The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Learning Safe Action Models with Partial Observability

Hai S. Le!, Brendan Juba', Roni Stern?

"Washington University in St. Louis
?Ben Gurion University of the Negev
bjuba@wustl.edu, hsle @wustl.edu, roni.stern @ gmail.com

Abstract

A common approach for solving planning problems is to
model them in a formal language such as the Planning Do-
main Definition Language (PDDL), and then use an appro-
priate PDDL planner. Several algorithms for learning PDDL
models from observations have been proposed but plans cre-
ated with these learned models may not be sound. We propose
two algorithms for learning PDDL models that are guaran-
teed to be safe to use even when given observations that in-
clude partially observable states. We analyze these algorithms
theoretically, characterizing the sample complexity each al-
gorithm requires to guarantee probabilistic completeness. We
also show experimentally that our algorithms are often better
than FAMA, a state-of-the-art PDDL learning algorithm.

Introduction

Classical planning, i.e., planning in a discrete, determinis-
tic, and fully observable environment, is a useful abstraction
for solving many planning problems. In order to use these
planners, however, one must first model the problem at hand
in a formal language, such as the Planning Domain Defini-
tion Language (PDDL). This is not an easy task. Therefore,
several approaches to learning a PDDL model from obser-
vations have been proposed (Aineto, Celorrio, and Onain-
dia 2019; Stern and Juba 2017; Juba, Le, and Stern 2021;
Cresswell, McCluskey, and West 2013; Wu, Yang, and Jiang
2007). A prominent example is FAMA (Aineto, Celorrio,
and Onaindia 2019), which is a state-of-the-art algorithm for
learning a PDDL model from observations. A major advan-
tage of FAMA is that it is able to learn a PDDL model even if
the given observations are incomplete, in the sense that only
a subset of the actions and state variables are observed. A
major disadvantage of FAMA and most PDDL model learn-
ing algorithms is that they do not provide any guarantee
on the performance of the learned model. Plans generated
with the learned model may not be executable or may fail to
achieve their intended goals. SAM Learning (Stern and Juba
2017; Juba, Le, and Stern 2021; Juba and Stern 2022; Mor-
doch et al. 2022) is a recently introduced family of learning
algorithms that provide safety guarantees over the learned
PDDL model: any plan generated with the model they re-
turn is guaranteed to be executable and achieve the intended

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

20159

goals. SAM Learning, however, is limited to learning from
fully observed trajectories.

In this paper, we propose two algorithms for learning safe
PDDL models in partially observed domains. The first algo-
rithm, PI-SAM, extends SAM (Juba, Le, and Stern 2021) to
support partially observable domains by only applying the
SAM learning rules when a literal is observed in the states
immediately before and after an action is applied. PI-SAM
is easy to implement, has a polynomial running time, and
outputs a classical planning PDDL model that provides the
desired safety guarantee. The second algorithm, EPI-SAM,
utilizes observations that PI-SAM ignores to learn a stronger
formulation. EPI-SAM compiles its knowledge and uncer-
tainty about the underlying action model into a conformant
planning problem, whose solution is also a safe solution to
the underlying classical planning problem. We analyze the
running time of EPI-SAM and prove that the conformant
planning problem created by EPI-SAM is the strongest safe
problem formulation.

In terms of sample complexity, we show that in general it
is not possible to guarantee efficient learning of a safe action
model when the observations are partially observable. Nev-
ertheless, we introduce a form of bounded concealment as-
sumption, adapted from prior work on learning from partial
observations (Michael 2010), under which both PI-SAM and
EPI-SAM are guaranteed probabilistic completeness with a
tractable sample complexity. Experimentally, we evaluated
the performance of both algorithms and compared them with
FAMA (Aineto, Celorrio, and Onaindia 2019) on common
domains from the International Planning Competition (IPC)
(McDermott 2000). Our results show that PI-SAM and EPI-
SAM often outperform FAMA in terms of the number of
samples they require to learn effective action models, while
still preserving our safety guarantee.

Background and Problem Definition

A classical planning domain is defined by a tuple (F, A)
where F' is a set of Boolean state variables, also known as
fluents, and A is a set of actions. A state is a complete as-
signment of values to all fluents, i.e., s : F' — {true, false}.
A partial state is an assignment of values to some (possi-
bly all) of the fluents. For a fluent f and a partial state p,
we denote by p[f] the value assigned to f according to p. A
partial state p is consistent with a partial state p’ if for every

The Thirty-Eighth AAAT Conference on Artificial Intelligence (AAAI-24)

fluent f either p[f] = p'[f], f is not assigned in p, or f is
not assigned in p’. A literal in this context is either a fluent
f € F orits negation —f. For a literal / = —f, we denote
by p[¢] = true, and p[f] = false the fact that p[f] = false
and p[f] = true, respectively. We say that a literal £ is in a
partial state p, denoted ¢ € p, if p[¢] = true. Similarly, if
pl€] = false we say that £ is not in s, denoted ¢ ¢ s. An ac-
tion a is defined by a tuple (name(a), pre(a), eff(a)) where
name(a) is a unique identifier of the action and pre(a) and
eff(a) are partial states that specify the preconditions and
effects of a, respectively. An action model of a planning
domain is its set of actions including their names, precon-
ditions, and effects. An action a is applicable in a state s
if pre(a) is consistent with s. Applying a in s results in a
state a(s) where for every fluent f € F: (1) if f is as-
signed in eff(a) then eff(a)[f] = a(s)[f], (2) otherwise,
s[f] = a(s)[f]- A sequence of actions 7 = (a1, ...ay) is
applicable in a state s if a; is applicable in s and for every
i = 2,...,n, a; is applicable in a;_1(---a1(s)---). The
result of applying such a sequence of actions in a state s,
denoted 7(s), is the state a,,(---ai(s) -+).

