2311.02333v3 [cs.LG] 22 Aug 2024

arxiv

Accepted to OUP Bioinformatics Advances, 2024, 1-14
doi: https://doi.org/10.1093/bioadv/vbaell7

Understanding the Natural Language of DNA using
Encoder-Decoder Foundation Models with Byte-level

Precision

Aditya Malusare,l' 2 * Harish Kothandaraman,? Dipesh Tamboli,3

2,4

Nadia A. Lanman and Vaneet Aggarwa

|1, 2,3

1School of Industrial Engineering, Purdue University, USA, ?Institute for Cancer Research, Purdue University,

USA , 3Elmore Family School of Electrical and Computer Engineering, Purdue University, USA and

4Department of Comparative Pathobiology, Purdue University, USA

*Corresponding author. malusare@purdue.edu

Abstract

This paper presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model,
analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture. ENBED

uses a sub-quadratic implementation of attention to develop an efficient model capable of sequence-

to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only
architectures. We use Masked Language Modeling to pre-train the foundation model using reference genome

sequences and apply it in the following downstream tasks: (1) identification of enhancers, promotors and

splice sites, (2) recognition of sequences containing base call mismatches and insertion/deletion errors, an

advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-

level precision, (3) identification of biological function annotations of genomic sequences, and (4) generating
mutations of the Influenza virus using the encoder-decoder architecture and validating them against real-

world observations. In each of these tasks, we demonstrate significant improvement as compared to the

existing state-of-the-art results.
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Introduction

The rise of foundation models in recent years has led to tremendous
developments in understanding natural languages (Paafl and
Giesselbach, 2023). Although they were originally developed to
process and generate written text, these models have transcended
their initial purpose due to their generalizable nature and wide
applicability. Foundation models have shown great potential in
the field of bioinformatics (Zhang et al., 2023b), since their
capacity to be trained on vast amounts of unlabeled data and their
adaptability enable them to achieve state-of-the-art performance
in a variety of tasks.

Early applications of foundation models in bioinformatics can
be seen in analyzing protein sequences (Elnaggar et al., 2022; Rives
et al., 2021), which were then trained on diverse applications like
calculation of protein structure, prediction of mutation effects
and the understanding of phylogenetic structure (Lupo et al.,
2022; Fang et al., 2022; Nijkamp et al., 2022). These models have
since evolved beyond proteins into DNA and RNA analysis, and
have demonstrated the ability to surpass previous benchmarks

in identifying regulatory elements, predicting chromatin profiles,
analyzing evolution from genomic sequence data and predicting
the impacts of mutations in DNA (Ji et al., 2021; Dalla-Torre
et al., 2023; Nguyen et al., 2023; Zvyagin et al., 2022; Yamada and
Hamada, 2021). The ability to visualize and interpret the internal
model structure (Vig et al., 2020) and to derive key insights of the
underlying biological processes (Zhang et al., 2022) demonstrate
the unique advantages offered by foundation models in the field of
bioinformatics.

Limitations of previous work

Architecture.

Prior work on Transformer-based models for DNA sequence
analysis exists in two forms: (i) Encoder-only models (Ji et al.,
2021; Fishman et al., 2023; Zhang et al., 2022; Dalla-Torre et al.,
2023) that focus on classification and regression-based downstream
tasks and (ii) Decoder-only models (Nguyen et al., 2023; Zhang
et al., 2023a) that are capable of classification, regression as well
as generative tasks that involve design and synthesis.
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A combination of encoder and decoder blocks enables
the model to perform sequence-to-sequence transformations.
One of the fundamental processes undergone by DNA is its
transcription into an RNA sequence and subsequent translation
into protein sequences, the building blocks of all living organisms.
Understanding sequence-to-sequence processes like these is crucial
to advancing our knowledge of genetics, and developing an
encoder-decoder model is an important step in this direction.
Although decoder-only models are capable of sequence-to-sequence
transformations, they have no independent means of creating
representations of the input sequence, and both input and target
tokens are processed in an equivalent fashion. Previous work
has shown that a multitask finetuned encoder-decoder Large
Language Model (LLM) outperforms decoder-only models on zero-
shot generalization (Sanh et. al., 2022) as well as targeted tasks
like machine translation (Raffel et al., 2020; Fu et al., 2023). Since
a decoder-only architecture will have a unidirectional framework
that attends to the source and target sequence simultaneously,
as the length of the target sequence grows, the extent to
which the model attends to the source will decrease leading to
reduced performance in downstream tasks (Fu et al., 2023). Our
work demonstrates how the cross-attention layers in the decoder
leverage the information in the embeddings generated by the
encoder, leading to improved performance in training tasks.

Tokenization.

Biological sequences like DNA are encoded using a vocabulary
of four symbols (A, C, T, G) representing nucleic acids. These
sequences are converted into a Transformer-compatible format by
a tokenizer, which generates a list of tokens for any given input.
Since these models were initially developed for applications in
natural languages, the most prevalent forms of tokenization are
sentence-piece or word-piece, where the language vocabulary is
built using natural ideas like words or syllables. In the absence
of typical indicators of linguistic order in DNA, like spaces and
punctuation, these tokenization schemes use statistical techniques
to determine the ‘words’ that make up the vocabulary of the input
sequences. A few examples of previously used tokenizers are: k-
mer (Ji et al., 2021), SentencePiece (Dalla-Torre et al., 2023), and
byte-pair encoding (BPE) (Fishman et al., 2023) tokenization.
While such techniques identify optimal encoding methods by
constructing tokens having multiple base pairs, they are vulnerable
to any type of noise present in the sequence. A single variation in a
base pair will result in the fragment being mapped to a completely
different word in the vocabulary, resulting in an outsized impact
from a small perturbation (Dotan et al., 2023). We use a simplified
tokenization scheme where each character corresponds to a single
token, resulting in a longer average tokenized length, but more
resiliance to the variations mentioned above.

