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Abstract

This paper presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model,

analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture. ENBED

uses a sub-quadratic implementation of attention to develop an efficient model capable of sequence-

to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only

architectures. We use Masked Language Modeling to pre-train the foundation model using reference genome

sequences and apply it in the following downstream tasks: (1) identification of enhancers, promotors and

splice sites, (2) recognition of sequences containing base call mismatches and insertion/deletion errors, an

advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-

level precision, (3) identification of biological function annotations of genomic sequences, and (4) generating

mutations of the Influenza virus using the encoder-decoder architecture and validating them against real-

world observations. In each of these tasks, we demonstrate significant improvement as compared to the

existing state-of-the-art results.
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Introduction

The rise of foundation models in recent years has led to tremendous

developments in understanding natural languages (Paaß and

Giesselbach, 2023). Although they were originally developed to

process and generate written text, these models have transcended

their initial purpose due to their generalizable nature and wide

applicability. Foundation models have shown great potential in

the field of bioinformatics (Zhang et al., 2023b), since their

capacity to be trained on vast amounts of unlabeled data and their

adaptability enable them to achieve state-of-the-art performance

in a variety of tasks.

Early applications of foundation models in bioinformatics can

be seen in analyzing protein sequences (Elnaggar et al., 2022; Rives

et al., 2021), which were then trained on diverse applications like

calculation of protein structure, prediction of mutation effects

and the understanding of phylogenetic structure (Lupo et al.,

2022; Fang et al., 2022; Nijkamp et al., 2022). These models have

since evolved beyond proteins into DNA and RNA analysis, and

have demonstrated the ability to surpass previous benchmarks

in identifying regulatory elements, predicting chromatin profiles,

analyzing evolution from genomic sequence data and predicting

the impacts of mutations in DNA (Ji et al., 2021; Dalla-Torre

et al., 2023; Nguyen et al., 2023; Zvyagin et al., 2022; Yamada and

Hamada, 2021). The ability to visualize and interpret the internal

model structure (Vig et al., 2020) and to derive key insights of the

underlying biological processes (Zhang et al., 2022) demonstrate

the unique advantages offered by foundation models in the field of

bioinformatics.

Limitations of previous work

Architecture.

Prior work on Transformer-based models for DNA sequence

analysis exists in two forms: (i) Encoder-only models (Ji et al.,

2021; Fishman et al., 2023; Zhang et al., 2022; Dalla-Torre et al.,

2023) that focus on classification and regression-based downstream

tasks and (ii) Decoder-only models (Nguyen et al., 2023; Zhang

et al., 2023a) that are capable of classification, regression as well

as generative tasks that involve design and synthesis.
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A combination of encoder and decoder blocks enables

the model to perform sequence-to-sequence transformations.

One of the fundamental processes undergone by DNA is its

transcription into an RNA sequence and subsequent translation

into protein sequences, the building blocks of all living organisms.

Understanding sequence-to-sequence processes like these is crucial

to advancing our knowledge of genetics, and developing an

encoder-decoder model is an important step in this direction.

Although decoder-only models are capable of sequence-to-sequence

transformations, they have no independent means of creating

representations of the input sequence, and both input and target

tokens are processed in an equivalent fashion. Previous work

has shown that a multitask finetuned encoder-decoder Large

Language Model (LLM) outperforms decoder-only models on zero-

shot generalization (Sanh et. al., 2022) as well as targeted tasks

like machine translation (Raffel et al., 2020; Fu et al., 2023). Since

a decoder-only architecture will have a unidirectional framework

that attends to the source and target sequence simultaneously,

as the length of the target sequence grows, the extent to

which the model attends to the source will decrease leading to

reduced performance in downstream tasks (Fu et al., 2023). Our

work demonstrates how the cross-attention layers in the decoder

leverage the information in the embeddings generated by the

encoder, leading to improved performance in training tasks.

Tokenization.

Biological sequences like DNA are encoded using a vocabulary

of four symbols (A, C, T, G) representing nucleic acids. These

sequences are converted into a Transformer-compatible format by

a tokenizer, which generates a list of tokens for any given input.

Since these models were initially developed for applications in

natural languages, the most prevalent forms of tokenization are

sentence-piece or word-piece, where the language vocabulary is

built using natural ideas like words or syllables. In the absence

of typical indicators of linguistic order in DNA, like spaces and

punctuation, these tokenization schemes use statistical techniques

to determine the ‘words’ that make up the vocabulary of the input

sequences. A few examples of previously used tokenizers are: k-

mer (Ji et al., 2021), SentencePiece (Dalla-Torre et al., 2023), and

byte-pair encoding (BPE) (Fishman et al., 2023) tokenization.

While such techniques identify optimal encoding methods by

constructing tokens having multiple base pairs, they are vulnerable

to any type of noise present in the sequence. A single variation in a

base pair will result in the fragment being mapped to a completely

different word in the vocabulary, resulting in an outsized impact

from a small perturbation (Dotan et al., 2023). We use a simplified

tokenization scheme where each character corresponds to a single

token, resulting in a longer average tokenized length, but more

resiliance to the variations mentioned above.

Our contributions

In this paper, we develop the Ensemble Nucleotide Byte-level

Encoder-Decoder (ENBED) Transformer, a foundation model

that analyzes nucleotide sequences with Transformers using

byte-level tokenization and an encoder-decoder model. This

implementation bridges the gap between existing models that are

either encoder-only or decoder-only implementations and presents

the possibility of sequence-to-sequence analysis tasks. Using

sliding-window and global attention we obtain a sub-quadratic

implementation of attention, and demonstrate the performance

improvements over dense attention. The foundation model is pre-

trained using an ensemble of high-quality reference genomes from

NCBI RefSeq, including the telomere-to-telomere assemblies of

Human and Maize DNA, data from the 1000 Genomes Project and

a mix of widely studied organisms like E. coli, D. melanogaster,

M. musculus and P. vivax (Sec 6). This process is implemented

by giving the model a self-supervised goal of internalizing the

structure of the language of nucleotide sequences.

