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ABSTRACT

Active learning and design-build-test-learn strategies are increasingly employed to accelerate materials
discovery and characterization. Many data-driven materials design campaigns require that materials
are synthesizable, stable, soluble, recyclable, or non-toxic. Lack of knowledge about these constraints
can reduce efficiency by producing unsatisfactory samples. Acquiring this knowledge during the
design campaign is inefficient, and many materials constraints transcend specific design objectives.
However, there is no consensus on the most data-efficient algorithm for classifying whether a
material satisfies a constraint. To address this gap, we comprehensively compare the performance of
100 strategies for classifying chemical and materials behavior. Performance is assessed across 31
classification tasks sourced from the literature in chemical and materials science. From these results,
we recommend best practices for building data-efficient classifiers, showing the neural network- and
random forest-based active-learning algorithms are most efficient across tasks. We also show that
classification task complexity can be quantified by task metafeatures, most notably the noise-to-signal
ratio. Overall, this work provides a comprehensive survey of data-efficient classification strategies,
identifies attributes of top-performing strategies, and suggests avenues for further study.

1 Introduction

Computational workflows are increasingly used to design materials more efficiently than the trial-and-error nature
of traditional laboratory discovery [1, 2, 3]. These workflows often utilize high-throughput screening or design-of-
experiments strategies applied to automated laboratory equipment and computational models. Examples include the
design of m-conjugated peptides for organic electronics [4], metal-organic frameworks for gas separation [5], small
molecules for organic light-emitting diodes [6], phase-separating intrinsically disordered proteins [7], and many others
[8,9, 10, 11, 12, 13, 14, 15]. Using active learning and Bayesian optimization (AL/BO), these campaigns have produced
materials with desired figures of merit despite characterizing a small fraction of the possible design space. Such
workflows promise to drastically accelerate materials discovery in increasingly complex spaces.

Materials optimization often targets a constrained domain. Consequently, resources can be wasted on candidates
unsuitable for further characterization. Common constraints on materials domains include synthesizability, unwanted
phase behavior, instability, and toxicity. For example, when surveying a polymer library for enzyme-stabilizing
candidates, Tamasi et al. encountered phase-separating or aggregating polymers unsuitable for physical assays with
the target enzyme [9]. Likewise, Korbel ef al. surveyed 1,276 hybrid organic-inorganic halide perovskites of the form
AT B2?T X7, from which only 203 compounds were considered stable for further density functional theory calculations
[16]. An et al. sought to find peptide sequences that would form condensed phases and disparate dynamical properties
[7], yet no phase-separating systems were identified in an initial survey of 1,266 peptides listed in the DisProt database
[17]. Ideally, such behavior would be known or predicted from the outset and incorporated into the data-selection
process for any given design campaign. Additionally, knowledge of materials classification can be applied across varied
design objectives. Therefore, a viable strategy is to allocate a portion of the resource budget to accurately classify
viability within a materials domain, avoiding wasted resources on unsuitable candidates. To maximize resource use,
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Figure 1: Overview of data-selection strategies and datasets. (A) Schematic of a space-filling algorithm applied to the
princeton task. In space-filling, a one-shot selection of points chosen by the sampler is used to train the model. (B)
Schematic of an active-learning algorithm applied to the princeton task. In active learning, the sampler chooses a set
of points to initiate active learning. The model is then trained and used to compute uncertainties on the entire domain,
which guide selection of the next batch of points. This process is continued for ten iterations. (C) A visual depiction
of all other tasks considered in this study. Tasks with more than two features are visualized in two dimensions using
principal component analysis. In all panels, red and blue distinguish the two class labels.

it is desirable to use a data-selection strategy and classification algorithm that achieves the highest accuracy with the
fewest measurements.

Numerous and varied classification schemes can be found across the literature. Terayama et al. used uncertainty-based
active learning to build phase diagrams of H>O, glass-ceramic glazes, block copolymers, and more [18, 19, 20] using
label propagation, a semi-supervised machine learning model [21]. Citing the computational expense of the label
propagation algorithm, Telleria-Allika ef al. used a random forest-based active learning scheme to build magnetic and
covalency phase diagrams for few electron Hooke atoms and helium dimers [22]. Dai and Glotzer used active learning
based on a Gaussian process least-squares classifier and a novel acquisition function to learn the phase diagram of
active Brownian particles (ABPs) and quasi-crystals [23]. Hickman et al. used Gaussian processes to simultaneously
classify viability and optimize performance for several materials design tasks, including small molecule drugs and
perovskites [24]. Focusing on the low-data regime, Bhat and Kitchin used heuristics, rather than active learning, to
identify classification boundaries in several engineering problems, asserting that active learning would be ineffective in
their low-data limit [25]. Other works have continued the trend of applying novel active learning schemes to custom
design tasks [26, 27, 28, 29, 30]. The diversity of considered tasks and proposed algorithms indicates no consensus on
what constitutes an optimal approach or how to select reasonable strategies.