Our contributions

In this paper, we develop the Ensemble Nucleotide Byte-level
Encoder-Decoder (ENBED) Transformer, a foundation model
that analyzes nucleotide sequences with Transformers using
byte-level tokenization and an encoder-decoder model. This
implementation bridges the gap between existing models that are
either encoder-only or decoder-only implementations and presents
the possibility of sequence-to-sequence analysis tasks. Using
sliding-window and global attention we obtain a sub-quadratic
implementation of attention, and demonstrate the performance

improvements over dense attention. The foundation model is pre-
trained using an ensemble of high-quality reference genomes from
NCBI RefSeq, including the telomere-to-telomere assemblies of
Human and Maize DNA, data from the 1000 Genomes Project and
a mix of widely studied organisms like FE. coli, D. melanogaster,
M. musculus and P. vivaz (Sec 6). This process is implemented
by giving the model a self-supervised goal of internalizing the
structure of the language of nucleotide sequences.

ENBED is built using a byte-level tokenizer. In order to
avoid the issues created by single nucleotide variants and their
downstream impacts, we side-step the problem of determining the
tokenization scheme entirely by working with single nucleotides
as tokens. This leads to increased computational costs, but
grants resilience to the types of variations and noise commonly
encountered in DNA sequences. In order to offset the impact of
increased computations, we implement sub-quadratic attention
layers in order to scale up the model efficiently.

Evaluation of performance on genomic benchmark
datasets.

We evaluate the performance of the ENBED foundation model
on sequence-level classification tasks and compare it’s accuracy
against contemporary foundation models. We show that ENBED
outperforms the state-of-the-art in 21 of the 25 benchmarks
devised by the authors of the Nucleotide Transformer (Dalla-
Torre et al., 2023) and Genomic Benchmarks (Grevsova et al.,
2022) datasets. These benchmarks consist of tasks like identifying
enhancers, promotors, splice sites and histone marks in multi-
species data comprising of genomic sequences from human, mouse,
yeast, fruit fly and worm DNA.

Identifying sequencing noise.

Long-read sequencing using Nanopores is used to study telomeres,
which are protective caps found at chromosomal ends and have
long repetitive elements. It has been found that telomeres in many
organisms are frequently miscalled (Tan et al., 2022), referring
to errors in the process that translates electrical signals into
the alphabet of DNA. We illustrate how ENBED can focus on
fragments that look incorrect or out of place, demonstrating the
model’s ability of distinguishing between noisy and accurate data.
In a synthetic dataset constructed using noise distributions found
in real-world raw sequence data, we demonstrate that our model
can identify sequences containing noise with an accuracy of 97.6%,
leveraging the information internalized by bring pretrained on the
telomere-to-telomere reference sequences.

Biological function annotations.

Mapping the complete human genome was a significant milestone
in modern biology, and it has produced a new set of challenges in
identifying the functions and interactions of different parts of the
genome. We fine-tune our model to solve a version of this problem
by identifying the biological functions of genomic sequences among
the most common functional classes using a fine-tuned model,
achieving an F7 score of 74.1.

Studying mutations as a sequence-to-sequence process.

Exploring mutations is essential as it sheds light on the
mechanisms driving genetic diversity which enhance the overall
resilience of living organisms in a changing environment. The
encoder-decoder architecture confers the ability to rapidly iterate
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Fig. 1: Model Architecture. The model is constructed using encoder and decoder blocks with a ratio of 2:1. Both types of blocks consist
of attention and feed-forward layers, with the decoder blocks additionally incorporating the embeddings in encoder-decoder attention

layers.

mutagenization of genomic segments. We study mutations in the
Influenza virus, using the NCBI Influenza Virus Resource. By
constructing a dataset with a phylogenetic tree, we obtain parent-
child pairs of mutated sequences and show the effectiveness of
our encoder-decoder architecture in analyzing and predicting these
mutations.

Methods

Encoder-Decoder Model Architecture

ENBED is built using an encoder-decoder architecture (Fig. 1)
consisting of encoder and decoder blocks, each comprised of two
subcomponents: an attention layer and a feed-forward neural
network. The attention layers process a sequence by replacing
each element with a weighted sum of linear transformations of the
input embeddings, after which they are normalized and passed
through the feed-forward neural network. Dropout is applied to
the feed-forward network, the attention weights, and the input
and output of the entire stack. The implementation is written
using JAX (Bradbury et al., 2018) and the Flax-former library
(Heek et al., 2023).

We formulate a model with 1.2B trainable parameters, with
the configuration specified in Table 6. The model is encoder-heavy
since idiosyncratic relationships among tokens are better encoded
by devoting a larger share of parameters to these blocks. We
found that adjusting the encoder-to-decoder ratio to 2:1 improved
performance, with a 1% increase in Masked Language Modeling
(MLM) accuracy for all model sizes over the 3:1 ratio chosen by the
authors of ByT5 (Xue et al., 2022), a similar architecture built to
process token-free text-to-text transformations. We also find that
reducing the masked span length, which is the average number of
tokens masked during pre-training, from 40 down to 20 helps in
faster convergence owing to the significantly smaller vocabulary of
DNA.

Tokenization

Sequences are tokenized by breaking down the input into tokens
consisting of single nucleotides. The vocabulary size is fixed at 384,
with 256 ASCII characters and additional tokens added to function

as MASK, PAD and UNKNOWN tokens during the training process. We
require multiple MASK tokens in order to index the positions where
masking has occurred and to label the targets with these indices.
Although the alphabet of DNA only comprises of the four nucleic
acids Adenine (A), Cytosine (C), Guanine (G), and Thymine (T),
we choose to keep the whole set of extended ASCII characters
since they could aid in future tasks like sequence-to-sequence
transformations involving targets beyond just DNA sequences, like
drug structures represented by the SMILES notation system.

This approach requires more floating-point operations (FLOPs)
as compared to other tokenization methods, since it increases the
tokenized sequence length for the same input DNA sequences,
resulting in higher resource requirements. Although this limits
us to dealing with short- to medium-length sequences, we can
overcome these constraints and scale up the model by reducing
the complexity of attention layers as described below.