A classical planning problem is defined by a tuple
(F, A, I,G) where (F, A) is a domain, [is the initial state,
and G is a partial state representing the goal we aim to
achieve. A state s is called a goal state if GG is consistent
with s. A solution to a planning problem is a plan, which
is a sequence of actions 7 such that 7 is applicable in I
and 7(I) results in a goal state. Classical planning domains
and problems are often described in a liffed manner, where
fluents and actions are parameterized over objects. For ease
of presentation, we describe our work in a grounded man-
ner, but our work fully supports a lifted domain represen-
tation directly following Juba, Le, and Stern (2021). A tra-
Jectory is an alternating sequence of states and actions. For
a trajectory T = (80,G1,...,0n,Sn), let T.s; = s; and
T.a; = a;. A transition in a trajectory is a tuple of the form
(T.8;—1,T.a;,T.s;). The last state and action in T are de-
noted by T'.s_; and T".a_, respectively, and T".s and T.a de-
note the sequence of states and actions in 7', respectively. An
action model A is consistent with a trajectory 7" if according
to A the sequence of actions 7.« is applicable in T'.sg and
T.si=T.a;(---T.a1(T.sg)---) foreveryi e {1,...,|T}.

Conformant planning (Bonet 2010) and contingent plan-
ning (Majercik and Littman 2003; Hoffmann and Brafman
2005; Albore, Palacios, and Geffner 2009; Brafman and
Shani 2012) are previously studied types of planning under
uncertainty that are directly related to our work. In both, the
effects of some actions may be non-deterministic, and the
initial state I is replaced by a formula ¢; over the set of
fluents that defines a set of possible initial states. In confor-
mant planning, the agent is assumed to be unable to collect
observations during execution. As such, conformant plan-
ning algorithms output a linear plan, which is a sequence
of actions, as in classical planning. A (strong) solution to a
conformant planning problem is a linear plan that is guar-
anteed to achieve the goal regardless of the inherent uncer-
tainty due to the initial state and non-deterministic effects.
In contingent planning, some actions’ effects may include
observing the values of some fluents, and the agent is as-

20160

sumed to be able to collect these observations and adapt its
behavior accordingly.

Many algorithms have been proposed for learning ac-
tion models from a given set of trajectories (Cresswell, Mc-
Cluskey, and West 2013; Yang, Wu, and Jiang 2007; Aineto,
Celorrio, and Onaindia 2019; Juba, Le, and Stern 2021).
Algorithms from the LOCM family (Cresswell and Gre-
gory 2011; Cresswell, McCluskey, and West 2013) learn
action models by analyzing observed action sequences and
constructing finite state machines that capture how actions
change the states of objects in the world. The FAMA algo-
rithm (Aineto, Celorrio, and Onaindia 2019) translates the
problem of learning an action model to a planning problem,
where every solution to this planning problem is an action
model consistent with the available observations. FAMA
works even if the observations given to it are partially ob-
servable. Algorithms from the SAM learning family (Stern
and Juba 2017; Juba, Le, and Stern 2021; Juba and Stern
2022; Mordoch et al. 2022) are different from other action
model learning algorithms in that they guarantee that the ac-
tion model they return is safe, in the sense that plans consis-
tent with it are also consistent with the real, unknown action
model. Most algorithms from this family have a tractable
running time and reasonable sample complexity to ensure a
probabilistic form of completeness, but rely on perfect ob-
servability of the given observations.

The partially observed trajectories we consider are cre-
ated by masking some fluent values in a trajectory, essen-
tially changing some states into partial states. A literal ¢ is
said to be masked in a partial state p, denoted by p[¢] = ?
if the corresponding fluent is not assigned in p. We say that
an action model A is consistent with a partially observable
trajectory 7' if it is consistent with at least one trajectory cre-
ated by assigning values to all masked literals in 7T'.

Definition 1. A safe model-free planning problem is a tu-
ple (IL, T) where Il = (F, A, I, G) is a classical planning
problem, and T is a set of partially observable trajectories
created by executing plans that solve other problems in the
same domain, and masking some literals in the states of the
resulting trajectories. A safe model-free planning algorithm
accepts the tuple (F,I,G,T) and outputs a plan 7 that is a
solution to the underlying planning problem 11

The key challenge in solving such problems is that the
problem-solver is not given any prior knowledge about the
action model or the values of the masked literals. Neverthe-
less, the returned plan 7 must be safe, in the sense that 7 is a
sequence of actions that are applicable in I according to the
real action model A and ends up in a goal state.

We make the following simplifying assumptions.

1.
2.