ENBED is built using a byte-level tokenizer. In order to

avoid the issues created by single nucleotide variants and their

downstream impacts, we side-step the problem of determining the

tokenization scheme entirely by working with single nucleotides

as tokens. This leads to increased computational costs, but

grants resilience to the types of variations and noise commonly

encountered in DNA sequences. In order to offset the impact of

increased computations, we implement sub-quadratic attention

layers in order to scale up the model efficiently.

Evaluation of performance on genomic benchmark

datasets.

We evaluate the performance of the ENBED foundation model

on sequence-level classification tasks and compare it’s accuracy

against contemporary foundation models. We show that ENBED

outperforms the state-of-the-art in 21 of the 25 benchmarks

devised by the authors of the Nucleotide Transformer (Dalla-

Torre et al., 2023) and Genomic Benchmarks (Grevsova et al.,

2022) datasets. These benchmarks consist of tasks like identifying

enhancers, promotors, splice sites and histone marks in multi-

species data comprising of genomic sequences from human, mouse,

yeast, fruit fly and worm DNA.

Identifying sequencing noise.

Long-read sequencing using Nanopores is used to study telomeres,

which are protective caps found at chromosomal ends and have

long repetitive elements. It has been found that telomeres in many

organisms are frequently miscalled (Tan et al., 2022), referring

to errors in the process that translates electrical signals into

the alphabet of DNA. We illustrate how ENBED can focus on

fragments that look incorrect or out of place, demonstrating the

model’s ability of distinguishing between noisy and accurate data.

In a synthetic dataset constructed using noise distributions found

in real-world raw sequence data, we demonstrate that our model

can identify sequences containing noise with an accuracy of 97.6%,

leveraging the information internalized by bring pretrained on the

telomere-to-telomere reference sequences.

Biological function annotations.

Mapping the complete human genome was a significant milestone

in modern biology, and it has produced a new set of challenges in

identifying the functions and interactions of different parts of the

genome. We fine-tune our model to solve a version of this problem

by identifying the biological functions of genomic sequences among

the most common functional classes using a fine-tuned model,

achieving an F1 score of 74.1.

Studying mutations as a sequence-to-sequence process.

Exploring mutations is essential as it sheds light on the

mechanisms driving genetic diversity which enhance the overall

resilience of living organisms in a changing environment. The

encoder-decoder architecture confers the ability to rapidly iterate
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Fig. 1: Model Architecture. The model is constructed using encoder and decoder blocks with a ratio of 2:1. Both types of blocks consist

of attention and feed-forward layers, with the decoder blocks additionally incorporating the embeddings in encoder-decoder attention

layers.

mutagenization of genomic segments. We study mutations in the

Influenza virus, using the NCBI Influenza Virus Resource. By

constructing a dataset with a phylogenetic tree, we obtain parent-

child pairs of mutated sequences and show the effectiveness of

our encoder-decoder architecture in analyzing and predicting these

mutations.

Methods

Encoder-Decoder Model Architecture

ENBED is built using an encoder-decoder architecture (Fig. 1)

consisting of encoder and decoder blocks, each comprised of two

subcomponents: an attention layer and a feed-forward neural

network. The attention layers process a sequence by replacing

each element with a weighted sum of linear transformations of the

input embeddings, after which they are normalized and passed

through the feed-forward neural network. Dropout is applied to

the feed-forward network, the attention weights, and the input

and output of the entire stack. The implementation is written

using JAX (Bradbury et al., 2018) and the Flax-former library

(Heek et al., 2023).

We formulate a model with 1.2B trainable parameters, with

the configuration specified in Table 6. The model is encoder-heavy

since idiosyncratic relationships among tokens are better encoded

by devoting a larger share of parameters to these blocks. We

found that adjusting the encoder-to-decoder ratio to 2:1 improved

performance, with a 1% increase in Masked Language Modeling

(MLM) accuracy for all model sizes over the 3:1 ratio chosen by the

authors of ByT5 (Xue et al., 2022), a similar architecture built to

process token-free text-to-text transformations. We also find that

reducing the masked span length, which is the average number of

tokens masked during pre-training, from 40 down to 20 helps in

faster convergence owing to the significantly smaller vocabulary of

DNA.

Tokenization

Sequences are tokenized by breaking down the input into tokens

consisting of single nucleotides. The vocabulary size is fixed at 384,

with 256 ASCII characters and additional tokens added to function

as MASK, PAD and UNKNOWN tokens during the training process. We

require multiple MASK tokens in order to index the positions where

masking has occurred and to label the targets with these indices.

Although the alphabet of DNA only comprises of the four nucleic

acids Adenine (A), Cytosine (C), Guanine (G), and Thymine (T),

we choose to keep the whole set of extended ASCII characters

since they could aid in future tasks like sequence-to-sequence

transformations involving targets beyond just DNA sequences, like

drug structures represented by the SMILES notation system.

This approach requires more floating-point operations (FLOPs)

as compared to other tokenization methods, since it increases the

tokenized sequence length for the same input DNA sequences,

resulting in higher resource requirements. Although this limits

us to dealing with short- to medium-length sequences, we can

overcome these constraints and scale up the model by reducing

the complexity of attention layers as described below.

Attention

Attention can be understood as a soft-lookup of a query Q

in a dictionary of stored keys K and values V. Attention

scores are generated by calculating the similarity between Q

and K, each having a dimension d, with scaled dot-product

attention
(
Softmax

(
QKT /

√
d
)
V
)

being the most common

implementation. Increasing the sequence length L can be a

challenge, since this type of attention has a complexity of O(L2).

This sets a limit of L ≤ 512 tokens on our hardware (NVIDIA

A100 (40 GB) GPUs).

In order to reduce the complexity while preserving function,

we modify the architecture to replace dense attention with a

combination of two sub-quadratic variants of attention: (i) sliding-

window attention and (ii) global attention.

