock is the fraction of neighboring particles

capable of engaging in aligned interactions, denoted pv. For Λcorr, aligned interactions occur

when particle orientations have the same direction (within the specified threshold δ), allowing

all neighboring particles to participate without restrictions. Conversely, for Λlock, aligned

interactions require particle orientations to be directed towards the other particle, which
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limits possiblly aligned interactions to only a subset of neighboring particles. Therefore,

pv = 1 for Λcorr, while pv ≤ 1 for Λlock (see Figs. 1b,c). We note that there are many

reasonable choices for expressing interaction asymmetry, and FHP is not exclusive to Eqs.

(4) and (5). Furthermore, FHP reduces to a simple FH description in the limit that all

∆αiαj
= 0, and one can simply write ϵαiαj

with no need to distinguish misaligned and

aligned interactions.

Following principles of FH and Boltzmann statistics (Supplemental Information, Section

S1), the free energy of mixing per particle is

∆F̄mix

kBT
=

energetic term︷ ︸︸ ︷
χFHP(T )φ(1− φ)+

entropic term︷ ︸︸ ︷
φ

Nmvm
lnφ+

(1− φ)

vs
ln(1− φ) (6)

where φ is the volume fraction of the polymer, Nm is the degree of polymerization, vm is the

molar volume of a monomer segment, and vs is the same for a solvent molecule (or group

thereof). Furthermore,

χFHP(T ) ≡ χFH(T ) + χ̃(T ) (7)

where

χFH(T ) ≡
(z − 2)

kBT

(
ϵ∦ms −

1

2

(
ϵ∦mm + ϵ∦ss

))
(8)

is essentially equivalent to a FH interaction parameter for a lattice with coordination number

z and pairwise energies set at the misaligned energy scale, and

χ̃(T ) ≡ (z − 2)

kBT
pv

(
∆̃ms(T )−

1

2

(
∆̃mm(T ) + ∆̃ss(T )

))
(9)

accounts for asymmetry between aligned and misaligned interactions and their relative preva-

lence. In particular, the ∆̃ij terms amount to per-site free-energy corrections between aligned
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and misaligned states given by

∆̃ij(T ) =
∆ij

1 +
(

1−pΩ
pΩ

)
exp (∆ij/kBT )

(10)

where pΩ is the fraction of states that lead to aligned interaction between two particles that

can engage in aligned interactions. pΩ and pv can be evaluated with numerically for particles

on a lattice.

Eq. 6 itself is functionally analogous to the FH free energy of mixing, yet Eqs. (7)-(10)

seemingly introduce five parameters beyond FH (∆ms,∆ss,∆mm, pΩ, pv) belying simplicity.

However, neither pv nor r are “free” parameters as they directly relate to the physical inter-

actions (i.e., what constitutes aligned vs. misaligned) and follow from a defined Hamiltonian.

This potentially leaves twice as many energy parameters compared to original FH. However,

we will show that a minimal model to observe complex phase behavior only requires ∆ms < 0

(with pv and pΩ as nonzero).

To illustrate, we characterize the phase behavior for a select set of models from four FHP-

derived regimes. In FHP, we anticipate four regimes of qualitatively distinct χFHP(T ) behavior

– denoted as R0 , R′
1 , R2 , or R′

3 (Fig. 2a) – that determine observed phases. The notation

is such that the subscript indicates the number of homogeneous-to-phase-separated tran-

sitions, a prime (′) indicates a phase-separated state at low T , and no prime indicates a

homogeneous state at low T . The spinodals in Fig. 2b illustrate how the FHP framework

exhibits complex phase behavior relative to FH for specific parameter-sets representative of

R′
1 , R2 , and R′

3 . While R′
1 displays the standard UCST, R2 and R′

3 respectively dis-

play a miscibility loop and an hourglass-like phase envelope, which is usually recovered by

invoking an equation-of-state or otherwise presuming temperature-dependent parameters.