Attention

Attention can be understood as a soft-lookup of a query Q
in a dictionary of stored keys K and values V. Attention
scores are generated by calculating the similarity between Q
and K, each having a dimension d, with scaled dot-product
(Softmax (QKT/\/&) V) being the most common
implementation. Increasing the sequence length L can be a
challenge, since this type of attention has a complexity of O(L?).
This sets a limit of L < 512 tokens on our hardware (NVIDIA
A100 (40 GB) GPUs).

In order to reduce the complexity while preserving function,

attention

we modify the architecture to replace dense attention with a
combination of two sub-quadratic variants of attention: (i) sliding-
window attention and (ii) global attention.

Sliding-window attention.

Local context is crucial in analyzing DNA, since biological
processes like transcription and translation work within continuous
regions of a sequence. Tokens within a sliding window of radius r
are used to calculate the attention scores, bringing the complexity
down to O(L x r). We fix r = 64 for the initial three layers and
increase to r = 128 in the final layers, which allows them to learn
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higher-level representations while having the lower layers focus on
local information.

Global attention.

For tasks that involve classifying or annotating whole sequences,
we need a mechanism that aggregates global information from
the inputs, in addition to the local scores. We divide the input
sequence into k blocks and calculate a global token by summing
and normalizing the embeddings for every token in the block.
Scores are then computed for every input token by letting it attend
to the neighboring tokens (as described above) and all the global
tokens, which has a total complexity of O(L(r + k)).

Hence, by choosing appropriate values for r and k relative to L, we
implement a scheme to calculate attention with a sub-quadratic
complexity which allows us to set an input and output length of
16384, a significant improvement over the limit of 512 tokens using
dense attention with the same GPU hardware.

The aggregated blocks constructed in this procedure resemble
previous tokenization schemes like k-mer, used by previous models
like DNABERT (Ji et al., 2021) and BPE used by GENA-LM
(Fishman et al., 2023). Our method uses a combination of these
aggregated blocks along with higher-granularity local context
to achieve a balance between the two, allowing us to process
sequences with greater precision.

Applications of Foundation Models using Transfer Learning
Building the foundation model.

The first step in building our foundation model is pre-training
it on high-quality reference sequences. We use a procedure
called Masked Language Modeling (MLM). The objective is to
reconstruct tokens that have been deleted and replaced with a MASK
token. This task develops the ability to understand the context
and vocabulary to identify the correct elements that belong in
the masked segments. Utilizing a large corpus of unlabeled data
allows us to impart the model with generalizable knowledge that
can be fine-tuned for specific downstream tasks. The genomic
corpus is constructed by concatenating FASTA files from the NCBI
sources mentioned in the Data Availability section, removing any
descriptions starting with ‘>’ and ‘N’ bases that are a result of
hard-masking. We choose a masking rate of 15% over the course
of pre-training. The entire corpus is supplied to a collator that
handles masking, padding, and truncation to ensure that the input
length is maintained. We follow a linear schedule with warmup
(5% of the total training steps) using the AdamW optimizer
(B1 = 0.9,82 = 0.99,¢ = 10~%) with a learning rate of le-5, a
cross-entropy loss function and softmax as the activation function.
We train all versions of the model with maximum input and output
lengths of 16,384 tokens (base pairs). Convergence takes 120-480
GPU-hours with 8 NVIDIA A100 GPUs, determined by model
size and input length.

Fine-tuning for downstream tasks.

We fine-tune the model by modifying the final layers into a task-
specific configuration. This is called the ‘head’ of the model and
is attached to the final layer of the pre-trained model. Layers
are gradually unfrozen in reverse order during the course of fine-
tuning, allowing the Transformer to integrate with the attached
head while retaining the initial layers, thus enabling the transfer
of pre-trained knowledge for downstream applications.

Classification head.

A fully connected (dense) layer is usually added to the output of
the base model, followed by a softmax activation to produce class
probabilities, typically used in sequence-level classification tasks.

Language modeling head.

A language modeling head comprises of a single feedforward neural
network layer followed by a softmax activation function. This layer
takes hidden representations from the preceding layers and outputs
a probability distribution over the vocabulary. The objective is
to estimate the estimate the probability of a token given the
previous words in a sentence. The softmax function transforms the
raw output scores into probabilities, representing the likelihood of
each word or token in the vocabulary at any particular position.
This process is called autoregressive generation, and we use it to
perform sequence-to-sequence transformations.

Application Domains

The ENBED foundation model is evaluated across a set of
genomic analysis tasks to demonstrate its versatility and the
unique advantages of its encoder-decoder architecture. We begin
with the Genomic Benchmarks and Nucleotide Transformer
Benchmarks, which provide standardized comparisons against
existing models for fundamental sequence classification tasks.
The noise identification task assesses ENBED’s ability to
distinguish genuine sequences from artifacts, leveraging its byte-
level precision. Biological function annotation tests the model’s
capacity to associate sequence patterns with higher-level functions,
crucial for genome interpretation. Finally, the mutation generation
task is an end-to-end evaluation of the ENBED, a novel
architecture not present in previous genomic language models.
This sequence-to-sequence task, focused on predicting viral
mutations, showcases ENBED’s potential for modeling complex
genomic transformations.

Genomic Benchmarks.

The Genomic Benchmarks (GB) dataset consists of sequences
from four organisms: Human, mouse (Mus musculus), roundworm
(Caenorhabditis elegans) and fruit fly (Drosophila melanogaster).
The dataset comprises of: (i) Human enhancers from Cohn et.
al. (Cohn et al., 2018) and Ensembl (Martin et. al., 2022), (ii)
Open Chromatin Region classifications from the Ensembl build,
(iii) Computationally generated data for coding and non-coding
sequences (iv) Multi-class data composed of three regulatory
elements (promotors, enhancers and Open Chromatin Regions),
(v) Non-TATA promotor sequences imported from Umarov et. al.
(Umarov and Solovyev, 2017).

Nucleotide Transformer Benchmarks.

