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Abstract

Phase separation in multicomponent mixtures is of significant interest in both fun-
damental research and technology. Although the thermodynamic principles governing
phase equilibria are straightforward, practical determination of equilibrium phases and
constituent compositions for multicomponent systems is often laborious and computa-
tionally intensive. Here, we present a machine-learning workflow that simplifies and
accelerates phase-coexistence calculations. We specifically analyze capabilities of neu-
ral networks to predict the number, composition, and relative abundance of equilib-
rium phases of systems described by Flory-Huggins theory. We find that incorporating
physics-informed material constraints into the neural network architecture enhances the
prediction of equilibrium compositions compared to standard neural networks with mi-
nor errors along the boundaries of the stable region. However, introducing additional
physics-informed losses does not lead to significant further improvement. These errors
can be virtually eliminated by using machine-learning predictions as a warm-start for a
subsequent optimization routine. This work provides a promising pathway to efficiently

characterize multicomponent phase coexistence.


mawebb@princeton.edu

1 Introduction

Phase coexistence in multicomponent systems is ubiquitous in nature and technology. Ex-
amples range from diverse purification processes in the chemical industry!= to the for-
mation of membraneless organelles via liquid-liquid phase separation in biology.*!" Thor-
ough characterization of multicomponent phase equilibria involves not only identifying the
phases present but also determining their composition and abundance, as the distribution
and composition of species across phases significantly affect system properties and func-
tions. This information guides processing methods and underlies calculations in process-
simulation software. Critically, these calculations can constitute a substantial fraction of the
overall computational time dedicated to simulation.'? Current multiphase flash calculation

1213 are sensitive to initial

schemes require knowledge of the number of equilibrium phases,
guesses,'* and can converge to spurious or trivial solutions if root-finding is not appropri-
ately bounded and constrained. !® Therefore, efficient and accurate methods for predicting
equilibrium states are valuable for both industrial applications and fundamental research.
At equilibrium, species distribute across phases based on the extremization of an appro-
priate thermodynamic potential. For example, minimization of the Gibbs energy dictates
equilibrium for a system at specified temperature 7', pressure p, and global composition z;.
Equilibrium phase-coexistence arises when species partition into distinct phases with equal

chemical potentials driven by the extremization, rather than forming a homogeneous mix-

ture. For a system at fixed 7" and p, this yields

s (Tap, {fvj}‘”‘> =} (T,p, {ﬂfj}ﬁ> Vi (1)

where 4] is the chemical potential of species i € {A,B,C,...} in phase 7 € {a, #} with com-
position {z;}" = {2z}, 2f, zZ,... }. Eq. (1) constrains the equilibrium state of the system, as
manifest in Gibbs” phase rule (i.e. ¥ = N — P + 2 where F is the number of independent

intensive relationships needed to specify a system of N species and P phases). Provided a



thermodynamic model for describing the mixture behavior as a function of intensive vari-
ables, Eq. (1), or its equivalent at other conditions, functionally comprises N(P — 1) equa-
tions to solve for the compositions of the various phases, with others fixed. The complexity
of identifying equilibrium states can vary, even while the underlying thermodynamic frame-
work is straightforward.

Determining the conditions, expected phases, and the chemical nature of species usually
depends on appropriately parameterized equations-of-state or available free-energy models.
For condensed phases and binary mixtures, there are several simple free-energy models like
the Margules equations,'” the van Laar model,'® or the Guggenheim-Scatchard /Redlich-
Kister equation. ' More complex models such as the Wilson models, non-random two-liquid
(NRTL) models,® universal quasi-chemical theory (UNIQUAC),*! UNIQUAC Functional-
group Activity Coefficients (UNIFAC) models, ***% Flory-Huggins theory* can treat multi-
component systems. Although increasing complexity of the free-energy model or equation-
of-state can facilitate more accurate representation of physical systems, the underlying cal-
culations and theoretical principles for phase behavior remain the same for simple and com-
plex models alike.

Given a thermodynamic model, calculating phase stability and equilibrium composi-
tions can be approached in various ways. Simple models and binary mixtures may yield
algebraic relationships that can be handled analytically or resolved using simple numeri-
cal schemes, such as self-consistent iteration or Newton’s method. However, characterizing
multicomponent phase coexistence typically requires dedicated software and more sophisti-
cated numerical algorithms. Many algorithms are designed to work for only a specific set or
number of phases.? Direct solution methods based on Newton's root-finding algorithm can
be effective but are computationally intensive and sensitive to the initial seed. Jindrova et
al. refined Newton’s algorithm and a successive substitution strategy to locate roots. Addi-
tionally, Nichita,?*? Jindrova, *!® and Castier” independently performed volume stability
analysis to obtain better initial guesses for the substitution strategy. There has been sig-

nificant development in generating phase diagrams using constrained backmapping search



algorithms. >0

Indirect solution methods, based on thermodynamic principles and geometric criteria es-
tablished via stability analysis, offer alternative approaches. Examples include Korteweg'’s
tangent construction® and Binous and Bellagi’s arc extension method.* Michelsen’s multi-
phase flash algorithm® minimizes the distance between the tangent plane and the free en-
ergy surface to identify coexisting phases. Homotopy methods have also been used to calcu-
late critical and saturation properties of mixtures.*”® Additionally, Mao et al.* generalized
phase-diagram construction to multicomponent systems using a convex-hull construction®
applied to a discretized free-energy manifold, although accuracy and memory requirements
depend on the mesh size. Overall, there is a need for simple, generalizable, and efficient
methods for phase-coexistence calculations.

