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Abstract—Sepsis, a life-threatening condition triggered by
the body’s exaggerated response to infection, demands urgent
intervention to prevent severe complications. Existing machine
learning methods for managing sepsis struggle in offline scenar-
ios, exhibiting suboptimal performance with survival rates below
50%. This paper introduces the POSNEGDM— “Reinforcement
Learning with Positive and Negative Demonstrations for Se-
quential Decision-Making” framework utilizing an innovative
transformer-based model and a feedback reinforcer to replicate
expert actions while considering individual patient characteris-
tics. A mortality classifier with 96.7% accuracy guides treatment
decisions towards positive outcomes. The POSNEGDM frame-
work significantly improves patient survival, saving 97.39% of
patients, outperforming established machine learning algorithms
(Decision Transformer and Behavioral Cloning) with survival
rates of 33.4% and 43.5%, respectively. Additionally, ablation
studies underscore the critical role of the transformer-based
decision maker and the integration of a mortality classifier in
enhancing overall survival rates. In summary, our proposed
approach presents a promising avenue for enhancing sepsis
treatment outcomes, contributing to improved patient care and
reduced healthcare costs.

Index Terms—Machine Learning, Transformer, Sepsis Treat-
ment, Healthcare

I. INTRODUCTION

Sepsis is a life-threatening medical condition characterized
by acute organ dysfunction. According to [1], in a typical
year, at least 1.7 million adults in America develop sepsis
and at least 350,000 adults who develop sepsis die during
their hospitalization or are discharged to hospice. Further, 1
in 3 people who dies in a hospital had sepsis during that
hospitalization. Early intervention and appropriate treatment
are critical for reducing mortality rates. while the current
guidelines for sepsis treatment, such as the Surviving Sepsis
Campaign [2], have played a significant role in improving pa-
tient outcomes, they also come with their own set of challenges
[3]. The primary disadvantage of these standards lies in their
one-size-fits-all approach, which may not cater to the unique
characteristics and varying responses of individual patients [4].
Furthermore, current methods may not fully take into account
the rapidly evolving nature of sepsis, leading to delayed or
inadequate treatment modifications [5]. In addressing these
challenges, our paper focuses on a learning-based method-
ology that grounds a continuous treatment strategy in the
ongoing condition of the patient. Employing a Reinforcement
Learning (RL) approach [6], [7], we leverage its capacity to
adapt and optimize treatment plans over time. This affords a

The authors are with Purdue University, West Lafayette, IN 47906, USA

dynamic and personalized approach, closely aligned with the
evolving needs of the individual.

RL has demonstrated success in addressing medical issues,
such as diabetes [8], [9] and mechanical ventilation in In-
tensive Care Units (ICUs) [10]. RL can effectively model
physicians’ decision-making processes by leveraging historical
patient data and past medical decisions. This allows it to guide
real-time treatment decision-making, such as the optimization
of drug dosages and the timing of administration [11]. Never-
theless, the application of online RL methods is constrained in
practice due to the lack of a simulator providing the subsequent
state based on the current patient state and treatment decision.
This constraint extends to popular Imitation Learning (IL)
techniques like GAIL [12] and AIRL [13], which necessitate a
similar simulator. To overcome these challenges, we delve into
the realm of Offline RL (ORL) [14]. Unlike traditional RL,
which learns from real-time interactions, offline RL leverages
pre-collected datasets, making it particularly relevant for sepsis
treatment. In our context, the dataset comprises trajectories
representing sequences of states, actions, and outcomes ob-
served in past Sepsis cases. This shift to offline RL allows us
to learn from both positive and negative trajectories, providing
a more comprehensive understanding of effective treatment
strategies. The utilization of offline RL is a key aspect of
our proposed POSNEGDM framework, enhancing its ability
to derive impactful insights from historical patient data.

Specifically, we propose the POSNEGDM framework, a
novel approach to assist physicians in identifying effective
treatment strategies for sepsis by selectively learning from
past expert treatment decisions. POSNEGDM stands for “Re-
inforcement Learning with Positive and Negative Demonstra-
tions for Sequential Decision-Making.” It is an offline RL-
based model that leverages both positive and negative trajec-
tories to improve sepsis treatment. The proposed POSNEGDM
architecture is built upon a Transformer model [15] and
includes a feedback reinforcer for performance improvement.
With POSNEGDM, the agent can learn from sequences of
decisions leading to positive outcomes while concurrently
deviating sequences that result in negative consequences,
which is accomplished by promoting treatment decisions that
steer towards positive outcomes, such as decreased mortality
rates. The key components of the proposed architecture are
(i) a mortality classifier, (ii) a Transformer-based model that
predicts the next state and action based on the historical patient
states and treatments, and (iii) an efficient loss function that
includes both next-state and next-action prediction loss as well
as a reinforced feedback loss based on the mortality classifier.
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As shown in Figure 1, the POSNEGDM framework consists
of two main components: a mortality classifier (also works
as a feedback reinforcer), and a transformer-based decision
maker. The mortality classifier is responsible for predicting
the probability of mortality for a given patient based on their
clinical data. The transformer-based decision maker takes the
patient’s clinical data as input and generates a sequence of
treatment decisions along with the next states. The feedback
reinforcer (trained and frozen Mortality Classifier) takes the
next states, evaluates the effectiveness of the treatment de-
cisions, and provides feedback (Lsurvival loss, Eq. 2) to the
decision maker to improve future decisions. Once the Decision
Maker is ready, it generates actions that lead to the live states
and save patients.

This is the first offline RL architecture that aims to reduce
mortality by explicitly learning to avoid negative trajectories,
making it a promising approach to improve Sepsis treatment.
This paper takes a significant step forward by quantifying
mortality rates and demonstrating that approaches achieving
strong action prediction may not necessarily result in improved
mortality outcomes. The key contributions of the work can be
summarized as:

1) This paper introduces the POSNEGDM framework, the
first offline RL-based model that leverages both positive
and negative trajectories to lower mortality rates in
sepsis patients. Our innovative design incorporates a
transformer-based architecture, a neural network-driven
mortality classifier that acts as a feedback reinforcer,
and a refined loss function that explicitly guides the
transformer to circumvent negative trajectories.

2) Leveraging a meticulously selected set of features, our
proposed mortality classifier achieved a remarkable ac-
curacy of 96.7% in predicting mortality among sepsis
patients.

3) Our classification-feedback-reinforced transformer ar-
chitecture is capable of emulating expert decision-
making and is shown to save 97.39% patients, a sig-
nificant improvement compared to the 33.4% (DT) and
43.5% (BC) survival rates. These results underscore the
effectiveness of the POSNEGDM framework. In real-
world settings, our framework can serve as a valuable
tool for physicians, providing sepsis treatment decisions
as a reference based on the real-time state of patients.

The article is structured to provide a comprehensive explo-
ration of sepsis treatment and the application of POSNEGDM.
The introduction (Section 1) offers an overview of sepsis
and delineates the treatment challenges associated with it,
introducing the application of machine learning as a poten-
tial solution to enhance treatment outcomes. Section 2, the
related work, reviews existing literature on machine learning
in sepsis treatment, shedding light on the limitations of current
approaches. Section 3, the methodology, intricately describes
the POSNEGDM framework, elucidating its components, such
as the transformer-based model (DUALSIGHT), the mortality
classifier (feedback reinforcer). In Section 4, the experimen-
tal results showcase the performance of the POSNEGDM
framework and provide a comparative analysis with existing
machine learning-based algorithms. Section 5, the discussion,

delves into the implications of the results and outlines potential
avenues for future research in this domain. Finally, Section 6,
the conclusion, succinctly summarizes the key findings of the
paper and emphasizes the significance of leveraging machine
learning for improved sepsis treatment outcomes.

II. RELATED WORKS

This section provides an overview of cutting-edge Machine
Learning (ML) algorithms applied to healthcare decision-
making, particularly focusing on Offline Reinforcement Learn-
ing and Imitation Learning.

A. Offline Reinforcement Learning

The Markov Decision Process (MDP) can be represented as
a tuple (S,A, P,R) with states s ∈ S, actions a ∈ A, transition
dynamics P (s′|s, a) ∈ [0, 1], and the reward function given
by r = R(s, a). A sequence of states, actions, and rewards
would comprise a trajectory, which can be represented as
τ = (s1, a1, r1, · · · , sT , aT , rT ). A reinforcement learning
(RL) problem aims to learn a policy such that it maximizes
the expected return E[

∑T
t=1 rt]. Offline RL [14] is proposed to

train RL agents using pre-collected data rather than interacting
with the environment in real time. This is in contrast to online
RL [6], [7], where the agent learns from the interactions with a
simulator. Offline RL proves particularly beneficial when real-
time data collection via a simulator is challenging or costly.
It also presents a more practical solution, given the easier
accessibility of trajectories.

In offline RL, an agent is trained on a dataset of previ-
ous interactions, often referred to as a replay buffer. This
buffer contains tuples composed of the elements: state, action,
reward, and next state. Such offline data can typically be
gathered from people’s routine practice for a given task. Using
this information, the agent can learn a policy that correlates
states with actions, and a value function that estimates the
expected return of a certain state or state-action pair. The
derived policy should ideally produce decisions that maximize
future return from the current state.

In recent literature on sepsis identification and treatment
systems based on offline RL, several approaches have been
explored. These approaches aim to model the discrete Markov
Decision Process (MDP) [11], [16], [17], [18], and then use
online RL approaches. However, the discrete feature space
may lead to information loss, which affects the accuracy
of online RL. Recent works [19], [20] have modeled MDP
in continuous state, while the result relies on the model
approximation. In this work, we aim to make decisions without
learning the model. Further, these works do not explicitly
avoid the negative trajectories. On the contrary, POSNEGDM
selects actions from the given set to diverge from the negative
trajectories, achieved by maximizing the divergence between
the predicted and ground-truth trajectory.

B. Imitation Learning and Behavioral Cloning

Imitation Learning (IL) [21] is a method of training an
agent to perform a task by observing and mimicking decision-
making sequences from domain experts. IL can be employed
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to learn a broad spectrum of tasks, ranging from simpler
ones such as line-following to more complex tasks like game-
playing.