Sliding-window attention.

Local context is crucial in analyzing DNA, since biological

processes like transcription and translation work within continuous

regions of a sequence. Tokens within a sliding window of radius r

are used to calculate the attention scores, bringing the complexity

down to O(L × r). We fix r = 64 for the initial three layers and

increase to r = 128 in the final layers, which allows them to learn
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higher-level representations while having the lower layers focus on

local information.

Global attention.

For tasks that involve classifying or annotating whole sequences,

we need a mechanism that aggregates global information from

the inputs, in addition to the local scores. We divide the input

sequence into k blocks and calculate a global token by summing

and normalizing the embeddings for every token in the block.

Scores are then computed for every input token by letting it attend

to the neighboring tokens (as described above) and all the global

tokens, which has a total complexity of O(L(r + k)).

Hence, by choosing appropriate values for r and k relative to L, we

implement a scheme to calculate attention with a sub-quadratic

complexity which allows us to set an input and output length of

16384, a significant improvement over the limit of 512 tokens using

dense attention with the same GPU hardware.

The aggregated blocks constructed in this procedure resemble

previous tokenization schemes like k-mer, used by previous models

like DNABERT (Ji et al., 2021) and BPE used by GENA-LM

(Fishman et al., 2023). Our method uses a combination of these

aggregated blocks along with higher-granularity local context

to achieve a balance between the two, allowing us to process

sequences with greater precision.

Applications of Foundation Models using Transfer Learning

Building the foundation model.

The first step in building our foundation model is pre-training

it on high-quality reference sequences. We use a procedure

called Masked Language Modeling (MLM). The objective is to

reconstruct tokens that have been deleted and replaced with a MASK

token. This task develops the ability to understand the context

and vocabulary to identify the correct elements that belong in

the masked segments. Utilizing a large corpus of unlabeled data

allows us to impart the model with generalizable knowledge that

can be fine-tuned for specific downstream tasks. The genomic

corpus is constructed by concatenating FASTA files from the NCBI

sources mentioned in the Data Availability section, removing any

descriptions starting with ‘>’ and ‘N’ bases that are a result of

hard-masking. We choose a masking rate of 15% over the course

of pre-training. The entire corpus is supplied to a collator that

handles masking, padding, and truncation to ensure that the input

length is maintained. We follow a linear schedule with warmup

(5% of the total training steps) using the AdamW optimizer

(β1 = 0.9, β2 = 0.99, ϵ = 10−6) with a learning rate of 1e-5, a

cross-entropy loss function and softmax as the activation function.

We train all versions of the model with maximum input and output

lengths of 16, 384 tokens (base pairs). Convergence takes 120-480

GPU-hours with 8 NVIDIA A100 GPUs, determined by model

size and input length.

Fine-tuning for downstream tasks.

We fine-tune the model by modifying the final layers into a task-

specific configuration. This is called the ‘head’ of the model and

is attached to the final layer of the pre-trained model. Layers

are gradually unfrozen in reverse order during the course of fine-

tuning, allowing the Transformer to integrate with the attached

head while retaining the initial layers, thus enabling the transfer

of pre-trained knowledge for downstream applications.

Classification head.

A fully connected (dense) layer is usually added to the output of

the base model, followed by a softmax activation to produce class

probabilities, typically used in sequence-level classification tasks.

Language modeling head.

A language modeling head comprises of a single feedforward neural

network layer followed by a softmax activation function. This layer

takes hidden representations from the preceding layers and outputs

a probability distribution over the vocabulary. The objective is

to estimate the estimate the probability of a token given the

previous words in a sentence. The softmax function transforms the

raw output scores into probabilities, representing the likelihood of

each word or token in the vocabulary at any particular position.

This process is called autoregressive generation, and we use it to

perform sequence-to-sequence transformations.

Application Domains

The ENBED foundation model is evaluated across a set of

genomic analysis tasks to demonstrate its versatility and the

unique advantages of its encoder-decoder architecture. We begin

with the Genomic Benchmarks and Nucleotide Transformer

Benchmarks, which provide standardized comparisons against

existing models for fundamental sequence classification tasks.

The noise identification task assesses ENBED’s ability to

distinguish genuine sequences from artifacts, leveraging its byte-

level precision. Biological function annotation tests the model’s

capacity to associate sequence patterns with higher-level functions,

crucial for genome interpretation. Finally, the mutation generation

task is an end-to-end evaluation of the ENBED, a novel

architecture not present in previous genomic language models.

This sequence-to-sequence task, focused on predicting viral

mutations, showcases ENBED’s potential for modeling complex

genomic transformations.

Genomic Benchmarks.

The Genomic Benchmarks (GB) dataset consists of sequences

from four organisms: Human, mouse (Mus musculus), roundworm

(Caenorhabditis elegans) and fruit fly (Drosophila melanogaster).

The dataset comprises of: (i) Human enhancers from Cohn et.

al. (Cohn et al., 2018) and Ensembl (Martin et. al., 2022), (ii)

Open Chromatin Region classifications from the Ensembl build,

(iii) Computationally generated data for coding and non-coding

sequences (iv) Multi-class data composed of three regulatory

elements (promotors, enhancers and Open Chromatin Regions),

(v) Non-TATA promotor sequences imported from Umarov et. al.

(Umarov and Solovyev, 2017).

Nucleotide Transformer Benchmarks.

The Nucleotide Transformer (NT) benchmarks consist of five data

sources: (i) Epigenetic marks in the yeast genome, which use

experimentally obtained nucleosome occupancy values processed

into positive and negative observations and to provide the

following histone marks datasets: {H3, H4, H3K9ac, H3K14ac,

H4ac, H3K4me1, H3K4me2, H3K4me3, H3K36me3, and

H3K79me3}, (ii) A dataset (Geng et al., 2022) consisting of a mix

of strong, weak and non-enhancers. (iii) Promotor sequences 300

base pairs in length around transcription start sites, divided on

the basis of TATA and non-TATA box promotors. (iv) Splice site
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datasets composed of donor, acceptor and non-splice site sequences

from phylogenetically diverse organisms.

