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Abstract

Phase separation in multicomponent mixtures is of significant interest in both fun-

damental research and technology. Although the thermodynamic principles governing

phase equilibria are straightforward, practical determination of equilibrium phases and

constituent compositions for multicomponent systems is often laborious and computa-

tionally intensive. Here, we present a machine-learning workflow that simplifies and

accelerates phase-coexistence calculations. We specifically analyze capabilities of neu-

ral networks to predict the number, composition, and relative abundance of equilib-

rium phases of systems described by Flory-Huggins theory. We find that incorporating

physics-informed material constraints into the neural network architecture enhances the

prediction of equilibrium compositions compared to standard neural networks with mi-

nor errors along the boundaries of the stable region. However, introducing additional

physics-informed losses does not lead to significant further improvement. These errors

can be virtually eliminated by using machine-learning predictions as a warm-start for a

subsequent optimization routine. This work provides a promising pathway to efficiently

characterize multicomponent phase coexistence.
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1 Introduction

Phase coexistence in multicomponent systems is ubiquitous in nature and technology. Ex-

amples range from diverse purification processes in the chemical industry1–3 to the for-

mation of membraneless organelles via liquid-liquid phase separation in biology.4–11 Thor-

ough characterization of multicomponent phase equilibria involves not only identifying the

phases present but also determining their composition and abundance, as the distribution

and composition of species across phases significantly affect system properties and func-

tions. This information guides processing methods and underlies calculations in process-

simulation software. Critically, these calculations can constitute a substantial fraction of the

overall computational time dedicated to simulation.12 Current multiphase flash calculation

schemes require knowledge of the number of equilibrium phases,12,13 are sensitive to initial

guesses,14 and can converge to spurious or trivial solutions if root-finding is not appropri-

ately bounded and constrained.15,16 Therefore, efficient and accurate methods for predicting

equilibrium states are valuable for both industrial applications and fundamental research.

At equilibrium, species distribute across phases based on the extremization of an appro-

priate thermodynamic potential. For example, minimization of the Gibbs energy dictates

equilibrium for a system at specified temperature T , pressure p, and global composition xi.

Equilibrium phase-coexistence arises when species partition into distinct phases with equal

chemical potentials driven by the extremization, rather than forming a homogeneous mix-

ture. For a system at fixed T and p, this yields

µα
i

(
T, p, {xj}α

)
= µβ

i

(
T, p, {xj}β

)
∀ i (1)

where µπ
i is the chemical potential of species i ∈ {A,B,C, . . .} in phase π ∈ {α, β}with com-

position {xj}π = {xπ
A, x

π
B, x

π
C, . . . }. Eq. (1) constrains the equilibrium state of the system, as

manifest in Gibbs’ phase rule (i.e. F = N − P + 2 where F is the number of independent

intensive relationships needed to specify a system of N species and P phases). Provided a
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thermodynamic model for describing the mixture behavior as a function of intensive vari-

ables, Eq. (1), or its equivalent at other conditions, functionally comprises N(P − 1) equa-

tions to solve for the compositions of the various phases, with others fixed. The complexity

of identifying equilibrium states can vary, even while the underlying thermodynamic frame-

work is straightforward.

Determining the conditions, expected phases, and the chemical nature of species usually

depends on appropriately parameterized equations-of-state or available free-energy models.

For condensed phases and binary mixtures, there are several simple free-energy models like

the Margules equations,17 the van Laar model,18 or the Guggenheim-Scatchard/Redlich-

Kister equation.19 More complex models such as the Wilson models, non-random two-liquid

(NRTL) models,20 universal quasi-chemical theory (UNIQUAC),21 UNIQUAC Functional-

group Activity Coefficients (UNIFAC) models,13,22,23 Flory-Huggins theory24 can treat multi-

component systems. Although increasing complexity of the free-energy model or equation-

of-state can facilitate more accurate representation of physical systems, the underlying cal-

culations and theoretical principles for phase behavior remain the same for simple and com-

plex models alike.

Given a thermodynamic model, calculating phase stability and equilibrium composi-

tions can be approached in various ways. Simple models and binary mixtures may yield

algebraic relationships that can be handled analytically or resolved using simple numeri-

cal schemes, such as self-consistent iteration or Newton’s method. However, characterizing

multicomponent phase coexistence typically requires dedicated software and more sophisti-

cated numerical algorithms. Many algorithms are designed to work for only a specific set or

number of phases.25 Direct solution methods based on Newton’s root-finding algorithm can

be effective but are computationally intensive and sensitive to the initial seed. Jindrova et

al. refined Newton’s algorithm and a successive substitution strategy to locate roots. Addi-

tionally, Nichita,26–28 Jindrova,14,16 and Castier29 independently performed volume stability

analysis to obtain better initial guesses for the substitution strategy. There has been sig-

nificant development in generating phase diagrams using constrained backmapping search
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algorithms.15,30–33

Indirect solution methods, based on thermodynamic principles and geometric criteria es-

tablished via stability analysis, offer alternative approaches. Examples include Korteweg’s

tangent construction34 and Binous and Bellagi’s arc extension method.35 Michelsen’s multi-

phase flash algorithm36 minimizes the distance between the tangent plane and the free en-

ergy surface to identify coexisting phases. Homotopy methods have also been used to calcu-

late critical and saturation properties of mixtures.37,38 Additionally, Mao et al.39 generalized

phase-diagram construction to multicomponent systems using a convex-hull construction40

applied to a discretized free-energy manifold, although accuracy and memory requirements

depend on the mesh size. Overall, there is a need for simple, generalizable, and efficient

methods for phase-coexistence calculations.