Behavioral Cloning (BC) represents a specific IL method
that trains an agent to mimic expert behavior by learning a
policy identical to that of the expert. This employs supervised
learning, treating states (x) as input data and actions (y) as
target values. For continuous actions, the Mean Squared Error
(MSE) loss (E((f(s)−a)2)) is used, minimizing the difference
between predicted (f(s)) and actual actions (a). In the case of
discrete actions, a cross-entropy loss is employed, measuring
the dissimilarity between predicted action probabilities and
true action distributions. BC learns to replicate the expert’s
actions, facilitating the mapping from states to actions through
supervised learning. One of the earliest works on BC was
proposed by [22] for autopilot applications. Since then, it has
been broadly adopted in areas such as autonomous vehicles
[23], robotic manipulators [24], and healthcare [25]. In this
paper, we employ BC as one of the baseline methods for
comparison. However, only decision trajectories leading to
positive outcomes are used in the training process, as the
agent cannot follow a negative trajectory wherein patients
did not survive. Compared with BC, our proposed algorithm
demonstrates superior data efficiency by explicitly incorporat-
ing negative samples from the dataset.

Negative trajectories can provide crucial insights into which
actions should be avoided to prevent repetition of mistakes.
Authors of [26] and [27] propose IL models that employ
adversarial discriminators to convert negative trajectories into
positive ones. However, these techniques necessitate access
to simulators, much like the state-of-the-art (SOTA) IL algo-
rithms GAIL [12] and AIRL [13]. In contrast, our proposed
method does not depend on a simulator which can be expen-
sive to construct and inaccessible in many application domains.
Instead, it recovers a policy from offline data only, facilitated
by specially designed objective functions. For instance, when
dealing with negative trajectories, we select actions from the
given set to diverge from the negative trajectories, achieved by
maximizing the divergence between the predicted and ground-
truth trajectory.

In our approach, we introduce a novel perspective in Sep-
sis treatment by explicitly leveraging negative trajectories, a
strategy not explored in existing research. While conventional
machine learning models, such as Decision Transformer (DT)
[28] and Behavioral Cloning (BC) [22], have demonstrated
high action prediction accuracy, they lack the explicit consid-
eration of negative outcomes. Our novel framework, named
POSNEGDM, explicitly addresses this gap by incorporating a
Mortality Classifier that also acts as a Feedback Reinforcer.
The Mortality Classifier allows us to assess the potential
negative outcome (mortality) of each action, enabling the
reinforcement of the model to avoid actions that lead to
unfavorable states. This explicit focus on negative trajectories
distinguishes our work from previous studies and contributes
to the development of a more robust and clinically relevant
Sepsis treatment model. The decision to compare our model
against DT and BC is motivated by their popularity and
effectiveness in predicting actions; however, their omission of
explicit consideration for negative trajectories positions our

POSNEGDM framework as an innovative and advantageous
alternative in improving patient outcomes in Sepsis treatment.

III. PROPOSED APPROACH

In this section, we first delineate the algorithm’s
components, which include the mortality classifier and
the transformer-based dualsight network. Subsequently, we
present the complete POSNEGDM framework, with a partic-
ular focus on the novel training objectives.

A. Mortality Classifier

We have devised a classifier capable of predicting a patient’s
mortality likelihood, discerning between probable survival
or demise. The classifier takes the current patient state as
input and produces a binary result signifying the survival
likelihood. The architecture of our mortality classifier com-
prises five fully-connected layers of size 64, with the training
hyperparameters outlined in Table I. A significant challenge
encountered during the training process was the presence of a
highly imbalanced dataset, with a significantly lower number
of deceased patients compared to survivors. To rectify this, we
employed Borderline SMOTE [29] to impute minority class
data and upsampled the training set.

TABLE I
HYPERPARAMETERS FOR TRAINING THE MORTALITY CLASSIFIER

Parameter Learning Rate Weight Decay Optimizer Dropout
Value 1e-3 1e-5 Adam 0.2

This classifier is trained to achieve high accuracy in pre-
dicting the outcome of a treatment trajectory. Empirically, it
has demonstrated an impressive accuracy of 96.7% on the
test dataset. It is subsequently utilized to evaluate the quality
of treatment decisions derived from various algorithms and
to provide feedback for the training of the transformer-based
decision maker (as represented in the loss function illustrated
in Equation (2)).

B. DUALSIGHT Decision Maker

A transformer is particularly well-suited for sequential
decision-making tasks, such as Sepsis treatment, due to its
ability to capture dependencies and relationships between
different states in a sequence effectively. The transformer-
based model in the POSNEGDM framework learns from
historical data and expert actions by processing input se-
quences through modality-specific linear embeddings and a
positional episodic timestep encoding. The tokens are then
introduced into a GPT architecture, which anticipates output
in an autoregressive fashion, employing a causal self-attention
mask. This self-attention module calculates a weighted sum
of the input states, with weights assigned based on the
similarity among the states, allowing the model to capture
dependencies and relationships between different states in the
sequence effectively. The significance of this approach is that
it enables the model to learn from both positive and negative
trajectories, which is key to improving patient survival rates
in sepsis treatment. Additionally, the feedback reinforcer in
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the POSNEGDM framework uses the forecasted next states to
ascertain the ultimate survival likelihood of patients, which is
subsequently utilized as feedback to fortify the decision maker.
This unique configuration significantly enhances the decision-
maker’s performance.

The DUALSIGHT decision maker is trained to produce
a sequence of expert-like treatment decisions based on the
patient states. Training is done using offline data provided in
the MIMIC-III dataset, detailed in Section IV. The actions
in the RL setting represent medical interventions, including
the administration of intravenous fluids and vasopressor drugs
within a 4-hour window. These actions are defined within a
5× 5 discrete space, where 0 denotes no drug administration,
and the other four non-zero drug dosages are classified into
four quartiles. This results in 25 possible discrete action
combinations for the two treatments. Regarding the reward
function, it assigns +1 for positive trajectories and −1 for
negative ones, provided only at the final time step of the
patient’s trajectory. A trajectory is considered positive if the
patient survives post-treatment, else it is deemed negative. The
agent’s ultimate goal is to maximize the cumulative reward
throughout the entire treatment period.

We utilize the network structure suggested in the Decision
Transformer (DT) [28] for our decision maker. The Trans-
former model, renowned for its efficacy in sequence processing
tasks, has been employed in leading Large Language Mod-
els like GPT [30] and BERT [31]. Leveraging a GPT-like
architecture, DT has demonstrated exceptional performance,
surpassing state-of-the-art offline RL baselines in numerous
benchmarks.

As illustrated in Figure 1, our decision maker utilizes a
sequence of past states, actions, and returns as input. The
return signifies the aggregated future rewards from a given
time step t until the episode’s termination, encapsulating
the expected outcome over the decision enacted. This in-
put sequence undergoes processing through modality-specific
linear embeddings, supplemented with a positional episodic
timestep encoding to help the model understand the order of
events. Subsequently, the tokens are introduced into a GPT
architecture, which anticipates output in an autoregressive
fashion, employing a causal self-attention mask. This self-
attention module calculates a weighted sum of the input
states, with weights assigned based on the similarity among
the states, which allows the model to capture dependencies
and relationships between different states in the sequence
effectively.

A crucial distinction between our architecture and that of the
Decision Transformer lies in our decision maker’s ability to
anticipate not only the immediate action but also the ensuing
state, thus offering dual insights. The forecasted next states are
employed by the mortality classifier to ascertain the ultimate
survival likelihood of patients, subsequently utilized as feed-
back to fortify the decision maker. This unique configuration
significantly enhances our decision maker’s performance.

C. The Overall Framework: POSNEGDM

The key idea of POSNEGDM architecture is to learn from
positive trajectories and move away from negative ones. The

POSNEGDM framework offers insightful treatment recom-
mendations, including the administration of intravenous fluids
and vasopressor drugs. These suggestions guide clinicians by
providing clear actions to consider and potential pitfalls to
avoid, thereby bolstering the reliability and safety of their
decision-making process. The POSNEGDM architecture com-
prises two components: (a) an autoregressive decision maker
that anticipates the current treatment decision (i.e., action)
and subsequent patient states based on historical data, and
(b) a mortality classifier that reinforces the decision maker
if the final state produced by the preceding networks guides
the patient towards a survival state. The Mortality Classifier
is independently trained to distinguish between alive and
deceased states. In the training of our decision-maker, the
Mortality Classifier operates in inference (Feedback Rein-
forcer) mode rather than training mode to avoid interfering
with DUALSIGHT’s learning. This enables the DUALSIGHT
to produce additional gradients derived from the alive/dead
state Feedback Reinforcer’s adversarial loss (Eq. 2). These
supplementary gradients facilitate improved decision-maker
training, enhancing its ability to predict actions that result in
alive states and consequently reducing the mortality rate.The
objectives for training the Decision Maker with the offline data
and mortality classifier are shown as follows.

First, the decision maker is trained to predict the next state
by minimizing the Mean Squared Error (MSE) between the
predicted state ŝt and the ground-truth state st:

Lstate(ŝt, st) = LMSE(ŝt, st) =
1

|S|

|S|∑
i=1

(ŝt,i − st,i)
2, (1)

where |S| is the number of elements in the state vector. As
outlined earlier, the forecast accuracy for subsequent states
provides extra constraints in training the decision maker, when
compared to the Decision Transformer. This design allows the
decision maker to extract more relevant and beneficial features
from the input, leading to a better equipped model to predict
future treatment outcomes. Additionally, the anticipated final
state will be fed into the mortality classifier to calculate patient
survival rates, which further augments the training feedback.

Next, in order to prevent negative outcomes, the final patient
state guided by the sequence of treatments should exhibit a
relatively high survival rate. Utilizing the pretrained mortality
classifier, we can incorporate another objective that acts as a
constraint on survival outcomes, making treatment decisions
safer and more reliable. Specifically, we introduce the loss
term as follows:

Lsurvival(MC, DUALSIGHT, τ)

= Eτ∼Pdata(·)[log(1−MC(DUALSIGHT(τ)))] (2)

Here, τ denotes the decision sequence sampled from an
offline dataset with the distribution Pdata(·), DUALSIGHT(τ)
represents the predicted final patient state following a series
of treatments provided by the decision maker, MC represents
the mortality classifier that gives out the survival rate. The
training of the decision maker is geared towards enhancing
the patient’s survival rate, which in turn minimizes the survival
loss Lsurvival.
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Fig. 1. The DUALSIGHT decision maker takes in states, actions, and returns as input, which are first embedded into linear representations that are specific
to each modality. The positional episodic timestep encoding is added to the input to help the model understand the order of events. The tokens are then fed
into the GPT architecture, which uses a self-attention mechanism to predict actions and next states. The causal mask ensures that the model can only attend
to previous tokens, preserving the causality of the system. The predicted states are subsequently input into the trained Mortality Classifier to assess whether
the implemented action guides the patient towards a deceased state. The mortality prediction mt is employed to influence the DUALSIGHT, compelling it
to choose actions aligned with the mortality classifier’s prediction of an alive state. This process integrates mortality considerations into the decision-making
mechanism, emphasizing the importance of actions that contribute to favorable patient outcomes.

