Preprints are preliminary reports that have nat undergone paar reviaw
> c y
‘«\w‘n) Research ‘;,,q uare hey should not be considered l?f.‘vr‘x-'3|‘»lﬂl“.'-’,‘: used to inform clinical practice,
-y or referenced by Lhe meadia as validated information,

Virtual Screening of Molecules via Neural
Fingerprint-based Deep Learning Technique

Rivaaj Monsia
University of Wisconsin- Eau Claire

Sudeep Bhattacharyya

bhattas@uuec,edu

University of Wisconsin- Eau Claire

Method Article

Keywords; Artificial neural network, deep learning, drug design, machine learning, neural network-based
fingerprinting, structure-based inhibitor design

Posted Date: May 9th, 2024
DOL: https://doi.org/10.21203/rs.3.rs-4355625/v1

License: © @ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Page 1/21



Abstract

A machine learning-based drug screening technique has been developed and optimized using
convolutional neural network-derived fingerprints. The optimization of weights in the neural network-
based fingerprinting technique was compared with fixed Morgan fingerprints in regard to binary
classification on drug-target binding affinity. The assessment was carried out using six different target
proteins using randomly chosen small molecules from the ZINC15 database for training. This new
architecture proved to be more efficient in screening molecules that less favorably bind to specific
targets and retaining molecules that favorably bind to it.

Scientific contribution

We have developed a new neural fingerprint-based screening model that has a significant ability to
capture hits. Despite using a smaller dataset, this model is capable of mapping chemical space similar
to other contemporary algorithms designed for molecular screening. The novelty of the present
algorithm lies in the speed with which the models are trained and tuned before testing its predictive
capabilities and hence is a significant step forward in the field of machine learning-embedded
computational drug discovery.

Introduction

Computational chemistry is essential to probing complex chemical systems and plays a critical role in
computer-aided drug design [1, 2]. With the availability of large datasets, machine learning and artificial
intelligence-embedded computational chemistry tools are becoming increasingly popular [3-5] and
holds great promise to shed light on several challenging fields of chemistry including structure-guided
drug design [2, 6-12]. Drug discovery is a multi-step process; several estimates characterize this
process as taking, on average, 12-18 years and around 2.6 billion US$ for a drug to progress from a
laboratory discovery to a patient’s bedside. Novel machine learning applications are being explored in
expediting certain parts of the drug design timeline, namely compound screening [2, 6-17]. This
multidisciplinary research area dominated by computational chemistry, data science, and machine
learning seems to hold large untapped resources for structure-guided drug discovery that could alter the
landscape of healthcare [6, 11, 13].

In our lab, computational chemistry has been used for over a decade in elucidating the chemistry of
enzymes that are drug targets[18-27]. Using classical and quantum physics-based models, these
studies explored intermolecular interactions[18, 20, 22]. receptor-ligand complexes[19-21], redox
processes[23-26], and enzyme catalysis[19, 21, 23). However, these physics-based approaches failed to
capture the information of selective molecular recognition and translate that to a rigorous inhibitor
search. This is because a study of selective inhibition requires a molecular docking process that
necessitates the representation of a part of the enzyme's active site and each small molecule in a
database and hence is computationally expensive. Consequently, they were not very effective in
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molecular screening of a large-molecular database[28]. This prompted us to explore artificial
intelligence-embedded computational screening techniques.

A single molecule can be thought of as a sentence composed of atoms or substructures as words [29].
These substructures are combined in different patterns generating various molecular structures. Thus,
encoders mimicking those used in natural language processing appear to hold great promise in
deciphering molecular substructures that could elucidate molecular recognition by an enzyme. In
particular, many such efforts have focused on abstract features of molecules via self-supervised
learning, which is then used to train for predicting specific properties [29-33]. In the present study, we
integrated a neural fingerprint-based deep learning technique with computer-aided drug design. The new
architecture is found to be more efficient in screening molecules to accelerate the process of compound
screening.