Noise identification.

We generate a synthetic dataset with segments of 512 nucleotides

selected at random from TeloBase (Lyčka et al., 2023), a

comprehensive database of information about telomere motif

diversity. We introduce noise based on real-world raw DNA

sequencing data to generate negative samples. Previous work

(Rabadan et al., 2017) finds that noise in sufficiently deep DNA

sequencing data can be approximated by aggregating negative

binomial distributions. Using this method, we create a balanced

dataset with positive and negative samples. The model is fine-

tuned on a sequence classification task with this labeled dataset.

This process can be likened to out-of-distribution detection (Fort

et al., 2021), since the negative samples would represent data

that does not belong to the distribution of the training dataset.

We describe this procedure in more detail in the Supplementary

Material (Section B).

Biological function annotation.

We can formulate the process of annotating genes as a classification

task, with the input being a DNA sequence fragment and the

output being the class probabilities for the annotation types

defined below. For evaluating our model, we train it to output the

biological function annotation of a given genomic input sequence

up to 512 base pairs in length. We choose the following annotation

types for our experiment: Coding Sequences, IncRNA, snoRNA,

miscRNA, miRNA, snRNA, TEC, Processed and Unprocessed

Pseudogenes. These annotations are obtained from the Ensembl

dataset (Martin et. al., 2022), and the constructed dataset has

an equal number of examples for all classes. We generate 9216

training examples and 1024 validation examples for this task.

Mutation generation.

Human influenza A viruses are named based on the geographic

location where the virus was isolated, the date of the isolate,

and the identity of the two major surface proteins, hemagglutinin

(HA) and neuraminidase (NA). We choose the HA1 sequences to

create the Influenza virus mutation dataset, selecting the segments

with most highly variable regions for training and validation. We

obtain our source data from (Berman et al., 2020) and subset the

HA1 nucleotide sequence of the H3N2 Influenza virus between 300

to 799 bp (100-266 amino-acids) to capture the Antigenic site A

and B. The selected region is a part of the globular domain that

occurs in a jelly-roll fold of eight-stranded anti-parallel beta-sheets,

containing the most commonly mutating amino-acid residues

around the receptor binding site. The HA1 head also accumulates

N-linked glycosylation sites over time, which are thought to mask

antigenic sites from immune recognition. The glycosylation of

the HA1 globular domain modulates receptor binding, stimulates

host antibody responses, and shields key antigenic sites to

facilitate immune evasion of the virus. By focusing on the

HA1 subdomain, we aimed to evaluate the sequence-to-sequence

model on a functionally important region of influenza HA that

experiences significant antigenic drift and glycosylation changes.

The Supplementary Material contains additional details about the

construction of training and validation splits for the dataset.

Candidate sequences are generated using a language modeling

head with the parent sequence supplied as the input. Using a beam

search (Nbeams=5), we obtain five candidate sequences which

are autoregressively generated to a length of 499 bp (equal to

the input). We rank the sequences using the noise identification

pipeline above, and select the sequence least likely to be identified

as having noise present. We identify mutations by measuring

the Levenshtein distance between parent and child sequences.

This metric accounts for insertion, deletion as well as in-place

modifications.

Results

Upon convergence, the pre-training process yields a foundation

model ready to be applied to downstream tasks. The initial

layers in the pre-trained model are frozen since they contain

generalizable information that helps the model build versatile

internal representations of the data. We visualize these internal

representations by extracting the encoder output layer and

plotting attention maps in Fig. 2. These maps are generated using

the outputs from the final encoder block. The use of multiple

attention heads grants the model the ability to simultaneously

use a diverse range of patterns to analyze input sequences. In Fig

2, we observe that some heads are dedicated to analyzing close

neighbors (3, 9, 10) while others display a more dilated version of

this phenomenon (1, 2, 5, 11). Additionally, there are heads which

attempt to exclude local information and focus on a more global

view of the input sequence (4, 6, 8, 12).

ENBED outperforms state-of-the-art models on genomic

benchmark datasets

We finetune the model using a classification head using the

embedding outputs from the final encoder block, on the datasets

constructed by the authors of the Nucleotide Transformer (NT)

benchmarks (Dalla-Torre et al., 2023) and Genomic Benchmarks

(GB) (Grevsova et al., 2022). The results of evaluating the model

on the test dataset of NT and GB are presented in Tables 12

and 11, respectively. For evaluation on the NT benchmarks, we

compare our performance against the Nucleotide Transformer (v2)

and HyenaDNA (Dalla-Torre et al., 2023; Nguyen et al., 2023),

which are encoder-only and decoder-only models, respectively. For

the GB datasets, we use the performance of the Convolutional

Neural Network (CNN) model developed by the authors of the

dataset (Grevsova et al., 2022) as a baseline. We also include

the performance of the HyenaDNA model and the baseline

Transformer developed by its authors (Nguyen et al., 2023).

ENBED demonstrates superior performance, exceeding state-

of-the-art results in 15 out of 17 Nucleotide Transformer (NT)

benchmarks and 6 out of 8 Genomic Benchmarks (GB) datasets.

This improvement likely stems from our novel approach combining

byte-level analysis, high-quality reference sequences, and an

optimized pre-training methodology. We hypothesize that byte-

level tokenization enhances the model’s ability to handle variations

such as single nucleotide polymorphisms, while our encoder-

decoder architecture enables simultaneous focus on multiple

input sections and context-aware processing. These features may

contribute to ENBED’s advantages over decoder-only methods.

While the relative impact of each component requires further

investigation through ablation studies, our results demonstrate

ENBED’s effectiveness across a wide range of genomic analysis

tasks.
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Fig. 2: Interpreting Attention Layers. We visualize the twelve attention heads of the pre-trained ENBED foundation model.