Last, we minimize the action prediction error in the positive
trajectories and maximize it in the negative ones. By doing
so, we encourage our model to formulate decision rules that
not only mimic the expert’s actions but also learn to evade
actions tied to negative outcomes. This results in a more
robust understanding of action-avoidance related to negative
trajectories. The loss associated with action prediction is
formulated as:

Laction(â
+
t , a

+
t , â

−
t , a

−
t ) = LCE(â

+
t , a

+
t ) + ηLCE(â

−
t , a

−
t )
(3)

In this equation, a+ corresponds to the actions involved in
positive trajectories, whereas a− represents the actions derived
from negative trajectories. LCE represents the cross-entropy
loss, and η is a weight factor that assists us in maintaining
a balance between adhering to expert trajectories and circum-
venting negative outcomes.

Integrating the three objectives listed above, we can get an
overall loss function as:

Ltotal = αLaction + βLstate + γLsurvival (4)

where the parameters α, β, γ control the weight of each term in

the overall loss. Rather than merely duplicating treatment deci-
sions (i.e., actions), we propose a three-fold improvement: (1)
Empower the agent to predict subsequent states, enriching its
understanding of the input information. (2) Explicitly improve
the survival rate as assessed by the mortality classifier. (3)
Distinctly address action predictions for positive and negative
trajectories. As a result, our algorithm can make better use of
the treatment sequences, which includes a mixture of positive
and negative trajectories, to achieve a significantly higher
survival rate.

Algorithm 1 outlines the training procedure for the POS-
NEGDM framework, consisting of a Mortality Classifier (MC)
and a Decision Maker (DM). The Mortality Classifier is ini-
tially trained on the mortality ground truth using cross-entropy
loss. The trained Mortality Classifier, denoted as wTMC

, is then
frozen and serves as the Feedback Reinforcer. Subsequently,
the Decision Maker is trained using a combination of losses,
including survival loss (Lsurvival) adversarially enforced by
the Mortality Classifier. The DM’s weights, denoted as wTDM

,
are updated iteratively based on the overall loss calculated
from the mortality prediction, state prediction, and action
prediction. This process aims to enhance the Decision Maker’s
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ability to predict actions leading to patient survival by lever-
aging the adversarial feedback from the Mortality Classifier.

Algorithm 1 POSNEGDM
1: MC: Mortality Classifier, DM : Decision Maker, Rt:

Reward at timestep t ∈ {−1, 1}, at: Action at timestep
t, St: State at timestep t, TMC : Total iterations for MC,
TDM : Total iterations for MC, FR: Feedback Reinforcer
with frozen MC weights, M : Mortality GroundTruth,
m: Predicted Mortality, CEL: Cross-Entropy Loss, ∇gw:
gradient.

2: Training Mortality Classifier
3: Initialize wMC randomly
4: for t = 1 to TMC do
5: S,M ← sample batch from datatrain
6: m←MC(S,wtMC

)
7: L ← CEL(m,M)
8: Calculate ∇gwtMC

from L and update wtMC

9: end for
10: wTMC

will be trained the Mortality Classifier
11: Frozen wTMC

will act as the Feedback Reinforcer
12: Training POSNEGDM
13: Initialize wDM randomly
14: for t = 1 to TDM do
15: dbatch ← sample from datatrain
16: St, at ← dbatch
17: St+1, at+1 ← DM(St, at, wtDM

)
18: mt+1 ←MC(St+1, wTMC

)
19: Lsurvival ← CEL(mt+1, 1) (Forcing mt+1 to be 1

to adversarially train DM to take actions resulting in
alive state)

20: Calculate Lstate and Laction

21: Calculate ∇gwtDM
from Ltotal and update wtDM

22: end for
23: wTDM

will be the trained Decision Maker

IV. SEPSIS DATA DESCRIPTION

The MIMIC-III database [32] is a comprehensive collection
of de-identified clinical data of patients admitted to the Beth
Israel Deaconess Medical Center in Boston, accessible to
researchers globally under a data use agreement. It spans
over a decade and contains data for 53,423 adult hospital
admissions and 7870 neonate admissions, covering 38,597
distinct adult patients with a median age of 65.8 years and
in-hospital mortality of 11.5%. The database offers detailed
information about patients’ demographics, vital signs, labora-
tory test results, treatments, and outcomes, as well as free-text
notes recorded by healthcare providers. The median length of
an ICU stay is 2.1 days and a hospital stay is 6.9 days, with
an average of 4,579 charted observations and 380 laboratory
measurements available per hospital admission. The MIMIC-
III database is widely used for research in critical care and
offers a unique opportunity for researchers to study sepsis and
other critical illnesses using a large, diverse, and rich dataset.

Sepsis MIMIC-III data is a subset of the MIMIC-III
database, specifically focused on the patients who were di-
agnosed with sepsis during their ICU stay. It can be used to

train models for sepsis detection and treatment, as well as
for researching sepsis and its associated outcomes. The Sepsis
MIMIC-III dataset comprises 19,614 treatment trajectories
specific to sepsis patients. In order to design our experiment,
we randomly allocate 30% of this data for testing purposes,
while the remaining 70% is utilized for training. The following
table presents a brief summary of this dataset. Here, positive
trajectories correspond to patient survival instances, while
negative ones denote cases of patient fatality. The mortality
rates for both the training and testing sets approximate 9.5%.

TABLE II
OVERVIEW OF THE SEPSIS DATASET

Type Positive Negative Total
Train 12411 1319 13730
Test 5321 563 5884
Total 17732 1882 19614

The Sepsis MIMIC-III dataset typically consists of several
types of patient data, including demographic information, vital
signs, laboratory test results, treatments, and outcomes. The
input and output features that we are considering is listed as
follows.
The data preprocessing phase comprised selecting pertinent
features, discretizing them, and transforming them into a 4-
hour window. Key physiological parameters, encompassing
demographics, laboratory values, vital signs, and intake/out-
put events, were systematically gathered for each patient.
To facilitate analysis, the data were aggregated into 4-hour
windows, with the mean or sum recorded—depending on the
nature of the data—when multiple data points were available
within a given window. Notably, we have used the same data
preprocessing steps as detailed in [16].

Input features:
• Demographic information: patient age, sex, weight,

height.
• Vital signs: heart rate, blood pressure, temperature, oxy-

gen saturation.
• Laboratory test results: white blood cell count, lactate

level, blood glucose, creatinine.
• Treatments: medications administered, fluid boluses, me-

chanical ventilation.
• Length of stay: the number of days the patient spent in

the ICU.
• Organ dysfunction: whether or not the patient experienced

organ dysfunction during their ICU stay.
Output features:
• Diagnosis: whether or not the patient was diagnosed with

sepsis.
• Mortality: whether or not the patient died during their

ICU stay.

V. EXPERIMENTAL RESULTS

In Table III, we present the hyperparameters used for
POSNEGDM, with the exception of those pertaining to the
mortality classifier, which are outlined in Table I. The DU-
ALSIGHT model consists of three layers and utilizes a single
attention head with an embedding dimension of 128. During
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TABLE III
HYPERPARAMETERS FOR POSNEGDM

Hyperparameter Value
Number of layers 3

Number of attention heads 1
Embedding dimension 128

Batch size 64
Context Length 3

Nonlinearity Relu
Dropout rate 0.1
Learning rate 1e− 4
Weight decay 1e− 4

Warm-up steps 10000
α: Weight of action prediction loss 1
β: Weight of state prediction loss 0.1

γ: Weight of survival loss 1

training, we use a batch size of 64 and a context length
of 3. The model employs the ReLU activation function as
the non-linearity and includes a dropout layer with a rate
of 0.1 to prevent overfitting. To avoid overfitting further, we
set the learning rate to 1e-4 and apply a weight decay of
1e-4. The training process incorporates a warm-up phase of
10,000 steps, where the learning rate gradually increases from
0 to the specified value. The parameters α, β, γ control the
weight of each term in the overall loss (i.e., Equation (4)).
The hyperparameters, including the learning rate, number of
epochs, and layers, underwent fine-tuning through an iterative
process within a standard k-fold cross-validation setup. This
procedure involved adjusting these settings and evaluating
the model’s performance on a validation dataset to identify
configurations leading to the highest validation accuracy.

Assessing off-policy models presents a significant challenge
as it is difficult to estimate the impact of executing a learned
policy on patient mortality without a simulator. To address this
challenge, we utilize a pretrained mortality classifier known for
its high accuracy in predicting survival states. Our primary
evaluation metric is the mortality rate, which indicates the
proportion of patients experiencing negative outcomes as a
result of the model’s recommended treatments. It is important
to note that the mortality rate considers the patient’s death in
any state along the trajectory.

In terms of baselines, we compare our POSNEGDM model
to two established approaches: the state-of-the-art offline re-
inforcement learning algorithm, Decision Transformer (DT)
[28], and the widely used imitation learning algorithm, Be-
havioral Cloning (BC) [23]. It is worth noting that other
imitation learning algorithms like GAIL [12] and AIRL [13]
require a simulator, making them unsuitable as baselines
in our specific scenario. Our code is publicly available at
https://github.com/Dipeshtamboli/PosNegDM-Reinforce
d-Sequential-Decision-Making-for-Sepsis-Treatment.