Theory and Methods

Computations were carried out on the hybrid GPU-CPU Cluster with 61 nodes and 3904 cores at the
Blugold Center for High-Performance Computing, UW-Eau Claire. Proteins were downloaded from Protein
Data Bank [34]. VMD was used for visualization and molecular editing [35]. A random set of 50000
molecules was obtained from ZINC15 database [36—38]. For computing molecular properties, the Open
Babel codes [39] were used to interchange molecular structures in various formats. Molecular docking
on specific target proteins was carried out using AutoDockFR [40]. Reading and writing of machine-
readable molecular substructures were done using RDKit [41]. The similarity maps of molecules were
generated using Random Decision Forest [42] following the published method [43]. The precision, recall,
and receiver operating characteristics were calculated using the scikit-learn (version 1.4) library [44]. The
technical implementation of neural network architecture was done in PyTorch [45].

Preparation of molecular library

ZINC15 stores the structural information of a large number (> 1 million) of small molecules as SMILES
[46-48] or "simplified molecular-input line-entry system”. In SMILES format, the information of a small
molecule is reduced to a single-line ASCII string of characters [47]. This contains atoms in English
letters, while bonding and stereochemistry are expressed by using special characters. Using a set of
home-built scripts that utilize Open Babel commands, each of these strings was converted to three-
dimensional structural forms. Finally, AutoDockFR was used to store them in a docking-ready protein
data bank with partial charges or PDBQ format.

In parallel, protein structures were downloaded from PDB databank. The receptor and ligand molecules
were separated using VMD. Hydrogens were added to both receptor and ligand molecules using
AutoDockFR before storing them in PDBQ format.

Molecular docking
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High-throughput docking was accomplished by shellcodes that can parallelize a number of jobs using
the GNU-parallel tool [49] across multiple nodes. The binding affinity is usually expressed quantitatively
by the Gibbs' free energy of binding (Eq. 1):

ApinaG° (ag) = G (target - - - ligand, ag) — G (target, ag) — G (ligand, ag) Eq. 1,

where G (target - - - ligand, aq), G (target, aq), and G (ligand, ag) are defined as the aqueous-state
Gibbs' free energies of the ligand-bound target, the free target, and the free ligand, respectively. The
ApinaG° (ag) values, obtained from the docking output, were randomly separated into three train-
validation-test groups with 70, 15, and 15 percentage splits, respectively. The greater binding affinity
corresponds to more negative Apind G° (ag) values. A threshold of ApinaG” (ag) was calculated based
on the statistical representation of the training set data for a specific target active site (vide infr. ).

Convolutional neural network (CNN) fingerprint

The convolutional neural network (abbreviated hereafter as CNN) fingerprints were generated by
modifying Morgan's algorithm [50], which produces extended connectivity fingerprints (ECFP) [51]). In the
original algorithm, first generated by Morgan in 1965 to solve molecular isomorphism problem, each
atom of a molecule was represented as graph, with atoms as vertices and bonds as edges. First, a
terminal atom of a molecule is chosen, and using atom type and bonding information, a unique identifier
number is assighed to the first vertex. Next, following Daylight atomic invariants rule [51], a given radius
around the chosen terminal atom, adjacent graph vertices (i.e. other atoms) are identified, and a sub-
structure is produced, in which a sum of adjacent graph vertices (with atom and bond information) is
converted to a unique number identifier using a hash function. The sphere is then increased in the next
cycle to include the next layer of atoms. When this procedure converges with all atoms considered, each
identifier is converted to a bit array to generate binary machine-readable form.

In the present study, instead of a fixed ECFP [51] as input, a CNN-based fingerprint-generation was
implemented [52], which involves graph-based convolutions to carry out weight and bias optimizations
within the neural network architecture (Scheme 1).

An algorithm was developed to transform the information about the molecule into a graph structure,
where atoms represent nodes and bonds represent edges. The molecular graph is defined using 3
matrices, a matrix representing specific features of each atom in the molecule, a matrix representing
specific features of each bond in the molecule, and a matrix representing the connectivity of atoms and
bonds in the form of a graph (Scheme 1). This last matrix is very similar to a simple connectivity matrix,
with extra information characterizing the unique bond, which connects any two atoms. These matrices
represent the input into the overall machine learning structure, specifically the convolutional model which
generates the neural fingerprint, an optimized, trainable analog to general chemical fingerprints like the
ECFP.