The Nucleotide Transformer (NT) benchmarks consist of five data
sources: (i) Epigenetic marks in the yeast genome, which use
experimentally obtained nucleosome occupancy values processed
into positive and negative observations and to provide the
following histone marks datasets: {H3, H4, H3K9ac, H3K14ac,
H4ac, H3K4mel, H3K4me2, H3K4me3, H3K36me3, and
H3K79me3}, (ii) A dataset (Geng et al., 2022) consisting of a mix
of strong, weak and non-enhancers. (iii) Promotor sequences 300
base pairs in length around transcription start sites, divided on
the basis of TATA and non-TATA box promotors. (iv) Splice site
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datasets composed of donor, acceptor and non-splice site sequences
from phylogenetically diverse organisms.

Noise identification.

We generate a synthetic dataset with segments of 512 nucleotides
selected at random from TeloBase (Lycka et al., 2023), a
comprehensive database of information about telomere motif
diversity. We introduce noise based on real-world raw DNA
sequencing data to generate negative samples. Previous work
(Rabadan et al., 2017) finds that noise in sufficiently deep DNA
sequencing data can be approximated by aggregating negative
binomial distributions. Using this method, we create a balanced
dataset with positive and negative samples. The model is fine-
tuned on a sequence classification task with this labeled dataset.
This process can be likened to out-of-distribution detection (Fort
et al., 2021), since the negative samples would represent data
that does not belong to the distribution of the training dataset.
We describe this procedure in more detail in the Supplementary
Material (Section B).

Biological function annotation.

We can formulate the process of annotating genes as a classification
task, with the input being a DNA sequence fragment and the
output being the class probabilities for the annotation types
defined below. For evaluating our model, we train it to output the
biological function annotation of a given genomic input sequence
up to 512 base pairs in length. We choose the following annotation
types for our experiment: Coding Sequences, IncRNA, snoRNA,
miscRNA, miRNA, snRNA, TEC, Processed and Unprocessed
Pseudogenes. These annotations are obtained from the Ensembl
dataset (Martin et. al., 2022), and the constructed dataset has
an equal number of examples for all classes. We generate 9216
training examples and 1024 validation examples for this task.

Mutation generation.
Human influenza A viruses are named based on the geographic
location where the virus was isolated, the date of the isolate,
and the identity of the two major surface proteins, hemagglutinin
(HA) and neuraminidase (NA). We choose the HA1 sequences to
create the Influenza virus mutation dataset, selecting the segments
with most highly variable regions for training and validation. We
obtain our source data from (Berman et al., 2020) and subset the
HA1 nucleotide sequence of the H3N2 Influenza virus between 300
to 799 bp (100-266 amino-acids) to capture the Antigenic site A
and B. The selected region is a part of the globular domain that
occurs in a jelly-roll fold of eight-stranded anti-parallel beta-sheets,
containing the most commonly mutating amino-acid residues
around the receptor binding site. The HA1 head also accumulates
N-linked glycosylation sites over time, which are thought to mask
antigenic sites from immune recognition. The glycosylation of
the HA1 globular domain modulates receptor binding, stimulates
host antibody responses, and shields key antigenic sites to
facilitate immune evasion of the virus. By focusing on the
HA1 subdomain, we aimed to evaluate the sequence-to-sequence
model on a functionally important region of influenza HA that
experiences significant antigenic drift and glycosylation changes.
The Supplementary Material contains additional details about the
construction of training and validation splits for the dataset.
Candidate sequences are generated using a language modeling
head with the parent sequence supplied as the input. Using a beam

search (Npeams=5), we obtain five candidate sequences which
are autoregressively generated to a length of 499 bp (equal to
the input). We rank the sequences using the noise identification
pipeline above, and select the sequence least likely to be identified
as having noise present. We identify mutations by measuring
the Levenshtein distance between parent and child sequences.
This metric accounts for insertion, deletion as well as in-place
modifications.

Results

Upon convergence, the pre-training process yields a foundation
model ready to be applied to downstream tasks. The initial
layers in the pre-trained model are frozen since they contain
generalizable information that helps the model build versatile
internal representations of the data. We visualize these internal
representations by extracting the encoder output layer and
plotting attention maps in Fig. 2. These maps are generated using
the outputs from the final encoder block. The use of multiple
attention heads grants the model the ability to simultaneously
use a diverse range of patterns to analyze input sequences. In Fig
2, we observe that some heads are dedicated to analyzing close
neighbors (3, 9, 10) while others display a more dilated version of
this phenomenon (1, 2, 5, 11). Additionally, there are heads which
attempt to exclude local information and focus on a more global
view of the input sequence (4, 6, 8, 12).

ENBED outperforms state-of-the-art models on genomic
benchmark datasets

We finetune the model using a classification head using the
embedding outputs from the final encoder block, on the datasets
constructed by the authors of the Nucleotide Transformer (NT)
benchmarks (Dalla-Torre et al., 2023) and Genomic Benchmarks
(GB) (Grevsova et al., 2022). The results of evaluating the model
on the test dataset of NT and GB are presented in Tables 12
and 11, respectively. For evaluation on the NT benchmarks, we
compare our performance against the Nucleotide Transformer (v2)
and HyenaDNA (Dalla-Torre et al., 2023; Nguyen et al., 2023),
which are encoder-only and decoder-only models, respectively. For
the GB datasets, we use the performance of the Convolutional
Neural Network (CNN) model developed by the authors of the
dataset (Grevsova et al., 2022) as a baseline. We also include
the performance of the HyenaDNA model and the baseline
Transformer developed by its authors (Nguyen et al., 2023).

ENBED demonstrates superior performance, exceeding state-
of-the-art results in 15 out of 17 Nucleotide Transformer (NT)
benchmarks and 6 out of 8 Genomic Benchmarks (GB) datasets.
This improvement likely stems from our novel approach combining
byte-level analysis, high-quality reference sequences, and an
optimized pre-training methodology. We hypothesize that byte-
level tokenization enhances the model’s ability to handle variations
such as single nucleotide polymorphisms, while our encoder-
decoder architecture enables simultaneous focus on multiple
input sections and context-aware processing. These features may
contribute to ENBED’s advantages over decoder-only methods.
While the relative impact of each component requires further
investigation through ablation studies, our results demonstrate
ENBED’s effectiveness across a wide range of genomic analysis
tasks.