A. Achieving Low Mortality with POSNEGDM

Table IV showcases the performance of our proposed algo-
rithm, POSNEGDM (α = 1, β = 0.1, γ = 1) benchmarked
against the Decision Transformer [28] and a Behavioral
Cloning model [24]. The evaluation was conducted using test
data from the Sepsis MIMIC-III dataset. The table includes
several metrics: (i) action prediction accuracy for surviving

patients in the test data (positive data), (ii) mortality rate
among patients who were alive (positive data), (iii) mortality
rate among patients who did not survive (negative data), and
(iv) overall mortality rate. In order to obtain this metrics, we
consider the last 10 time-steps of each trajectory. To assess
action prediction on positive test trajectories, we compare
the actions taken at each time-step in our approach with
those in the expert data. Regarding mortality assessment, we
input states from a test trajectory and observe whether the
next predicted state indicates that the patient remains alive
or not. The evaluation employs a trained mortality classifier
in inference mode to make this determination. It is essential
to clarify that the mortality classifier is trained independently
on the training set and does not confer an advantage to
the POSNEGDM framework. The same mortality classifier
is used consistently to assess the performances of Decision
Transformer (DT) and Behavioral Cloning (BC). This process
is repeated for all states in the trajectory. If at any point, the
patient is predicted not to be alive, it is classified as a negative
mortality case. In contrast, if the patient is predicted to be alive
throughout the trajectory, it is considered a positive mortality
case. This mortality is called Step-by-step method, we will also
consider a complete trajectory method in the next subsection.

The results demonstrate a high action prediction accuracy
of 94.6% for the proposed algorithm, which is comparable
to the baselines. However, it is important to note that the
proposed algorithm significantly outperforms the baselines in
terms of mortality rate. Simply achieving or mimicking actions
is insufficient to prevent mortality, as any incorrect action
within the trajectory can result in a patient not surviving.

The proposed algorithm, with its careful treatment to avoid
mortality, achieves a remarkably low mortality rate of 2.61%.
In contrast, the Behavioral Cloning model had a mortality
rate of 56.5%, and the Decision Transformer model had a
mortality rate of 66.6%. It’s significant to note that the figure
3.6% suggests that with the application of our model’s medical
decisions, 96.4% of patients, who otherwise would not have
survived under the physicians’ treatments, ultimately survived.
This represents a substantial improvement. By mandating the
prediction of state outputs and incorporating an adversarial
mortality classifier, the model is empowered to enhance its
mortality rate predictions. The feedback reinforcer, represented
by the mortality classifier, plays a crucial role in offering
additional guidance to the model, facilitating learning from
errors. In totality, the amalgamation of these distinctive fea-
tures and mechanisms is the driving force behind the superior
performance of the POSNEGDM framework when compared
to existing machine learning-based algorithms. These findings
indicate that our proposed method is better suited for avoiding
negative outcomes, such as mortality, which is a critical factor
in clinical decision-making.

Therefore, the POSNEGDM model holds the potential to
significantly enhance the accuracy and reliability of clinical
decision-making, ultimately improving patient outcomes in
sepsis treatment.

B. Ablation studies
In this section, we conduct ablation studies to evaluate the

impact of the three objective terms in the overall loss function
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TABLE IV
PERFORMANCE COMPARISON OF ALGORITHMS

Algorithm Action Prediction Accuracy
on Positive Test Data %

Mortality %

Positive Data Negative Data Total
POSNEGDM 94.6 2.5 3.6 2.61

Decision Transformer 94.3 68.2 51.5 66.6
Behavioral Cloning 95.1 57.5 46.7 56.5

TABLE V
IMPORTANCE OF THE ACTION PREDICTION LOSS (Laction). HERE,

β = 0.1 AND γ = 1.

Loss
importance (α)

Action Prediction Accuracy
on Positive Test Data %

Mortality %

Step by Step Complete Traj.
0.0 4.6 6.12 0.36
0.1 91.6 5.61 0.65
0.3 94 6.07 0.63
0.5 93.6 3.33 0.18
0.8 92.8 3.06 0.40
1.0 94.6 2.61 0.18

TABLE VI
IMPORTANCE OF SUBSEQUENT STATE PREDICTION LOSS (Lstate). HERE,

α = 1 AND γ = 1.

Loss
importance (β)

Action Prediction Accuracy
on Positive Test Data %

Mortality %

Step by Step Complete Traj.
0.0 94.7 N\A N\A
0.1 94.6 2.61 0.18
0.3 92.9 3.57 0.36
0.5 93.5 6.33 0.40
0.8 92.9 7.54 0.20
1.0 92.8 10.02 0.67

(Equation (4)) on system performance, as delineated in Tables
V to VII.

Here, we compare action prediction accuracy on the positive
data and mortality. Action prediction accuracy measures how
well our model is able to mimic an expert’s actions. Mortality
gives us an idea of how well the model is able to drive patient
states to alive states by taking proper actions. Given that we
only have information from the trajectories available and no
direct access to the model, we have calculated mortality in two
different ways. In the Step-by-step method, we input states
from a test trajectory and check if the next predicted state is
an alive state or not. We do it for all the states in the trajectory.
In the Complete-trajectory state, we start with the initial test
state and allow the model to generate the next ten actions
and corresponding states. If any of the states results in a dead

TABLE VII
IMPORTANCE OF THE SURVIVAL LOSS (Lsurvival). HERE, α = 1,

β = 0.1.

Loss
importance (γ)

Action Prediction Accuracy
on Positive Test Data %

Mortality %

Step by Step Complete Traj.
0.0 94.7 60.41 10.29
0.1 94.3 5.21 0.49
0.3 93.9 3.95 0.45
0.5 93.4 2.32 0.36
0.8 93.9 2.41 0.18
1.0 94.6 2.61 0.18

state, we consider that the patient has died in that trajectory.
These mortality results are for both (positive and negative) test
trajectories (i.e., total mortality).

Table V showcases how the action prediction loss impacts
the POSNEGDM system’s performance. Excluding Laction

(i.e., setting α = 0) results in a significant drop in action pre-
diction accuracy on expert data, while increasing α enhances
overall performance, as indicated by total mortality.

Table VI reveals the effect of the subsequent state predic-
tion loss on the POSNEGDM system’s performance. Without
Lstate (i.e., setting β = 0), subsequent state prediction
and consequent mortality estimation from the classifier are
unattainable. In addition, we can see that the total mortality
increases as β increases.

In Table VII, we evaluate the impact of the survival loss
on the performance of the POSNEGDM system. We observe a
significant increase in mortality when Lsurvival is omitted,
thereby underscoring its significance. Furthermore, we find
that the performance with γ = 0.8 is not only comparable
to that of γ = 1.0, but it actually results in better mortality
results than the parameter setting we employed for Table IV.

Overall, the results highlight the variability of mortality
rates across different hyperparameters. The parameters α, β,
and γ provide control over POSNEGDM’s training objectives,
allowing us to balance considerations such as prioritizing
negative trajectory avoidance or achieving high action predic-
tion accuracy. The impact of varying these parameters on the
model’s behavior and performance is demonstrated in Tables
V, VI, and VII for actions, states, and adversarial training,
respectively. Importantly, it should be noted that higher action
prediction accuracy does not necessarily correlate with lower
mortality rates. It is essential to explicitly study and consider
mortality, which had not been explored in the context of deci-
sion making prior to our work, to the best of our knowledge.

VI. CONCLUSION

Sepsis is a severe medical condition where rapid, precise
interventions can significantly decrease mortality rates. Ex-
isting guidelines, however, fall short of providing real-time,
individualized treatment decisions. Reinforcement Learning
(RL) has shown promise in the medical field by model-
ing physicians’ decision-making processes but relies on a
simulator. To circumvent these challenges, we proposed the
POSNEGDM framework, an Offline RL-based solution. This
innovative method assists physicians in devising effective
treatment strategies for sepsis patients by learning from ex-
perts’ decisions (e.g., MIMIC-III dataset). The architecture of
POSNEGDM includes a Transformer model and a feedback
reinforcer, enabling the agent to learn from successful decision
sequences while veering away from those leading to negative
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outcomes. Our model could replicate expert decision-making
with 94.6% accuracy and showed an improvement in survival
rates, saving 97.39% of patients compared to survival rates of
33.4% (DT) and 43.5% (BC). The POSNEGDM framework
hence emerges as a promising tool in assisting physicians
in making informed, timely treatment decisions for sepsis
patients, underscoring its potential in significantly improving
patient outcomes.

Our work shows promise in enhancing sepsis treatment,
with future considerations for deploying the model in clinical
practice. Ethical and legal aspects, such as patient privacy
and informed consent, require careful attention. The model
may need periodic adaptation to address real-world clinical
complexities. We also acknowledge limitations, including de-
pendence on training data quality, generalization challenges,
and interpretability issues, as directions for future work.
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APPENDIX A
ADDITIONAL EXPERIMENTS

This section includes the sensitivity experiments and addi-
tional 2D histograms that visualize the aggregated actions rec-
ommended by the physician (ground truth), POSNEGDM, and
Behavioral Cloning (BC). These histograms provide a quali-
tative analysis of the actions recommended by each method
and highlight the differences in decision-making strategies.

In Table VIII, we present the results of a sensitivity ex-
periment conducted to assess the stability of our model across
different random seeds. The experiment involves five runs with
varied random seeds, maintaining fixed hyperparameters (α =
1, β = 0.1, γ = 1). The table reports the action prediction
accuracy on positive test data and mortality rates using both
step-by-step and complete trajectory methods. The mean (µ)
and standard deviation (σ) across the five runs are provided,
demonstrating consistent performance with an average action
prediction accuracy of 94.36%, a mortality rate of 2.29%
(step-by-step), and 0.11% (complete trajectory). These results
underscore the robustness of our model, indicating minimal
variability in outcomes across different random seeds.

TABLE VIII
SENSITIVITY EXPERIMENT TO CHECK STABILITY OF RESULTS WITH 5

RUNS WITH DIFFERENT RANDOM SEEDS FOR α = 1 HERE, β = 0.1 AND
γ = 1.