In the convolutional model, at each layer, a one-dimensional fingerprint of a specified length was created,
which is a real-valued vector. The process of creating these fingerprints was similar to the generation of
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ECFP. However, differentiable functions replaced non-differentiable functions in the generative algorithm,
in turn allowing the inclusion of trainable weights and biases in this process, which were optimized
during the training process. Some examples include the non-differentiable hash and array-indexing
functions that can be replaced by the continuous and differentiable sigmoid and softmax functions. The
fingerprints at each convolutional layer are connected just like an artificial neural network (ANN).
Typically, such a model is still called convolutional, as the generation of the fingerprints involves the
combination of information from the three matrices consisting of atom features, bond features, and the
molecular graph. These three layers of information is embedded into these fingerprints in a usable
manner. The last layer produces the final fingerprint which is then mapped to the ANN (Scheme 1). Note
that the trainable weights and biases in the convolutional fingerprint generation process were not trained
separately to the ANN trainable parameters. The backpropagation of the loss from the binary ANN
output included the trainable weights and parameters included in the generation of the fingerprint.
Hence, this enabled the fingerprints from molecules to be optimized based on the task presented to the
model, which in the present scenario is predicting binding affinity of a certain active site of a protein
target.

Artificial neural network (ANN)-based binary classification

This ANN is a binary classification model based on a calculated binding affinity threshold. To obtain the
best set of hyperparameters in training and evaluating the model, the optimizer developed by Adams et
al. [53] was used. A hyperparameter search was carried out through a simple grid search technique with
unique combinations of the following hyperparameters: weight decay, learning rate, dropout frequency,
batch size, and fingerprint length. Custom initialization was used in regard to both the ANN and
fingerprint weights and biases. Fingerprint weights were initialized based on a normal distribution of the
Xavier initialization method [15], which was shown to be favorable for the sigmoid activation function.
Bias was initialized to a constant 0.01 for both the ANN and fingerprint. At each convolutional layer
(including the initial input layer), an output layer transforms the associated atom features into a real-
valued vector: the fingerprint. The vector sum of these intermediate fingerprints resulted in the final
fingerprint, which was mapped to the first layer of a simple Artificial Neural Network (ANN).

Oversampling to induce a balanced dataset

In a statistically unbiased sample, binary classes comprise 50% of the dataset, enabling the model to be
trained on wider features that defines each class. However, this is not true for the present case. The
docking data exhibited that weakly-bound molecules greatly outnumber those exhibiting tighter binding.
Thus, to test the predictive capabilities, the threshold AhdeO (_aq) was determined such that a varying
pre-defined percentage of molecules would be considered as "hits” or a “1" in terms of binary
classification. This measure resulted in only the top 5%, 10%, or even 20% of molecules as hits. As a
countermeasure, oversampling was enforced on the training dataset by randomly duplicating the
fingerprints of hits such that the distribution of hits and non-hits was balanced at 50% for each class.
The validation and test datasets were not altered in any way.

Evaluation metrics
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All metrics presented were solely used to quantify results for the neural network architecture’s final
predictive capabilities on the test dataset. Precision is a general metric that quantifies the proportion of
hits predicted by the neural network that were true hits based on their Apina G’ (aq) values as in Eq. 2

TF

precision = m

Eq. 2,
where true positives (TP) refer to the number of predicted hits that were true hits and false positives (FP)
refer to the number of nonhits that were predicted as hits. Recall is another metric that goes hand-in-
hand with precision and relays the proportion of actual hits that were predicted as hits by the neural
network (Eq. 3)

_ TP
recall = (T3 ) Eq. 3,
where false negative (FN) refers to the hits that were predicted as non-hits by the neural network. The
receiver operating characteristic (ROC) and area under the curve (AUC) is a metric often used in binary
classification problems, The ROC curve plots the true positive rate against the false positive rate at
different classification thresholds. The AUC, ranging from 0 to 1, is then called the ROC AUC. A higher
AUC generally indicates better performance at binary classification.