Malusare et al.

Fig. 2: Interpreting Attention Layers. We visualize the twelve attention heads of the pre-trained ENBED foundation model.

ENBED identifies noise in genomic sequences

Table 3 shows the results of the sequence-level classification on
erroneous sequences using our synthetic dataset. Since competing
models are trained using the GRCh38 reference assembly, they
often lack information about repetitive regions due to hard-
masking. Our choice of higher quality pre-training data results
in a signifcant performance improvement and on overall accuracy
of 97.1% in the sequence-level classification task of identifying
erroneous genomic data, which is significant improvement as
compared to the baselines of DNABERT (Ji et al., 2021) (84.9%)
and Nucleotide Transformer (Dalla-Torre et al., 2023) (91.8%).

ENBED identifies biological function annotations

ENBED is trained to identify the annotations (defined in the
Application Domains section) of the Human reference assembly.
As shown in Table 4, we achieve an Fj score of 74.1 in this
classification task, an improved score compared to DNABERT (Ji
et al., 2021) (63.2), Nucleotide Transformer (Dalla-Torre et al.,
2023) (67.5), and HyenaDNA (Nguyen et al., 2023) (72.8). For
the purposes of this evaluation, all models were finetuned and
evaluated using the same balanced dataset as specified in the
Application Domains section.

ENBED generates mutations using sequence-to-sequence
transformation

We evaluate the accuracy of ENBED in generating mutations,
using an encoder-decoder Transformer with Byte-Pair Encoding
(BPE) tokenization (used in previous genomic models (Fishman

et al., 2023)) as a baseline. We compare against BPE because this
method shares similarities with byte-level tokenization by starting
with the basic {A, C, T, G} alphabet, but tries to optimize the
vocabulary by combining simpler words into more complex ones
based on the corpus the tokenizer is trained on. The training
corpus itself is identical to the one used in pre-training ENBED,
with the only difference being the tokenization procedure. While
this procedure reduces the average number of tokens generated
from any input sequence, it also results in reduced accuracy
since modifying even a single base pair will output a significantly
different tokenized sequence.

Top-1 and Top-5 Accuracy (%) scores are calculated by
comparing predictions with real-world data from the Influenza
Virus Resource (Bao et al., 2008), with any deviation from an exact
match being classified as incorrect. Top-5 scores are calculated
by selecting the best candidate from the procedure described in
Sec 2.5. Additionally, we also train a version of ENBED with the
encoder removed, as a comparison of the sequence-to-sequence task
performance between decoder-only and encoder-decoder models.

The mean Levenshtein distance of our model predictions from
real-world mutated sequences is 2.3 edits over a length of 500 bp,
resulting in an average similarity of 99.5%. We can attribute the
significant increase in accuracy to byte-level tokenization, since
other schemes with tokens involving multiple base pairs will be
unable to capture edits involving single nucleotides effectively.
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Ablation Studies

We perform ablation studies in order to examine the impact of the
architectural modifications and the combination of encoder and
decoder blocks.

Encoder-decoder architecture

We study the impact of combining encoder and decoder blocks and
the cross-attention links between them in Table 6. A decoder-only
version of the model is constructed by stacking 24 decoder layers
and is pre-trained to convergence using next-token prediction. We
also construct a balanced model using stacks of 12 layers for both
the encoder and decoder blocks, introducing cross-attention layers
in the decoder that attend to the embeddings and the output
sequence. Both models have ~ 800 M trainable parameters. We
then fine-tune these models on the mutation generation task and
compare with the ENBED model having a 2:1 encoder-decoder
block ratio.

Introducing the encoder and cross attention leads to a
significant improvement in the pre-training accuracy, demonstrating
the suitability of both the architecture as well has the pre-
training task, since decoder-only models are restricted to causal
objectives like next-token prediction unlike encoders that can
handle bi-directional information.

Discussion

The ENBED model demonstrates significant improvements over
existing approaches in several areas of genomic sequence analysis.
The encoder-decoder architecture, combined with byte-level
contributes

ENBED’s
performance on established benchmarks is noteworthy, surpassing
in 21 out of 25 tasks

Transformer and Genomic Benchmarks

tokenization and high-quality pre-training data,
to enhanced performance across multiple tasks.
state-of-the-art results across the
Nucleotide

This broad improvement suggests that our approach captures

datasets.

underlying genomic patterns more effectively than previous
models. Additionally, the model successfully identified sequences
containing noise with an accuracy of 97.6%, demonstrating its
sensitivity to small-scale genomic perturbations. This is likely due
to the byte-level tokenization approach used in ENBED, which
allowed for accurate detection of variations at single-nucleotide
resolutions.

The encoder-decoder structure proves particularly effective for
sequence-to-sequence tasks like mutation generation. Our results
show that ENBED outperforms baseline models in predicting
Influenza virus mutations, achieving a top-5 accuracy of 95.4%.
This was a significant improvement over the baseline model using
byte-pair encoding (BPE) tokenization (56.1%), and another
variant of ENBED without the encoder (72.1%). We chose to vary
both the tokenization scheme and architecture in these cases while
keeping the rest of the design choices unchanged in order to isolate
the impact of these two factors. We find that the choice of BPE
tokenization significantly impacts the model’s ability to generate
mutations accurately, with byte-level tokenization providing a
clear advantage due to its ability to capture single-nucleotide
changes. We also see that an encoder-decoder architecture is
crucial for this task, as the decoder-only model does not perform
as well, following the trend observed in other sequence-to-sequence
tasks (Raffel et al., 2020; Fu et al., 2023).

It is also worth noting that the use of higher-quality
pre-training data, including telomere-to-telomere assemblies,
may contribute to ENBED’s This
comprehensive genomic representation likely allows the model

improved performance.

to learn from previously underrepresented genomic regions. A
study of the Nucleotide Transformer benchmarks (Table 12) with
two versions of ENBED trained on different reference assemblies
(GRCh38 and T2T-CHM13) showed that the model trained on the
higher-quality T2T-CHM13 assembly outperformed the GRCh38
model across the board. This suggests that the choice of reference
assembly can significantly impact the model’s performance, and
that the use of more complete and accurate reference genomes can
lead to better generalization.