Machine learning (ML) techniques facilitate phase-coexistence calculations, offering

prospective advantages relating to time- and memory-efficiency relative to more traditional

optimization strategies.41–50 However, many efforts only address the issue of phase stability

and neglect consideration of phase composition.42–46 Others have been restricted to binary

systems with limited demonstration of more complex mixtures.47–50 Recently, Flory-Huggins

(FH) theory has been combined with ML to improve the interpretability and accuracy of

mixture behavior predictions, but limitations exist in their ability to handle complex interac-

tions and multicomponent systems beyond binary mixtures.49,50 Nevertheless, such works

highlight the potential of ML as part of a generalizable, accurate, efficient, and extensible

framework for characterizing multicomponent phase behavior.

Here, we describe a data-driven workflow to characterize the phase behavior of mul-

ticomponent systems. Figure 1 illustrates the overall approach in the context of ternary

systems described by Flory-Huggins (FH) theory. Using FH theory as a representative free-

energy model, we construct a series of phase diagrams across the model parameter space

using labor-intensive methods. This data is then used to develop an ML surrogate model,

based on neural network architectures, to predict the number, composition, and relative

abundance of equilibrium phases from model parameters and total system composition.
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Surrogate models optimized with and without physics-informed architectures and loss func-

tions are compared. Errors are assessed for classification (number of equilibrium phases)

and regression (composition and abundance of phases). Predictions from the surrogate

model, which are computationally efficient and improvable, are then used to warm-start

a simple optimization to precisely and accurately characterize the system’s phase behav-

ior. This procedure exemplifies an efficient, accurate, and extensible approach to phase-

coexistence calculations.

2 Methods

Figure 1: Strategy for multi-component phase-coexistence prediction using machine
learning. 1,036 ternary phase diagrams are generated using the algorithm arc continua-
tion algorithm (Equations 6-8) and convex hull construction algorithm,39 and are used as
training data for a physics-informed machine learning (ML) model to classify phase regions
and predict equilibrium phase compositions. The ML predictions serve as initial guesses for
the Newton-CG method to obtain equilibrium composition predictions.
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2.1 Thermodynamic framework

For demonstration, we consider the thermodynamics of ternary systems described by FH

solution theory. Systems are comprised of species A, B, and C that occupy a lattice of n

sites with volume V = nv0. The species can possess size disparities, reflected in their molar

volumes vi. For a polymer comprised of Ni monomers that each occupy a single lattice site,

vi = Niv0. Systems are incompressible such that V =
∑

i nivi where ni is the mole number

for species i. System composition is specified by the volume fractions ϕi = (nivi)/V with∑
i∈{A,B,C} ϕi = 1.

The dimensionless, intensive (per lattice site) Helmholtz energy of mixing follows as

f̃ ≡ β∆fmix =
∑
i

ϕi

(vi/v0)
lnϕi +

1

2

∑
j

∑
k

ϕjϕkχjk (2)

where β = (kBT )
−1 is the inverse temperature with kB as Boltzmann’s constant, and χij is

the Flory-Huggins interaction parameter for species i and j with χii = 0; the summations

are over all components (A, B, C). Altogether, the behavior of a system is determined by

the composition ϕ = (ϕA, ϕB, ϕC), the molar volumes of the species v = (vA, vB, vC), and the

interaction parameters X = (χAB, χAC, χBC).

Up to a constant, chemical potentials are obtained by partial differentiation of the

Helmholtz energy of mixing:

βµi(T, V,ϕ) =
1

v0

∂
[
V f̃
]

∂ni


T,V,nj ̸=i

. (3)

Using Eq. (2) in Eq. (3), this yields

βµi(T, V,ϕ) = ln(ϕi) +
∑
j ̸=i

ϕj

(
1− vi

vj

)
+ vi

[∑
j ̸=i

∑
k ̸=i

ϕjϕk(χij −
1

2
χjk)

]
(4)

where the summations exclude the species for which the chemical potential is being assessed
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(e.g., for µA, the summation for j ̸= i is equivalent to that for j ∈ {B,C}).

The thermodynamic stability of a mixture is assessed by considering the determinant of

the Hessian matrix for the Helmholtz energy. For

Hf̃ =

 ∂2f̃
∂ϕ2

A

∂2f̃
∂ϕA∂ϕB

∂2f̃
∂ϕB∂ϕA

∂2f̃
∂ϕ2

B

 , (5)

the spinodal boundary of a ternary mixture is the locus of all compositions that solve

|Hf̃ | =
∂2f̃

∂ϕ2
A
· ∂

2f̃

∂ϕ2
B
−

(
∂2f̃

∂ϕA∂ϕB

)2

= 0. (6)

Critical points are identified by additionally considering constraints on third-order deriva-

tives51,52 given by

E1 ≡

∣∣∣∣∣∣∣
∂|Hf̃ |
∂ϕA

∂|Hf̃ |
∂ϕB

∂2f̃
∂ϕA∂ϕB

∂2f̃
∂ϕ2

B

∣∣∣∣∣∣∣ = 0 (7)

and

E2 ≡

∣∣∣∣∣∣∣
∂|Hf̃ |
∂ϕB

∂|Hf̃ |
∂ϕA

∂2f̃
∂ϕA∂ϕB

∂2f̃
∂ϕ2

A

∣∣∣∣∣∣∣ = 0. (8)