Actions have deterministic effects.

The preconditions and effects of actions are conjunctions
of literals, as opposed to more complex logical state-
ments, such as conditional effects.

. The form of partial observability defined above embodies
the assumption that observations are noiseless: the value
of a literal that is not masked is assumed to be correct.

These assumptions are reasonable when planning in digi-
tal/virtual environments, such as video games, or environ-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

ments that have been instrumented with reliable sensors,
such as warehouses designed to be navigated by robots (Li
et al. 2020).

Partial Information SAM Learning

Following prior work (Stern and Juba 2017; Juba, Le, and
Stern 2021), we first learn an action model from the given
trajectories, and then use a planner to solve the given plan-
ning problem. We aim to learn an action model that is safe.

Definition 2 (Safe Action Model). An action model A is
safe w.r.t an action model A if (1) for every action a € A
and state s if a is applicable in s according to A then it is
also applicable in s according to A, and (2) for every goal
G, if a plan achieves G according to A then it also achieves
G according to A. Safety of/w.r.t is defined analogously for
a fixed problem and its goal G.

The first learning algorithm we propose is called Partial
Information SAM (PI-SAM). PI-SAM is based on the fol-
lowing observation.

Observation 1 (PI-SAM Rules). For any transition

(s,a,s") and literal ¢

Rule 1 [not a precondition]. If (£ € s) A (s[] # ?) then —¢
is not a precondition of a.

Rule 2 [an effect]. If ({ & s) N (Les) A (s[l]#7?) A
(s'[€] # ?) then L is an effect of a.

Rule 3 [not an effect]. If (€ ¢ ') N (s'[€] # ?) then € is not
an effect of a.

PI-SAM applies Rules 1 and 2 in almost the same way
as SAM Learning. For every action a observed in some tra-
jectory, we first assume that it has no effects and its precon-
ditions consist of all possible literals. Then, for every tran-
sition (s, a, s’) and each literal ¢ observed in both pre- and
post-states, i.e., (s[¢] #£?) A (s'[€] #7), we apply Rule 1 to
remove preconditions and apply Rule 2 to add effects.

PI-SAM runs in O(ZaeA [T (a)] - |F) where 7 (a)

is the set of transitions in 7~ with action a.! PI-SAM also
returns a safe action model, following the same reasoning
given for the fully observable case (Stern and Juba 2017).
Note that PI-SAM essentially uses the SAM learning rules,
except that they are only applied for literals observed in both
pre- and post-states. This may seem unintuitive, since Rule
1 does not require that a literal [is observed in a post-state
to infer that it cannot be a precondition. To see why this
modification is needed, consider running PI-SAM on a sin-
gle trajectory with a single transition (s, a, s’) where ¢ ¢ s
and s’[¢] = 2. Since the value of [is masked in s’, we cannot
apply Rule 2, and thus PI-SAM will assume [is not an effect
of a. However, we cannot know if [is an effect of a or not.
Thus, even though we can infer that [is not a precondition
of a, returning an action model that allows a in such states
may yield an unsafe action model.

Sample Complexity Analysis Learning a non-trivial safe
action model without any restrictions on how the partially
observable trajectories have been generated is impossible.

! Assuming one can access 7 (a) in O(1).

20161

To see this, consider the case where the value of some flu-
ent f is always masked. Since we never observe the value
of f, then for every action a we can never be certain if its
preconditions include f, —f, or neither. Thus, we can never
have a safe action model that allows action a to be applied.
This example highlights that some assumptions about how
the partially observable trajectories were created are neces-
sary to guarantee efficient learning of a safe action model.
We propose such an assumption, based on the definition of
a masking function.

Definition 3 (Masking function). A trajectory masking
Sfunction O maps a trajectory T to a partially observable tra-
Jjectory O(T) where (1) T.a = O(T).a, (2) |T| = |O(T)
and (3) Vi : T.s; is consistent with O(T).s;.

An example of a masking function is random masking,
which masks the value of each fluent with some fixed, inde-
pendent probability. Without loss of generality, we assume
the set of trajectories 7 were created by applying some
masking function O on fully observable trajectories. Next,
we introduce the following assumption about masking func-
tions, adapted from Michael’s theory of learning from partial
information (Michael 2010):

Definition 4 (Bounded Concealment Assumption). A mask-
ing function satisfies the n-bounded concealment assump-
tion in an environment if for every literal that is not a pre-
condition of an action, when that action is taken and the
literal is false, then the corresponding fluent is observed in
both the pre- and post-states with probability at least 1.

s

As an example of a masking function that satisfies a
bounded concealment assumption, consider a random mask-
ing function, where every literal is masked with a fixed in-
dependent probability «. Thus, each literal is observed in
both the pre- and post-states with probability a® on each
transition, i.e., such cases feature o2-bounded concealment.
Next, we analyze the relation between the number of trajec-
tories given to PI-SAM and the ability of the action model
it returns to solve new problems in the same domain, under
the bounded concealment assumption. Let Pp be a probabil-
ity distribution over solvable planning problems in a domain
D. Let Tp be a probability distribution over pairs (P,T)
given by drawing a problem P from P(D), using a sound
and complete planner to generate a plan for P, and setting T’
to be the trajectory from following this plan.?