Here, we investigate the performance of various algorithms across a set of 31 classification tasks in chemical and
materials science. From these results, we identify the algorithms that perform optimally and the attributes that lead
to maximum data efficiency. We also explore approaches to building classification algorithms that are robust to
task variation. To explain algorithm performance across tasks, we demonstrate that metafeatures (i.e., properties of
classification tasks) predict an algorithm’s performance, with a few metafeatures strongly correlating with classification
accuracy regardless of algorithm choice. Through this study, we identify best practices for selecting data-efficient
classification algorithms and explain why these practices improve performance.
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2 Overview of strategies

We consider space-filling and active-learning algorithms, both of which rely on a sampler and a model. Space-filling
algorithms (Figure 1A) use the sampler to select a batch of points. The model is then trained on this batch and used to
make predictions on the rest of the task domain. The accuracy of the algorithm is measured by comparing the predicted
labels of the model to the ground truth labels. In this way, space-filling algorithms rely on a one-shot data selection
scheme. active-learning algorithms (Figure 1B) use the sampler to select an initial batch of points. The model is trained
on these points and used to compute the predicted labels and uncertainties of all points in the task domain. A new batch
of points is chosen based on those points which are most uncertain. Model training, uncertainty calculations, and batch
selection are repeated until the total allowable number of points is reached. The accuracy of the algorithm is measured
by comparing the predicted labels of the final model to the ground truth labels. In this way, active-learning algorithms
rely on an iterative, rather than one-shot, data selection scheme. Considering multiple samplers and models produces a
combinatorial space of 100 space-filling and active-learning algorithms that are applied to a diverse set of 31 binary
classification tasks (mostly) relevant to chemical and materials science. The tasks are visualized in Figure 1C. Further
details on the tasks, samplers, models, batch selection schemes, and accuracy metrics are provided in Methods.

3 Methods

Tasks. Task domains vary in size (285-10,000) and dimensionality (2-14). For active-learning algorithms, batch sizes
are chosen for each classification task so that less than 10% of the task domain and a maximum of 100 points is sampled.
A description of the included tasks and their sources is included in Table 1. Briefly, tasks include the classification
of phase behavior in active Brownian particles (ABPs), polymer systems, and water; figures of merit in metal alloys,
catalysts, and perovskites; performance of experimental equipment for high-performance liquid chromatography and
additive manufacturing; and small-molecule properties like aqueous solubility, band gap, heat capacity, and others.

Some classification tasks are prepared from datasets with continuous properties. For these datasets, the task is to
classify elements of the domain with property values below the 20th percentile of the property distribution. Some
classification tasks require a molecular representation. For these tasks, molecules are represented as the ten most
informative physico-chemical features calculated by the Mordred descriptor calculator [31] for the given property.
The chosen descriptors are selected by training a logistic regression model with an L; loss on the full dataset, with
molecules represented by all available Mordred descriptors, and keeping the ten descriptors with the largest absolute
coefficients. This scheme emulates molecular design campaigns that use a set of expert-informed features as a molecular
representation [32]. Viable alternatives to this choice of molecular representation, like molecular fingerprints [33],
graphs [34], and physics-informed structural representations [35], are not considered in this study. We further note that
there are many feature-selection strategies, and the present approach may not be optimal. Fixing the representation
strategy allows us to focus analysis on data-selection; however, understanding tandem data-selection and feature
engineering is of future interest.

Samplers. Five samplers are considered for generating complete datasets for space-filling or initial datasets for
active learning. These are referred to as i. random, ii. maximin, iii. medoids, iv. max entropy, and v. Vendi samplers.
For demonstrative purposes, Figure 2 shows the points selected by these five samplers on the princeton dataset.
These samplers represent different data-selection paradigms from the field of “Design of Experiments” [36], including
geometry, information theory, and diversity. Common alternatives like Latin hypercube sampling [37] and Sobol
sequences [38] are not considered due to their applicability only on (hyper)cubic domains, which differ from the
non-cubic domains present in many of the materials spaces considered here. Extension of such approaches may be
feasible, in certain scenarios, but not facile. Thus, we restrict our testing to approaches that can be readily applied,
irrespective of the input space.