ENBED identifies noise in genomic sequences

Table 3 shows the results of the sequence-level classification on

erroneous sequences using our synthetic dataset. Since competing

models are trained using the GRCh38 reference assembly, they

often lack information about repetitive regions due to hard-

masking. Our choice of higher quality pre-training data results

in a signifcant performance improvement and on overall accuracy

of 97.1% in the sequence-level classification task of identifying

erroneous genomic data, which is significant improvement as

compared to the baselines of DNABERT (Ji et al., 2021) (84.9%)

and Nucleotide Transformer (Dalla-Torre et al., 2023) (91.8%).

ENBED identifies biological function annotations

ENBED is trained to identify the annotations (defined in the

Application Domains section) of the Human reference assembly.

As shown in Table 4, we achieve an F1 score of 74.1 in this

classification task, an improved score compared to DNABERT (Ji

et al., 2021) (63.2), Nucleotide Transformer (Dalla-Torre et al.,

2023) (67.5), and HyenaDNA (Nguyen et al., 2023) (72.8). For

the purposes of this evaluation, all models were finetuned and

evaluated using the same balanced dataset as specified in the

Application Domains section.

ENBED generates mutations using sequence-to-sequence

transformation

We evaluate the accuracy of ENBED in generating mutations,

using an encoder-decoder Transformer with Byte-Pair Encoding

(BPE) tokenization (used in previous genomic models (Fishman

et al., 2023)) as a baseline. We compare against BPE because this

method shares similarities with byte-level tokenization by starting

with the basic {A, C, T, G} alphabet, but tries to optimize the

vocabulary by combining simpler words into more complex ones

based on the corpus the tokenizer is trained on. The training

corpus itself is identical to the one used in pre-training ENBED,

with the only difference being the tokenization procedure. While

this procedure reduces the average number of tokens generated

from any input sequence, it also results in reduced accuracy

since modifying even a single base pair will output a significantly

different tokenized sequence.

Top-1 and Top-5 Accuracy (%) scores are calculated by

comparing predictions with real-world data from the Influenza

Virus Resource (Bao et al., 2008), with any deviation from an exact

match being classified as incorrect. Top-5 scores are calculated

by selecting the best candidate from the procedure described in

Sec 2.5. Additionally, we also train a version of ENBED with the

encoder removed, as a comparison of the sequence-to-sequence task

performance between decoder-only and encoder-decoder models.

The mean Levenshtein distance of our model predictions from

real-world mutated sequences is 2.3 edits over a length of 500 bp,

resulting in an average similarity of 99.5%. We can attribute the

significant increase in accuracy to byte-level tokenization, since

other schemes with tokens involving multiple base pairs will be

unable to capture edits involving single nucleotides effectively.
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Ablation Studies

We perform ablation studies in order to examine the impact of the

architectural modifications and the combination of encoder and

decoder blocks.

Encoder-decoder architecture

We study the impact of combining encoder and decoder blocks and

the cross-attention links between them in Table 6. A decoder-only

version of the model is constructed by stacking 24 decoder layers

and is pre-trained to convergence using next-token prediction. We

also construct a balanced model using stacks of 12 layers for both

the encoder and decoder blocks, introducing cross-attention layers

in the decoder that attend to the embeddings and the output

sequence. Both models have ∼ 800 M trainable parameters. We

then fine-tune these models on the mutation generation task and

compare with the ENBED model having a 2:1 encoder-decoder

block ratio.

Introducing the encoder and cross attention leads to a

significant improvement in the pre-training accuracy, demonstrating

the suitability of both the architecture as well has the pre-

training task, since decoder-only models are restricted to causal

objectives like next-token prediction unlike encoders that can

handle bi-directional information.

Discussion

The ENBED model demonstrates significant improvements over

existing approaches in several areas of genomic sequence analysis.

The encoder-decoder architecture, combined with byte-level

tokenization and high-quality pre-training data, contributes

to enhanced performance across multiple tasks. ENBED’s

performance on established benchmarks is noteworthy, surpassing

state-of-the-art results in 21 out of 25 tasks across the

Nucleotide Transformer and Genomic Benchmarks datasets.

This broad improvement suggests that our approach captures

underlying genomic patterns more effectively than previous

models. Additionally, the model successfully identified sequences

containing noise with an accuracy of 97.6%, demonstrating its

sensitivity to small-scale genomic perturbations. This is likely due

to the byte-level tokenization approach used in ENBED, which

allowed for accurate detection of variations at single-nucleotide

resolutions.

The encoder-decoder structure proves particularly effective for

sequence-to-sequence tasks like mutation generation. Our results

show that ENBED outperforms baseline models in predicting

Influenza virus mutations, achieving a top-5 accuracy of 95.4%.

This was a significant improvement over the baseline model using

byte-pair encoding (BPE) tokenization (56.1%), and another

variant of ENBED without the encoder (72.1%). We chose to vary

both the tokenization scheme and architecture in these cases while

keeping the rest of the design choices unchanged in order to isolate

the impact of these two factors. We find that the choice of BPE

tokenization significantly impacts the model’s ability to generate

mutations accurately, with byte-level tokenization providing a

clear advantage due to its ability to capture single-nucleotide

changes. We also see that an encoder-decoder architecture is

crucial for this task, as the decoder-only model does not perform

as well, following the trend observed in other sequence-to-sequence

tasks (Raffel et al., 2020; Fu et al., 2023).

It is also worth noting that the use of higher-quality

pre-training data, including telomere-to-telomere assemblies,

may contribute to ENBED’s improved performance. This

comprehensive genomic representation likely allows the model

to learn from previously underrepresented genomic regions. A

study of the Nucleotide Transformer benchmarks (Table 12) with

two versions of ENBED trained on different reference assemblies

(GRCh38 and T2T-CHM13) showed that the model trained on the

higher-quality T2T-CHM13 assembly outperformed the GRCh38

model across the board. This suggests that the choice of reference

assembly can significantly impact the model’s performance, and

that the use of more complete and accurate reference genomes can

lead to better generalization.