Theorem 2. Under n-bounded concealment, given m >
E%}(2 In3|A| - |F| + In$) trajectories sampled from Tp,
PI-SAM returns a safe action model Mpysap such that with
probability at least 1 — §, a problem drawn from Pp is not
solvable with Mpy.say with probability at most e.

Definition 5 (Adequate). An action model M is e-adequate
if, w.p. at most €, a trajectory T sampled from Tp contains
a transition (s, a, s') where 1. s does not satisfy pre;(a) or
2. there is a literal in s' \ s but not in eff);(a).

Lemma 1. The action model returned by PI-SAM Learn-
ing given m trajectories (as specified in Theorem 2) is e-
adequate with probability at least 1 — 6.

The planner need not be deterministic.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Sketch of proof: Consider any action model M that is not
e-adequate: then either
1. with probability at least €, trajectories sampled from Tp
contain a transition (s, a, s") for which s does not satisfy
prey;(a), or
. with probability at least e, trajectories sampled from Tp
contain a transition (s, a, s’) for which there is a literal in
s"\ s but not in eff; (a).
In the first case, note that since (s,a, s’) is a valid transi-
tion under the true action model M*, the literal for which
prey;(a) is violated cannot be in pre,,. (a). Therefore, by
n-bounded concealment, the violated precondition literal in
prey;(a) is observed with probability at least 7 when such a
transition occurs; thus, with probability at least 1) - € overall,
the literal is observed and deleted from pre,, . (a). Since
PI-SAM never adds precondition literals back, this ensures
that MPI—SAM 7£ M.

Similarly, in the second case, if I € s'\ s, € effy-(a).
Thus, n-bounded concealment ensures that [is observed in
both s and s’ with probability at least 7 when such a tran-
sition occurs. So, overall with probability n - €, the trajec-
tory contains a transition (s, a, s’) where [is observed and
l € s\ s. When this happens, [is added to effp; g4, (a), and
we again get Mprsay # M since PI-SAM never removes
literals from the effects.

Thus, in either case, the probability of obtaining a trajec-
tory that ensures that M is not output is at least 77 - € on each
example. The rest of the proof now follows similarly to the
original SAM analysis (Stern and Juba 2017; Juba, Le, and
Stern 2021). We now prove Theorem 2.

Proof. When PI-SAM deletes a literal from pre(a), it ob-
serves a transition (s, a, s’y where [is false in s. Thus, when-
ever action a can be taken in some state under Mpygay, it
can also be taken in M™. Conversely, since Mpj.sap is €-
adequate, with probability at least 1 — € the sequence of ac-
tions appearing in the trajectory associated with a draw from
Tp is a valid plan in Mpygap. The first condition ensures that
the preconditions of Mp;s4) allow the action to be executed,
and the second condition guarantees that Mp;_g45s Obtains the
same states on each transition. Thus, with probability 1 — €,
the goal is achievable under Mp; g4y, using the plan. [

Extended PI-SAM (EPI-SAM)

The PI-SAM algorithm is easy to implement and outputs an
action model that can be used by any planner designed to
solve classical planning problems. Yet, it only uses transi-
tions where there are literals that are observed in both pre-
and post-states. For example, consider an action a, a literal
¢, and three transitions (s1, a, 81), (s2, a, s5), and (s3, a, s4)
where / is not observed in any state except s1, s, and s§ in
which its values are false, false, and true, respectively. Since
£ was observed to be false in s;, we can deduce it is not a
precondition of a (Rule 1 in Observation 1). Since ¢ is never
observed in both pre- and post-states of the same transition,
the PI-SAM algorithm still does not remove ¢ from pre(a).
However, considering the value of ¢ in s5 and s, we can
deduce that neither £ nor —¢ are effects of a (Rule 2 and 3 in

20162

Observation 1). Thus, it is possible to apply a in states with-
out ¢ and maintain our safety property. Next, we propose the
Extended PI-SAM (EPI-SAM) learning algorithm, which is
able to make such inferences.

EPI-SAM relies on several key observations. The first ob-
servation is that learning of the effects of actions and learn-
ing their preconditions can be done separately, because we
can never be certain that a literal is a precondition of an ac-
tion. The second observation is that limiting the output of
EPI-SAM to a classical planning action model limits the
scope of safe model-free planning problems we can solve.
For example, if we observe a trajectory (sg, a1, $1, a2, S2),
where sg[l] = false, sa[¢] = true, and ¢ is masked in sy,
we cannot discern which action a1 or as — achieved
¢, but we can learn that at least one of them has done so.
While classical planning action models cannot capture this
knowledge directly, such uncertainty can be compiled into a
non-classical planning problem.

Based on these observations, EPI-SAM has the following
parts: learning effects, learning preconditions, and compila-
tion to non-classical planning. In the first part (learning ef-
fects), EPI-SAM creates a Conjunctive Normal Form (CNF)
formula for each literal ¢, denoted by CNF4({), which de-
scribes conditions for sequences of actions that achieve ¢
in the problems returned by EPI-SAM. The literals of this
CNF are of the form IsEff(¢,a), representing whether lit-
eral ¢ is an effect of action a. In the second part (learning
preconditions), EPI-SAM creates a set of literals pre(a) for
each action a that describes the preconditions of a in the
returned problems. In the third part (compilation to non-
classical planning), EPI-SAM creates a conformant plan-
ning problem using the output of the previous two parts.
This conformant planning problem is constructed so that any
(strong) solution to this problem is a safe solution to the ac-
tual planning problem. We describe these in detail next.