Machine learning (ML) techniques facilitate phase-coexistence calculations, offering
prospective advantages relating to time- and memory-efficiency relative to more traditional
optimization strategies.* " However, many efforts only address the issue of phase stability
and neglect consideration of phase composition.** ¢ Others have been restricted to binary
systems with limited demonstration of more complex mixtures.* " Recently, Flory-Huggins
(FH) theory has been combined with ML to improve the interpretability and accuracy of
mixture behavior predictions, but limitations exist in their ability to handle complex interac-
tions and multicomponent systems beyond binary mixtures.**’ Nevertheless, such works
highlight the potential of ML as part of a generalizable, accurate, efficient, and extensible
framework for characterizing multicomponent phase behavior.

Here, we describe a data-driven workflow to characterize the phase behavior of mul-
ticomponent systems. Figure 1 illustrates the overall approach in the context of ternary
systems described by Flory-Huggins (FH) theory. Using FH theory as a representative free-
energy model, we construct a series of phase diagrams across the model parameter space
using labor-intensive methods. This data is then used to develop an ML surrogate model,
based on neural network architectures, to predict the number, composition, and relative

abundance of equilibrium phases from model parameters and total system composition.



Surrogate models optimized with and without physics-informed architectures and loss func-
tions are compared. Errors are assessed for classification (number of equilibrium phases)
and regression (composition and abundance of phases). Predictions from the surrogate
model, which are computationally efficient and improvable, are then used to warm-start
a simple optimization to precisely and accurately characterize the system’s phase behav-
ior. This procedure exemplifies an efficient, accurate, and extensible approach to phase-

coexistence calculations.
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Figure 1: Strategy for multi-component phase-coexistence prediction using machine
learning. 1,036 ternary phase diagrams are generated using the algorithm arc continua-
tion algorithm (Equations 6-8) and convex hull construction algorithm,? and are used as
training data for a physics-informed machine learning (ML) model to classify phase regions
and predict equilibrium phase compositions. The ML predictions serve as initial guesses for
the Newton-CG method to obtain equilibrium composition predictions.



2.1 Thermodynamic framework

For demonstration, we consider the thermodynamics of ternary systems described by FH
solution theory. Systems are comprised of species A, B, and C that occupy a lattice of n
sites with volume V' = nwv,. The species can possess size disparities, reflected in their molar
volumes v;. For a polymer comprised of V; monomers that each occupy a single lattice site,
v; = N;up. Systems are incompressible such that V' = ). n,u; where n; is the mole number
for species i. System composition is specified by the volume fractions ¢; = (n;v;)/V with

Zie{A,B,C} b = 1.

The dimensionless, intensive (per lattice site) Helmholtz energy of mixing follows as

; o !
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where 8 = (kgT)~! is the inverse temperature with kg as Boltzmann’s constant, and Y;; is
the Flory-Huggins interaction parameter for species i and j with y;; = 0; the summations
are over all components (A, B, C). Altogether, the behavior of a system is determined by
the composition ¢ = (¢a, ¢5, ¢c), the molar volumes of the species v = (va, v, vc), and the
interaction parameters X = (xaB, Xac, XBC)-

Up to a constant, chemical potentials are obtained by partial differentiation of the

Helmholtz energy of mixing;:

1 (2vd] .
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Using Eq. (2) in Eq. (3), this yields
Bu(T,V,d) = In(¢1) + > ¢ (1 -~ 5—) 0 DD bl — %W (4)
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where the summations exclude the species for which the chemical potential is being assessed



(e.g., for y14, the summation for j # i is equivalent to that for j € {B,C}).
The thermodynamic stability of a mixture is assessed by considering the determinant of

the Hessian matrix for the Helmholtz energy. For
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the spinodal boundary of a ternary mixture is the locus of all compositions that solve
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Critical points are identified by additionally considering constraints on third-order deriva-
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For fixed total particle density (p = n/V) and constant temperature, Gibbs” phase rules
indicate there can be at most three coexisting phases. To characterize three-phase coexis-
tence, there are 12 variables. Nine correspond to the volume fractions in each phase: ¢, o°,
and ¢7, for which each ¢™ = (¢}, ¢f, ¢¢). Three correspond to the fractional abundances of
each phase-w®, w’, and w"). Criteria for chemical equilibrium applied to each species across

each phase

1 (T, p, ¢%) = 1 (T, p, ¢°) = 4 (T, p. &7) 9)
provide six independent equations. For a system with a specified total composition, material
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balance constraints provide the remaining equations:

> ¢7 =1form € {a, v} (10)

> w ¢} = ¢, fori € {A,B,C}. (11)

To characterize two-phase coexistence, the variable count is reduced to eight, with commen-
surate reduction by three equations from Eq. (9) and one equation from Eq. (10). Section 2.2

describes algorithmic approaches for determining equilibrium compositions.