While the random sampler chooses points at random, non-random samplers choose points that optimize a specific
metric. Maximin sampling, also called furthest-point sampling, sequentially selects points that maximize the minimum
Euclidean distance between the current point and all previously chosen points. A medoids sampler chooses the centroids
produced by the k-medoids algorithm, which selects a set of points that minimizes the average squared Euclidean
distance between any point in the domain to a point in the sample. A max entropy sampler, a method created by Paiva
[39], chooses a maximally informative set of points by sequentially selecting the point in the domain x* to solve

X *

m N
1 1
arg min e E k(zj —x") — N ;:1 K(x; —x") )

J=1
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Figure 2: Overview of different sampler algorithms for generating (initial) datasets. Batches of 30 points selected from
6,390 points in the princeton dataset using (A) random, (B) maximin, (C) medoids, (D) max entropy and (E) Vendi
samplers. In all panels, red and blue distinguish the two class labels.

where the set {z;} are previously chosen points, {x;} are all points in the domain, and « is the squared-exponential
kernel

1 1
(X, %) = WGXP <_M|Xz‘ - Xj|2> 2

where d is the dimensionality of the task domain and o is a bandwidth parameter computed using Silverman’s rule of
thumb [40]. The Vendi sampler sequentially chooses points that maximize the Vendi score [41], which is a diversity
metric computed from the entropy of the eigenvalues of a Gram matrix computed on the domain. For computing the
Gram matrix, we use the squared exponential kernel shown in Eq. (2). All methods described here depend on a random
seed for the selection of all points (i.e., random), initial guess (i.e., medoids), or initial point (i.e., maximin, max entropy,
Vendi), depending on the sampler.

Models. Models include random forests (RFs), gradient boosted decision trees (XGBs), support vector machines
(SV), label propagation (LP), neural networks (NNs), Gaussian processes (GPs), and Bayesian kernel density estimation
(BKDE). Models predict labels and uncertainties on the task domain. For models without inherent uncertainty estimates
(XGBs and NNs), ensembles of models are built using bootstrap aggregation to calculate uncertainties. Gaussian
processes are implemented as both least-squares classifiers (GPRs) and as classifiers with a Bernoulli likelihood (GPCs)
using both isotropic and anisotropic (ARD) squared exponential kernels [42]. The uncertainties of GPRs use the scheme
developed by Dai and Glotzer in Ref. [23]. All models are subject to hyperparameter tuning after each new batch of
data was selected. A full description of the chosen models and hyperparameter tuning is available in the Supporting
Information (SI) (see Section S1).

The BKDE model is inspired by the Gryffin [43] and Phoenics [44] algorithms. The kernel density of each point is
measured using the outputs of a Bayesian autoencoder fit to the training data. Specifically, the kernel density at point x
due to a measured point X can be written as:

) = (| e [~ tx -t ]) )

where 7,, is a learnable bandwidth parameter with a prior dependent on the number of measured points, n, and
Xpred (0; X1 ) is the prediction of a Bayesian autoencoder with sample parameters ¢ and input x;,. The average ()N~
refers to the average computed by sampling this value from the Bayesian neural network. The reader is directed to
Ref. [44] for additional explanation. Using these kernel density estimates, probabilities for each class can be calculated
using the following equation:

4
> e ox PR @

pi(x) =

where p;(z) is the probability that point x is label 4, X is the task domain, and X; are all points in the domain with
label ¢. For a given point, the predicted label is the class with the highest probability, and its uncertainty is the entropy
of the probability distribution across all classes. Due to the expense of hyperparameter tuning, implementations with
BKDE maintain a fixed architecture consistent with its prior usage [43].