Future work on this model could explore additional applications
in genomics, such as variant effect prediction and protein structure
studies.

Data and Code Availability

The Telomere-to-telomere sequences for Human
(GCF_009914755.1) and Maize (GCA_022117705.1) and the
reference sequences for E. coli (GCF_000008865.2), D. melanogaster
(GCF_000001215.4), M. musculus

(GCF_000001635.27) and P. wvivazr (GCF_000002415.2) were
obtained from NCBI RefSeq (O’Leary et al., 2016) in FASTA
format. Variant Calling Files (VCFs) for the 1000 Genomes
Project (Consortium, 2015) were obtained from the European

reference

Bioinformatics Institute. Gene annotations were obtained from
GENCODE (Harrow et. al, 2012) and Ensembl (Martin et. al.,
2022). The mutation tree was derived from the data assembled
by the authors of (Berman et al., 2020), sourced from the NCBI’s
Influenza Virus Resource (Bao et al., 2008).

The source code used to develop and fine-tune the foundation
model has been released on Github ! and the weights of the model
used in evaluation are available here 2

Supplementary Material

The supplementary material (below) contains additional details
on the model architecture, data sources, training procedures and
evaluation metrics.
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NT  HyenaDNA | ENBED

NT Benchmark Enformer DNABERT-2 (2.5B) (1 Kb) (GRCh38) ENBED
H3 0.719 0.785 0.791 0.779 0.723 0.802
H3K14ac 0.288 0.516 0.537 0.612 0.537 0.636
H3K36me3 0.344 0.591 0.616 0.613 0.611 0.624
H3K4mel 0.291 0.511 0.544 0.512 0.498 0.591
H3K4me2 0.211 0.336 0.322 0.455 0.433 0.501
H3K4me3 0.158 0.352 0.408 0.549 0.580 0.587
H3K79me3 0.496 0.613 0.621 0.672 0.648 0.756
H3K9ac 0.420 0.542 0.550 0.581 0.427 0.590
H4 0.732 0.796 0.807 0.763 0.750 0.823
H4ac 0.273 0.463 0.489 0.564 0.548 0.605
Promotor (all) 0.909 0.943 0.950 0.920 0.906 0.961
Promotor (non-TATA) 0.909 0.944 0.952 0.921 0.892 0.959
Promotor (TATA) 0.920 0.910 0.919 0.882 0.883 0.944
Splice acceptor 0.829 0.950 0.973 0.915 0.754 0.943
Splice donor 0.814 0.926 0.974 0.898 0.835 0.911
Enhancer 0.451 0.516 0.548 0.517 0.577 0.585
Enhancer Types 0.309 0.423 0.450 0.386 0.459 0.482

Table 1. Nucleotide Transformer (NT) Benchmarks. We evaluate our model using the 10-fold mean Matthews Correlation Coefficient (MCC) of the
best performing variants of the Enformer (Avsec et al., 2021), DNABERT (Zhou et al., 2023), Nucleotide Transformer v2 (Dalla-Torre et al., 2023), and
HyenaDNA (Nguyen et al., 2023), highlighting the best and second-best scores. The scores are sourced from a leaderboard maintained by the authors of
(Dalla-Torre et al., 2023) on the Hugging Face platform (InstaDeepAl, 2023).

Genomic Benchmark CNN DNABERT GPT HyenaDNA ENBED = o BED
(Nguyen et al., 2023) | (GRCh38)

Mouse Enhancers 69.0 66.9 80.1 85.1 81.1 90.3
Human Enhancers (Cohn) 69.5 74.0 70.5 74.2 70.8 71.2
Human Enhancers (Ensembl)  68.9 85.7 83.5 89.2 90.2 92.2
Coding vs Intergenomic 87.6 92.5 88.8 91.3 90.7 93.0
Human vs Worm 93.0 96.5 95.6 96.6 94.4 97.3
Human Regulatory Elements  93.3 88.1 91.5 93.8 85.6 90.2
Human Promoter (Non-TATA) 84.6 85.6 87.7 96.6 90.4 97.2
Human OCR (Ensembl) 68.0 75.1 73.0 80.9 76.2 81.9

Table 2. Genomic Benchmarks. Accuracy (%) scores of the best and second-best model in the Genomic Benchmarks datasets (Grevsova et al., 2022).
The baseline CNN and GPT scores was calculated by the authors of (Grevsova et al., 2022) and (Nguyen et al., 2023) respectively.

Model Reference F1 Score Model Reference F, Score
DNABERT (Ji et al., 2021) 84.9 DNABERT (Ji et al., 2021) 63.2
Nucleotide Transformer (Dalla-Torre et al., 2023) 91.8 Nucleotide Transformer (Dalla-Torre et al., 2023) 67.5
: HyenaDNA (Nguyen et al., 2023) 72.8
ENBED This paper 97.6
ENBED This paper 74.1

Table 3. Erroneous Sequence ldentification.
Table 4. Biological Function Identification.
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Supplementary Material
Pre-training Data Sources

Table 7 shows the pre-training data sources used for the Enformer (Avsec et al., 2021), DNABERT-2 (Zhou et al., 2023), Nucleotide
Transformer v2 (Dalla-Torre et al., 2023), and HyenaDNA (Nguyen et al., 2023) models. We also construct a GRCh38-based version of
ENBED as mentioned in Tables 1 and 2 in the main paper.

Task-specific Datasets

Nucleotide Transformer

For epigenetic marks prediction, a dataset of acetylation and methylation nucleosome occupancies in the yeast genome was used, with
data from Chip-Chip experiments processed into positive and negative observations for 10 histone marks. Promoter sequence prediction
utilized a dataset of 29,597 promoter regions, including 3,065 TATA-box promoters, with sequences spanning 300bp around transcription
start sites. Matched negative samples were created by shuffling promoter sub-sequences.