Learning Effects To learn effects, EPI-SAM extends PI-
SAM rules 2 and 3 (Observation 1) from rules over transi-
tions to rules over sub-trajectories. A trajectory T" is a sub-
trajectory of trajectory T, denoted 7" C T, if it is a consec-
utive subsequence of 7', i.e., there exists ¢ and j where ¢ < j
such that 7".sp = T'.s; and for every k € {1,...,|T"|} we
have T/.Sk = T~3i+k and T’.ak = T.aH_k.

Observation 3 (EPI-SAM Rules). For any sub-trajectory

T’ of a trajectory in T that ends in a state where literal | is

not masked, i.e., where T'.s_1[l] # ?, then

Rule 1 [an effect]. Ifl € T'.s_1 andl ¢ T'.sg then Ja €
T’.a that has | as an effect.

Rule 2 [not an effect]. If | € T.s_; then —l is not an effect
of T'.a_,

Rule 3 [not deleted].If | € T'.s_1 and —l is an effect of an
action T’ .a; then 31’ > i that has | as an effect.

Algorithm 1 lists the pseudo-code for effects learning in
EPI-SAM, which builds on the EPI-SAM rules in Observa-
tion 3. Initially, CNF4(¢) contains a single clause for every
action a that ensures the effects of a are mutually exclusive
(line 3). Then, we implement the EPI-SAM rules by going
over every trajectory 1" and every state 7T'.s; in which £ is not

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Algorithm 1: EPI-SAM: Learning Effects

Algorithm 2: EPI-SAM: Learning Preconditions

Input : Partially observed trajectories 7~
Output: C'N Fp(¢) for each literal [

1 foreach literal ¢ do

CNF 5 (0) < 0

foreach action a do Add to CNF 4(£):

{—IsEff(¢,a) V —ISEff(—¢,a)}
foreach trajectory T € T do
foreach indexi € {1,...,|T|} where £ € T.s; do
T’ + max. prefix of 7T'.s; where ¢ is masked
if £ ¢ T'.s0 then Add to CNF(£):

{ISE]T(Z7 T’.a1) V-V ISEf(Y, T'.a|T/|)}
Add to CNFeﬁ”(()I {—\I_S'Eﬁc(—'é7 T’.a|T/‘)}
foreach j = 110 |T’| — 1 do

Add to CNF 4(0):
{~ISEf(=£, T .a;) VISEff(£, T .aj+1) V
eV ISEff(K, T'.a|T/‘)}

end

end
13 end
14 end

15 return {CNF;({)}e

masked. For each such pair of trajectory and state, we ex-
tract the longest sub-trajectory 77 C T that ends in T'.s; and
where £ is masked in all other states in T” (line 6). If a literal
¢ was false at the first state of 7", then we add to CNF.({)
a clause to ensure that £ is an effect of some action a; (EPI-
SAM Rule 1). Then, we add a clause to ensure that —¢ is not
an effect of the last action in 7" (EPI-SAM Rule 2). Finally,
we add a clause to ensure that if —¢ was an effect of any ac-
tion a € T’.a then some action in 7" after that action must
have had ¢ as an effect (EPI-SAM Rule 3).

Learning Preconditions EPI-SAM starts by assuming for
every action a that it has all literals as preconditions. Then, it
removes a literal [from the set of preconditions of an action
a if and only if assuming [is a precondition of pre(a) is in-
consistent with 7. There are two possible ways in which the
assumption that [is a precondition of a can be inconsistent
with the observations: (1) there is a transition (s, a, ') in T
where s[l] = false, and (2) no set of action effects is consis-
tent with 7 when we additionally set s[l] = true for every
transition (s, a, s’) in 7. The former corresponds to PI-SAM
Rule 1, which can be easily verified in linear time. The latter
can be checked by setting s[l] = true in the relevant transi-
tions, running EPI-SAM’s effect-learning part (Algorithm 1)
on the resulting set of trajectories, and checking if the re-
sulting CNF is satisfiable. This check can be done by calling
any SAT solver. Fortunately, it is also possible to perform
this satisfiability check in polynomial time. This is because
assumptions about which action achieves literal ! are inde-
pendent of any assumption about which actions achieve any
other literal except —/.3

Algorithm 2 lists the pseudo-code of EPI-SAM’s precon-
dition learning part. Like PI-SAM, EPI-SAM initially as-
sumes that the preconditions of every action include all lit-

3This independence fails when conditional effects are allowed.