Batch Selection. All active-learning algorithms use the “Kriging believer” scheme to select batches of points [45].
The Kriging believer scheme operates as follows. First, uncertainties are computed across the domain, and the point
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Table 1: Overview of classification tasks

Name Size Dim. Domain Label Ref.
bace 1,513 10 Small molecules Inhibition of human S-secretase 1  [46]
bear 1,800 4 3D-printed structures High mechanical toughness [47]
clintox 1,480 10 Small molecules FDA approval [46]
diblock 5376 3 Diblock copolymers Lamellar phase [48]
electro 285 4 Electrocatalysts High stability [49]
esol 1,128 10 Small molecules Low aqueous solubility [46]
free 642 10 Small molecules Low hydration free energy [46]
glotzer_pf 10,000 2 ABP phase diagram (constant PF) Phase separating [23]
glotzer_xa 10,000 2 ABP phase diagram (constant x 4) Phase separating [23]
hiv 7,215 10 Small molecules Active HIV inhibitors [46]
hplc 1,385 5 HPLC process parameters Low photodegradation [50]
lipo 4,200 10 Small molecules Low lipophilicity [46]
muv 5,000 10 Small molecules Toxicity [46]
oer 2,121 6 OER catalysts Low overpotential [51]
oxidation 1,275 2 Ternary alloys Oxidation susceptibility [25]
perovskite 1,276 14 Perovskites Stability [24]
polygel 9,856 9 Polymethacrylates Predicted solubility

polysol 6,524 11 Common polymers and solvents Solubility [52]
princeton 6,390 2 Princeton “P" Inside the “P”

qm9_cv 6,695 10 Small molecules Low Cy [53]
aqm9_gap 6,695 10 Small molecules Low band gap [53]
qm9_r2 6,695 10 Small molecules Low spatial extent [53]
qm9_u0 6,695 10 Small molecules Low internal energy at 0K [53]
qm9_zpve 6,695 10 Small molecules Low ZPVE [53]
robeson 353 10 Linear homopolymer membranes Above the 1999 Robeson bound [54]
shower 625 2 Flow rates Satisfactory temperature [25]
toporg 1,342 8 Polymer topologies Low radius of gyration [55]
tox21 7,831 10 Small molecules Toxicity [46]
vdw 625 2 Thermodynamic conditions Phase separation [25]
water_hp 625 2 Thermodynamic conditions (high P) Ice [19]
water_lp 625 2 Thermodynamic conditions (low P)  Liquid water [19]

with the highest uncertainty is added to the training set. The model then assumes its prediction for that point is correct
and retrains accordingly. Updated uncertainties are then recomputed on the domain to identify the next point with the
greatest uncertainty. This process is repeated until the desired batch size is reached. Hyperparameter tuning is not
repeated during retraining with assumed labels.

For BKDE-based active-learning algorithms, a custom batch-selection scheme is used due to the computational expense
of refitting BKDE to new data. We define p(x) = pr(X)/pk.max as the normalized kernel density, so that i (x) € [0, 1].
pr(x) represents the influence of point x; on every point x in the domain with a value between 0 and 1. Before
batch selection, the uncertainties of every point in the domain are computed, denoted u((x). Batch selection begins
by selecting the point with the highest uncertainty, denoted x;. When this point is selected, 51 (x) is computed. The
uncertainties are then recomputed by reducing their magnitude by a factor proportional to the influence of x; at
that point, producing a new uncertainty function uq(x) = ug(x) * (1 — p1(x)). By consequence, uncertain points
uninfluenced by x; remain uncertain, while those near x; are less likely to be chosen. The point x5 that maximizes
u1(x) is then chosen, and the process is repeated until the desired batch size is reached. This method allows for a
diverse batch of points to be selected by BKDE-based active-learning algorithms without retraining the model for each
acquired point.

Metrics. Classification accuracy is assessed using the Macro F} score for its robustness to class imbalance, equal
weighting of precision and recall, and use in prior studies [19]. For a given class, the F score is defined as:

_ 2(TP)
~ 2(TP) + FP + FN ©)

where ‘TP’, ‘FP’, and ‘FN’ respectively denote the number of true positives, false positives, and false negatives. The
Macro F; score is calculated by taking the average of I scores computed for each class.

1
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For any given task, what differentiates “good” from “bad” Macro F} scores can be ambiguous. Inspired by the use of
random selection as a baseline in optimization literature [56], we define a new metric, £, as the number of randomly
selected points a nearest neighbor classifier requires to achieve the same Macro Fj score as the specified algorithm.
We further define £,x as the maximum £ achieved by any algorithm on the task. Then, £ /£.x describes how close an
algorithm is to the best performance on a given task. Metrics like £ and £/&max quantify efficiency in terms of resources
saved by employing a given algorithm compared to a naive approach.