Enhancer sequence prediction relied on a single dataset that originally contained 742 strong, 742 weak, and 1484 non-enhancers,
which was augmented with 6000 synthetic enhancers and 6000 synthetic non-enhancers to evaluate the transformer’s representation of
enhancers. Splice site prediction employed two datasets: the SpliceFinder dataset, which included donor, acceptor, and non-splice sites
in human genes with 400bp sequences, and the Spliceator training set, which consisted of 600bp sequences from diverse organisms, using
a balanced ’Gold Standard’ subset.

Table 8, sourced from Dalla-Torre et al. [2], shows the dataset statistics for the various genomic sequence classification tasks.

Genomic Benchmarks

The Genomic Benchmarks dataset consists of 8 classification tasks, each with a unique set of positive and negative sequences. The
tasks include the classification of mouse enhancers, human enhancers (Cohn), human enhancers (Ensembl), coding vs. intergenic regions,

Model Data Source Description
Enformer (Avsec et al., 2021) GRCh38 + GRCm38 Human and Mouse reference genomes
DNABERT-2 (Zhou et al., 2023) .GRC1}38 + Multi-species data consists of 135 sch1es
Multi-species Dataset randomly selected across 7 categories.

Versions with the Human reference genome,

Nucleotide Transf GRCh38 + 1000G
ucieotide Lransiormer . + + 1000 Genomes project (1000G),
(Dalla-Torre et al., 2023) Multi-species Dataset . . . .
and multi-species data consists of 850 species.
HyenaDNA (Nguyen et al., 2023) GRCh38 Human reference genome

Table 7. Pre-training Data Sources.

Num train Num test Max sequence
sequences sequences length in bp

H3K4me3 25953 2884 500
H3K4me2 27614 3069 500
H3K36me3 31392 3488 500
H3K9ac 25003 2779 500
Splice donor 19775 2198 600
Splice site all 27000 3000 400
H4ac 30685 3410 500
H3K4mel 28509 3168 500
Enhancer 14968 400 200
Enhancer types 14968 400 200
H4 13140 1461 500

Splice acceptor 19961 2218 600
H3K79me3 25953 2884 500
Promoter non-TATA 47767 5299 300
Promoter all 53276 5920 300
H3K14ac 29743 3305 500

H3 13468 1497 500
Promoter TATA 5509 621 300

Table 8. Dataset statistics for Nucleotide Transformer classification tasks
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Name # of sequences # of classes Class ratio Median length o
dummy_mouse_enhancers_ensembl 1210 2 1.0 2381 984.4
demo_coding_vs_intergenomic_seqs 100000 2 1.0 200 0.0

demo_human_or_worm 100000 2 1.0 200 0.0
drosophila_enhancers_stark 6914 2 1.0 2142 285.5
human_enhancers_cohn 27791 2 1.0 500 0.0
human_enhancers_ensembl 154842 2 1.0 269 122.6
human_ensembl_regulatory 289061 3 1.2 401 184.3
human_nontata_promoters 36131 2 1.2 251 0.0

human_ocr_ensembl 174756 2 1.0 315 108.1

Table 9. Description of datasets in genomic benchmark package. Name is the unique identification of dataset. # of sequences is the combined count of
all sequences from all classes. # of classes is the count of all classes in a dataset. Class ratio is the ratio between number of sequences in the largest and
smallest classes. Median length and Standard deviation are computed for all sequences from all classes in a dataset. (Reproduced from (Grevsova et al.,
2022))

human vs. worm, human regulatory elements, human promoters (non-TATA), and human OCR (Ensembl). The dataset is designed to
evaluate the performance of models on a diverse set of genomic sequence classification tasks. Table 9 shows the dataset statistics for the
Genomic Benchmarks tasks.

Noise Generation

We generated a synthetic dataset to evaluate our model’s capacity to differentiate between genuine sequences and those containing errors.
The dataset was constructed using segments of 512 nucleotides selected at random from TeloBase, a comprehensive database of telomere
motif diversity.

Noise was injected as per the distribution found in the work of (Rabadan et al., 2017) using a deepSNV-based implementation (7).
The dataset was divided into training and test sets with 10,000 and 1,000 sequences, respectively.

Mutation Generation

For the mutation generation task, we employ a fine-tuning approach using a sequence-to-sequence model. This model is trained to
predict child sequences given parent sequences, effectively learning the patterns of mutations observed in the influenza virus population.
To ensure the robustness of our results and prevent overfitting, we have implemented a comprehensive strategy for constructing our
training and test datasets.

Our approach begins with the construction of a phylogenetic tree from the available influenza virus sequences using a maximum
likelihood method. Figure 3 shows a circular cladogram visualization of the generated Influzenza H1 gene sequences, where nodes are
represented by yellow dots. This tree provides a representation of the evolutionary relationships between different strains. We use this
phylogenetic information to inform our data split, ensuring that closely related strains are not separated between the training and test
sets. Specifically, we implement a monophyletic clade-based splitting strategy, where entire clades below a certain depth in the tree are
assigned to either the training or test set. This step is crucial to prevent information leakage and maintain the integrity of our evaluation.

Furthermore, we implement a sequence similarity cutoff of 95% using the Levenshtein distance metric to address the issue of high
sequence homology between training and test sets. Sequences with greater than 95% similarity are grouped together and assigned entirely
to either the training or test set, never split between the two. In total, we create 5000 parent-child sequence pairs for training and 500
pairs for testing.

Variances for the Nucleotide Transformer Benchmarks

Table 10 shows the standard deviations of the 10-fold Matthews Correlation Coefficient (MCC) scores for the Nucleotide Transformer
(NT) benchmarks. The peer-reviewed baselines are sourced from a leaderboard maintained by the authors of (Dalla-Torre et al., 2023)
on the Hugging Face platform (InstaDeepAl, 2023).