The area under the precision-recall curve or PR-AUC plots the precision and recall at different probability
thresholds to visualize the tradeoff between the two at a given probability threshold. The area ranges
from 0 to 1 and, generally, higher values indicate better, more consistent precision and recall for a model.

The predictive enrichment probability (PEP) is expressed as the probability of the model predicting a
molecule as a hit given that the molecule is really a hit. In particular, this probability ranges over the
ApinaG° (aq) values that are lower than the threshold defined prior to training the model. In theory, this
metric indicates how well a model can capture binary hits over a continuous distribution of values.

Numberofmoleculespredictedasahit| Ay G" < threshold
PEP = erof D [ AninaG'(ag)

Eq. 4

Totalnumberofmolecules| Apina G° (0q) <threshold

Lastly, the F; score is defined by the harmonic mean of the precision and recall as in Eq. 5.

= 2
e [(precision) '+(recall) '] Eq.5

Results and Discussion
Enzyme targets

In this study, six distinct enzymes were chosen that are well regarded as potential therapeutic targets for
various diseases. The following is a concise description of the structure-function of these enzymes
related to their recognition as drug targets. As shown in Fig. 1, these enzymes have different folds, and
the bound small molecules are diverse in terms of their structures.
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Acetylcholinesterase. Abbreviated as ACEase, hereafter, is responsible for the regulation of
neurotransmission through the degradation of acetylcholine (the neurotransmitter) in synapses of the
nervous system [54]. Inhibitors of this enzyme are sought as they can be used as therapeutics for
treatment of disease and protection against nerve agents. The X-ray crystal structure representing the
inhibitor dihydrotanshinone I-bound target (PDB code 4m0Qe [54]) was used for this study.

Glutathione S-transferase. Abbreviated hereafter as GLTase [55), is responsible for adding electrophilic
group to glutathione (the tripeptide formed with cysteine, glycine, and glutamic acid) and is responsible
for detoxification. Additionally, they are involved in promoting tumor pathogenicity and chemoresistance
[56]. The current study was based on the protein structure (PDB code: 1pkw [55]) in complex with
glutathione (Fig. 1h).

Prostatic acid phosphatase. The prostatic acid phosphatase enzyme (abbreviated hereafter as PAPase)
is responsible for the malignant growth of cells [57]. Inhibitors of this enzyme can be used as
therapeutics for prostate cancer. The enzyme (PDB code: 1nd5 [57]) falls into the subclass of protein
tyrosine phosphatase and is responsible for the dephosphorylation of epidermal growth factor receptor,
The a-benzyl-aminobenzyl-phosphonic acid-bound structure is shown in Fig. Tc.

Protein tyrosine phosphatase 1b. Also belonging to the class of protein tyrosine phosphatase, this
enzyme (abbreviated as PTPase) regulates negatively insulin [58]. This enzyme is an attractive target for
type 2 diabetes and obesity and the drug (5-(3<{[1-(benzylsulfonyl) piperidin-4-ylJamino}phenyl)- 4-bromo-
3-(carboxymethoxy) thiophene-2-carboxylic acid; ligand id: 527)-bound X-ray crystal structure used in the
study belongs to the PDB code: 2qbp [58].

NAD(P)H:quinone oxidoreductase type 1. This oxidoreductase enzyme is responsible for protecting cells
against cellular toxicity due to free radicals [59]. This enzyme (abbreviated as QR1 ase) is overproduced
in cancerous cells and therefore selective inhibitors of the enzyme have strong chemotherapeutic
potentials. The present study Is carried out on the 5-methoxy-1,2-dimethyl-3-(4-
nitrophenoxymethyl)indole-4,7-dione (ligand ID: ES936)-bound X-ray crystal structure (Fig. 1e) of the
enzyme bearing the PDB code: Tkbq [59].

NRH:quinone oxidoreductase. This is another oxidoreductase enzyme (abbreviated as QR2ase) involved
in regulating cellular toxicity and oxidative stress [60]. The enzyme is targeted for anti-Alzheimer disease
drug development. As illustrated in Fig. 1f, the X-ray crystal structure of the menadione-bound enzyme
(PDB code: 2qr2) was used in the study [60].