For fixed total particle density (ρ = n/V ) and constant temperature, Gibbs’ phase rules

indicate there can be at most three coexisting phases. To characterize three-phase coexis-

tence, there are 12 variables. Nine correspond to the volume fractions in each phase: ϕα, ϕβ ,

and ϕγ , for which each ϕπ = (ϕπ
A, ϕπ

B, ϕπ
C). Three correspond to the fractional abundances of

each phase–wα, wβ , and wγ). Criteria for chemical equilibrium applied to each species across

each phase

µα
i (T, ρ,ϕ

α) = µβ
i (T, ρ,ϕ

β) = µγ
i (T, ρ,ϕ

γ) (9)

provide six independent equations. For a system with a specified total composition, material
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balance constraints provide the remaining equations:

∑
i

ϕπ
i = 1 for π ∈ {α, β γ} (10)

∑
π

wπϕπ
i = ϕi for i ∈ {A,B,C}. (11)

To characterize two-phase coexistence, the variable count is reduced to eight, with commen-

surate reduction by three equations from Eq. (9) and one equation from Eq. (10). Section 2.2

describes algorithmic approaches for determining equilibrium compositions.

2.2 Phase-coexistence calculations

Two different algorithms are used to characterize phase-coexistence based on the principles

outlined in Section 2.1. For systems with at least one critical point and two-phase coex-

istence, an iterative and perturbative approach based on natural parameter continuation

(NPC) is used to construct binodal curves originating from a critical point. Otherwise,

the approach described by Mao et al.39 based on convex hull construction (CHC) is used.

NPC is straightforward and computationally efficient but limited, while CHC is general

but computationally intensive. Nevertheless, with this combination, the equilibrium

composition of phases at coexistence can be reliably determined for models described by

FH solution theory. The following algorithms are thus used to provide ground-truth results

and requisite training data for the development of ML models (Section 2.3).

Natural parameter continuation (NPC). For two-phase coexistence, Eq. (9) is rearranged as

∆µαβ
i (T, ρ,ϕα,ϕβ) ≡ µβ

i − µα
i = 0 for i ∈ {A,B,C}. (12)

Provided a point on the coexistence curve ϕ∗, a nearby point can be identified by solving a

set of linear equations that enforce Eq. (12) following a small perturbation in the composi-
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tion:

∑
j∈{A,B}

∑
π

∂∆µαβ
i

∂ϕπ
j

∣∣∣∣∣
ϕ∗

δϕπ
j = 0 for i ∈ {A,B,C} (13)

where δϕπ
j is the small perturbation in the composition of species j in phase π. Coexistence

curves (i.e., a locus of equilibrium composition tuples) can then be constructed as follows:

1. Define tolerance parameters δ∅ and δ0.

2. Identify and set the critical point to be ϕ∗.

3. Generate a random, small perturbation on the composition δϕ, yielding two new com-

positions: ϕ′ = ϕ∗ + δϕ and ϕ′′ = ϕ∗ − δϕ

4. Use the compositions ϕ′ and ϕ′′ as initial guesses to solve Eq. (12), producing coexist-

ing compositions ϕα
new and ϕβ

new that are distinct from ϕ∗.

5. Set ϕπ
old ← ϕπ

new and and use for Eq. (13). Set one of the δϕπ
i (e.g., ϕβ

B) to a small

perturbation and solve for the remaining δϕπ
i to produce δϕα′ and δϕβ′ .

6. Set ϕ′ = ϕα(0) + δϕα′ and ϕ′′ = ϕβ(1) + δϕβ′ and use as initial guesses to solve Eq.

(12), producing new coexisting compositions ϕα
new and ϕβ

new that are those distinct from

those prior.

7. Repeat steps 5 and 6 until either ||ϕα
new − ϕβ

new|| < δ∅, which indicates a closure of the

coexistence curves, or when any ϕπ
i < δ0, which indicates termination at a composition

boundary.

8. Verify validity of compositions by checking that all have |Hf̃ | > 0.

For the calculations described in this paper, δ∅ = δ0 = 10−9. Initial trials for random

composition perturbations are set to have a magnitude of 10−6. Equations are solved

numerically using fsolve from Python’s SciPy module. Occasionally, the trial perturbations

resulted in solutions that collapsed back to the critical point or other prior generated points,
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in which case new perturbations would be attempted with possibly different magnitudes.

Convex hull construction (CHC). For systems without critical points or valid coexis-

tence curves extending from critical points, the utility of the NPC algorithm is limited. In

such cases, we use the CHC to identify equilibrium compositions. On a free energy surface,

compositions with equal chemical potential are cotangent, while stable compositions

(D > 0) that are not cotangent with any other points exist as single phases. This information

can be accurately reconstructed by creating a convex hull of the free energy surface and

projecting it onto the composition space. We briefly remark on salient aspects of the

algorithm as applied to a ternary system, but readers are referred to the work of Mao et al.39

for a more complete description.

The composition space (ϕA, ϕB) is discretized into a mesh of equilateral triangles, or two-

dimensional simplices. Using a finer mesh results in more accurate calculations but also in-

creases computational cost and memory requirements; this work uses a simplex edge-length

of 0.0002. After generation of the mesh, the free energy surface (FES) is also discretized into

points defined by the tuple (ϕA, ϕB, f̃(ϕA, ϕB)). The convex hull (ϕCH
A , ϕCH

B , f̃CH(ϕCH
A , ϕCH

B )) of

the FES is calculated using the Quickhull algorithm.53 The convex hull of a non-convex FES

will necessarily deform the original simplices and facilitate the identification of cotangent

points on the FES. If one of the projected simplices has three unstretched sides (maximum

edge length within five times initial mesh size39), the system is homogeneous (no phase-

separation). If two sides are stretched (side length greater than five times the initial mesh

size), the two farthest vertices are cotangent, indicating two coexisting phases. If all three

sides are stretched, the three vertices of the simplex are cotangent, indicating three coexist-

ing phases. With graph theoretic techniques, the number of equilibrium phases and their

compositions can be determined.