Metafeatures analysis. Algorithm performance on tasks is predicted based on metafeatures of the task. Metafeatures
include basic characteristics of a classification task (e.g., dimensionality, dataset size, class proportion), information
theory-based properties (e.g., feature entropies, mutual information, noise-to-signal ratio), and properties quantifying
task complexity (e.g., Fisher’s discriminant ratio, feature efficiency, hub score) [57]. A total of 213 metafeatures,
computable by the PyMFE Python package [58], are considered.

Predictive metafeatures for each algorithm are identified by fitting a linear regression model of metafeatures to the
algorithm’s 31 Macro F7 scores across all tasks. A minimal set of predictive metafeatures common to all algorithms
is determined using sequential feature addition. Sequential feature addition starts by constructing linear models of
individual metafeatures for all algorithms. The metafeature ¢); that results in the lowest mean absolute error (MAE)
is added to the set of selected metafeatures, with MAE computed via leave-one-out cross-validation. The process is
repeated with combinations of 1 and additional metafeatures, adding the metafeature 1, that results in the lowest
MAE. This iterative process continues until MAE decreases by less than 1%. The final set of metafeatures {v;} is
used to build maximally predictive linear models of algorithm performance across tasks. BKDE-based algorithms are
excluded from this analysis due to the inability of metafeatures to predict their performance.

4 Results and Discussion

4.1 Active learning with neural networks and random forests generally outperforms other strategies.

All combinations of samplers and models (totaling 100 algorithms) were applied as space-filling and active-learning
algorithms to all tasks in Figure 1C. This process was repeated with 30 different random seeds to assess performance
variability due to stochastic factors such as sampler initialization, model random states, and hyperparameter tuning.
Performance was assessed in terms of overall accuracy and in terms of data efficiency.

Figure 3A shows the 20 highest-performing algorithms, by accuracy, as measured by average relative Macro Fj score
across all tasks for ten rounds of active learning. NN- and RF-based active-learning algorithms are the most accurate
classifiers regardless of sampler choice, representing 10 out of the top 11 algorithms. Most variants of XGB-based
active-learning algorithms are also present in the top 20, along with a few GP- and SV-based active-learning algorithms.
Space-filling algorithms are notably missing from the top performers, suggesting the value of iterative data acquisition.
There is no clear indication that the choice of sampler substantially affects performance of these algorithms, with
roughly equal representation of all samplers. The presence of all NN- and RF-based active-learning algorithms in the
top 20 suggests that choice of model important than of sampler. While the results are statistically robust, we note that
the top-20 most accurate algorithms differ in relative Macro Fj scores by at most ca. 0.04; the practical implication of
such a difference would require additional external evaluation.

To better characterize the data efficiency of algorithms, we consider (£/&max), the performance relative to a naive
algorithm that achieves equivalent accuracy. For example, (£/&max) = 0.6 means that the number of points required by a
naive method to achieve the same accuracy as that algorithm is 60% of the number of points required by a naive method
to achieve the same accuracy as the most accurate algorithm for that task. Figure 3B ranks the top-20 algorithms by
(&/&max) for all tasks after ten rounds of active learning. Figure 3B shows that NN-based active-learning algorithms
are the clear top performers, regardless of sampler, when using this metric. RF-based active learning models follow
closely behind, followed by a variety of Gaussian process-based active learning methods. Compared to Figure 3A,
the metric in Figure 3B provides greater stratification in algorithm performance for high values of Macro F;. As
F scores tend to 1.0, more and more points are required by a naive algorithm to improve its accuracy, which is
reflected only by small increases in Macro F; score. When appropriately weighting the relative “effort” required for
getting a high-resolution understanding of the task, NN-based active-learning algorithms emerge as a consistent top
performer. However, the maximum value of (£/&n.x) achieved by any algorithm is less than 0.8, indicating that even
the top-performing algorithms are not necessarily optimal for many tasks.

The ordering in Figure 3 reflects an average across all tasks and specifically follows after ten rounds of active learning.
Variants of Figure 3 for different subsets of tasks and fewer points selected are available in the SI (see Section S2).
We find that performance varies depending on the dimensionality of the tasks. Figure S1 shows that when only
low-dimensional tasks (d < 8) are considered, NN-based active-learning algorithms greatly outperform all alternatives.
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Figure 3: Performances of the top-20 algorithms on all tasks for ten rounds of active learning. Algorithm performance
is measured by averaging the (A) relative Macro F} score and (B) relative £ of each algorithm on all tasks, where
“relative” denotes normalizing the metric by the performance of the top-performing algorithm on that task. Results are
colored according to the model used by the specified algorithm. Error bars show the standard error.