Parameters and metrics for benchmarking

Based on the essence of compound screening, the present model was optimized to retain molecules
with relatively higher binding affinities while ‘filtering’ as many molecules with relatively lower binding
affinities. Therefore, the use of larger, preliminary datasets of small molecules would become feasible.
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Using various metrics to benchmark, the performance of models was compared, both between the same
architecture and between different architectures, e.g. convolutional fingerprint and Morgan fingerprint
models. For a general metric, AUC measured the quality of the models’ predictions across different
classification thresholds. To demonstrate how well these “filtration” architecture performs, increased
significance was placed on the true positive rate (sensitivity). The purpose of compound screening is to
retain the ligands that most favorably bind to a receptor. In turn, it is increasingly important that the
number of false negatives was minimized in order to not discard any potentially promising compounds.
Hence, sensitivity is maximized as much as possible without handicapping the model’s ability to be
precise in its predictions,

Receiver operative characteristic and precision-recall curves. The results consisting of receiver operative
characteristic (ROC) curves, precision-recall (PR) curve, are presented (Table 1). These results are based
on a hyperparameter grid search undertaken only a single time to ensure a notion of randomness in the
quantitative performance across all proteins.

Table 1
Relevant metrics for benchmarking obtained in
the study.
Enzyme system/ Metrics AUC  PR-AUC
ACEase 0.88 0.68
GlLTase 0.90 0.68
PAPase 0.85 0.56
PTPase 0.94 0.78
QR1lase 091 0.73
QR2ase 0.86 0.59

across all proteins. Results described below are for single models chosen from the hyperparameter grid
search. Parameters considered when choosing this ‘best model' include precision, recall, and average
ApindG? (aq) of the predicted hits. The ROC curves of the six models (Fig. 2), with respective AUC
values in Table 1.

Moreover, the precision-recall curve (Fig. 3) with corresponding AUC values have also been included in
order to gauge the tradeoff between precision and recall along various thresholds. Of course, these
models were constructed such that recall is maximized (Fig. 3). However, in order to

efficiently ‘filter out molecules with higher negative ApinaG° (aq)values, it is important for these
models to be able to also classify the said molecules effectively.

These fundamental binary classification parameters relay two important things: the nature of the
imbalanced dataset as well as the suitability of the model based on the protein being investigated. Both
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the ROC-AUC and PR-AUC values vary based on the protein. As a result, it is evident that the neural
network architecture was able to capture the significant affinity (i.e. large negative ApinaG° (aq) values)
for molecular substructures at a higher level for proteins such as PTPase compared to PAPase.
Moreover, compared to other deep-learning-based studies[16, 17] the ROC-AUC values seem to be more
consistent across the wide array of proteins selected for this study. Although specific metrics may vary,
this observation seems to substantiate the classifier’s ability to perform well at different thresholds for
many different proteins.

Predictive enrichment probability. To further visualize and quantify the models' abilities in correctly
predicting those molecules that have a lower Api,aG* (ag)value than the predefined threshold (e.g.
recall), the predictive enrichment probabilities or PEP is calculated (Eq. 4) based on the set of hits in the
test dataset for each protein (Fig. 4). The PEP calculated at each Gibbs' free

energy value lower (or equal) to the Gibbs’ free energy threshold that was used in training. The
granularity of the ApinaG° (ag)values is found to be 0.01. Below, six graphs are shown illustrating

the PEP alongside the number of molecules in the test dataset that are hits at each Gibbs' free energy
value.

The PEPs for all proteins indicate that the neural network architecture is able to firmly grasp the
molecular substructures that correlate to a lower ApjnaG® (aq) value. Particularly, those molecules with
extremely low ApinaG® (aq) values (Fig. 4, towards the left of the graphs) are almost always predicted
correctly as hits by the neural network architecture. This is imperative in a good docking-based machine-
learning model. It is necessary to filter out as many molecules while incurring the least amount of loss of
tightly-bound molecules to the protein, which in this case means the loss of molecules with very low
ApindG° (aq)va!ues. Without this characteristic, it would become increasingly infeasible to use such
models in lieu of traditional docking techniques.