2.2 Phase-coexistence calculations

Two different algorithms are used to characterize phase-coexistence based on the principles
outlined in Section 2.1. For systems with at least one critical point and two-phase coex-
istence, an iterative and perturbative approach based on natural parameter continuation
(NPC) is used to construct binodal curves originating from a critical point. Otherwise,

the approach described by Mao et al.*

based on convex hull construction (CHC) is used.
NPC is straightforward and computationally efficient but limited, while CHC is general
but computationally intensive. Nevertheless, with this combination, the equilibrium
composition of phases at coexistence can be reliably determined for models described by

FH solution theory. The following algorithms are thus used to provide ground-truth results

and requisite training data for the development of ML models (Section 2.3).
Natural parameter continuation (NPC). For two-phase coexistence, Eq. (9) is rearranged as
ApP (T, p, %, ¢°%) =y — & = 0 fori € {A,B,C}. (12)

Provided a point on the coexistence curve ¢*, a nearby point can be identified by solving a

set of linear equations that enforce Eq. (12) following a small perturbation in the composi-



tion:

3 Z aA“z 5¢7 = 0 for i € {A,B,C} (13)

je{AB} ™ o*

where §¢7 is the small perturbation in the composition of species j in phase m. Coexistence

curves (i.e., a locus of equilibrium composition tuples) can then be constructed as follows:

—_

. Define tolerance parameters 2 and 4°.
. Identify and set the critical point to be ¢*.

. Generate a random, small perturbation on the composition d¢, yielding two new com-

positions: ¢’ = ¢* + 0¢ and @” = ¢* — J¢p

Use the compositions ¢’ and ¢” as initial guesses to solve Eq. (12), producing coexist-
p & q p g

ing compositions ¢, and qbffew that are distinct from ¢*.

new

. Set @74 <+ ¢l and and use for Eq. (13). Set one of the d¢] (e.g., §) to a small

perturbation and solve for the remaining §¢7 to produce 6¢ and §¢”'.

Set ¢ = ¢ + ¢~ and ¢" = ¢’V + ¢ and use as initial guesses to solve Eq.
(12), producing new coexisting compositions ¢2,,, and ¢he. that are those distinct from

those prior.

Repeat steps 5 and 6 until either |2, — @hew|| < 672, which indicates a closure of the

new

coexistence curves, or when any ¢ < 5°, which indicates termination at a composition

boundary.

. Verify validity of compositions by checking that all have [H;| > 0.

For the calculations described in this paper, 6 = ¢° = 107°. Initial trials for random

composition perturbations are set to have a magnitude of 107 Equations are solved

numerically using fsolve from Python’s SciPy module. Occasionally, the trial perturbations

resulted in solutions that collapsed back to the critical point or other prior generated points,
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in which case new perturbations would be attempted with possibly different magnitudes.

Convex hull construction (CHC). For systems without critical points or valid coexis-
tence curves extending from critical points, the utility of the NPC algorithm is limited. In
such cases, we use the CHC to identify equilibrium compositions. On a free energy surface,
compositions with equal chemical potential are cotangent, while stable compositions
(D > 0) that are not cotangent with any other points exist as single phases. This information
can be accurately reconstructed by creating a convex hull of the free energy surface and
projecting it onto the composition space. We briefly remark on salient aspects of the
algorithm as applied to a ternary system, but readers are referred to the work of Mao et al.*
for a more complete description.

The composition space (¢4, ¢p) is discretized into a mesh of equilateral triangles, or two-
dimensional simplices. Using a finer mesh results in more accurate calculations but also in-
creases computational cost and memory requirements; this work uses a simplex edge-length
of 0.0002. After generation of the mesh, the free energy surface (FES) is also discretized into
points defined by the tuple (¢, ¢, f(¢a, ¢8)). The convex hull (¢§H, pSH, FEH(HGH, ¢SH)) of
the FES is calculated using the Quickhull algorithm.*® The convex hull of a non-convex FES
will necessarily deform the original simplices and facilitate the identification of cotangent
points on the FES. If one of the projected simplices has three unstretched sides (maximum
edge length within five times initial mesh size®), the system is homogeneous (no phase-
separation). If two sides are stretched (side length greater than five times the initial mesh
size), the two farthest vertices are cotangent, indicating two coexisting phases. If all three
sides are stretched, the three vertices of the simplex are cotangent, indicating three coexist-
ing phases. With graph theoretic techniques, the number of equilibrium phases and their

compositions can be determined.
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2.3 Machine learning details

We explore machine learning algorithms as computationally expedient and generalizable
alternatives to more traditional approaches for characterizing phase coexistence of mul-
ticomponent systems. Neural network architectures, with and without physics-informed
loss functions, are optimized using data generated by the algorithms described in Section
2.2. The performance of the ML models is evaluated based on predicting the number of
coexisting phases, their compositions, and relative abundance for FH models not featured

in training data.