Figure S2 shows that when higher dimensional tasks are considered (d > 8), tree-based algorithms perform better, and
there is not a clear advantage to using either NN- or RF-based active-learning algorithms.

Figures S3-S5 show how the results in Figure 3 change when fewer points are selected. At only three rounds of active
learning, space-filling algorithms with a variety of models are present in the top-20 algorithms (Figure S3). The top
space-filling algorithm, which uses the medoids sampler and neural network model, remains in the top 20 until five
rounds of active learning (Figure S4), closely followed by GP-based space-filling algorithms. NN-based active-learning
algorithms are the top-performing algorithms for three rounds of active learning onwards, while RF-based active-
learning algorithms do not emerge as the clear second best choice until seven rounds of active learning (Figure S5).
Results are mostly consistent with Figure 3 for seven rounds of active learning. Therefore, the results of Figure 3 are
consistent for many rounds of active learning, but when few batches have been selected, NN- and GP-based space-filling
algorithms are competitive alternatives.

From these results, we suggest using NN- or RF-based active-learning algorithms for building accurate classification
models on domains with a limited experimental budget. RFs seem preferred for higher-dimensional tasks. This guidance
seemingly runs counter to conventional wisdom regarding the relative ineffectiveness of neural networks in low-data
regimes and the common utilization of Gaussian processes for AL/BO. It may be interesting to consider whether prior
studies (such as Refs. [23, 18, 20, 24, 25]) might be more data-efficient by opting for a different strategy.

4.2 Many algorithms fail to perform well across all tasks.

While the preceding analysis shows that selecting an optimal strategy a priori can be challenging, we find certain
algorithms are consistently “suboptimal.” We define performance as suboptimal if £ /&, < 0.9 for every task. Figure
4 displays the fraction of suboptimal algorithms based on algorithm type and model choice. Of the 100 algorithms
studied, 62 are suboptimal. Space-filling algorithms are more often suboptimal compared to active-learning algorithms.
Among active-learning algorithms, model choice significantly affects performance. NN- and RF-based active-learning
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algorithms are never suboptimal, while BKDE- and LP-based active-learning algorithms are always suboptimal. SV-
and isotropic GPC-based active learning schemes are also commonly suboptimal.

The poor performance of BKDE-based algorithms may be attributed to several factors. First, unlike GPs and SVs,
BKDE does not use training labels when estimating kernel densities, reducing predictive accuracy. Second, BKDE
relies on a Bayesian autoencoder to estimate kernel densities, which can be inaccurate with limited training data. Third,
BKDE's kernel density estimates rapidly decay to zero with distance, leading to high uncertainties across much of
the task domain. This causes BKDE-based active-learning algorithms to fail in prioritizing points near classification
boundaries, reducing accuracy. Consequently, BKDE-based active learning and space-filling algorithms perform
similarly across tasks.

The poor performance of LP-based algorithms is likely due to two reasons. First, LP models assign classes to unlabeled
points based on neighboring labeled points defined by Euclidean distance. Unlike anisotropic GPs, XGBs, RFs, and
NNs, LP models do not have a mechanism to ignore irrelevant features. Second, LP models assign high uncertainties to
points near an identified classification boundary but not to points far from those already chosen. As a result, LP models
can miss classification boundaries not initially discovered by the sampler. This likely explains why space-filling LP
algorithms outperform active-learning LP algorithms. Other methods address this issue by explicitly increasing the
uncertainty of distant points (e.g., GPs) or using model ensembles to encourage uncertainties in less sampled regions
(e.g., RFs, NNs, XGBs).

4.3 Space-filling occasionally outperforms active learning.

Figures 3 and 4 together suggest that active learning, or iterative data selection, is more data-efficient than one-shot
space-filling. To quantify this, we compare the performance of every seed of every active-learning algorithm to that of
the space-filling algorithm with the same seed, sampler, and model. For each number of points selected on each task,
we compute how often the active learning variant outperforms the space-filling variant.