10



2.3 Machine learning details

We explore machine learning algorithms as computationally expedient and generalizable

alternatives to more traditional approaches for characterizing phase coexistence of mul-

ticomponent systems. Neural network architectures, with and without physics-informed

loss functions, are optimized using data generated by the algorithms described in Section

2.2. The performance of the ML models is evaluated based on predicting the number of

coexisting phases, their compositions, and relative abundance for FH models not featured

in training data.

Dataset description. The dataset in this work is comprised of 1,036 phase diagrams:

107 diagrams (10%) with no phase separation (one phase), 538 diagrams (52%) with up to

two-phase coexistence, and 391 diagrams (38%) with up to three-phase coexistence. Each

phase diagram is produced using the methods of Section 2.2 with a distinct parameter set:

s = (χ,v) = (χAB, χBC, χAC, vA, vB, vC).

Parameters for the models are each selected from the range vi ∈ [1, 3] and χij ∈ [1, 3]

where values for both ranges are discretized with a resolution of 0.1. Let s denote a parame-

ter set and U denote the set of all possible parameter sets. With the given discretization, the

total membership of U is then |U | = 216. Initially, 750 possible parameter sets are randomly

selected from U with uniform probability to form S ⊂ U ; care is taken to ensure that all

parameter sets from this sampling are unique. From this initial sampling, only around 6.6%

(≈ 50) of the selected parameter sets yielded three-phase coexistence. Using these parameter

sets to define T ⊂ S, the representation of such rare systems is augmented by generating six

additional parameter sets for each parameter set t ∈ T . Each new parameter set t′ is gener-

ated from t by adding a Gaussian random vector X. In particular, we use t′ = t + X with

X ∼ N (0, σ2I) where σ = 0.005. All t′ that yielded three-phase coexistence are collected and

added to S, resulting in a final membership of |S| = 1, 036 parameter sets.

Input and output labels for the dataset are then generated as follows. First, the
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composition-space of the mixture is discretized into a uniform mesh with resolution 10−4.

For each parameter set, if there are more than 1,000 single-phase simplices, the centroid of

1,000 randomly chosen simplices is added to the database; otherwise, the centroid of all

single-phase simplices is added. For double-phase simplices, if there are more than 1,000,

a random point between the ends of 1,000 randomly chosen double-phase separations is

generated; otherwise, a random point between each double-phase separation is added. For

multiple three-phase separations, a uniform number of points is generated in each region,

ensuring a total of 1,000 three-phase points in the database. Since the number of single and

double-phase simplices are determined by the size of the discretization mesh, the number

of data points per each parameter set can vary.

For each tuple (ϕA, ϕB) the number of equilibrium phases, their compositions, and

their abundances are recorded. In this fashion, we define an input vector x =

(χAB, χBC, χAC, vA, vB, vC, ϕA, ϕB) ∈ R8 that is linked to two outputs. The first output is a

one-hot encoded classification vector yc ∈ R3, for which a nonzero entry indicates the

presence of one, two, or three phases at equilibrium. The second output is a vector yr ≡(
ϕα

A, ϕ
α
B , ϕ

β
A, ϕ

β
B, ϕ

γ
A, ϕ

γ
B, w

α, wβ, wγ
)
∈ R9, which describes the composition and abundances

of the equilibrium phases. The phases are ordered such that ϕα
A has the minimum value

among all ϕA

(
ϕα

A ≤ ϕβ
A ≤ ϕγ

A

)
. If two phases have the same ϕA, they are further ordered

according to ϕB. Such an ordering ensures a consistent representation of the equilibrium

phases.

For systems with a single phase, ϕα
A, ϕ

α
B match the inputs ϕA, ϕB, and wα is set to unity; the

abundance entries for phases β and γ are set to zero. However, the composition abundance

entries for phases β and γ are assigned a value of 1/3. The value 1/3 is chosen to distribute

errors uniformly across species. The absolute composition of these species in equilibrium

will be determined by the abundance of the respective phases. For systems with two

equilibrium phases, entries for the third phase compositions (i.e., ϕγ
A, ϕγ

B) are set to 1/3, and

the abundance wγ is set to zero.
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Model architectures. Figure 2 summarizes model architectures in this study; all mod-

els are implemented using PyTorch.54 Every model takes as input x and predicts two

outputs: ŷc ∈ R3 and ŷr ∈ R9. The output ŷc is a classification vector containing the

probabilities that x yields one, two, or three phases. The output ŷr is a regression vector

with entries associated with predicted equilibrium compositions and weights (in the same

order as for yr).

The basic model architecture consists of three, fully-connected hidden layers, each with

m (tunable hyperparameter) hidden units; this yields a hidden vector h ∈ Rm. This hid-

den vector is then passed through a “classification layer” with softmax activation to yield ŷc.

This vector is also fed into separate “regression layers” to predict the composition (ϕα, ϕβ, ϕγ)

and abundance (w). Each regression layer consists of three hidden units, representing the

composition of A, B, and C for each phase, and the abundance of α, β, and γ phases. Sig-

moid activation is applied to limit predicted values on compositions and abundances to be

between zero and unity, which avoids obviously unphysical values; however, overall com-

position and abundance constraints are not enforced. Since the composition of C depends

on A and B, only the predictions for A and B compositions are kept and combined with the

abundance predictions to form ŷr.