Dataset description. The dataset in this work is comprised of 1,036 phase diagrams:
107 diagrams (10%) with no phase separation (one phase), 538 diagrams (52%) with up to
two-phase coexistence, and 391 diagrams (38%) with up to three-phase coexistence. Each
phase diagram is produced using the methods of Section 2.2 with a distinct parameter set:
s = (X,V) = (XaB; XBC, XAC; VA, UB, UC)-

Parameters for the models are each selected from the range v; € [1,3] and x;; € [1,3]
where values for both ranges are discretized with a resolution of 0.1. Let s denote a parame-
ter set and U denote the set of all possible parameter sets. With the given discretization, the
total membership of U is then |U| = 21°. Initially, 750 possible parameter sets are randomly
selected from U with uniform probability to form S C U; care is taken to ensure that all
parameter sets from this sampling are unique. From this initial sampling, only around 6.6%
(= 50) of the selected parameter sets yielded three-phase coexistence. Using these parameter
sets to define T' C S, the representation of such rare systems is augmented by generating six
additional parameter sets for each parameter set ¢ € 7. Each new parameter set ¢’ is gener-
ated from ¢ by adding a Gaussian random vector X. In particular, we use ¢’ = t + X with
X ~ N(0,0°I) where o = 0.005. All ¢’ that yielded three-phase coexistence are collected and
added to S, resulting in a final membership of |S| = 1,036 parameter sets.

Input and output labels for the dataset are then generated as follows. First, the
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composition-space of the mixture is discretized into a uniform mesh with resolution 10~
For each parameter set, if there are more than 1,000 single-phase simplices, the centroid of
1,000 randomly chosen simplices is added to the database; otherwise, the centroid of all
single-phase simplices is added. For double-phase simplices, if there are more than 1,000,
a random point between the ends of 1,000 randomly chosen double-phase separations is
generated; otherwise, a random point between each double-phase separation is added. For
multiple three-phase separations, a uniform number of points is generated in each region,
ensuring a total of 1,000 three-phase points in the database. Since the number of single and
double-phase simplices are determined by the size of the discretization mesh, the number
of data points per each parameter set can vary.

For each tuple (¢4, ¢p) the number of equilibrium phases, their compositions, and
their abundances are recorded. In this fashion, we define an input vector x =
(XAB, XBC, XAC, VA, UB, UC, A, #5) € R® that is linked to two outputs. The first output is a
one-hot encoded classification vector y. € R?, for which a nonzero entry indicates the
presence of one, two, or three phases at equilibrium. The second output is a vector y, =
<gbg, o3, gbi, ¢§7 X, g, W, WP, uﬂ) € R?, which describes the composition and abundances
of the equilibrium phases. The phases are ordered such that ¢4 has the minimum value
among all ¢ (d)i < ¢h < gﬁl). If two phases have the same ¢,, they are further ordered
according to ¢p. Such an ordering ensures a consistent representation of the equilibrium
phases.

For systems with a single phase, ¢%, ¢§ match the inputs ¢4, ¢, and w® is set to unity; the
abundance entries for phases  and + are set to zero. However, the composition abundance
entries for phases 5 and v are assigned a value of 1/3. The value 1/3 is chosen to distribute
errors uniformly across species. The absolute composition of these species in equilibrium
will be determined by the abundance of the respective phases. For systems with two
equilibrium phases, entries for the third phase compositions (i.e., ¢}, ¢3) are set to 1/3, and

the abundance w” is set to zero.
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Model architectures. Figure 2 summarizes model architectures in this study; all mod-
els are implemented using PyTorch.” Every model takes as input x and predicts two
outputs: y. € R and y, € R?. The output y. is a classification vector containing the
probabilities that x yields one, two, or three phases. The output y, is a regression vector
with entries associated with predicted equilibrium compositions and weights (in the same
order as for y,).

The basic model architecture consists of three, fully-connected hidden layers, each with
m (tunable hyperparameter) hidden units; this yields a hidden vector h € R™. This hid-
den vector is then passed through a “classification layer” with softmax activation to yield y..
This vector is also fed into separate “regression layers” to predict the composition (¢%, ¢°, ¢7)
and abundance (w). Each regression layer consists of three hidden units, representing the
composition of A, B, and C for each phase, and the abundance of ¢, /3, and v phases. Sig-
moid activation is applied to limit predicted values on compositions and abundances to be
between zero and unity, which avoids obviously unphysical values; however, overall com-
position and abundance constraints are not enforced. Since the composition of C depends
on A and B, only the predictions for A and B compositions are kept and combined with the
abundance predictions to form y,.

We also consider a variation on the basic model architecture that enforces consistency be-
tween y, and the majority class featured in y.. This is achieved using a mask-layer that sets
abundance entries in y, to zero based on the plurality class indicated in y. (see dashed box
in Figure 2). For example, if one equilibrium phase is predicted, then abundance entries as-
sociated with the 3 and ~ phase are set to zero. If two equilibrium phases are predicted, then
entries associated with the v phase are set to zero. If three equilibrium phases are predicted,
then y, is preserved from the regression layer. Compositions of species for non-existent
phases are set to 1/3, as described earlier. To enforce constraints on overall composition
and abundance, the physics-informed (PI) model incorporates softmax activation functions,
ensuring that predicted phase compositions and abundances sum to unity. As an alternative

approach, following the masking, softmax normalization is applied to the abundances to en-
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sure their sum equals unity.