Figure 5 shows that active learning does not always outperform space-filling, especially with few rounds of active
learning. In the first round, active learning outperforms space-filling in less than 50% of cases, suggesting little initial
benefit. This fraction increases to about 65% by round 10. To avoid misleading results from poorly performing models,
we also analyze the top-performing models from Figure 3B. In this case, active learning outperforms space-filling about
50% of the time in the first round, increasing to nearly 80% by round 10. While active learning generally outperforms
space-filling, these results indicate that an arbitrary active learning scheme may not always surpass its space-filling
variant on a given task.
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The results in Figure 5 depend on the tasks considered. Some tasks (e.g., princeton, tox21, electro) deviate
from aforementioned trends (Figures S6-8). In these cases, space-filling algorithms consistently outperform active-
learning algorithms. We note that these are also among the most difficult classification tasks, as indicated by the mean
performance of all algorithms. When all algorithms struggle, the performance gap between active learning and space
filling is less meaningful. Additionally, datasets like princeton have complex classification boundaries that benefit
from allocating more experimental budget to exploring the task domain rather than refining an already discovered
boundary.

Based on these results, we recommend using active-learning algorithms for data-efficient classifiers but acknowledge
that factors such as i. the number of active learning rounds and ii. the expected complexity of the classification task can
influence the balance between sampler and active learning points. Determining the optimal trade-off is left for future
work.

4.4 Sampler choice has disparate impact on active learning versus space-filling.

The role of initial data selection is an often overlooked aspect of active-learning algorithms and their outcomes. To
assess this impact, we compare the performance of each active-learning algorithm with non-random samplers to the
same algorithm with a random sampler across all tasks after 10 rounds of active learning. Here, the performance metric
is &, as defined in Methods.

Figure 6 shows that the choice of sampler has little impact on performance for active-learning algorithms. Since the
sampler selects fewer than 10% of the points, its impact is minimal. Maximin and medoids samplers offer a slight
improvement over random sampling, though the difference is marginal. In the analysis of space-filling algorithms with
both non-random and random samplers, the medoids sampler performs significantly better than others, while maximin
and Vendi samplers outperform random sampling. Conversely, the max entropy sampler performs worse than random
selection.

The results for active-learning algorithms vary with the number of rounds. Variants of Figure 6 for different rounds
are shown in the SI (see Section S4). Early rounds show the medoids sampler improving performance by about 1.40
times over the random sampler (Figure S9). As rounds increase, the results converge to those in Figure 6. The medoids
sampler performs best for both active learning and space-filling algorithms, but its impact diminishes with more rounds
of active learning.
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4.5 Model ensembles provide robust performance.

Given that the maximum (£ /&max ) in Figure 3B is only about 0.77, we hypothesized that more data-efficient classification
algorithms could be developed using ensembling. Based on observed performance, we consider ensemble-based
algorithms featuring NNs, RFs, and anisotropic GPCs. Several ensembling strategies were considered, including
treating model choice as a hyperparameter, “stacking” models to combine predictions and uncertainties, and “arbitrating”
by using the model with the lowest uncertainty for each prediction, and others[59] (see SI, Section S5). From this
survey, treating model choice as a hyperparameter was found to be the best-performing scheme, and all “Ensemble”
results in the main text refer to this method.

Figure 7A shows the relative performance based on (/&) of NN-, RF-, and ensemble-based active-learning
algorithms across all tasks. While ensembles rank among the top-performing algorithms, they do not consistently
outperform NN-based active-learning algorithms. However, the results in Figure 7 are task-dependent, suggesting that
ensemble-based active learning may be beneficial for certain types of tasks.

To determine if ensemble-based active-learning algorithms outperform NN- and RF-based algorithms on specific tasks,
we analyze two task sets. Figure 7B shows tasks where NN-based algorithms are the top performers (n = 9). Figure 7C
shows tasks where RF-based algorithms excel (n = 10). Ensemble schemes generally outperform individual models
on tasks where those models are not optimal. This effect is strongest for tasks where NN-based algorithms excel and
less pronounced for RF-based tasks. Thus, using ensemble-based active learning may mitigate the risk of selecting a
suboptimal model for any given task.

4.6 Metafeatures are predictive of task difficulty.

To understand the factors behind algorithm performance variability across tasks, we identify metafeatures that predict
learning algorithm accuracy. This approach allows us to quantify what makes one classification task more challenging
than another.

Figure 8 shows that a limited set of task metafeatures identified by sequential feature addition can reasonably predict
task complexity. Figure 8A shows results of using just four metafeatures (noise-to-signal ratio [57], maximum weighted
distance between two points in the task domain [60], maximum mutual information between features and labels, and
the performance of the linear discriminant classifier) to predict the accuracy of all algorithms across all tasks. To reduce
the influence of poorly performing algorithms, the same analysis is performed using just the top-20 algorithms. This
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standard error.