Metrics for evaluation. The pertinent parameters of all models using the neural network architecture
presented in Table 2. All parameters are calculated based on final predictions using the test dataset after
training and validation.
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Table 2

The recall, precision, ROC-AUC, PR-AUC, and F1 score for the six protein systems
studied. All values are calculated based on model predictions on the test dataset after

training.
Enzyme system/ Metrics  Recall Preclslgon ROC-AUC PR-AUC F1 Score
ACEase 0.98 0.30 0.88 0.68 0.47
GlTase 0.98 0.29 0.90 0.68 0.45
PAPase 0.94 0.31 0.85 0.56 0.47
PTPase 0.93 0.50 0.94 0.78 0.65
QR1ase 0.92 0.47 0.91 0.73 0.62
QR2ase 1.00 0.22 0.86 0.59 0.36

It is clear to see the effect of an imbalanced dataset on the results based on the F, score (Eq. 5) and
ROC-AUC values (Table 2). Although recall is greatly maximized, precision remains relatively low.
Although that is the purpose of the architecture, there may be further optimizations that can be
implemented in regard to the architecture to enable the model to more performantly discard molecules
with lower Apina G° (aq)values. Nevertheless, the extremely high recall attests to the architecture's
ability to retain molecules that favorably bind to the protein being investigated. Moreover, some proteins
seem more favorable in investigating using this model than others (as was mentioned previously). In the
case of PTPase, around 93% of molecules in the bottom 20% of ApinaG® (ag)values are retained
whereas, based on the relatively high precision value, a good chunk of the overall dataset seems to be
reduced. All in all, the architecture quantitatively performs very well at retaining molecules meaningfully.

Comparison of similarity maps. This was visually assessed by comparing the similarity maps([43] of
substructures. Figure 5 illustrates the visual comparison of two molecules (top and bottom), whose
similarity to the reference molecule (in the left) was assessed using two datasets: one used in the neural
fingerprint-based model versus the regular docked data. As demonstrated in the figure, the neural
fingerprint-based model represents a superior discrimination with the darker lines indicating greater
similarities in the top molecule. In contrast, the bottom molecule represents larger dissimilarity in neural
fingerprint-based training compared to the dataset obtained from the docking score alone (Fig. 5).

Comparison with Morgan fingerprints. The effectiveness of the neural fingerprint-based architecture for
compound screening was compared to the commonly-used Morgan fingerprint-based[50] machine
learning models. Specifically, the model and parameters used for the Morgan fingerprint-based "deep
docking” study reported by Gentile et. al.[16, 17] were included in the comparative analysis. The “deep
docking” algorithm used an iterative docking protocol, but the present analysis is carried out using a
single iteration of this protocol. Both models calculated the threshold values to transform a continuous
distribution of molecules over Apina G° (aq)values into a binary classification problem. The models
were compared with the same protein, ACEase, on the same overall dataset of molecules, and with the
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same threshold of - 10.0 kcal/mol. This value corresponded to around an 80 - 20 ratio of non-hits and
hits in the dataset. Another hyperparameter grid search and training session was conducted for this
comparison in regard to the neural fingerprint architecture (Table 3).

Table 3

Comparison of Precision, Recall, and Area Under the ROC Curve between both architectures. All values
were calculated using the scikit-learn library ant‘:jl based on model predictions on randomly-sampled test
atasets.

Metrics Neural fingerprint architecture ~ Morgan fingerprint architecture (Gentile et. al[16,17])

Precision  0.40 0.58
Recall 0.92 0.70
ROC-AUC 0,90 0.90

The precision and recall values (Table 3) seem to characterize both models appropriately. The Morgan
fingerprint-based “deep docking” architecture tries to balance the two parameters as much as possible,
whereas the neural fingerprint model maximizes the recall. However, combing through the results of all
models trained for the “deep docking” architecture, it is apparent that the range of precision and recall
seems to remain relatively constant despite changing hyperparameters (Table 3). In contrast, in the case
of the neural fingerprint model, there exists significant variability in the values of these metrics. For
example, while there are models that maximize recall like the one from which the results above are
derived, there are also others that balance the precision and recall similarly to the Morgan fingerprint
model (data not shown). One such model has a recall of 0.74 and a precision of 0.55. There are also
models at the other extreme, which try to capture all the hits in the dataset without regard to a high level
of precision (recall = 0.99, precision = 0.28). This represents the ability of the neural fingerprint
architecture to adequately present users with the option of training for the filtering of ‘bad’ molecules, the
maintenance of ‘good’ molecules, or somewhere in between.