Future work on this model could explore additional applications

in genomics, such as variant effect prediction and protein structure

studies.

Data and Code Availability

The Telomere-to-telomere reference sequences for Human

(GCF 009914755.1) and Maize (GCA 022117705.1) and the

reference sequences for E. coli (GCF 000008865.2), D. melanogaster

(GCF 000001215.4), M. musculus

(GCF 000001635.27) and P. vivax (GCF 000002415.2) were

obtained from NCBI RefSeq (O’Leary et al., 2016) in FASTA

format. Variant Calling Files (VCFs) for the 1000 Genomes

Project (Consortium, 2015) were obtained from the European

Bioinformatics Institute. Gene annotations were obtained from

GENCODE (Harrow et. al, 2012) and Ensembl (Martin et. al.,

2022). The mutation tree was derived from the data assembled

by the authors of (Berman et al., 2020), sourced from the NCBI’s

Influenza Virus Resource (Bao et al., 2008).

The source code used to develop and fine-tune the foundation

model has been released on Github 1 and the weights of the model

used in evaluation are available here 2

Supplementary Material

The supplementary material (below) contains additional details

on the model architecture, data sources, training procedures and

evaluation metrics.
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NT Benchmark Enformer DNABERT-2
NT

(2.5B)

HyenaDNA

(1 Kb)

ENBED

(GRCh38)
ENBED

H3 0.719 0.785 0.791 0.779 0.723 0.802

H3K14ac 0.288 0.516 0.537 0.612 0.537 0.636

H3K36me3 0.344 0.591 0.616 0.613 0.611 0.624

H3K4me1 0.291 0.511 0.544 0.512 0.498 0.591

H3K4me2 0.211 0.336 0.322 0.455 0.433 0.501

H3K4me3 0.158 0.352 0.408 0.549 0.580 0.587

H3K79me3 0.496 0.613 0.621 0.672 0.648 0.756

H3K9ac 0.420 0.542 0.550 0.581 0.427 0.590

H4 0.732 0.796 0.807 0.763 0.750 0.823

H4ac 0.273 0.463 0.489 0.564 0.548 0.605

Promotor (all) 0.909 0.943 0.950 0.920 0.906 0.961

Promotor (non-TATA) 0.909 0.944 0.952 0.921 0.892 0.959

Promotor (TATA) 0.920 0.910 0.919 0.882 0.883 0.944

Splice acceptor 0.829 0.950 0.973 0.915 0.754 0.943

Splice donor 0.814 0.926 0.974 0.898 0.835 0.911

Enhancer 0.451 0.516 0.548 0.517 0.577 0.585

Enhancer Types 0.309 0.423 0.450 0.386 0.459 0.482

Table 1. Nucleotide Transformer (NT) Benchmarks. We evaluate our model using the 10-fold mean Matthews Correlation Coefficient (MCC) of the

best performing variants of the Enformer (Avsec et al., 2021), DNABERT (Zhou et al., 2023), Nucleotide Transformer v2 (Dalla-Torre et al., 2023), and

HyenaDNA (Nguyen et al., 2023), highlighting the best and second-best scores. The scores are sourced from a leaderboard maintained by the authors of

(Dalla-Torre et al., 2023) on the Hugging Face platform (InstaDeepAI, 2023).

Genomic Benchmark CNN DNABERT GPT
HyenaDNA

(Nguyen et al., 2023)

ENBED

(GRCh38)
ENBED

Mouse Enhancers 69.0 66.9 80.1 85.1 81.1 90.3

Human Enhancers (Cohn) 69.5 74.0 70.5 74.2 70.8 71.2

Human Enhancers (Ensembl) 68.9 85.7 83.5 89.2 90.2 92.2

Coding vs Intergenomic 87.6 92.5 88.8 91.3 90.7 93.0

Human vs Worm 93.0 96.5 95.6 96.6 94.4 97.3

Human Regulatory Elements 93.3 88.1 91.5 93.8 85.6 90.2

Human Promoter (Non-TATA) 84.6 85.6 87.7 96.6 90.4 97.2

Human OCR (Ensembl) 68.0 75.1 73.0 80.9 76.2 81.9

Table 2. Genomic Benchmarks. Accuracy (%) scores of the best and second-best model in the Genomic Benchmarks datasets (Grevsova et al., 2022).

The baseline CNN and GPT scores was calculated by the authors of (Grevsova et al., 2022) and (Nguyen et al., 2023) respectively.

Model Reference F1 Score

DNABERT (Ji et al., 2021) 84.9

Nucleotide Transformer (Dalla-Torre et al., 2023) 91.8

ENBED This paper 97.6

Table 3. Erroneous Sequence Identification.
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Supplementary Material

Pre-training Data Sources

Table 7 shows the pre-training data sources used for the Enformer (Avsec et al., 2021), DNABERT-2 (Zhou et al., 2023), Nucleotide

Transformer v2 (Dalla-Torre et al., 2023), and HyenaDNA (Nguyen et al., 2023) models. We also construct a GRCh38-based version of

ENBED as mentioned in Tables 1 and 2 in the main paper.

Task-specific Datasets

Nucleotide Transformer

For epigenetic marks prediction, a dataset of acetylation and methylation nucleosome occupancies in the yeast genome was used, with

data from Chip-Chip experiments processed into positive and negative observations for 10 histone marks. Promoter sequence prediction

utilized a dataset of 29,597 promoter regions, including 3,065 TATA-box promoters, with sequences spanning 300bp around transcription

start sites. Matched negative samples were created by shuffling promoter sub-sequences.