Loss functions. Models are optimized using loss functions that target raw numerical ac-
curacy as well as physical sensibility. Both the simple baseline and PI models optimize a

composite loss function
Lyase = AceLcr + Laar (14)

that combines losses for classification cross-entropy (CE), L¢g, and regression mean abso-
lute error (MAE) loss, Lyiag. The weighting parameter (Acg = 0.1) is determined empirically
to balance loss magnitudes throughout training. While a perfect and physically meaning-
ful model would necessarily minimize L., with data limitations, simply minimizing the
baseline loss function may not strictly satisfy all the criteria prescribed for thermodynamic
systems at equilibrium. We therefore also consider augmented PI models (referred to as PI+)

optimized with a composite loss function that includes additional regression targets

ﬁPI - Ebase + )\splitﬁsplit + )\A,U,EA,U, + )\fﬁf (15)

where A\gpic = 0.01, Ap, = 0.01, and Ay = 0.001 (identical across all models) are weighting
parameters chosen through empirical tuning. These values balance the influence of the PI
losses to focus on minimizing L}.s While incorporating physical constraints. The specific
functional forms for these PI losses are described next.

In Eq. (15), the additional loss terms aim to satisfy different constraints on the thermody-
namics of physical systems. In particular, Ly relates to constraints on the total composition

of a given species distributed across phases:

Lon=Y (- % wer). (16)

ic{AB} me{a,f}
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Figure 2: Architectures of the machine learning models. In both the baseline and physics-
informed (PI) models, the parameter vector x is fed into the model to produce an interme-
diate hidden vector h. The hidden vector h produces two outputs: (1) a phase classification
probability vector y., trained with cross-entropy (CE) loss, and (2) an equilibrium compo-
sition and abundance vector y,, trained with mean absolute error (MAE) loss. Softmax ac-
tivation is applied in PI models to ensure that the equilibrium composition and abundance
vectors sum to unity. Optional functionalities (indicated by dashed lines and boxes) include
a “mask”, activated based on y., which sets corresponding elements in y, to zero if an input
is classified as one- or two-phase. For PI models, softmax renormalization is applied to the
masked abundance to ensure the sum equals unity. Additionally, in Pl models, a PI compos-
ite loss can be incorporated alongside the MAE loss during training for y, prediction.
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The second term L, relates to the condition of equal chemical potentials for species across

coexisting equilibrium phases. This loss is calculated as

Loy = %Z > tog(1+ (Au)?) (17)

' i€{ABC}

where Auf™ is as defined in Eq. (12), and the first two summations are over the ground-
truth equilibrium coexisting phases (i.e., m, 7’ € {«, 8} for two-phase coexistence and =, 7’
€ {«, 8,7} for three-phase coexistence). The additional term £ promotes the minimization

of the free energy of the equilibrium system:

=% S wror (18)

T i€{ABC}
We acknowledge there are various reasonable ways to constraint losses for physical
constraints; the current work examines the overall strategy of incorporating physical

information into the ML workflow rather than identifying optimal implementations.

Model training and assessment. To assess model generalizability and mitigate selec-
tion bias on test data, a nested five-fold cross-validation (CV) procedure is used. Stratified
sampling is employed to evenly distribute diagrams featuring one, two, and three phases
across the five folds. Then, five iterations are performed in a process referred to as the outer
CV. Each iteration uses a unique fold as the test set and the remaining four folds as the
overall training set to provide a more robust assessment of model performance.

The overall training set is further divided into training and validation sets, using a similar
tive-fold CV approach (inner CV) to the outer CV process. Each fold of the inner CV is trained
with 10% of the training data for efficient hyperparameter optimization. Tunable hyperpa-
rameters include batch sizes of {5000, 10000, 20000}, learning rates of {0.001, 0.005,0.01}, the
presence (or absence) of a mask, and the number of neurons selected from {64, 128,256} for

each hidden layer. The optimal hyperparameter setting for each fold is identified by the
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highest average validation composite score across five sub-folds, calculated as the sum of
the F} score for classification and the average R* score.

Each fold of the outer CV uses the optimal hyperparameter settings identified from its
corresponding five-fold inner CV and retrains the model for up to 500 epochs. The retraining
involves selecting 80% of the overall training diagrams as the training set and 20% as the
validation set, using the same stratified splitting. During the retraining process, the impact
of training data sizes on model performance is assessed by using 1%, 5%, 10%, 20%, 30%,
and up to 100% of the training data. Because each diagram contains a different number of
data points, the number of training, validation, and test set data points ranges from 1,447,511
to 1,458,241, from 358,987 to 366,470, and from 452,308 to 460,074.

The nested CV strategy yields a mean and standard deviation of F; and R? scores as
determined from the five-fold outer CV test sets. Given the imbalanced phase distribution
in the dataset, the F} score evaluates classification performance, while the R? score assesses

regression accuracy for the variables in y,.