Random
Seed

Action Prediction Accuracy
on Positive Test Data %

Mortality %

Step by Step Complete Traj.
1 94.6 2.61 0.18
2 93.6 1.89 0.18
3 94.1 2.61 0.0
4 94.9 2.04 0.18
5 94.6 2.29 0.0

µ± σ 94.36 ± 0.51 2.29±0.33 0.11±0.1

Figure 2 presents 2D histograms that visualize the aggre-
gated actions recommended by the physician (Ground Truth),
POSNEGDM, and Behavioral Cloning (BC). These histograms
are analogous to those used for qualitative analysis in [16].
The horizontal and vertical bins correspond to the prescribed
dosages of Vasopressor and IV fluid, respectively, based on
the given policy. An action value of 0 signifies that no drugs
are administered to the patient, while an increasing action
value corresponds to a higher dosage. These non-zero drug
dosages are represented in quartiles. Each grid cell denotes
a specific action, with the color reflecting its frequency of
occurrence. Notably, the POSNEGDM model appears to mirror
the ground truth more accurately for positive cases than the BC
model does, a distinction especially noticeable in the action
tuple (0,4) for the positive data. The results from Decision
Transformer is not included, since it deviates from the ground
truth to an even greater extent than Behavioral Cloning.
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(a) Ground Truth (Positive) (b) Ground Truth (Negative)

(c) POSNEGDM (Positive) (d) POSNEGDM (Negative)

(e) BC (Positive) (f) BC (Negative)

Fig. 2. The three rows in the visualization represent the policies as provided by physicians, POSNEGDM, and Behavioral Cloning (BC) respectively, each
applied to both positive and negative test data. The axis labels correspond to the discretized action space, where ’0’ signifies no drug administration, and ’4’
indicates the maximum dosage of a particular drug. Each grid cell represents a specific action, with its color indicating the frequency of its occurrence.
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frozen Mortality Classifier) takes the next states, evaluates the effectiveness of the treatment decisions, and provides feedback
(Lsurvival loss, Eq. 2) to the decision maker to improve future decisions. Once the Decision Maker is ready, it generates
actions that lead to the live states and save patients.

The Overall Framework: POSNEGDM ( SubsectionIII-C) has been revised to reflect Algorithm 1 and the details as follows:
Algorithm 1 outlines the training procedure for the POSNEGDM framework, consisting of a Mortality Classifier (MC) and
a Decision Maker (DM). The Mortality Classifier is initially trained on the mortality ground truth using cross-entropy loss.
The trained Mortality Classifier, denoted as wTMC

, is then frozen and serves as the Feedback Reinforcer. Subsequently, the
Decision Maker is trained using a combination of losses, including survival loss (Lsurvival) adversarially enforced by the
Mortality Classifier. The DM’s weights, denoted as wTDM

, are updated iteratively based on the overall loss calculated from
the mortality prediction, state prediction, and action prediction. This process aims to enhance the Decision Maker’s ability to
predict actions leading to patient survival by leveraging the adversarial feedback from the Mortality Classifier.

We note that Algorithm 1 table is also added in this revision.
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Fig. 3. The DUALSIGHT decision maker takes in states, actions, and returns as input, which are first embedded into linear representations that are specific
to each modality. The positional episodic timestep encoding is added to the input to help the model understand the order of events. The tokens are then fed
into the GPT architecture, which uses a self-attention mechanism to predict actions and next states. The causal mask ensures that the model can only attend
to previous tokens, preserving the causality of the system. The predicted states are subsequently input into the trained Mortality Classifier to assess whether
the implemented action guides the patient towards a deceased state. The mortality prediction mt is employed to influence the DUALSIGHT, compelling it
to choose actions aligned with the mortality classifier’s prediction of an alive state. This process integrates mortality considerations into the decision-making
mechanism, emphasizing the importance of actions that contribute to favorable patient outcomes.

APPENDIX D
REVIEWER #2

Summary of review:
Thank you for your compelling article. The relevance of the topic and the innovative approach presented make this work
a potential fit for IEEE JBHI. However, I have some concerns regarding the methodology employed, and I believe that
addressing these concerns transparently and adequately is crucial before a further decision can be made. Given that the work
utilizes a publicly available dataset, I would personally consider it an acceptance requirement for the authors to provide the
full code necessary to replicate the results presented.

Response: We express our gratitude to the reviewer for their review of our paper. We have uploaded our code here:
https://github.com/Dipeshtamboli/PosNegDM-Reinforced-Sequential-Decision-Making-for-Sepsis-Treatment. We have added
the link in the paper.
Comment 1:
The mortality classifier appears to be a central element of your work, but its operational details are not entirely clear. My
primary concerns are:

(a) On which part of the MIMIC-III dataset was the classifier trained (training set, test set, or both)?
(b) How were the respective hyperparameters selected?
(c) Additionally, the reported accuracy of 96.7% seems almost unnaturally high.

(i) Could you contextualize this figure by comparing it with similar works?
(ii) Also, how was the accuracy calculated, especially given the imbalanced nature of the dataset? This question extends

to the entire article.
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Response 1:
(a) First, the training of the Mortality Classifier and the Decision Maker is completely disjoint. Once we train the Mortality

Classifier, we freeze the parameters of it and only use it in the eval mode. We trained the Mortality Classifier using a
70-30% split between the training and test sets (Table II). Subsequently, we evaluated the classifier’s performance on
the test set, and our reported accuracy is based on this independent test set assessment. These details are also in the
Algorithm details Algorithm 1 outlines the training procedure for the POSNEGDM framework, consisting of a Mortality
Classifier (MC) and a Decision Maker (DM). The Mortality Classifier is initially trained on the mortality ground truth
using cross-entropy loss. The trained Mortality Classifier, denoted as wTMC

, is then frozen and serves as the Feedback
Reinforcer. Subsequently, the Decision Maker is trained using a combination of losses, including survival loss (Lsurvival)
adversarially enforced by the Mortality Classifier. The DM’s weights, denoted as wTDM

, are updated iteratively based
on the overall loss calculated from the mortality prediction, state prediction, and action prediction. This process aims to
enhance the Decision Maker’s ability to predict actions leading to patient survival by leveraging the adversarial feedback
from the Mortality Classifier.

(b) The hyperparameters, including the learning rate, number of epochs, and layers, underwent fine-tuning through an iterative
process within a standard k-fold cross-validation setup. This procedure involved adjusting these settings and evaluating
the model’s performance on a validation dataset to identify configurations leading to the highest validation accuracy. We
have added in Section V that The hyperparameters, including the learning rate, number of epochs, and layers, underwent
fine-tuning through an iterative process within a standard k-fold cross-validation setup. This procedure involved adjusting
these settings and evaluating the model’s performance on a validation dataset to identify configurations leading to the
highest validation accuracy.

(c) (i) As we are the first one proposing the mortality classifier and its use case, we cannot compare it with any previous
work.

(ii) Mortality Classifier predicts if the given input state is a deceased state or not (1 or 0). We are using batches
with a balanced number of samples from both classes to adjust for the unbalanced nature of the dataset. We are
calculating that accuracy similar to the binary classification task by checking if the prediction matches with the
ground truth. Given that we have a trained mortality classifier, we are calculating the survival rate by calculating
predicted trajectories that do not contain any deceased states at any point.

Comment 2:
In the evaluation (Subsection A. Achieving Low Mortality with POSNEGDM): The mortality rates reported, how exactly were
they calculated? Were they derived using the mortality classifier? If so, this raises another concern as it’s expected that an
approach incorporating this model in its loss function would perform notably better than models that do not (the baselines).
This aspect is particularly crucial since improved mortality rates appear to be the main advantage of the framework presented.
This needs to be clarified and addressed further. There’s also a concern that the mortality classifier may leak test data if used
improperly.
Response 2: Mortality rates are determined during model testing by assessing whether the predicted next state is categorized
as alive or deceased. The evaluation employs a trained mortality classifier in inference mode to make this determination. It is
essential to clarify that the mortality classifier is trained independently on the training set and does not confer an advantage to the
POSNEGDM framework. The same mortality classifier is used consistently to assess the performances of Decision Transformer
(DT) and Behavioral Cloning (BC). Integrating the mortality classifier’s feedback in the objective makes it possible for our
algorithm to explicitly avoid negative trajectories, which is our key novelty and has been shown to significantly lower the
mortality. Both the mortality classifier and decision maker use the same training dataset as our baselines. The test dataset is
disjoint with the training one, so there is no test data leakage when using the mortality classifier.

We have modified subsection V-A to have the aforementioned changes.
Comment 3:
How were the hyperparameters of the entire framework selected? The article suggests that these were evaluated on the test set,
implying that the provided performance metrics may represent an upper bound and possibly indicate a degree of overfitting.
Please clarify this aspect.
Response 3:
We have revised the evaluation results and the Ablation Studies V-B to reflect the following:
The hyperparameters, including the learning rate, number of epochs, and layers, underwent fine-tuning through an iterative
process within a standard k-fold cross-validation setup. This procedure involved adjusting these settings and evaluating the
model’s performance on a validation dataset to identify configurations leading to the highest validation accuracy.
The parameters α, β, and γ provide control over our model’s training objectives, allowing us to balance considerations such as
prioritizing negative trajectory avoidance or achieving high action prediction accuracy. The impact of varying these parameters
on the model’s behavior and performance is demonstrated in Tables V, VI, and VII for actions, states, and adversarial training,
respectively.

In Table VIII, we present the results of a sensitivity experiment conducted to assess the stability of our model across different
random seeds. The experiment involves five runs with varied random seeds, maintaining fixed hyperparameters (α = 1, β = 0.1,
γ = 1). The table reports the action prediction accuracy on positive test data and mortality rates using both step-by-step
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and complete trajectory methods. The mean (µ) and standard deviation (σ) across the five runs are provided, demonstrating
consistent performance with an average action prediction accuracy of 94.36%, a mortality rate of 2.29% (step-by-step), and
0.11% (complete trajectory). These results underscore the robustness of our model, indicating minimal variability in outcomes
across different random seeds.

We also note that higher action prediction accuracy does not necessarily correlate with lower mortality rates, and that it is
essential to explicitly study and consider mortality in decision making.

We have added Table VIII to Subsection A. Moreover, we have also modified Section V to include how we have chosed
the hyperparameters.
Comment 4:
It would be beneficial to see multiple runs, along with respective statistics, to evaluate the stability of the results presented.
Moreover, if possible, repeating the experiments with multiple train/test splits would add immense value to the robustness of
the findings.
Response 4: In Table VIII, we present the results of a sensitivity experiment conducted to assess the stability of our model
across different random seeds. The experiment involves five runs with varied random seeds, maintaining fixed hyperparameters
(α = 1, β = 0.1, γ = 1). The table reports the action prediction accuracy on positive test data and mortality rates using
both step-by-step and complete trajectory methods. The mean (µ) and standard deviation (σ) across the five runs are provided,
demonstrating consistent performance with an average action prediction accuracy of 94.36%, a mortality rate of 2.29% (step-
by-step), and 0.11% (complete trajectory). These results underscore the robustness of our model, indicating minimal variability
in outcomes across different random seeds.