20163

Input : Partially observed trajectories 7~

Output: Precondition pre(a) for each action a
1 foreach action a do pre(a) < all literals
2 foreach action q, literal £ do
if3(s,a,s") € T € T where ~{ € s then
Remove ¢ from pre(a)
Continue to the next (a, £) pair
Ta,e < AssumePrecondition(a, £, 7) ; Aijrr < 0
while Ja’ ¢ A, where Irrelevant(a’ .0, T, ;) do
foreach (s,a’,s") inT € T, do
if s[¢] and s'[¢] are inconsistent then
10 Remove ¢ from pre(a)

‘ Continue to the next (a, £) pair

e ® N A s W

else
if s[¢] = ? then s[{] < s'[{]
Remove (s,a’, s’) from T

end

end
17 end
18 end

19 return {pre(a)}a

erals. Then, EPI-SAM iterates over every pair of action a
and literal ¢ to check if ¢ can be removed from the set of
preconditions assumed for a. The first way EPI-SAM at-
tempts to remove ¢ from pre(a) is by checking if it violates
PI-SAM Rule 1 (lines 3-5). The second way is by using a
proof-by-contradiction approach, checking if assuming ¢ is
a precondition of a leads to a contradiction with the observa-
tions and every possible assumption about actions’ effects.
EPI-SAM performs this check by performing the following
steps. First, it creates a copy of the set of trajectories 7
where ¢ is set to be true in every state where a is applied
(the AssumePrecondition call in line 6). This set of mod-
ified trajectories is denoted by 7, . in Algorithm 2. Then,
EPI-SAM iteratively searches for actions that are irrelevant
for the value of ¢. An action a is said to be irrelevant for
the value of ¢ if we can infer that neither ¢ nor —¢ are ef-
fects of a. We do this by invoking PI-SAM Rule 2 for both
¢ and —¢. That is, action a’ is identified as irrelevant to ¢ if
there are two transitions (s1,a’, s}) and (sq, a’, s5) where £
is not masked in their post-states and it has different values,
e, (si1[€] £ 2) A (shl€] # 2) A (s'1[€] # sh]f]). A con-
tradiction is identified if there exists a transition (s, a’, s’)
where a’ is an irrelevant action but the value of ¢ in s and
in s’ is inconsistent, i.e., unmasked and different (line 9). If
a’ is irrelevant but the values of s and s’ are consistent, then
we propagate the value of s’ to s and remove the transition
(s,a’,s") from T, ¢ (lines 13-14). 4

Compilation to Non-Classical Planning Next, EPI-SAM
creates a conformant planning problem Ilg4)s based on the
outputs of the previous EPI-SAM parts, {CNF ()}, and
{pre,}a, and the available knowledge of the underlying
planning problem II. A conformant planning problem is de-

f3(s’,a”, s") € T, then removing (s, a’, s’ implicitly adds
the transition (s, a”’, s”).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

fined by a tuple (F,0, A, I,G) where F, A, I, and G are
the set of fluents, actions, initial state, and goals, as in a
classical planning problem, except that A may include non-
deterministic and conditional effects, and I is a set of possi-
ble initial states defined by a formula over F'. O is the subset
of fluents in I’ that are observable. The set of fluents in ITg4y,
includes all fluents in IT and an additional fluent figgq,¢) for
every action a and literal £. All fluents from II are observ-
able in IIg4y, and all others are not. The initial state formula
in IIg4ps sets the values of all observable fluents according
to their initial values in II. In addition, it includes all the
clauses in the CNFs returned by EPI-SAM ({CNF () }¢),
replacing every literal IsEff{a, £) with the corresponding flu-
ent fsgp(a,0)- The action model of Ilsay includes all actions
observed in 7. For each action a, we set its preconditions to
the set of preconditions learned for it by EPI-SAM’s learn-
ing preconditions part, pre(a). All the effects of a are con-
ditional effects. A conditional effect of an action is an effect
(i.e., a partial state) that is only applied if a specified condi-
tion holds. For each action a and literal ¢, we add a condi-
tional effect such that if fjz4,¢) is true then £ is an effect of
a. Note that conditional effects are supported by many clas-
sical and conformant planners (Bonet 2010; Grastien, Scala,
and Kessler 2017). If the agent executing the plan can ob-
serve the values of fluents during execution and react, then
the above compilation can be used almost as-is to construct
a contingent planning problem instead of a conformant plan-
ning problem. The output of a contingent planning algorithm
is a plan tree, branching over the observed values during ex-
ecution, which can be more efficient than the linear plan re-
turned for the respective conformant planning problem.

Theoretical Properties Next, we analyze EPI-SAM the-
oretically, showing that it is safe, runs in polynomial time,
and it is the strongest algorithm for solving safe model-free
planning problems, in the sense that any algorithm able to
solve a problem that cannot be solved by EPI-SAM can-
not also be safe. Throughout this analysis, we denote by A*
the action model of the underlying problem, and denote by
pre 4(a) and eff 4 (a) the set of preconditions and effects, re-
spectively, of an action a according to an action model A.
Observe that every classical action model A corresponds to
an assignment o 4 to the formula ®.5 = A, CNF4({), by
setting IsEff(¢, a) to true if £ is an effect of a for each literal
¢ and action a. Similarly, every satisfying assignment of ® 4
describes the effects of a classical action model.