We also consider a variation on the basic model architecture that enforces consistency be-

tween ŷr and the majority class featured in ŷc. This is achieved using a mask-layer that sets

abundance entries in ŷr to zero based on the plurality class indicated in ŷc (see dashed box

in Figure 2). For example, if one equilibrium phase is predicted, then abundance entries as-

sociated with the β and γ phase are set to zero. If two equilibrium phases are predicted, then

entries associated with the γ phase are set to zero. If three equilibrium phases are predicted,

then ŷr is preserved from the regression layer. Compositions of species for non-existent

phases are set to 1/3, as described earlier. To enforce constraints on overall composition

and abundance, the physics-informed (PI) model incorporates softmax activation functions,

ensuring that predicted phase compositions and abundances sum to unity. As an alternative

approach, following the masking, softmax normalization is applied to the abundances to en-
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sure their sum equals unity.

Loss functions. Models are optimized using loss functions that target raw numerical ac-

curacy as well as physical sensibility. Both the simple baseline and PI models optimize a

composite loss function

Lbase = λCELCE + LMAE (14)

that combines losses for classification cross-entropy (CE), LCE, and regression mean abso-

lute error (MAE) loss, LMAE. The weighting parameter (λCE = 0.1) is determined empirically

to balance loss magnitudes throughout training. While a perfect and physically meaning-

ful model would necessarily minimize Lbase, with data limitations, simply minimizing the

baseline loss function may not strictly satisfy all the criteria prescribed for thermodynamic

systems at equilibrium. We therefore also consider augmented PI models (referred to as PI+)

optimized with a composite loss function that includes additional regression targets

LPI = Lbase + λsplitLsplit + λ∆µL∆µ + λfLf (15)

where λsplit = 0.01, λ∆µ = 0.01, and λf = 0.001 (identical across all models) are weighting

parameters chosen through empirical tuning. These values balance the influence of the PI

losses to focus on minimizing Lbase while incorporating physical constraints. The specific

functional forms for these PI losses are described next.

In Eq. (15), the additional loss terms aim to satisfy different constraints on the thermody-

namics of physical systems. In particular, Lsplit relates to constraints on the total composition

of a given species distributed across phases:

Lsplit =
∑

i∈{A,B}

(
ϕi −

∑
π∈{α,β,γ}

wπϕπ
i

)2
, (16)
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Figure 2: Architectures of the machine learning models. In both the baseline and physics-
informed (PI) models, the parameter vector x is fed into the model to produce an interme-
diate hidden vector h. The hidden vector h produces two outputs: (1) a phase classification
probability vector ŷc, trained with cross-entropy (CE) loss, and (2) an equilibrium compo-
sition and abundance vector ŷr, trained with mean absolute error (MAE) loss. Softmax ac-
tivation is applied in PI models to ensure that the equilibrium composition and abundance
vectors sum to unity. Optional functionalities (indicated by dashed lines and boxes) include
a “mask”, activated based on ŷc, which sets corresponding elements in ŷr to zero if an input
is classified as one- or two-phase. For PI models, softmax renormalization is applied to the
masked abundance to ensure the sum equals unity. Additionally, in PI models, a PI compos-
ite loss can be incorporated alongside the MAE loss during training for ŷr prediction.
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The second term L∆µ relates to the condition of equal chemical potentials for species across

coexisting equilibrium phases. This loss is calculated as

L∆µ =
1

2

∑
π

∑
π′

∑
i∈{A,B,C}

log
(
1 + (∆µππ′

i )2
)

(17)

where ∆µππ′
i is as defined in Eq. (12), and the first two summations are over the ground-

truth equilibrium coexisting phases (i.e., π, π′ ∈ {α, β} for two-phase coexistence and π, π′

∈ {α, β, γ} for three-phase coexistence). The additional term Lf promotes the minimization

of the free energy of the equilibrium system:

Lf =
∑
π

∑
i∈{A,B,C}

wπϕπ
i µ

π
i (18)

We acknowledge there are various reasonable ways to constraint losses for physical

constraints; the current work examines the overall strategy of incorporating physical

information into the ML workflow rather than identifying optimal implementations.

Model training and assessment. To assess model generalizability and mitigate selec-

tion bias on test data, a nested five-fold cross-validation (CV) procedure is used. Stratified

sampling is employed to evenly distribute diagrams featuring one, two, and three phases

across the five folds. Then, five iterations are performed in a process referred to as the outer

CV. Each iteration uses a unique fold as the test set and the remaining four folds as the

overall training set to provide a more robust assessment of model performance.

The overall training set is further divided into training and validation sets, using a similar

five-fold CV approach (inner CV) to the outer CV process. Each fold of the inner CV is trained

with 10% of the training data for efficient hyperparameter optimization. Tunable hyperpa-

rameters include batch sizes of {5000, 10000, 20000}, learning rates of {0.001, 0.005, 0.01}, the

presence (or absence) of a mask, and the number of neurons selected from {64, 128, 256} for

each hidden layer. The optimal hyperparameter setting for each fold is identified by the
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highest average validation composite score across five sub-folds, calculated as the sum of

the F1 score for classification and the average R2 score.