A All Algorithms B  Top 20 Algorithms
1.0 — .
Lll_ 00 J o°Q7° oq,o o oo
o 0.8t 0° o ° A ¥ o0
s o8 o8 o8 S
=06 o0° ¥ @
g & 0% 00
-.Q_') oogé g
k2] o° 2
S 0.4 ST . o0
9_.) oao °
| °®ce,  Re=0.803 R = 0.804 |
' ° MAE = 7.826% MAE = 6.167%
02 04 06 08 10 02 04 06 08 1.0

True Macro F, True Macro F,
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mean performance of the linear discriminant classifier. (B) shows the predictions of linear models constructed for the
top-20 algorithms using i. noise-to-signal ratio, ii. average mutual information between features and labels, and iii.
maximum performance of the naive Bayes classifier.
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yields Figure 8B, which uses noise-to-signal ratio, the average mutual information between features and labels, and the
performance of the naive Bayes classifier. In both cases, simple linear models based on these few features capture the
data well.

The particular metafeatures selected resonate with intuition. Noise-to-signal ratio is the most predictive metafeature
of algorithm performance across all tasks. Linear models using only this ratio achieve an MAE of 11.260% and
R? = 0.619 for all algorithms, and an MAE of 8.370% and R? = 0.696 for top-performing algorithms. Tasks with
low noise-to-signal ratios require fewer measurements because each measurement provides valuable information about
labels. Related to the noise-to-signal ratio, mutual information and the performance of the naive Bayes classifier
indicate how useful individual features are for predicting labels. When features are individually predictive of labels,
less data is required for accurate predictions than for tasks where features are uninformative. The maximum weighted
distance between point pairs [60] likely identifies outliers in the task domain, which require more measurements to
account for their influence. The performance of the linear discriminant classifier indicates the linear separability of
a task. Linearly separable tasks have simple classification boundaries, requiring less data for accurate prediction. In
simple and expected terms, less data is needed to train accurate models for tasks with informative features, few outliers,
and linearly separable classes.

5 Conclusion

We characterized the relative efficiency and performance of strategies for building effective machine learning classifiers
with relevance across chemical and materials science. In total, 100 space-filling and active-learning algorithms were
evaluated across 31 classification tasks. Our findings indicated that NN- and RF-based active-learning algorithms were
the most data-efficient, while BKDE and LP algorithms performed poorly in comparison. Space-filling methods were
competitive with active learning, particularly when few rounds of active learning were used. We also demonstrated
that using the k-medoids algorithm for point selection improved accuracy over other sampling strategies in both active
learning and space-filling. Ensemble-based algorithms were found to perform generally well, irrespective of task.
Additionally, task metafeatures were predictive of algorithm performance, with a few key metafeatures, particularly
the noise-to-signal ratio, effectively quantifying classification task complexity. These results have implications for
data-driven materials design in constrained domains.

This study opens several avenues for future research. Key areas for further investigation include exploring algorithm
design choices not covered here, such as feature and label transformations, batch-selection schemes, and batch sizes.
Additionally, applying the current findings to materials design campaigns that involve simultaneous optimization
and classification, as discussed by Hickman et al. [24], could be valuable. Beyond algorithm design, incorporating
domain knowledge could enhance data efficiency. Utilizing pre-trained models, incorporating priors from foundation
models, and applying physical constraints on model predictions may offer significant improvements in data efficiency
compared to changes in sampler or model. Specifically, constructing pre-trained material representations optimized
for metafeatures predictive of algorithm performance, like the noise-to-signal ratio, could boost data efficiency across
materials domains. This approach could be beneficial for both classification and regression tasks [61]. Moreover,
employing identified metafeatures in the development of featurization strategies that optimize these metrics could lead
to more data-efficient classification. Latent representations from autoencoders, multitask models, or large language
models trained on extensive datasets could be optimized to minimize the noise-to-signal ratio or maximize linear
separability, thereby enhancing performance on related tasks. Finally, establishing a unified set of classification tasks
for testing would strengthen the generalizability of the findings here and for future studies.
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7 Data availability

All code required to reproduce measurements of classification algorithm performance on all tasks is available in the
following GitHub repository: https://github.com/webbtheosim/classification-suite.git. The produced
data, along with scripts for reproducing the analysis presented in this work are available in the following GitHub
repository: https://github.com/webbtheosim/classification-analysis.git.
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