Enhancer sequence prediction relied on a single dataset that originally contained 742 strong, 742 weak, and 1484 non-enhancers,

which was augmented with 6000 synthetic enhancers and 6000 synthetic non-enhancers to evaluate the transformer’s representation of

enhancers. Splice site prediction employed two datasets: the SpliceFinder dataset, which included donor, acceptor, and non-splice sites

in human genes with 400bp sequences, and the Spliceator training set, which consisted of 600bp sequences from diverse organisms, using

a balanced ’Gold Standard’ subset.

Table 8, sourced from Dalla-Torre et al. [2], shows the dataset statistics for the various genomic sequence classification tasks.

Genomic Benchmarks

The Genomic Benchmarks dataset consists of 8 classification tasks, each with a unique set of positive and negative sequences. The

tasks include the classification of mouse enhancers, human enhancers (Cohn), human enhancers (Ensembl), coding vs. intergenic regions,

Model Data Source Description

Enformer (Avsec et al., 2021) GRCh38 + GRCm38 Human and Mouse reference genomes

DNABERT-2 (Zhou et al., 2023)
GRCh38 +

Multi-species Dataset

Multi-species data consists of 135 species

randomly selected across 7 categories.

Nucleotide Transformer

(Dalla-Torre et al., 2023)

GRCh38 + 1000G +

Multi-species Dataset

Versions with the Human reference genome,

1000 Genomes project (1000G),

and multi-species data consists of 850 species.

HyenaDNA (Nguyen et al., 2023) GRCh38 Human reference genome

Table 7. Pre-training Data Sources.

Num train Num test Max sequence

sequences sequences length in bp

H3K4me3 25953 2884 500

H3K4me2 27614 3069 500

H3K36me3 31392 3488 500

H3K9ac 25003 2779 500

Splice donor 19775 2198 600

Splice site all 27000 3000 400

H4ac 30685 3410 500

H3K4me1 28509 3168 500

Enhancer 14968 400 200

Enhancer types 14968 400 200

H4 13140 1461 500

Splice acceptor 19961 2218 600

H3K79me3 25953 2884 500

Promoter non-TATA 47767 5299 300

Promoter all 53276 5920 300

H3K14ac 29743 3305 500

H3 13468 1497 500

Promoter TATA 5509 621 300

Table 8. Dataset statistics for Nucleotide Transformer classification tasks
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Name # of sequences # of classes Class ratio Median length σ

dummy mouse enhancers ensembl 1210 2 1.0 2381 984.4

demo coding vs intergenomic seqs 100000 2 1.0 200 0.0

demo human or worm 100000 2 1.0 200 0.0

drosophila enhancers stark 6914 2 1.0 2142 285.5

human enhancers cohn 27791 2 1.0 500 0.0

human enhancers ensembl 154842 2 1.0 269 122.6

human ensembl regulatory 289061 3 1.2 401 184.3

human nontata promoters 36131 2 1.2 251 0.0

human ocr ensembl 174756 2 1.0 315 108.1

Table 9. Description of datasets in genomic benchmark package. Name is the unique identification of dataset. # of sequences is the combined count of

all sequences from all classes. # of classes is the count of all classes in a dataset. Class ratio is the ratio between number of sequences in the largest and

smallest classes. Median length and Standard deviation are computed for all sequences from all classes in a dataset. (Reproduced from (Grevsova et al.,

2022))

human vs. worm, human regulatory elements, human promoters (non-TATA), and human OCR (Ensembl). The dataset is designed to

evaluate the performance of models on a diverse set of genomic sequence classification tasks. Table 9 shows the dataset statistics for the

Genomic Benchmarks tasks.

Noise Generation

We generated a synthetic dataset to evaluate our model’s capacity to differentiate between genuine sequences and those containing errors.

The dataset was constructed using segments of 512 nucleotides selected at random from TeloBase, a comprehensive database of telomere

motif diversity.

Noise was injected as per the distribution found in the work of (Rabadan et al., 2017) using a deepSNV-based implementation (?).

The dataset was divided into training and test sets with 10,000 and 1,000 sequences, respectively.

Mutation Generation

For the mutation generation task, we employ a fine-tuning approach using a sequence-to-sequence model. This model is trained to

predict child sequences given parent sequences, effectively learning the patterns of mutations observed in the influenza virus population.

To ensure the robustness of our results and prevent overfitting, we have implemented a comprehensive strategy for constructing our

training and test datasets.

Our approach begins with the construction of a phylogenetic tree from the available influenza virus sequences using a maximum

likelihood method. Figure 3 shows a circular cladogram visualization of the generated Influzenza H1 gene sequences, where nodes are

represented by yellow dots. This tree provides a representation of the evolutionary relationships between different strains. We use this

phylogenetic information to inform our data split, ensuring that closely related strains are not separated between the training and test

sets. Specifically, we implement a monophyletic clade-based splitting strategy, where entire clades below a certain depth in the tree are

assigned to either the training or test set. This step is crucial to prevent information leakage and maintain the integrity of our evaluation.

Furthermore, we implement a sequence similarity cutoff of 95% using the Levenshtein distance metric to address the issue of high

sequence homology between training and test sets. Sequences with greater than 95% similarity are grouped together and assigned entirely

to either the training or test set, never split between the two. In total, we create 5000 parent-child sequence pairs for training and 500

pairs for testing.

Variances for the Nucleotide Transformer Benchmarks

Table 10 shows the standard deviations of the 10-fold Matthews Correlation Coefficient (MCC) scores for the Nucleotide Transformer

(NT) benchmarks. The peer-reviewed baselines are sourced from a leaderboard maintained by the authors of (Dalla-Torre et al., 2023)

on the Hugging Face platform (InstaDeepAI, 2023).

Evaluation Metrics

Matthew’s Correlation Coefficient

The Matthews Correlation Coefficient (MCC), originally introduced by Matthews in 1975 for binary classification, has been extended to

multi-class classification scenarios (?). In the multi-class context, the MCC provides a balanced measure of the quality of classification

that is particularly useful when dealing with imbalanced datasets. For a classification problem with K classes, the multi-class MCC is

defined as:

MCC =
c× s−

∑
k pk × tk√

(s2 −
∑

k p2k)× (s2 −
∑

k t2k)
(1)
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Fig. 3: Phylogenetic Tree.