These models use ∆mm = ∆ss = 0, which suggests that introducing interaction asymmetry

to monomer-solvent interactions ϵ
∥
ms < ϵ

∦
ms is alone sufficient to obtain miscibility loops and

hourglass-like phase envelopes.
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Figure 2: Phase behavior of polymer solutions described by the Flory-Huggins-Potts framework. Representative temperature-
volume fraction (T−φ) for a polymer with degree of polymerization Nm = 32, monomer molar volume vm = 1 and solvent molar
volume vs = 1. (a) Qualitative examples of χFHP(T ) for classification of phase behavior. Systems from R0 are expected to be
homogeneous, while those from R′

1 , R2 , and R′
3 respectively feature upper critical solution temperatures, miscibility loops, and

hourglass-shaped phase envelopes. (b) Spinodal curves on temperature-volume fraction (T − φ) diagrams for models by fixing

all other parameters as (ϵ
∦
ms,∆mm, ϵ

∦
mm,∆ss, ϵ

∦
ss, pv , pΩ) = (0,−1,−1, 0, 0, 1, 0.5) and z = 26 and varying ϵ

∥
ms: R′

1 (∆ms = 0),
R2 (∆ms = −1), and R′

3 (∆ms = −0.5237); parameters for R0 do not yield phase separation. (c) Classification of phase

behavior as a function of ϵ
∥
mm and ϵ

∦
mm (inner plots) at various values of ϵ

∥
ms and ϵ

∦
ms (outer axes). Additional parameter-sets

are examined in Supplemental Information (Figs. S1, S2).
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Figure 3: Analysis of single-chain Monte Carlo simulations. (a,b) Temperature dependence of (a) intra-chain scaling exponent

ν̃ and (b) energy fluctuations using parameters associated with R0 , R′
1 , R2 and R′

3 with (∆ss, ϵ
∦
ss, pv , pΩ) = (0, 0, 1, 0.25)

for all simulations. In (a), the horizontal dashed lines are guides to the eye for globular scaling (black) and excluded-volume
statistics (gray). In (b), the data transitions such that heat capacity CV is shown for T < 1.0 and fluctuations in total energy
σ2
E is shown for T ≥ 1.0; the data are shifted by 0.01 to allow for logarithmic scaling. The background color is based on

ν̃ to emphasize conformations that are expanded (blue) or globular (green) relative to the ideal chain (white). Simulation

parameters (∆ms, ϵ
∦
ms,∆mm, ϵ

∦
mm) for R0 are (0,−1, 0,−1), for R′

1 are (0,−1,−1.2,−1), for R2 are (−1, 0,−1,−1), for R′
3 are

(−1, 0, 0,−2.001). Error bars are smaller than the symbol size.

Conversely, only introducing asymmetry to monomer-monomer interactions (or likewise

solvent-solvent) does not result in as rich phase behavior. This is conveyed in Fig. 2c, which

provides a “hyperphase diagram” summarizing χFHP(T ) behavior across a much broader

parameter-space rather as opposed to the select cases in Fig. 2b. While the preponderance

of parameter-space yields R0 (blue) or R′
1 (green) behavior, R2 (miscibility loops, yellow)

and R′
3 (hourglass envelopes, magenta) emerge within intermediate energetic regimes only

if misaligned and aligned monomer-solvent interactions are unequal. Overall, these results

show how the balance of both interspecies and intraspecies interactions as well as misaligned

and aligned interactions give rise to nuanced phase behavior, but asymmetric interactions

between monomer and solvent are essential to observe multiple phase transitions within the

FHP framework.

Because the parameters within FHP are traceable to a well-defined Hamiltonian, molec-
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ular simulation can be used to ascertain any connection between single-chain structure and

solution thermodynamics.51,61 Monte Carlo (MC) simulations are used to characterize the

temperature-dependent behavior of single polymer chains using parameters from each of R0 ,

R′
1 , R2 , and R′

3 . The simulations use Nm = 32 and a Λcorr with pv = 1 and for δ = cos 1

gives pΩ = 0.25 (see Fig. 1b). To probe single-chain conformations, we extract intra-chain

scaling exponents ν̃ by fitting data

〈
|r⃗i − r⃗j|2

〉
∝ |i− j|2ν̃ (11)

and compare with known scaling laws (e.g., Rg ∝ M1/2 for ideal chains, Rg ∝ M1/3 for glob-

ules); the finite-size of our chains motivates fitting data over a selected range of separation

distances (see Supplemental Information, Figure S2).