2.4 Post-inference optimization

We implement a post-inference optimization procedure to correct some deficiencies in ML
model predictions. This procedure uses the predictions from the ML model as a warm-
start on initial values for more traditional optimization algorithms (e.g., truncated Newton

method). The objective function for minimization is

Lopost = ZZ > log <1+ (Au ) ) + Tyeci (1 = Lyr=0)Lool (19)

T w' ie{ABC}

where 1. is an indicator function equal to unity when the condition c is satistied and zero

otherwise and

o™ — ¢
co 7 . 20
1= ZZ || ¢|| 67 — ¢l (20)
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For both Eq. (19) and (20), the first two summations are over predicted equilibrium coex-
isting phases (i.e., 7, 7’ € {a} for a single equilibrium phase, 7, 7’ € {a, 5} for two-phase
coexistence, and 7, 7' € {«, 3,7} for three-phase coexistence). Eq. (20) is specifically rele-
vant for two-phase coexistence and is minimized when the tie-line composition vectors are
collinear and oriented in opposite directions. The indicator function 1,.; excludes com-
putation of L., when there is only a single predicted phase, as this term would otherwise
diverge. In fact, this procedure has no effect when only a single equilibrium phase is pre-
dicted. Relatedly, we note that this algorithm is asymmetrically robust against erroneous
misclassification of the system phase behavior. If the predicted number of phases exceeds
the true number of phases, then converged solutions will “collapse” compositions onto those
of the true equilibrium phases. However, this procedure will not identify the true solution
if the predicted number of phases is fewer than the ground-truth number.

The final optimization employs the Newt on-CG optimizer in scipy module in Python.
The Jacobian and Hessian matrix for the objective function are computed using the
autograd package through automatic differentiation. The maximum number of iterations
for optimization is limited to 10,000. If newly optimized compositions are within a toler-
ance of 1077 of the ideal value of the objective function, these values replace the predictions
proffered by the ML model. Optimizations are only considered successful if they satisfy the

stability criterion [Hg| > 0 (see Eq. (6)).

3 Results

3.1 Performance with a basic architecture

With the standard loss functions (i.e. Lcg and Lyag) and a basic architecture, the ML model
predicts phase separation and equilibrium compositions reasonably well. Figures 3a and 3b
qualitatively depict performance in both classification and regression for some representa-

tive phase diagrams. Figures 3c and 3d quantitatively summarize results across all phase
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Figure 3: A summary of the baseline model. a) Classification of the number of coexist-
ing phases. The background color in all phase diagrams denotes the ground truth phase:
gray (one-phase), blue (two-phase), and red (three-phase). Scatter points represent the pre-
dicted phase splits for a given initial composition, and the legend colors indicate the types
of predicted splits. b) Predicted equilibrium compositions. Blue and orange scatter points
represent two-phase equilibrium compositions. The yellow dashed line is a tie line for the
two-phase split. Red scatter points depict composition that split into three phases. The red
dashed triangle connects the three compositions at equilibrium. ¢) Confusion matrix for the
predicted number of equilibrium phases. Diagonal entries represent correctly classified in-
stances, while off-diagonal entries represent misclassifications. d) Parity plot for predicted
equilibrium compositions. The diagonal dashed line represents perfect performance.
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diagrams.

The ML model capably predicts the number of phases at equilibrium with an overall
accuracy rate of about 97% (Figure 3c). The primary source of error (4.6%) stems from mis-
classifying three-phase points as two-phase, which is attributed to the relative paucity of
three-phase splits (only 17% of the total data). Additionally, a significant number of two-
phase points (2.2%) are misclassified as one-phase. A closer inspection of predicted phase
diagrams indicates that misclassifications mostly occur near binodals.

The model also performs well in predicting phase abundances and their compositions
(Figure 3d). By inspection, there are vertical error regions in the predicted abundance for
all phases at true abundances of 0 and 1. These errors stem from inaccurate predictions
of equilibrium abundance for non-existent phases, such as phases 3 and 7 in a one-phase
region and phase 7 in a two-phase region. This misprediction also leads to similar error
regions for equilibrium compositions around 1/3.

Table 1 provides the baseline expectations for a standard ML model. It highlights nu-
ances in regression performance across different phase regions. The single-phase region has
the lowest average MAE (0.006), followed by the two-phase (0.023) and three-phase (0.037)
regions. This trend suggests increasing difficulty in predicting compositions as the number
of coexisting phases increases. Notably, all R? values remain high across all phases, with the

three-phase region exhibiting a value above 0.88.

Table 1: Performance of representative models for equilibrium composition prediction
on the test set across different phase regions. Mean values are reported with standard
deviation in parentheses. The bold and underscored number indicates the best result.

MAE R?
Base PI PI+ Base PI PI+

One-phase  0.006 (0.001)  0.005 (0.001)  0.005 (0.001) 0.982 (0.005) 0.987 (0.004)  0.988 (0.003)
Two-phase  0.023 (0.003) 0.022 (0.001) 0.023 (0.003) 0.912 (0.015) 0.915 (0.009) 0.913 (0.015)
Three-phase  0.037 (0.006) 0.038 (0.003) 0.038 (0.008) 0.884 (0.038) 0.883 (0.023) 0.889 (0.041)
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Figure 4: Impact of physical constraints and data size on phase-coexistence prediction.
a) Comparison of test set phase classification F; and equilibrium composition prediction
R? across baseline (base), physics-informed (PI), and augmented PI (PI+) models, with and
without classification masks, using five-fold cross-validation (CV). Bars represent mean val-
ues, and error bars indicate standard deviations. b) The impact of training data size on
model performance. Each dot represents the average score calculated across the five-fold
CV.