Each fold of the outer CV uses the optimal hyperparameter settings identified from its

corresponding five-fold inner CV and retrains the model for up to 500 epochs. The retraining

involves selecting 80% of the overall training diagrams as the training set and 20% as the

validation set, using the same stratified splitting. During the retraining process, the impact

of training data sizes on model performance is assessed by using 1%, 5%, 10%, 20%, 30%,

and up to 100% of the training data. Because each diagram contains a different number of

data points, the number of training, validation, and test set data points ranges from 1,447,511

to 1,458,241, from 358,987 to 366,470, and from 452,308 to 460,074.

The nested CV strategy yields a mean and standard deviation of F1 and R2 scores as

determined from the five-fold outer CV test sets. Given the imbalanced phase distribution

in the dataset, the F1 score evaluates classification performance, while the R2 score assesses

regression accuracy for the variables in yr.

2.4 Post-inference optimization

We implement a post-inference optimization procedure to correct some deficiencies in ML

model predictions. This procedure uses the predictions from the ML model as a warm-

start on initial values for more traditional optimization algorithms (e.g., truncated Newton

method). The objective function for minimization is

Lpost =

1

2

∑
π

∑
π′

∑
i∈{A,B,C}

log

(
1 +

(
∆µππ′

i

)2)+ 1wα<1(1− 1wγ>0)Lcol (19)

where 1c is an indicator function equal to unity when the condition c is satisfied and zero

otherwise and

Lcol =
1

2

∑
π

∑
π′

ϕπ − ϕ

∥ϕπ − ϕ∥
· ϕπ′ − ϕ

∥ϕπ′ − ϕ∥
. (20)

17



For both Eq. (19) and (20), the first two summations are over predicted equilibrium coex-

isting phases (i.e., π, π′ ∈ {α} for a single equilibrium phase, π, π′ ∈ {α, β} for two-phase

coexistence, and π, π′ ∈ {α, β, γ} for three-phase coexistence). Eq. (20) is specifically rele-

vant for two-phase coexistence and is minimized when the tie-line composition vectors are

collinear and oriented in opposite directions. The indicator function 1wα<1 excludes com-

putation of Lcol when there is only a single predicted phase, as this term would otherwise

diverge. In fact, this procedure has no effect when only a single equilibrium phase is pre-

dicted. Relatedly, we note that this algorithm is asymmetrically robust against erroneous

misclassification of the system phase behavior. If the predicted number of phases exceeds

the true number of phases, then converged solutions will “collapse” compositions onto those

of the true equilibrium phases. However, this procedure will not identify the true solution

if the predicted number of phases is fewer than the ground-truth number.

The final optimization employs the Newton-CG optimizer in scipy module in Python.

The Jacobian and Hessian matrix for the objective function are computed using the

autograd package through automatic differentiation. The maximum number of iterations

for optimization is limited to 10,000. If newly optimized compositions are within a toler-

ance of 10−7 of the ideal value of the objective function, these values replace the predictions

proffered by the ML model. Optimizations are only considered successful if they satisfy the

stability criterion |Hf̃ | > 0 (see Eq. (6)).

3 Results

3.1 Performance with a basic architecture

With the standard loss functions (i.e. LCE and LMAE) and a basic architecture, the ML model

predicts phase separation and equilibrium compositions reasonably well. Figures 3a and 3b

qualitatively depict performance in both classification and regression for some representa-

tive phase diagrams. Figures 3c and 3d quantitatively summarize results across all phase
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Figure 3: A summary of the baseline model. a) Classification of the number of coexist-
ing phases. The background color in all phase diagrams denotes the ground truth phase:
gray (one-phase), blue (two-phase), and red (three-phase). Scatter points represent the pre-
dicted phase splits for a given initial composition, and the legend colors indicate the types
of predicted splits. b) Predicted equilibrium compositions. Blue and orange scatter points
represent two-phase equilibrium compositions. The yellow dashed line is a tie line for the
two-phase split. Red scatter points depict composition that split into three phases. The red
dashed triangle connects the three compositions at equilibrium. c) Confusion matrix for the
predicted number of equilibrium phases. Diagonal entries represent correctly classified in-
stances, while off-diagonal entries represent misclassifications. d) Parity plot for predicted
equilibrium compositions. The diagonal dashed line represents perfect performance.
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diagrams.

The ML model capably predicts the number of phases at equilibrium with an overall

accuracy rate of about 97% (Figure 3c). The primary source of error (4.6%) stems from mis-

classifying three-phase points as two-phase, which is attributed to the relative paucity of

three-phase splits (only 17% of the total data). Additionally, a significant number of two-

phase points (2.2%) are misclassified as one-phase. A closer inspection of predicted phase

diagrams indicates that misclassifications mostly occur near binodals.

The model also performs well in predicting phase abundances and their compositions

(Figure 3d). By inspection, there are vertical error regions in the predicted abundance for

all phases at true abundances of 0 and 1. These errors stem from inaccurate predictions

of equilibrium abundance for non-existent phases, such as phases β and γ in a one-phase

region and phase γ in a two-phase region. This misprediction also leads to similar error

regions for equilibrium compositions around 1/3.

Table 1 provides the baseline expectations for a standard ML model. It highlights nu-

ances in regression performance across different phase regions. The single-phase region has

the lowest average MAE (0.006), followed by the two-phase (0.023) and three-phase (0.037)

regions. This trend suggests increasing difficulty in predicting compositions as the number

of coexisting phases increases. Notably, all R2 values remain high across all phases, with the

three-phase region exhibiting a value above 0.88.

Table 1: Performance of representative models for equilibrium composition prediction
on the test set across different phase regions. Mean values are reported with standard
deviation in parentheses. The bold and underscored number indicates the best result.