Lemma 2. If a classical action model A is consistent with
T then o4 is a satisfying assignment of ®.5. Conversely,
every satisfying assignment o to Oy describes the effects of
at least one classical action model that is consistent with T

Proof. Consider the clausal encoding of the STRIPS ax-
ioms, instantiated at each step of each trajectory in 7. This
CNF, denoted CNF7 is defined over variables of the form
IsEff(l,a), IsPre(l, a), and State(l,i,T), representing that
is a precondition of a, [is an effect of a, and [= frue in the
it" state of trajectory T, respectively. This CNF includes the
following clauses for every transition (s;_1, a;, s;) in every
trajectory 1" € T

20164

» (C1) —IsPre(l,a;) V State(l,i — 1,T)

* (C2) ~IsEff(l,a;) V State(l,i,T)

* (C3) IsEff(l, a;) V =State(l,i — 1,T) V State(l,i,T)
By construction, a satisfying assignment to CNF7 corre-
sponds to the effects of an action model and the complete
trajectories for this action model, given the values observed
in the trajectories of 7. Moreover, the action model with
these effects and no preconditions is consistent with 7.

Let CNF({) be the formula containing all the clauses in
CNF 1 containing literals for a single fluent literal £. Note
that the clauses of CNFy only contain literals for a sin-
gle fluent literal, so CNF is satisfiable iff for every ¢ the
formula CNF7(¢) is satisfiable. The final part of our proof
will show that the CNF returned by EPI-SAM, CNF ({), is
satisfiable iff CNFr(¢) is satisfiable. To this end, we rely
on the refutation-completeness of resolution and examine
which clauses may appear in a refutation of CNF(¢). The
IsPre(a, ¢) literals, appearing only negatively, cannot appear
in a refutation. Thus, any refutation will be based on clauses
of types C2 and C3. Two types of proofs can be created from
such clauses. The first requires observing the value of ¢ in
enough states such that we have contradicting unit clauses
with IsEff literals for some action a;. That is, we have tran-
sitions (s, a;,s;) and (s;, a;, s;) where [is observable in
states s/, 5;_1, and s; with values false, true, and false, re-
spectively. This option is implemented in line 4 of Algo-
rithm 2. The second type of proof requires using resolution
to eliminate at least one State literal. Reordering the appli-
cations of the resolution rule on these literals to the begin-
ning of the proof, we see that we must create clauses that
correspond to consecutive runs of unobserved literals using
the resolution rule on clauses of type C3 for each step, be-
ginning with either an observed literal or with using clauses
of type C2 to eliminate the first State(¢,i,T') literal. These
are, respectively, the clauses of CNFeﬁc(l) created on lines 7
and 10 in Algorithm 1. O

Lemma 3. For every action a in Agsay and literal ¢, it holds
that { € pre 4 (a)ifand only if there exists an action model
A consistent with T where € € pre 4(a).

Proof. We first prove that if EPI-SAM removes a literal ¢
from pre(a), then there exists a transition (s,a,s’) in T
where / is false, and hence cannot be in pre 4, (a). EPI-SAM
removes ¢ from pre(a) in two places in Algorithm 2: line 4
and line 10. The correctness of line 4 is immediate: if ¢ is
observed to be false in a state where a has been applied then
it cannot be a precondition of a (PI-SAM Rule 1). Before
removing a precondition due to line 10, EPI-SAM creates
a set of trajectories 7Ty, that assumes ¢ was true whenever
a was taken, and detects the set of actions A;,, that can-
not affect the value of ¢ in any action model consistent with
Te,o- Because of the frame axioms, the value of ¢ gets prop-
agated in any transition that includes an action in A;,... £ is
only removed in line 10 if this propagation results in a state
where ¢ has contradicting values. As this occurs for any ac-
tion model consistent with 7y 4, this implies that £ cannot be
true in every state where a was applied, and thus cannot be
a precondition of @ in any action model consistent with 7.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Next, we prove that if £ has not been deleted from pre(a)
by EPI-SAM, then there exists an action model A consistent
with 7 where ¢ € pre 4(a). Consider the subset of A, that
includes only actions that have been in a transition where the
value of ¢ is not masked. For each action @’ in this set, we are
guaranteed that this value of ¢ is always the same, denoted
v(a’,). Otherwise a’ would have been added to A;,.. The
action model created by assigning v(a’, £) as an effect of a’
for each of these actions is consistent with 7; ,. Therefore,
there exists an action model where ¢ is a precondition of a
that is consistent with 7. O

Given these lemmas, the following theorems are straight-
forward, and we omit the proofs due to space constraints.

Theorem 4. EPI-SAM returns a safe plan.

Theorem 5 (Time Complexity). Given a set of trajectories
T, EPI-SAM runs in time (9(|A\ NF Y aea |T(a)|).

A safe action model is not necessarily useful, as it may
be too restrictive to allow solving problems in the domain.
Next, we characterize the “usefulness” of the action model
returned by EPI-SAM. We say that an action model A; is
stronger than another action model A, if the set of prob-
lems it allows solving is a superset of the set of problems
allowed by As. The strongest safe action model is a safe ac-
tion model that is stronger than any other safe action model.

Theorem 6 (Strength). The problem 1lgay, returned by EPI-
SAM is the strongest safe action model.