NT Benchmark
Peer-reviewed

Baselines

ENBED

(GRCh38)
ENBED Std. Dev.

H3 0.791 (Dalla-Torre et al., 2023) 0.723 0.802 0.031

H3K14ac 0.612 (Nguyen et al., 2023) 0.537 0.636 0.020

H3K36me3 0.616 (Dalla-Torre et al., 2023) 0.611 0.624 0.016

H3K4me1 0.544 (Dalla-Torre et al., 2023) 0.498 0.591 0.009

H3K4me2 0.455 (Nguyen et al., 2023) 0.433 0.501 0.035

H3K4me3 0.549 (Nguyen et al., 2023) 0.580 0.587 0.018

H3K79me3 0.672 (Nguyen et al., 2023) 0.648 0.756 0.014

H3K9ac 0.581 (Nguyen et al., 2023) 0.427 0.590 0.006

H4 0.807 (Dalla-Torre et al., 2023) 0.750 0.823 0.011

H4ac 0.564 (Nguyen et al., 2023) 0.548 0.605 0.017

Promotor (all) 0.950 (Dalla-Torre et al., 2023) 0.906 0.961 0.021

Promotor (non-TATA) 0.952 (Dalla-Torre et al., 2023) 0.892 0.959 0.019

Promotor (TATA) 0.920 (Avsec et al., 2021) 0.883 0.944 0.017

Splice acceptor 0.973 (Dalla-Torre et al., 2023) 0.754 0.943 0.034

Splice donor 0.974 (Dalla-Torre et al., 2023) 0.835 0.911 0.029

Enhancer 0.548 (Dalla-Torre et al., 2023) 0.577 0.585 0.011

Enhancer Types 0.450 (Dalla-Torre et al., 2023) 0.459 0.482 0.007

Table 10. Nucleotide Transformer (NT) Variances.

where c is the total number of correctly classified samples, s is the total number of samples, pk is the number of times class k was predicted,

and tk is the number of times class k truly occurred. The coefficient yields values in the interval [-1, 1], with 1 indicating perfect prediction,

0 signifying random prediction, and -1 denoting complete misclassification. The MCC takes into account all elements of the confusion

matrix, providing a more comprehensive evaluation than metrics such as accuracy or F1-score, especially for imbalanced datasets. The

MCC also remains informative even when class sizes differ significantly and is sensitive to both over-prediction and under-prediction of

classes.

We use the scikit-learn implementation of the MCC for our evaluation, which is available in the module:
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sklearn.metrics.matthews_corrcoef

Accuracy-based Evaluation of the Benchmarks

Table 12 shows the 10-fold mean accuracy (%) scores of the best performing variants of the Enformer (Avsec et al., 2021), DNABERT

(Zhou et al., 2023), Nucleotide Transformer v2 (Dalla-Torre et al., 2023), and HyenaDNA (Nguyen et al., 2023) on the Nucleotide

Transformer (NT) benchmarks. The scores are sourced from a leaderboard maintained by the authors of (Dalla-Torre et al., 2023) on

the Hugging Face platform (InstaDeepAI, 2023).

Genomic Benchmark CNN DNABERT GPT
HyenaDNA

(Nguyen et al., 2023)

ENBED

(no pre-training)
ENBED

Mouse Enhancers 69.0 66.9 80.1 85.1 75.5 90.3

Human Enhancers (Cohn) 69.5 74.0 70.5 74.2 54.3 71.2

Human Enhancers (Ensembl) 68.9 85.7 83.5 89.2 83.3 92.2

Coding vs Intergenomic 87.6 92.5 88.8 91.3 84.2 93.0

Human vs Worm 93.0 96.5 95.6 96.6 90.8 97.3

Human Regulatory Elements 93.3 88.1 91.5 93.8 80.8 90.2

Human Promoter (Non-TATA) 84.6 85.6 87.7 96.6 83.4 97.2

Human OCR (Ensembl) 68.0 75.1 73.0 80.9 64.3 81.9

Table 11. Genomic Benchmarks. Accuracy (%) scores of the best and second-best model in the Genomic Benchmarks datasets (Grevsova et al., 2022).

The baseline CNN and GPT scores was calculated by the authors of (Grevsova et al., 2022) and (Nguyen et al., 2023) respectively.

NT Benchmark Enformer DNABERT-2 NT (v2) HyenaDNA
ENBED

(no pre-training)
ENBED

H3 85.9 89.3 89.5 88.9 64.4 90.6

H3K14ac 63.5 75.9 76.9 80.9 51.6 81.4

H3K36me3 67.1 79.7 81.3 80.8 61.1 82.7

H3K4me1 64.6 75.8 77.7 75.8 58.4 77.9

H3K4me2 63.0 68.0 67.6 73.9 55.9 75.7

H3K4me3 56.5 67.3 69.5 77.5 50.9 77.9

H3K79me3 74.7 80.7 81.3 83.7 83.1 85.4

H3K9ac 70.8 77.1 78.0 79.3 60.2 82.6

H4 86.6 89.9 90.5 88.2 74.3 91.8

H4ac 63.8 73.1 74.9 78.4 67.2 80.5

Promotor (all) 95.4 97.1 97.6 96.0 94.3 98.0

Promotor (non-TATA) 95.5 97.2 97.6 96.0 94.4 98.0

Promotor (TATA) 96.0 95.5 96.6 94.1 92.9 96.8

Splice acceptor 91.4 97.5 98.7 95.8 87.8 95.8

Splice donor 90.6 96.3 98.7 95.8 87.7 95.4

Enhancer 72.3 75.7 77.3 75.9 65.2 78.3

Enhancer Types 55.4 62.0 62.6 59.5 51.4 70.0

Table 12. Nucleotide Transformer (NT) Benchmarks.
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