Fig. 3a shows that distinct single-chain conformational behavior is observed when param-

eters are taken from different phase behavior regimes. At low T , systems from R0 and R2

with strong aligned monomer-solvent interactions exhibit scaling indicative of good-solvent

conditions (ν̃ ≥ 2/3), while systems from R′
1 and R′

3 display more globular scaling; this

correlates with R0 and R2 having a single homogeneous phase and R′
1 and R′

3 featuring

phase-separated states. Behavior between R0 and R2 differs upon heating. While ν̃ from

R0 gradually approaches excluded-volume statistics (ν̃ ∼ 0.588), ν̃ from R2 collapses to a

globule before expanding in the high-T limit, which aligns with the physics of a miscibil-

ity loop. Similar explanations apply for R′
1 and R′

3 . The singular GCT for ν̃ from R′
1

with asymmetric monomer-monomer interactions is consistent with a UCST, but a sharp

transition is only observed with sufficiently asymmetric interactions. For R′
3 , there is no

clear mapping of the ν̃ behavior to the solution phase behavior. ν̃ shows globular behavior

at low temperatures and maintains the globular state while allowing for energetic fluctua-

tions in the system before eventually expanding. For R′
3 , ν̃ begins as globular then crosses

the ideal-chain limit three times–a progression consistent with an hourglass-like phase enve-
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lope. In contrast, ν̃ obtained with isotropic interactions, which comports to simple FH, only

tends gradually and monotonically to excluded-volume statistics upon heating (Supplemen-

tal Information, Fig. S3). Thus, anisotropic interactions can drive sharp, thermally induced

conformational transitions – reminiscent of the trends seen in phase behavior.

The observed conformational transitions are also accompanied by drastic shifts in un-

derlying energy fluctuations (Fig. 3b). For systems from R′
1 , the single CGT is marked by

maxima in the heat capacity CV and energy fluctuations σ2
E within a narrow temperature

range wherein ν̃ ∼ 0.5 (white region); similar observations hold for the low-T CGT in R2 .

Such behavior is reminiscent of typical second-order Θ transitions of polymer chains,48 al-

though firm elucidation is left to future work. In R2 and R′
3 , a higher-T transition from

globular to excluded-volume statistics is captured by a maximum in σ2
E. These fluctuations

notably accompany compositional and orientational changes within the polymer’s local en-

vironment (Supplemental Information, Figs. S2 and S3) and are thus not reproducible by

FH but are inherent to FHP.

Figure 4: Comparison to experimental coexistence data for diverse systems. Temperature-volume fraction (T − ϕ) diagrams
for systems that display (a) upper critical solution temperatures, such as polyisbutylene (PIB) in diisobutyl ketone at several
molecular weights (MW); (b) lower critical solution temperatures, such as polystyrene in ethyl acetate at several MW; (c)
miscibility loops, such as polyethylene glycol (PEG) (3350 amu) in water and 2-butoxyethanol (2-BE) in water; and (d)
hourlgass-like phase behavior, such as polystyrene in tert-butyl acetate at several MW. The data in (a)-(d) are respectively
sourced from Refs.,62,63 and64 and were also compared to theory proposed in Ref.42,65 All molecular weights are reported in
Daltons. All parameters are reported in the Supplemental Information (Table 4).

Finally, the FHP framework can quantitatively capture the behavior of experimental sys-
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tems. This is illustrated in Fig. 4, which compares FHP results with experimental data

for various solutions that collectively showcase UCST, LCST, miscibility loops, and hour-

glass (UCST + LCST) phase envelopes. These same systems were examined by Bae and

Oh to evaluate a proposed double-lattice model.63 Here, for each set of experimental data,

the FHP parameters were optimized using the covariance matrix adaptation evolutionary

strategy66 with a procedure described in the Supplemental Information. It is notable that