3.2 Performance with physics-informed losses and consistency constraints

To build on the prior model, we evaluate the potential of incorporating additional phys-
ical information on prediction accuracy (Figure 4a). In particular, physical constraints on
overall composition and abundance, along with several physics-informed losses (detailed
in Section 2.3) are implemented, and classification masks are used to zero the abundances
of non-existent phases. While the baseline, PI, and PI+ models without classification masks
achieve comparable F; and R? scores, models with masks significantly underperform in
equilibrium composition prediction (Figure 4b).

The baseline model exhibits lower accuracy compared to the PI and PI+ models in one-
phase and two-phase regions, while its performance is comparable to other models in three-
phase scenarios (Table 1). The PI and PI+ models show similar performance across all sce-
narios under these metrics. The coexistence curve predictions of both the PI and PI+ mod-
els are similar (Figures 5a, 6, and S6), producing smooth and physically sensible two- and
three-phase coexistence curves. In contrast, the baseline model generates erratic two-phase

coexistence curves that significantly deviate from the true curves. This is also evident from
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the distribution of the MAE loss in Figure 5b, where the baseline model (red) has a higher
average MAE than the PI (blue) and PI+ (green) models, which perform similarly. The un-
physical coexistence curves of the baseline model highlight the limitations of using broad
performance metrics to assess improvements in predictive accuracy. Errors are better re-
solved by examining deviations in chemical equilibrium potential (Az) and split loss (Lpiit),
where the baseline model shows significantly larger errors than both the PI and PI+ models.

To further examine the impact on composition and abundance constraints, we analyze
two additional metrics: L,,;ty, Which relates to the volume fractions of each species within
a given phase, and Ly.ign;, which measures overall material conservation. These metrics are

defined as:

Lunty = > ReLU (¢} + ¢ — 1), (21)

ne{a,8,7}

and

Lo = (1= 3 w”)Q. (22)

me{a,f}

Since the PI and PI+ models enforce unity in composition and abundance through the soft-
max activation function, L ity and Lyeignt remain zero for these models, whereas the base-
line model violates these constraints (Figure 5b). The PI+ model, trained with additional
constraints, demonstrates smaller deviations in chemical equilibrium potential (Ayu) and
marginally improves composition prediction, split loss, and free energy minimization loss
compared to the PI model. Overall, designing a physics-informed model architecture to
enforce material constraints is essential; however, the addition of extra losses or masks com-
plicates training without yielding significant improvements in phase classification or equi-
librium composition prediction. Therefore, the PI architecture, without additional losses,

emerges as the best practical choice for implementation.
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Figure 5: Comparison of performance metrics and physical constraints among baseline,
PI, and PI+ models. a) Predicted phase coexistence curves for the baseline (left), PI (mid-
dle), and PI+ (right) models. Arrows indicate that both predictions are for the same phase
diagram. The background color in all phase diagrams denotes the ground truth phase: gray
(one-phase), blue (two-phase), and red (three-phase). Blue and orange scatter points rep-
resent two-phase equilibrium compositions. The yellow dashed line is a tie line for the
two-phase split. Red scatter points depict composition that split into three phases. The
red dashed triangle connects the three compositions at equilibrium. b) Data distribution
(shaded bars) and kernel density estimation fits (lines) for performance metrics and physi-
cal constraints. Vertical dashed lines indicate mean values.
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3.3 Performance with limited data

Having achieved accurate phase-coexistence predictions with a dataset of over 1.4 million
data points, we investigated whether PI models would be more data efficient and achieve
comparable performance with less data. Figure 4b demonstrates that even with only 10%
of the data, the PI and PI+ models maintain high accuracy in phase classification (F}: 0.967
and 0.967, respectively) and equilibrium composition prediction (R?*: 0.937 and 0.935, re-
spectively). In contrast, the baseline model performs worse in equilibrium composition pre-
diction (R?: 0.930) but achieves comparable accuracy in phase classification (F;: 0.967). The
advantages of incorporating composition and abundance constraints are particularly evi-
dent in low-data scenarios (training with 1% and 5% of the data), where the PI and PI+
models significantly outperform the baseline. Although the PI+ model slightly outperforms
the others with the full dataset (Fy: 0.972, R?: 0.946), the improvement over using 10% of
the data is marginal. The predicted phase diagrams with coexistence curves (Figures S2, 54,
S5) using 10% of the data are qualitatively accurate across the baseline, PI, and PI+ mod-
els. These findings underscore the critical role of physical constraints in enhancing model

generalization under limited data conditions.