MAE R2

Base PI PI+ Base PI PI+

One-phase 0.006 (0.001) 0.005 (0.001) 0.005 (0.001) 0.982 (0.005) 0.987 (0.004) 0.988 (0.003)
Two-phase 0.023 (0.003) 0.022 (0.001) 0.023 (0.003) 0.912 (0.015) 0.915 (0.009) 0.913 (0.015)

Three-phase 0.037 (0.006) 0.038 (0.003) 0.038 (0.008) 0.884 (0.038) 0.883 (0.023) 0.889 (0.041)
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Figure 4: Impact of physical constraints and data size on phase-coexistence prediction.
a) Comparison of test set phase classification F1 and equilibrium composition prediction
R2 across baseline (base), physics-informed (PI), and augmented PI (PI+) models, with and
without classification masks, using five-fold cross-validation (CV). Bars represent mean val-
ues, and error bars indicate standard deviations. b) The impact of training data size on
model performance. Each dot represents the average score calculated across the five-fold
CV.

3.2 Performance with physics-informed losses and consistency constraints

To build on the prior model, we evaluate the potential of incorporating additional phys-

ical information on prediction accuracy (Figure 4a). In particular, physical constraints on

overall composition and abundance, along with several physics-informed losses (detailed

in Section 2.3) are implemented, and classification masks are used to zero the abundances

of non-existent phases. While the baseline, PI, and PI+ models without classification masks

achieve comparable F1 and R2 scores, models with masks significantly underperform in

equilibrium composition prediction (Figure 4b).

The baseline model exhibits lower accuracy compared to the PI and PI+ models in one-

phase and two-phase regions, while its performance is comparable to other models in three-

phase scenarios (Table 1). The PI and PI+ models show similar performance across all sce-

narios under these metrics. The coexistence curve predictions of both the PI and PI+ mod-

els are similar (Figures 5a, 6, and S6), producing smooth and physically sensible two- and

three-phase coexistence curves. In contrast, the baseline model generates erratic two-phase

coexistence curves that significantly deviate from the true curves. This is also evident from
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the distribution of the MAE loss in Figure 5b, where the baseline model (red) has a higher

average MAE than the PI (blue) and PI+ (green) models, which perform similarly. The un-

physical coexistence curves of the baseline model highlight the limitations of using broad

performance metrics to assess improvements in predictive accuracy. Errors are better re-

solved by examining deviations in chemical equilibrium potential (∆µ) and split loss (Lsplit),

where the baseline model shows significantly larger errors than both the PI and PI+ models.

To further examine the impact on composition and abundance constraints, we analyze

two additional metrics: Lunity, which relates to the volume fractions of each species within

a given phase, and Lweight, which measures overall material conservation. These metrics are

defined as:

Lunity =
∑

π∈{α,β,γ}

ReLU (ϕπ
A + ϕπ

B − 1) , (21)

and

Lweight =
(
1−

∑
π∈{α,β,γ}

wπ
)2
. (22)

Since the PI and PI+ models enforce unity in composition and abundance through the soft-

max activation function, Lunity and Lweight remain zero for these models, whereas the base-

line model violates these constraints (Figure 5b). The PI+ model, trained with additional

constraints, demonstrates smaller deviations in chemical equilibrium potential (∆µ) and

marginally improves composition prediction, split loss, and free energy minimization loss

compared to the PI model. Overall, designing a physics-informed model architecture to

enforce material constraints is essential; however, the addition of extra losses or masks com-

plicates training without yielding significant improvements in phase classification or equi-

librium composition prediction. Therefore, the PI architecture, without additional losses,

emerges as the best practical choice for implementation.
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Figure 5: Comparison of performance metrics and physical constraints among baseline,
PI, and PI+ models. a) Predicted phase coexistence curves for the baseline (left), PI (mid-
dle), and PI+ (right) models. Arrows indicate that both predictions are for the same phase
diagram. The background color in all phase diagrams denotes the ground truth phase: gray
(one-phase), blue (two-phase), and red (three-phase). Blue and orange scatter points rep-
resent two-phase equilibrium compositions. The yellow dashed line is a tie line for the
two-phase split. Red scatter points depict composition that split into three phases. The
red dashed triangle connects the three compositions at equilibrium. b) Data distribution
(shaded bars) and kernel density estimation fits (lines) for performance metrics and physi-
cal constraints. Vertical dashed lines indicate mean values.
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3.3 Performance with limited data

Having achieved accurate phase-coexistence predictions with a dataset of over 1.4 million

data points, we investigated whether PI models would be more data efficient and achieve

comparable performance with less data. Figure 4b demonstrates that even with only 10%

of the data, the PI and PI+ models maintain high accuracy in phase classification (F1: 0.967

and 0.967, respectively) and equilibrium composition prediction (R2: 0.937 and 0.935, re-

spectively). In contrast, the baseline model performs worse in equilibrium composition pre-

diction (R2: 0.930) but achieves comparable accuracy in phase classification (F1: 0.967). The

advantages of incorporating composition and abundance constraints are particularly evi-

dent in low-data scenarios (training with 1% and 5% of the data), where the PI and PI+

models significantly outperform the baseline. Although the PI+ model slightly outperforms

the others with the full dataset (F1: 0.972, R2: 0.946), the improvement over using 10% of

the data is marginal. The predicted phase diagrams with coexistence curves (Figures S2, S4,

S5) using 10% of the data are qualitatively accurate across the baseline, PI, and PI+ mod-

els. These findings underscore the critical role of physical constraints in enhancing model

generalization under limited data conditions.