We have added Table VIII in Section A.
Comment 5:Minor Points:

1) A more extensive discussion of the results and a comparison with similar research would have been appreciated.
2) Lines 46-49: Please provide a reference.
3) EQ 2: Couldn’t the loss become undefined if MC(.) evaluates to 1?

Response 5:
1) In our approach, we introduce a novel perspective in Sepsis treatment by explicitly leveraging negative trajectories, a

strategy not explored in existing research. While conventional machine learning models, such as Decision Transformer
(DT) and Behavioral Cloning (BC), have demonstrated high action prediction accuracy, they lack the explicit consideration
of negative outcomes. Our novel framework, named POSNEGDM, explicitly addresses this gap by incorporating a
Mortality Classifier that also acts as a Feedback Reinforcer. The Mortality Classifier allows us to assess the potential
negative outcome (mortality) of each action, enabling the reinforcement of the model to avoid actions that lead to
unfavorable states. This explicit focus on negative trajectories distinguishes our work from previous studies and contributes
to the development of a more robust and clinically relevant Sepsis treatment model. The decision to compare our model
against DT and BC is motivated by their popularity and effectiveness in predicting actions; however, their omission of
explicit consideration for negative trajectories positions our POSNEGDM framework as an innovative and advantageous
alternative in improving patient outcomes in Sepsis treatment.
We have revised the Related Work (Section II) to reflect the above changes.

2) Added [3].
3) This equation is the same as the discriminator part of Eq. 1 from the GAN paper [33]. Also, when MC(.) is 1, meaning

DUALSIGHT is outputting a state that is not alive, resulting in a huge loss value (PyTorch takes care of the numerical
instability) that we need to optimize. If DUALSIGHT is trained, it will produce alive states that will make the loss value
zero. The survival loss, denoted as Lsurvival(MC, DUALSIGHT, τ), is formulated as follows:

Lsurvival(MC, DUALSIGHT, τ) = Eτ∼Pdata(·)[log(1−MC(DUALSIGHT(τ)) + ϵ)],

where 1 >> ϵ > 0 is introduced to address numerical instability, a practice akin to [33]. This regularization term is not
explicitly mentioned in the paper for brevity and clarity.
[33] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” Advances in neural information processing systems, vol. 27, 2014.

APPENDIX E
REVIEWER #3

Summary of review:
The authors have used reinforcement learning-based classifier for sepsis identification and treatment systems. The reviewer
appreciates the effort of the author but the following suggestions may be included for the further improvement of the manuscript.
Response:
We extend our sincere appreciation to the reviewer for their valuable insights and comments on our manuscript. We have
addressed/included the suggestions in the main paper.
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Comment 1:
A review of recent literature regarding sepsis identification and treatment systems based on offline RL could be discussed.
Response 1: In recent literature on Sepsis identification and treatment systems based on RL, several approaches have been
explored. [11] use k-means clustering to discretize the feature representation and model the transition distribution within
this discrete space of the Markov Decision Process (MDP), employing Q-value iteration for deriving an effective treatment
policy. [16] and [18] adopt variations of Deep Q-learning, with [16] utilizing raw physiological features and [18] employing a
recurrent autoencoder to capture temporal information. [18] further introduces a Mixture of Experts approach, combining the
Deep Q-learning policy with a kernel-based policy. In work by [19], continuous state-space model-based RL is considered,
incorporating an environment model to capture transition dynamics and utilizing the Proximal Policy Optimization algorithm
([7]) for learning treatment policies. The feature representation in this study involves the concatenation of raw physiological
features over multiple timesteps, integrating temporal information.

Despite the advancements in these approaches, there are notable limitations. The discretization of feature representations
in the work by [11] may lead to information loss, and the effectiveness of Q-value iteration depends on the accuracy of the
discretization. Deep Q-learning variants face challenges in preprocessing techniques, with potential limitations in capturing
nuanced temporal patterns. The continuous state-space model-based RL, as employed by [19], may have scalability issues and
requires careful modeling of transition dynamics. These limitations highlight the need for further research to address challenges
and enhance the robustness of sepsis treatment models based on offline RL.

Our proposed POSNEGDM framework addresses these limitations by introducing a Transformer-based model, a mortality
classifier, and a feedback reinforcer, outperforming existing ML-based algorithms. Notably, our model explicitly considers
negative trajectories, a novel approach not explored in previous works, enhancing its ability to make informed, patient-specific
treatment decisions.

We added in the related work: In recent literature on Sepsis identification and treatment systems based on RL, several
approaches have been explored. [11] discretized the feature representation and model the transition distribution within this
discrete space of the Markov Decision Process (MDP), employing Q-value iteration for deriving an effective treatment policy.
[16], [17], [18] adopt variations of Deep Q-learning. In work by [19], continuous state-space model-based RL is considered,
incorporating an environment model to capture transition dynamics and utilizing the Proximal Policy Optimization algorithm
for learning treatment policies. While these works focus on online approaches, we focus on offline RL.

For relating other approaches for Sepsis, we added:
In recent literature on Sepsis identification and treatment systems based on offline RL, several approaches have been explored.

These approaches aim to model the discrete Markov Decision Process (MDP) [11], [16], [17], [18], and then use online RL
approaches. However, the discrete feature space may lead to information loss, which affects the accuracy of online RL. Recent
works [19], [20] have modeled MDP in continuous state, while the result relies on the model approximation. In this work, we
aim to make decisions without learning the model. Further, these works do not explicitly avoid the negative trajectories. On
the contrary, POSNEGDM selects actions from the given set to diverge from the negative trajectories, achieved by maximizing
the divergence between the predicted and ground-truth trajectory.
Comment 2:
Results related to the mortality classifier in Section III-A might confuse the reader about which test data is being used.
Response 2: The training of the Mortality Classifier and the Decision Maker is entirely disjoint in our approach. Once we train
the Mortality Classifier, we freeze its parameters and only use it in the evaluation mode. We trained the Mortality Classifier
using a 70-30% split between the training and test sets (Table II). Subsequently, we evaluated the classifier’s performance on
the test set, and our reported accuracy is based on this independent test set assessment. It is essential to note that the Mortality
Classifier is trained independently of POSNEGDM, and its training does not directly affect the training of POSNEGDM.
However, we ensured that the Mortality Classifier is trained on the same training data used for POSNEGDM, specifically the
training set of the dataset (Table II). Additionally, the final mortality is calculated based on the predicted state, as predicted
by DUALSIGHT, and is different from the test set used to validate the Mortality Classifier’s performance.

To further explain, we added Algorithm 1 Table and description: Algorithm 1 outlines the training procedure for the
POSNEGDM framework, consisting of a Mortality Classifier (MC) and a Decision Maker (DM). The Mortality Classifier
is initially trained on the mortality ground truth using cross-entropy loss. The trained Mortality Classifier, denoted as wTMC

,
is then frozen and serves as the Feedback Reinforcer.
Comment 3: Results regarding cross-validation techniques could be added to prove the robustness of the proposed method
against data-biasing.
Response 3: Table VIII displays the outcomes of a sensitivity experiment designed to evaluate the robustness of our model
under various random seeds. The experiment comprises five runs with distinct random seeds while maintaining constant
hyperparameters (α = 1, β = 0.1, γ = 1). The table provides details on action prediction accuracy for positive test data and
mortality rates, employing both step-by-step and complete trajectory methods. The mean (µ) and standard deviation (σ) across
the five runs showcase consistent performance, with an average action prediction accuracy of 94.36%, mortality rates of 2.29%
(step-by-step) and 0.11% (complete trajectory). These findings underscore the stability and reliability of our model, revealing
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minimal variability in outcomes across different random seeds.
We have added Table VIII in Appendix A.
Comment 4: A comparison of the proposed method with recent offline RL methods for sepsis treatment, especially with the
other approaches on the MIMIC-III dataset, could be added.
Response 4: As pioneers in leveraging negative trajectories for both predicting actions at specific states and reinforcing our
model to guide actions towards patient survival, direct comparison with previous methodologies is not feasible. Our unique
approach of utilizing negative trajectories aims to avoid deceased states, setting our method apart. Nevertheless, we have
conducted comparative evaluations with two state-of-the-art methods focused on action prediction accuracy. While these
benchmarks excel in predicting actions, their models lack the capability to systematically train toward transitioning patient
states to a state of vitality.

Comment 5: References should be proofread.
Response 5: We have taken a pass on the references.

APPENDIX F
REVIEWER #4

We express our gratitude to the reviewer for their thoughtful feedback and constructive comments. We have carefully
addressed each comment section by section.

A. Abstract

Comment 1:
The abstract contains some jargon (comprehensive ablation studies) and abbreviations such as ‘ML’ (Machine Learning), ‘DT’
(Decision Transformer), ‘BC’ (Behavioral Cloning), etc. that may not be immediately understandable to a broad audience. It
is advisable to avoid abbreviations in the abstract and clarify terms for better accessibility.
Response 1: Revised Abstract —
Sepsis, a life-threatening condition triggered by the body’s exaggerated response to infection, demands urgent intervention
to prevent severe complications. Existing machine learning (ML) methods for managing sepsis struggle in offline scenarios,
exhibiting suboptimal performance with survival rates below 50%. This paper introduces the POSNEGDM framework, utilizing
an innovative transformer-based model and a feedback reinforcer to replicate expert actions while considering individual
patient characteristics. A mortality classifier with 96.7% accuracy guides treatment decisions towards positive outcomes. The
POSNEGDM framework significantly improves patient survival, saving 97.39% of patients, outperforming established ML
algorithms (Decision Transformer and Behavioral Cloning) with survival rates of 33.4% and 43.5%, respectively. Additionally,
ablation studies underscore the critical role of the transformer-based decision maker and the integration of a mortality classifier
in enhancing overall survival rates. In summary, our proposed approach presents a promising avenue for enhancing sepsis
treatment outcomes, contributing to improved patient care and reduced healthcare costs.
Comment 2:
While the abstract mentions that “this paper introduces the POSNEGDM framework,” it would be beneficial to briefly describe
what POSNEGDM stands for and its components in a few words to give readers a clearer picture right from the abstract.
Response 2: POSNEGDM stands for “Reinforcement Learning with Positive and Negative Demonstrations for Sequential
Decision-Making.” It is an offline RL-based model that leverages both positive and negative trajectories to improve sepsis
treatment. The key components of the proposed architecture are a mortality classifier, a Transformer-based model that predicts
the next state and action based on the historical patient states and treatments, and an efficient loss function that includes both
next-state and next-action prediction loss as well as a reinforced feedback loss based on the mortality classifier. We have added
this explanation in the Introduction (Section I) and Abstract.