3.4 Post-ML optimization

Seeded with ML predictions, a Newton-CG method can efficiently converge to arbitrarily
accurate and precise equilibrium compositions. The PI model, trained on the full dataset,
delivers accurate optimized phase diagrams (Figure 6¢ and S1), even in systems with mini-
mal two-phase regions at the boundary. Both the baseline and PI+ models achieve compara-
ble performance after post-ML optimization (Figures S3-56). Remarkably, all models, even
when trained on only 10% of the data, still produce accurate phase diagrams after post-
ML optimization (Figures S2, 54, S5). This combination of efficiency and accuracy could
enable the handling of more complex systems and scaling to resource-intensive measure-

ments, where data may be sparse or scarce.
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Table 2: Performance of equilibrium composition prediction with machine learning (ML)
and post-optimization prediction. Mean absolute errors (MAE) for the composition of
species A and B from the fold 1 model are reported, with standard error of the mean in
parentheses. The best result is bold and underlined.

Two-phase (x1072) Three-phase (x1072)

Data size

ML Prediction Post-optimization ML Prediction Post-optimization

Base  100% 2.40 (0.01) 0.88 (0.02) 3.66 (0.03) 2.76 (0.03)
Pl 100% 2.39 (0.01) 0.87 (0.02) 3.19 (0.02) 2.45 (0.03)
PI+  100% 2.94 (0.01) 0.95 (0.02) 4.26 (0.03) 3.32(0.03)
Base  10% 2.92 (0.01) 0.96 (0.02) 3.93 (0.02) 2.94 (0.06)
PI 10% 2.95 (0.01) 1.03 (0.02) 4.58 (0.03) 3.56 (0.03)
Pl+  10% 2.36 (0.01) 0.83 (0.02) 3.98 (0.03) 3.00 (0.03)

Post-ML optimization error analysis was performed on a random sample of 187 two-
phase and 76 three-phase equilibrium phase diagrams, using models trained on fold 1 data
(Tables 2 and S1). The results indicate that Newton-CG optimization, initialized with pre-
dictions from ML models, achieves near-perfect success rates and significantly reduces de-
viations from true equilibrium compositions compared to individual ML model predictions.
After post-ML optimization, the PI model trained on the full dataset outperformed both
the baseline and PI+ models in predicting two-phase and three-phase coexistence. The PI+
model trained on the full fold 1 dataset exhibited the lowest initial ML prediction accuracy,
leading to the worst post-ML optimization performance. This underscores the importance of
initial ML prediction accuracy in determining the effectiveness of the post-ML optimization
process. Interestingly, all models achieved high success rates and minimal prediction errors
in two-phase scenarios, even when trained with limited data. The PI+ model trained on 10%
of the data demonstrated the highest accuracy in two-phase predictions. However, predict-
ing three-phase equilibrium compositions remained challenging, with difficulties persisting
even after post-ML optimization. This disparity likely stems from the relative scarcity of
three-phase coexistence in the training set, which increases complexity and complicates pre-
cise prediction.

The post-ML optimization process is also efficient and parallelizable — taking less than 1
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Figure 6: PI model performance in phase-coexistence prediction. a) Classification of the
number of coexisting phases. The background color in all phase diagrams denotes the true
phase: gray (one-phase), blue (two-phase), and red (three-phase). The scatter points indicate
the predicted phase splits for a given initial composition. Colors in the legend denote the
types of predicted splits. b) Predicted coexistence curves. Blue and orange scatter points
indicate two-phase coexistence curves, with the yellow dashed line denoting an example tie
line. The vertices of the red triangle indicate three-phase coexistence points. ¢) Coexistence
curves produced with the post-ML optimization strategy. The results are obtained using ML
inference to warm-start Newton-CG optimization.
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second to converge to the optimal solution (Table S1). The ML model training requires less
than 1 MB for 140,000 parameters, a substantial reduction in memory usage compared to arc
continuation or convex hull methods, which demand approximately 1 GB of storage and 50
GB of memory per run. Overall, the accurate ML predictions of equilibrium compositions
enable rapid convergence to highly accurate solutions, offering significant advantages in

both memory- and time-efficiency.

4 Conclusions

In this work, we presented an efficient and extensible machine learning-based approach for
calculating phase coexistence in ternary systems. A neural network trained on phase co-
existence data was able to predict the number and compositions of equilibrium phases for
a solution prepared at a given composition under a specific mixing potential. Incorporat-
ing physical constraints into the neural network architecture enhanced prediction accuracy,
while additional physics-informed losses offered no significant improvement. The physics-
constrained architecture produced higher-quality models with less data, offering advantages
in scenarios where data acquisition is labor- or resource-intensive. However, the resulting
models still exhibit errors that may be unacceptable for certain applications, such as process
simulation software. To achieve precise results, a Newton conjugate gradient method was
used, with machine-learning predictions serving as a warm start for optimization to deter-
mine final equilibrium phase compositions. This integration of neural networks with nu-
merical refinement enabled rapid and accurate predictions of coexisting phases, their com-
positions, and abundances.

This work motivates several areas of future inquiry. Extensions to systems with more
components would increase utility for complex industrial and biological processes. Ex-
panding beyond the Flory-Huggins theory by incorporating other free energy models or
data from molecular simulation, perhaps in a single framework, would further enhance its

generalizability across diverse chemical systems. Additionally, exploring more advanced
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physics-informed learning strategies, incorporating uncertainty quantification, and refining
neural network architectures could boost prediction efficiency and reliability. Collectively,
these directions could enhance both the theoretical and practical impact of leveraging ML

for phase coexistence calculations.
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