Evaluation Metrics

Matthew's Correlation Coefficient

The Matthews Correlation Coefficient (MCC), originally introduced by Matthews in 1975 for binary classification, has been extended to
multi-class classification scenarios (7). In the multi-class context, the MCC provides a balanced measure of the quality of classification
that is particularly useful when dealing with imbalanced datasets. For a classification problem with K classes, the multi-class MCC is
defined as:

CXS§— Y, Pr Xtk

V2= S0 pd) x (2 = 5, 88)

McC = (1)
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Fig. 3: Phylogenetic Tree.
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NT Benchmark Baselines (GRCh38) ENBED | Std. Dev.
H3 0.791 (Dalla-Torre et al., 2023) 0.723 0.802 0.031
H3K14ac 0.612 (Nguyen et al., 2023) 0.537 0.636 0.020
H3K36me3 0.616 (Dalla-Torre et al., 2023) 0.611 0.624 0.016
H3K4mel 0.544 (Dalla-Torre et al., 2023) 0.498 0.591 0.009
H3K4me2 0.455 (Nguyen et al., 2023) 0.433 0.501 0.035
H3K4me3 0.549 (Nguyen et al., 2023) 0.580 0.587 0.018
H3K79me3 0.672 (Nguyen et al., 2023) 0.648 0.756 0.014
H3K9ac 0.581 (Nguyen et al., 2023) 0.427 0.590 0.006
H4 0.807 (Dalla-Torre et al., 2023) 0.750 0.823 0.011
H4ac 0.564 (Nguyen et al., 2023) 0.548 0.605 0.017
Promotor (all) 0.950 (Dalla-Torre et al., 2023) 0.906 0.961 0.021
Promotor (non-TATA) | 0.952 (Dalla-Torre et al., 2023) 0.892 0.959 0.019
Promotor (TATA) 0.920 (Avsec et al., 2021) 0.883 0.944 0.017
Splice acceptor 0.973 (Dalla-Torre et al., 2023) 0.754 0.943 0.034
Splice donor 0.974 (Dalla-Torre et al., 2023) 0.835 0.911 0.029
Enhancer 0.548 (Dalla-Torre et al., 2023) 0.577 0.585 0.011
Enhancer Types 0.450 (Dalla-Torre et al., 2023) 0.459 0.482 0.007

Table 10. Nucleotide Transformer (NT) Variances.

where c is the total number of correctly classified samples, s is the total number of samples, py is the number of times class k was predicted,

and t is the number of times class k truly occurred. The coefficient yields values in the interval [-1, 1], with 1 indicating perfect prediction,

0 signifying random prediction, and -1 denoting complete misclassification. The MCC takes into account all elements of the confusion

matrix, providing a more comprehensive evaluation than metrics such as accuracy or Fl-score, especially for imbalanced datasets. The

MCC also remains informative even when class sizes differ significantly and is sensitive to both over-prediction and under-prediction of

classes.

We use the scikit-learn implementation of the MCC for our evaluation, which is available in the module:
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sklearn.metrics.matthews_corrcoef

Accuracy-based Evaluation of the Benchmarks

Table 12 shows the 10-fold mean accuracy (%) scores of the best performing variants of the Enformer (Avsec et al., 2021), DNABERT
(Zhou et al., 2023), Nucleotide Transformer v2 (Dalla-Torre et al., 2023), and HyenaDNA (Nguyen et al., 2023) on the Nucleotide
Transformer (NT) benchmarks. The scores are sourced from a leaderboard maintained by the authors of (Dalla-Torre et al., 2023) on
the Hugging Face platform (InstaDeepAl, 2023).

Genomic Benchmark CNN DNABERT GPT HyenaDNA ENBED ENBED
(Nguyen et al., 2023) | (no pre-training)

Mouse Enhancers 69.0 66.9 80.1 85.1 75.5 90.3
Human Enhancers (Cohn) 69.5 74.0 70.5 74.2 54.3 71.2
Human Enhancers (Ensembl)  68.9 85.7 83.5 89.2 83.3 92.2
Coding vs Intergenomic 87.6 92.5 88.8 91.3 84.2 93.0
Human vs Worm 93.0 96.5 95.6 96.6 90.8 97.3
Human Regulatory Elements  93.3 88.1 91.5 93.8 80.8 90.2
Human Promoter (Non-TATA) 84.6 85.6 87.7 96.6 83.4 97.2
Human OCR (Ensembl) 68.0 75.1 73.0 80.9 64.3 81.9

Table 11. Genomic Benchmarks. Accuracy (%) scores of the best and second-best model in the Genomic Benchmarks datasets (Grevsova et al., 2022).
The baseline CNN and GPT scores was calculated by the authors of (Grevsova et al., 2022) and (Nguyen et al., 2023) respectively.

NT Benchmark Enformer DNABERT-2 NT (v2) HyenaDNA ENBE],)_ ENBED
(no pre-training)

H3 85.9 89.3 89.5 88.9 64.4 90.6
H3K14ac 63.5 75.9 76.9 80.9 51.6 81.4
H3K36me3 67.1 79.7 81.3 80.8 61.1 82.7
H3K4mel 64.6 75.8 T 75.8 58.4 77.9
H3K4me2 63.0 68.0 67.6 739 55.9 75.7
H3K4me3 56.5 67.3 69.5 77.5 50.9 77.9
H3K79me3 74.7 80.7 81.3 83.7 83.1 85.4
H3K9ac 70.8 77.1 78.0 79.3 60.2 82.6
H4 86.6 89.9 90.5 88.2 74.3 91.8
H4ac 63.8 73.1 74.9 784 67.2 80.5
Promotor (all) 95.4 97.1 97.6 96.0 94.3 98.0
Promotor (non-TATA) 95.5 97.2 97.6 96.0 94.4 98.0
Promotor (TATA) 96.0 95.5 96.6 94.1 92.9 96.8
Splice acceptor 91.4 97.5 98.7 95.8 87.8 95.8
Splice donor 90.6 96.3 98.7 95.8 87.7 95.4
Enhancer 72.3 75.7 77.3 75.9 65.2 78.3
Enhancer Types 55.4 62.0 62.6 59.5 51.4 70.0

Table 12. Nucleotide Transformer (NT) Benchmarks.
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