B. Introduction

Comment 1:
The introduction does a good job of highlighting the critical issue of sepsis and the need for improved treatment strategies.
However, the problem statement could be more explicitly defined, especially the challenges of one-size-fits-all approaches,
delayed or inadequate treatment modifications, and limited prediction capabilities. To support these problem statements, consider
adding references to relevant studies, reports, or statistics that highlight the issues you mention.
Response 1: Thanks a lot for the comment. We have added the references to these lines.

In addressing these challenges, our paper focuses on a learning-based methodology that grounds a continuous treatment
strategy in the ongoing condition of the patient. Employing a Reinforcement Learning (RL) approach [6], [7], we leverage its
capacity to adapt and optimize treatment plans over time. This affords a dynamic and personalized approach, closely aligned
with the evolving needs of the individual.
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To overcome these challenges, we delve into the realm of Offline RL (ORL) [14]. Unlike traditional RL, which learns from
real-time interactions, offline RL leverages pre-collected datasets, making it particularly relevant for sepsis treatment.

Some added part in the Related Works: In recent literature on sepsis identification and treatment systems based on offline
RL, several approaches have been explored. These approaches aim to model the discrete Markov Decision Process (MDP)
[11], [16], [17], [18], and then use online RL approaches. However, the discrete feature space may lead to information loss,
which affects the accuracy of online RL. Recent works [19], [20] have modeled MDP in continuous state, while the result
relies on the model approximation. In this work, we aim to make decisions without learning the model. Further, these works
do not explicitly avoid the negative trajectories. On the contrary, POSNEGDM selects actions from the given set to diverge
from the negative trajectories, achieved by maximizing the divergence between the predicted and ground-truth trajectory.
Comment 2:
It is mentioned in the introduction that “the introduction of machine learning into sepsis treatment can provide an additional
layer of predictive, personalized, and data-driven decision-making support, potentially improving patient outcomes,” it would
be helpful to briefly elaborate with supporting reference on how machine learning can address the identified challenges in
sepsis treatment.
Response 2: We have removed the sentences to make them specific for reinforcement learning. In addressing these challenges,
our paper focuses on a learning-based methodology that grounds a continuous treatment strategy in the ongoing condition
of the patient. Employing a Reinforcement Learning (RL) approach [6], [7], we leverage its capacity to adapt and optimize
treatment plans over time. This affords a dynamic and personalized approach, closely aligned with the evolving needs of the
individual.
Comment 3:
The transition from discussing machine learning to introducing Offline Reinforcement Learning (RL) could be smoother. A
brief explanation of what offline RL is and why it is particularly relevant to sepsis treatment would aid reader comprehension.
Response 3:

Thanks a lot for the comment. We have first made the transition from machine learning to reinforcement learning, as
mentioned in the last comment.

We add the transition to offline reinforcement learning as follows:
To overcome these challenges, we delve into the realm of Offline RL. Unlike traditional RL, which learns from real-time

interactions, offline RL leverages pre-collected datasets, making it particularly relevant for sepsis treatment. In our context, the
dataset comprises trajectories representing sequences of states, actions, and outcomes observed in past sepsis cases. This shift
to offline RL allows us to learn from both positive and negative trajectories, providing a more comprehensive understanding of
effective treatment strategies. The utilization of offline RL is a key aspect of our proposed POSNEGDM framework, enhancing
its ability to derive impactful insights from historical patient data.

We have modified the Introduction Section to reflect this.
Comment 4:
Please mention the organization of the article and what each section will cover. This can provide readers with a roadmap of
what to expect.
Response 4:

The article is organized as follows:
The introduction (Section 1) offers an insightful overview of sepsis and delineates the treatment challenges associated with

it, introducing the application of machine learning as a potential solution to enhance treatment outcomes. Section 2, the
related work, reviews existing literature on machine learning in sepsis treatment, shedding light on the limitations of current
approaches. Section 3, the methodology, intricately describes the POSNEGDM framework, elucidating its components, such
as the transformer-based model (DUALSIGHT), the mortality classifier (feedback reinforcer). In Section 4, the experimental
results showcase the performance of the POSNEGDM framework and provide a comparative analysis with existing machine
learning-based algorithms. Section 5, the discussion, delves into the implications of the results and outlines potential avenues
for future research in this domain. Finally, Section 6, the conclusion, succinctly summarizes the key findings of the paper and
emphasizes the significance of leveraging machine learning for improved sepsis treatment outcomes.

We have added the above response in the Introduction section.

C. Related Works

Comment 1:
When discussing prior applications of offline RL to sepsis treatment, it would be insightful to provide a brief comparative
analysis of these approaches. For instance, highlighting the shortcomings of prior methods and how the proposed approach
addresses those gaps can be helpful.
Response 1: Thanks for the comment. We have revised the paragraph as In recent literature on Sepsis identification and
treatment systems based on offline RL, several approaches have been explored. These approaches aim to model the discrete
Markov Decision Process (MDP) [11], [16], [17], [18], and then use online RL approaches. However, the discrete feature
space may lead to information loss, which affects the accuracy of online RL. Recent works [19], [20] have modeled MDP in
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continuous state, while the result relies on the model approximation. In this work, we aim to make decisions without learning
the model. Further, these works do not explicitly avoid the negative trajectories. On the contrary, POSNEGDM selects actions
from the given set to diverge from the negative trajectories, achieved by maximizing the divergence between the predicted and
ground-truth trajectory.
Comment 2:
The section described Imitation Learning (IL) methods, including Behavioral Cloning (BC), effectively. However, it would be
useful to briefly explain how BC works, especially for readers who might not be familiar with the concept.
Response 2: Behavioral Cloning (BC) employs supervised learning, treating states (x) as input data and actions (y) as target
values. For continuous actions, the Mean Squared Error (MSE) loss (E((f(s) − a)2)) is used, minimizing the difference
between predicted (f(s)) and actual actions (a). In the case of discrete actions, a cross-entropy loss is employed, measuring
the dissimilarity between predicted action probabilities and true action distributions. BC learns to replicate the expert’s actions,
facilitating the mapping from states to actions through supervised learning.
We have added the above in the Related Work section.
Comment 3:
It would be beneficial to provide a bridge between the related works and the proposed POSNEGDM framework. Specifically,
it would be helpful to explain how the proposed approach differs from or improves upon prior methods, especially regarding
the utilization of negative trajectories.
Response 3: The last line now indicates that: Further, these works do not explicitly avoid the negative trajectories. On the
contrary, POSNEGDM selects actions from the given set to diverge from the negative trajectories, achieved by maximizing the
divergence between the predicted and ground-truth trajectory.

D. Proposed Approach

Comment 1:
The section clarifies the model’s architecture well. However, briefly mentioning the choice of the Transformer architecture and
elaborating on how it learns from historical data and expert actions, and its significance, would enhance clarity.
Response 1: We have revised the DUALSIGHT Decision Maker subsection (III-B) as follows:
A transformer is particularly well-suited for sequential decision-making tasks, such as Sepsis treatment, due to its ability to
capture dependencies and relationships between different states in a sequence effectively. The transformer-based model in the
POSNEGDM framework learns from historical data and expert actions by processing input sequences through modality-specific
linear embeddings and a positional episodic timestep encoding. The tokens are then introduced into a GPT architecture, which
anticipates output in an autoregressive fashion, employing a causal self-attention mask. This self-attention module calculates
a weighted sum of the input states, with weights assigned based on the similarity among the states, allowing the model to
capture dependencies and relationships between different states in the sequence effectively. The significance of this approach
is that it enables the model to learn from both positive and negative trajectories, which is key to improving patient survival
rates in sepsis treatment. Additionally, the feedback reinforcer in the POSNEGDM framework uses the forecasted next states to
ascertain the ultimate survival likelihood of patients, which is subsequently utilized as feedback to fortify the decision maker.
This unique configuration significantly enhances the decision-maker’s performance.
Comment 2:
The section mentions the decision maker’s unique ability to anticipate both immediate actions and ensuing states. Please explain
more clearly why this dual insight is essential for improving sepsis treatment and how it contributes to the framework’s overall
effectiveness.
Response 2: The decision maker’s unique ability to anticipate both immediate actions and ensuing states is essential for
improving sepsis treatment because it provides dual insights into the patient’s condition. By anticipating the immediate action,
the decision maker can take steps to address the patient’s current state. However, by also anticipating the ensuing state, the
decision maker can take steps to prevent the patient’s condition from deteriorating further. This is particularly important in
sepsis treatment, where the condition can progress rapidly and lead to organ failure and death if not treated promptly.

For instance, focusing solely on action learning, we observe that Decision Transformer (DT) and Behavioral Cloning (BC)
exhibit action prediction accuracies comparable to our algorithm. However, their incapacity to discern actions conducive to
avoiding unfavorable patient outcomes distinguishes our approach.
Comment 3:
The overall explanation of the POSNEGDM framework is clear, but it should emphasize how the mortality classifier and the
decision maker work together to enhance patient survival rates, ensuring the reader understands their synergy.
Response 3: We have revised the Overall Framework: POSNEGDM (Subsection III-C) as follows:
The Mortality Classifier is independently trained to distinguish between alive and deceased states. In the training of our decision-
maker, the Mortality Classifier operates in inference (Feedback Reinforcer) mode rather than training mode to avoid interfering
with DUALSIGHT’s learning. This enables the DUALSIGHT to produce additional gradients derived from the alive/dead state
Feedback Reinforcer’s adversarial loss (Eq. 2). These supplementary gradients facilitate improved decision-maker training,
enhancing its ability to predict actions that result in alive states and consequently reducing the mortality rate.
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E. Sepsis data description

Comment 1:
It is mentioned that the data is preprocessed following steps detailed in another reference ([6]). It might be beneficial to
briefly summarize what these preprocessing steps entail or why they are necessary to understand the data preparation better.