3.4 Post-ML optimization

Seeded with ML predictions, a Newton-CG method can efficiently converge to arbitrarily

accurate and precise equilibrium compositions. The PI model, trained on the full dataset,

delivers accurate optimized phase diagrams (Figure 6c and S1), even in systems with mini-

mal two-phase regions at the boundary. Both the baseline and PI+ models achieve compara-

ble performance after post-ML optimization (Figures S3-S6). Remarkably, all models, even

when trained on only 10% of the data, still produce accurate phase diagrams after post-

ML optimization (Figures S2, S4, S5). This combination of efficiency and accuracy could

enable the handling of more complex systems and scaling to resource-intensive measure-

ments, where data may be sparse or scarce.
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Table 2: Performance of equilibrium composition prediction with machine learning (ML)
and post-optimization prediction. Mean absolute errors (MAE) for the composition of
species A and B from the fold 1 model are reported, with standard error of the mean in
parentheses. The best result is bold and underlined.

Data size Two-phase (×10−2) Three-phase (×10−2)

ML Prediction Post-optimization ML Prediction Post-optimization

Base 100% 2.40 (0.01) 0.88 (0.02) 3.66 (0.03) 2.76 (0.03)
PI 100% 2.39 (0.01) 0.87 (0.02) 3.19 (0.02) 2.45 (0.03)

PI+ 100% 2.94 (0.01) 0.95 (0.02) 4.26 (0.03) 3.32 (0.03)

Base 10% 2.92 (0.01) 0.96 (0.02) 3.93 (0.02) 2.94 (0.06)
PI 10% 2.95 (0.01) 1.03 (0.02) 4.58 (0.03) 3.56 (0.03)

PI+ 10% 2.36 (0.01) 0.83 (0.02) 3.98 (0.03) 3.00 (0.03)

Post-ML optimization error analysis was performed on a random sample of 187 two-

phase and 76 three-phase equilibrium phase diagrams, using models trained on fold 1 data

(Tables 2 and S1). The results indicate that Newton-CG optimization, initialized with pre-

dictions from ML models, achieves near-perfect success rates and significantly reduces de-

viations from true equilibrium compositions compared to individual ML model predictions.

After post-ML optimization, the PI model trained on the full dataset outperformed both

the baseline and PI+ models in predicting two-phase and three-phase coexistence. The PI+

model trained on the full fold 1 dataset exhibited the lowest initial ML prediction accuracy,

leading to the worst post-ML optimization performance. This underscores the importance of

initial ML prediction accuracy in determining the effectiveness of the post-ML optimization

process. Interestingly, all models achieved high success rates and minimal prediction errors

in two-phase scenarios, even when trained with limited data. The PI+ model trained on 10%

of the data demonstrated the highest accuracy in two-phase predictions. However, predict-

ing three-phase equilibrium compositions remained challenging, with difficulties persisting

even after post-ML optimization. This disparity likely stems from the relative scarcity of

three-phase coexistence in the training set, which increases complexity and complicates pre-

cise prediction.

The post-ML optimization process is also efficient and parallelizable – taking less than 1
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Figure 6: PI model performance in phase-coexistence prediction. a) Classification of the
number of coexisting phases. The background color in all phase diagrams denotes the true
phase: gray (one-phase), blue (two-phase), and red (three-phase). The scatter points indicate
the predicted phase splits for a given initial composition. Colors in the legend denote the
types of predicted splits. b) Predicted coexistence curves. Blue and orange scatter points
indicate two-phase coexistence curves, with the yellow dashed line denoting an example tie
line. The vertices of the red triangle indicate three-phase coexistence points. c) Coexistence
curves produced with the post-ML optimization strategy. The results are obtained using ML
inference to warm-start Newton-CG optimization.
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second to converge to the optimal solution (Table S1). The ML model training requires less

than 1 MB for 140,000 parameters, a substantial reduction in memory usage compared to arc

continuation or convex hull methods, which demand approximately 1 GB of storage and 50

GB of memory per run. Overall, the accurate ML predictions of equilibrium compositions

enable rapid convergence to highly accurate solutions, offering significant advantages in

both memory- and time-efficiency.

4 Conclusions

In this work, we presented an efficient and extensible machine learning-based approach for

calculating phase coexistence in ternary systems. A neural network trained on phase co-

existence data was able to predict the number and compositions of equilibrium phases for

a solution prepared at a given composition under a specific mixing potential. Incorporat-

ing physical constraints into the neural network architecture enhanced prediction accuracy,

while additional physics-informed losses offered no significant improvement. The physics-

constrained architecture produced higher-quality models with less data, offering advantages

in scenarios where data acquisition is labor- or resource-intensive. However, the resulting

models still exhibit errors that may be unacceptable for certain applications, such as process

simulation software. To achieve precise results, a Newton conjugate gradient method was

used, with machine-learning predictions serving as a warm start for optimization to deter-

mine final equilibrium phase compositions. This integration of neural networks with nu-

merical refinement enabled rapid and accurate predictions of coexisting phases, their com-

positions, and abundances.

This work motivates several areas of future inquiry. Extensions to systems with more

components would increase utility for complex industrial and biological processes. Ex-

panding beyond the Flory-Huggins theory by incorporating other free energy models or

data from molecular simulation, perhaps in a single framework, would further enhance its

generalizability across diverse chemical systems. Additionally, exploring more advanced
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physics-informed learning strategies, incorporating uncertainty quantification, and refining

neural network architectures could boost prediction efficiency and reliability. Collectively,

these directions could enhance both the theoretical and practical impact of leveraging ML

for phase coexistence calculations.
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