FHP captures the experimental data well without any temperature-dependent parameters

or externally imposed equation-of-state, which is distinct from similarly expressive prior the-

oretical works.32,44,63 The reproduction of a lower-critical solution temperature (Fig. 4b)

arises from parameters that yield miscibility loops, with the upper transition to a homoge-

nous phase occurring at high temperatures. We emphasize that the parameters obtained

are not unique, which obfuscates their physical interpretation, but there is consistency with

certain reasonable expectations. For example, for a specified materials system, the underly-

ing energetic parameters are roughly constant while terms accounting for the molar volume

of components tend to increase with increasing molecular weights. Although the quality of

fits here does not firmly exclude the importance of other key interactions, the restriction

that parameters be represented in a well-defined Hamiltonian (and subsequent free-energy

expressions) implies that parameter-space of FHP does not have arbitrary flexibility to repre-

sent complex functions. Consequently, effectively capturing experimental data is not only an

important demonstration for FHP but bolsters the case that energetic asymmetries, which

distinguish FHP, are likely important to the physics of real systems.

In conclusion, we have introduced the Flory-Huggins-Potts (FHP) framework to describe

and understand thermoresponsive polymers. Remarkably, this approach, which simply ex-

tends Flory-Huggins (FH) theory with orientation-dependent interactions, showcases diverse

temperature-dependent phase behavior, including miscibility loops and hourglass-like phase

envelopes. In this way, FHP can capture the experimental data of diverse systems. This

expressive capacity emerges without any ad hoc functional dependencies on temperature;
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the effects are transparently attributable to microscopic theory of interactions. Here, this

enabled investigation of how polymer solution thermodynamics connect to single-chain con-

formational behavior. We find overall strong correspondence between single-chain conforma-

tional behavior (from molecular simulation) and macroscopic phase transitions (deduced from

mean-field analysis), except that simulations for parameters that macroscopically produce

hourglass-shaped phase envelopes do not produce multiple GCT upon heating. Importantly,

while FHP supports additional complexity, a key result is that the emergence of complex

phase behavior only requires ∆ms < 0 (with pv and pΩ as nonzero). From analyzing such

minimal models, we conclude that asymmetry in inter-species (e.g., monomer-solvent, as

opposed to monomer-monomer and solvent-solvent) interactions is alone sufficient to induce

complex thermoresponsive behavior, such as heating-induced CGT. It is important to note

that this does not necessarily imply that such interactions are the sole cause or even predom-

inant factor driving such phenomena in any specific chemically realistic system; however, the

fact that the Hamiltonian underlying FHP can be parameterized to fit several distinct sets

of experimental data is perhaps suggestive of its relevance.

FHP may be extended, tested, and applied in a variety of ways. Firstly, FHP models may

serve as foundational scaffolding for other stimuli-responsive behaviors grounded in similar

physical principles. For example, interaction asymmetry could impact the manifestation of

cononsolvency, which is often observed for thermoresponsive polymers.? Classification of

conformational transitions with FHP models is also of interest. Prior work has shown a

first-order collapse transition with respect to a parameter governing the energy difference

between a effectively solvated and non-solvated state for a polymer chain;48 FHP models may

produce similar behavior. Secondly, the simplicity and transparency of FHP physics make it

suitable for benchmarking and hypothesis testing. Bottom-up coarse-graining of thermore-

sponsive polymers is challenged by state-point-dependent parameterization and generally

complicated many-body molecular physics present in atomistic simulations.55,67,68 FHP mod-

els could provide a useful benchmark system with requisite complexity but precisely known
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physics. Thirdly, the FHP framework would benefit from firmer connection to the physics

of chemically realistic systems. Because the parameters in FHP comport to a well-defined

Hamiltonian, it may be feasible to extract parameters from calculations with molecular sim-

ulation (e.g., by evaluating energy or free-energy differences between interacting groups at

different orientations).? Experimentally, one might examine whether the effects of certain

chemical modifications are consistent with changes in thermoresponsive behavior expected

from FHP according to anticipated effects on interaction asymmetries. These efforts could

usefully support FHP as a viable theory for certain systems, such as phase-separating disor-

dered proteins and RNAs.69–71 Finally, FHP can facilitate interpretation of results within a

hierarchy of models. If data cannot be viably fit to an FHP model, one may infer that addi-

tional physics beyond those captured by the FHP Hamiltonian underlie the system behavior.

Achieving quantitative consistency may ultimately require extensions to consider neglected

factors, such as compressibility, which has been considered elsewhere.
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