Response 1: We have revised the Sepsis Data Description (Section IV) to reflect following:
The data preprocessing phase comprised selecting pertinent features, discretizing them, and transforming them into a 4-hour
window. Key physiological parameters, encompassing demographics, laboratory values, vital signs, and intake/output events,
were systematically gathered for each patient. To facilitate analysis, the data were aggregated into 4-hour windows, with the
mean or sum recorded—depending on the nature of the data—when multiple data points were available within a given window.

F. Experimental Results

Comment 1:
It is mentioned that hyperparameters were deliberately chosen, but is not elaborated on the reasoning behind these choices.
Explaining why specific hyperparameter values were selected can provide more insight into the model’s design and its impact
on performance.
Response 1: We have revised the Ablation Studies V-B to reflect the following:
The hyperparameters, including the learning rate, number of epochs, and layers, underwent fine-tuning through an iterative
process within a standard k-fold cross-validation setup. This procedure involved adjusting these settings and evaluating the
model’s performance on a validation dataset to identify configurations leading to the highest validation accuracy.
The parameters α, β, and γ provide control over our model’s training objectives, allowing us to balance considerations such as
prioritizing negative trajectory avoidance or achieving high action prediction accuracy. The impact of varying these parameters
on the model’s behavior and performance is demonstrated in Tables V, VI, and VII for actions, states, and adversarial training,
respectively.

In Table VIII, we present the results of a sensitivity experiment conducted to assess the stability of our model across different
random seeds. The experiment involves five runs with varied random seeds, maintaining fixed hyperparameters (α = 1, β = 0.1,
γ = 1). The table reports the action prediction accuracy on positive test data and mortality rates using both step-by-step
and complete trajectory methods. The mean (µ) and standard deviation (σ) across the five runs are provided, demonstrating
consistent performance with an average action prediction accuracy of 94.36%, a mortality rate of 2.29% (step-by-step), and
0.11% (complete trajectory). These results underscore the robustness of our model, indicating minimal variability in outcomes
across different random seeds.

We also note that higher action prediction accuracy does not necessarily correlate with lower mortality rates, and that it is
essential to explicitly study and consider mortality in decision making.

We have added Table VIII to Subsection A. Moreover, we have also modified Section V to include how we have chosed
the hyperparameters.
Comment 2:
While the results indicated the superiority of POSNEGDM in terms of mortality rates, it would be beneficial to include a
discussion on why it outperforms the baselines, perhaps by highlighting the unique features or mechanisms that contribute to
its success.
Response 2: We have revised Achieving Low Mortality with POSNEGDM (Subsection V-A) to add the following:
By mandating the prediction of state outputs and incorporating an adversarial mortality classifier, the model is empowered to
enhance its mortality rate predictions. The feedback reinforcer, represented by the mortality classifier, plays a crucial role in
offering additional guidance to the model, facilitating learning from errors. In totality, the amalgamation of these distinctive
features and mechanisms is the driving force behind the superior performance of the POSNEGDM framework when compared
to existing machine learning-based algorithms.
Comment 3:
Authors mentioned additional experiments but did not provide any specific details. Expanding on what these experiments entail
and their results would enhance the comprehensiveness of the findings.
Response 3: The “Additional Experiments” section of the paper presents additional analyses and visualizations to evaluate the
POSNEGDM framework’s performance further. Specifically, the section includes the sensitivity experiments and additional 2D
histograms that visualize the aggregated actions recommended by the physician (ground truth), POSNEGDM, and Behavioral
Cloning (BC). These histograms provide a qualitative analysis of the actions recommended by each method and highlight
the differences in decision-making strategies. The x-axis represents the different discrete actions selected at a given timestep,
where 0 represents no drug given, and increasing actions refer to higher drug dosages, where quartiles represent drug dosages.
The y-axis represents the frequency of each action taken by the physician or the model. The chart shows the aggregation of
actions taken over all timesteps for those cohorts.

We have added the above response in the Additional Experiments (Subsection A).
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G. Overall
1) The paper does not compare the framework’s performance with other state-of-the-art sepsis treatment approaches, making

it difficult to evaluate its effectiveness.
Response: We propose a novel method where we are considering negative trajectories to utilize as well as predicting
the next action in discrete space along with the mortality. Previous works do not calculate the mortality or the action
prediction in the same fashion.

2) The study focuses on offline settings with limited data, which may not fully capture the complexity and variability of
real-time sepsis treatment scenarios.
Response: While we acknowledge the potential limitation of offline settings with limited data, it’s important to note
that the use of the MIMIC-III dataset in sepsis studies is a common practice in the existing literature. The MIMIC-III
database is a comprehensive collection of de-identified clinical data from the Beth Israel Deaconess Medical Center,
spanning over a decade and including information on a substantial number of adult hospital admissions. The dataset is
widely accessible to researchers globally under a data use agreement, providing valuable insights into real-world clinical
scenarios.

3) The paper does not address the potential challenges or limitations of implementing the POSNEGDM framework in real-
world clinical settings, such as integration with existing healthcare systems or the need for additional resources.
Response: Our work has shown potential in this, and thus, we are considering adding it to our future work; however,
we need to consider the following points as well.

- Ethical and legal considerations that need to be taken into account when deploying the model in clinical practice,
such as issues related to patient privacy and informed consent.

- The model may not be able to capture all of the complexities and nuances of real-world clinical practice, and it may
need to be adapted or updated over time as new data and insights become available

We added:Our work shows promise in enhancing sepsis treatment, with future considerations for deploying the model
in clinical practice. Ethical and legal aspects, such as patient privacy and informed consent, require careful attention.
The model may need periodic adaptation to address real-world clinical complexities. We also acknowledge limitations,
including dependence on training data quality, generalization challenges, and interpretability issues, as directions for
future work.

4) The study does not provide a detailed analysis of the interpretability of the framework’s decision-making process, which
may be important for gaining trust and acceptance from healthcare professionals. Moreover, Lack of interpretability can
be a significant limitation when it comes to deploying AI systems in clinical settings.
Response: The paper notes that the framework provides insightful treatment recommendations, including the administra-
tion of intravenous fluids and vasopressor drugs, which is a significant improvement over existing ML-based algorithms.
Additionally, the framework utilizes a feedback reinforcer to improve patient survival rates, which suggests that the
framework’s decisions are based on a combination of patient data and the learning model. However, we have added this
limitation in the conclusions section. Our work shows promise in enhancing sepsis treatment, with future considerations
for deploying the model in clinical practice. Ethical and legal aspects, such as patient privacy and informed consent,
require careful attention. The model may need periodic adaptation to address real-world clinical complexities. We also
acknowledge limitations, including dependence on training data quality, generalization challenges, and interpretability
issues, as directions for future work.

5) The limitations of the mortality classifier and transformer-based model used in the framework are not explicitly discussed,
leaving room for further investigation and improvement.
Response: The mortality classifier and transformer-based model in the framework exhibit limitations, such as their
dependence on the quality of training data, potential challenges in generalizing to unseen patient populations,
interpretability issues, adaptability to evolving clinical practices, and ethical and legal considerations. These constraints
highlight areas for further investigation and improvement in future research, aiming to enhance the models’ robustness
and applicability in real-world clinical settings. We added: Our work shows promise in enhancing sepsis treatment, with
future considerations for deploying the model in clinical practice. Ethical and legal aspects, such as patient privacy
and informed consent, require careful attention. The model may need periodic adaptation to address real-world clinical
complexities. We also acknowledge limitations, including dependence on training data quality, generalization challenges,
and interpretability issues, as directions for future work.

H. Suggestions
1) To evaluate the effectiveness and feasibility of the POSNEGDM framework in improving sepsis treatment outcomes, it is

necessary to explore and evaluate it in real-world clinical settings and to ensure the model’s safety and effectiveness in
practice. And to facilitate seamless implementation and adoption in clinical practice, the POSNEGDM framework should
be integrated and tested with existing healthcare systems.
Response: Our model is designed with deployment capabilities, and we acknowledge the necessity of future studies to
validate its performance and safety in real-world scenarios. We are optimistic about the potential for practical application
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and look forward to future research initiatives that can explore the clinical utility of the POSNEGDM framework.
Specifically, we have added in the revised future work: Our work shows promise in enhancing sepsis treatment, with
future considerations for deploying the model in clinical practice.

2) To gain trust and acceptance from healthcare professionals, it is important to investigate the interpretability of the
framework’s decision-making process.
Response: Recognizing the crucial aspect of gaining trust and acceptance from healthcare professionals through
interpretability, we acknowledge that our current work lacks a dedicated module to explain the decision-making process
explicitly. However, we plan to address this in our future work by incorporating an interpretable component that can
elucidate the actions taken by the framework. We appreciate the significance of this aspect and are committed to enhancing
the transparency and interpretability of the POSNEGDM framework to align with the needs of healthcare professionals.
Specifically, we have added in the future work: We also acknowledge limitations, including dependence on training data
quality, generalization challenges, and interpretability issues, as directions for future work.

3) To determine the performance and superiority of the POSNEGDM framework, it should be compared with other state-
of-the-art sepsis treatment approaches.
Response: While we understand the importance of benchmarking the POSNEGDM framework against other sepsis
treatment approaches, the unique methodology we employ, particularly in calculating mortality, makes direct comparisons
challenging. The incorporation of negative trajectories sets our approach apart, and a direct comparison is not possible.
We have chosen Decision Transformer (DT) and Behavioral Cloning (BC) for comparison, as they excel in imitating
actions and predicting the next state with high accuracy (95.1% for BC and 94.3% for DT). However, it is noteworthy
that despite their impressive accuracy, these models fall short of effectively reducing mortality rates.
We have added the following in the revision:
In terms of baselines, we compare our POSNEGDM model to two established approaches: the state-of-the-art offline
reinforcement learning algorithm, Decision Transformer (DT) [28], and the widely used imitation learning algorithm,
Behavioral Cloning (BC) [23]. It is worth noting that other imitation learning algorithms like GAIL [12] and AIRL [13]
require a simulator, making them unsuitable as baselines in our specific scenario.

4) To assess the scalability and generalizability of the framework across different patient populations and healthcare settings,
studies should be conducted.
Response: Conducting studies to assess scalability and generalizability across different datasets and patients thoroughly
is on our agenda as we continue to advance the framework’s applicability. However, we are limited by the available data
for the study. We have added in the future work: We also acknowledge limitations, including dependence on training
data quality, generalization challenges, and interpretability issues, as directions for future work.