In summary, these results demonstrated the plasticity of the neural fingerprint-based docking model and
its significant ability to capture hits. Even using a smaller dataset, the algorithm was able to map
chemical space with adequate efficacy,

Conclusions

The perpetual increase of drug design-relevant candidates in easily accessible databases has certainly
enriched prospects of identifying drug molecules that can selectively inhibit a specific target. Still,
though, work in optimizing workflows and expediting methods for compound screening has not been
able to keep up with this increase in indexed small molecules. Thus, using convolutional neural network-
derived fingerprints a machine learning-based drug screening technique has been generated for faster
compound screening. The architecture takes in, as input, various vectors that describe the structure of a
molecule in terms of a graph. A differentiable, neural network-based fingerprint was calculated, and
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mapped to an Artificial Neural Network which then outputs a continuous value and is interpreted based
on a binary classification problem.

It was shown that the model performs extremely well at retaining molecules that are classified as
favorably binding to a specific protein. Based on the observed recall, ROC-AUC, and PR-AUC, the model
performs reasonably well over a range of drug targeted proteins. Compared to previous works, the ability
of this architecture to maximally retain favorable molecules is greater. However, various trained models
present various characteristics, with some maximizing recall, maximizing precision, or finding a balance
between both parameters. Hence, users of this model are enabled to choose models generated through
the hyperparameter search based on use or circumstance. This demonstrates the plasticity of the neural
fingerprint-based screening architecture. Furthermore, the relatively small working set of 50000
molecules utilized as the overall dataset in this work illustrates the architecture's ability to learn without
the hundreds of thousands or millions of molecules required in previous works. The lower precision
values may not be suitable if a small, final working set of molecules is needed. Of course, the choice
remains with the user based on the range of model priorities previously discussed. However, if the
retention of favorably binding molecules was crucial alongside a small final dataset, this protocol would
be necessary to use. In this case, an iterative protocol, such as that used and developed hy Gentile et. al.
[16, 17] would be the best option. By iteratively reducing the dataset with smaller and smaller datasets,
the Gibbs’ Free Energy would continue to fall until only molecules. This necessitates experimentation;
however, this would be a good first step in developing a protocol using the architecture presented in this
work.

In summary, this model offers labs and organizations the ability to conduct virtual, molecular screening
without a lot of resources in terms of cost and time inherent with the traditional processes. The
architecture presented in the current study provides a practical tool for screening variable-sized
molecular databases. The novelty of the present algorithm lies in the speed of the training and tuning of
its models before testing and validating its predictive capabilities. Additionally, this model is capable of
mapping similar chemical spaces by using a smaller dataset of molecules as compared to contemporary
algorithms and hence can be considered as a significant step forward in the field of machine learning-
embedded computational drug discovery.
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The folds of the enzymes and the active site-bound small molecules (shown in the insets) for a) ACEase
with dihydrotanshinone |, b) GLTase with glutathione, c) PAPase with a-benzyl-aminobenzyl-phosphonic
acid, d) PTPase with ligand ID: 527, €) QR1ase with ligand ID: ES936, and f) QR2ase with menadione.
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Figure 2

The receiver operative characteristic (ROC) curves for the six models, namely ACEase, GLTase, PAPase,
PTPase, QR1ase and QR2ase. The AUC values are given in Table 1.
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Figure 3

The precision-recall (PR) curves for the six models, namely ACEase, GLTase, PAPase, PTPase, QRlase
and QR2ase. These curves are plotted based on the best selected model for each protein alongside
corresponding PR-AUC values given in Table 1.
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Figure 5

A visual assessment of the superiority of the neural fingerprint-based model in predicting substructure
similarity between molecules. The similarity maps were calculated using random forest classification.
The darker green contour lines indicate greater similarity, and the red atoms indicate dissimilarity.
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