Proof. Let Agay be the action model returned by EPI-SAM.
By contradiction, let A4 be a safe action model such that
Asapm is not stronger than Ay, 4. This means that either there
exists a literal ¢ that is in pre, , ~but not in pre,, . or a
plan 7,4 that achieves some goal GG according to Ap.q but
not according to Agay. The first condition cannot hold due
to Lemma 3: for any precondition assumed by Agsy there
exists an action model consistent with 7 that requires it.
For the second condition, suppose that there is a plan un-
der Ap,q that is allowed by the EPI-SAM action model, but
for which EPI-SAM does not achieve the goal. This means
(by Lemma 2) that there was some action model consistent
with 7 under which the goal was not achieved. The other
action model is therefore not safe. O

Experiments

We evaluate our algorithms’ performance experimentally on
the IPC (McDermott 2000) domains listed in Table 1. The
tuple listed under each domain details the number of lifted
fluents, lifted actions, maximal arity of fluents, maximal ar-
ity of actions, and average trajectory length in that domain.
For each domain, we generated problems using the genera-
tors provided by the IPC learning tracks and solved them us-
ing the true action model and an off-the-shelf planner. In the
resulting trajectories, we masked some states using random
masking with masking probability 7 = 0.1 and = 0.3.

20165

Metrics A common approach to comparing action models
is by computing the precision and recall of the learned ac-
tion model with respect to which literals appear in the real
action model. However, this syntactic measure has three lim-
itations. First, it requires the evaluated action models to use
the same fluents and action names. Second, it gives the same
“penalty” for every mistake in the learned model. Third, do-
mains may have distinct but semantically-equivalent action
models. For example, in Npuzzle, we could have a precon-
dition that the tile we are sliding into the empty position is
not an empty position. This precondition is not necessary, as
there is only ever one empty position in any puzzle. Thus, ei-
ther formulation of the domain is adequate for planning pur-
poses, but a syntactic measure of correctness will penalize
one of the two formulations. Instead, we introduce and use
empirically-based precision and recall measures, which are
based on comparing the number of transitions that are valid
or invalid according to the learned action model (fl) and the
true action model (A). The empirical precision and recall
measures are defined according to the number of true/false
positives/negatives (TP, FP, TN, FN) but compute TP, FP,
TN, and FN differently. For preconditions, TP is the number
of transitions that are valid according to both A and A, FP
is the number of transitions that are valid according to Abut
not A, TN is the number of transitions that are invalid ac-
cording to A and A, and FN is the number of transitions that

are valid according to A and but not A. TP, FP, TN, and FN
for effects are computed similarly. To compute the empirical
precision and recall, we created 3 trajectories for each do-
main. These trajectories were created by solving problems in
the same domain. These problems were different, of course,
from the trajectories given to the learning algorithm to learn
the action model.

Results and Discussion We performed experiments using
PI-SAM and EPI-SAM*, a simplified (unsafe) version of
EPI-SAM. Recall that EPI-SAM does not return a classi-
cal action model, and the conformant planning formulation
it produces involves explicitly reasoning about the various
possible states that could occur in trajectories using the un-
certain action model. As such, it does not make sense to ap-
ply state-wise measures of precision and recall directly to
EPI-SAM. EPI-SAM* uses unit propagation to determine
the effects of every action in the CNF returned by Algo-
rithm 1, by checking if assuming literal [is an effect of ac-
tion a if the CNF formula extended by —IsEff{a, £) is satisfi-
able. EPI-SAM* outputs a classical action model instead of
a conformant plan. Nevertheless, observe that the inferences
obtained by unit propagation are sound and are a subset
of those obtainable in EPI-SAM’s formulation. Thus, since
EPI-SAM is safe, the precision and recall for EPI-SAM*
provide a lower bound on the performance of EPI-SAM.

As a baseline, we compared our algorithms to FAMA
(Aineto, Celorrio, and Onaindia 2019), a modern algorithm
for learning action models under partial observability. We
ran those three algorithms on our benchmark domains. For
each domain, we computed the empirical precision (P) and
recall (R) separately for the preconditions (pre) and effects
(eff). Table 1 lists the results of our experiments, averaged

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Domain Algorithm n=03 n=01
[TT T PQpre) | Ripre) | Pleff) | Rieff) | T(sec) | [7] | Ppre) | R(pre) | Pleff) | R(eff) | T(sec)
Blocks FAMA 3 0.90 0.90 1.00 0.89 13 6 0.90 0.85 0.90 0.85 60
(5,4,2,2,30) PI-SAM 3 1.00 0.90 1.00 0.95 9 6 1.00 0.83 1.00 0.85 43
EPI-SAM* 3 1.00 0.92 1.00 0.95 - 6 1.00 0.85 1.00 0.88 -
Depot FAMA 5 0.80 0.85 0.90 1.00 17 8 0.80 0.80 0.90 1.00 60
(6,5,4,2,32) PI-SAM 5 1.00 0.85 1.00 1.00 12 8 1.00 0.82 1.00 1.00 53
EPI-SAM* 5 1.00 0.85 1.00 1.00 - 8 1.00 0.83 1.00 1.00 -
Ferry FAMA 3 0.85 1.00 1.00 1.00 9 6 0.80 1.00 0.85 1.00 35
(5,3,2,2,55) PI-SAM 3 1.00 1.00 1.00 1.00 5 6 1.00 0.94 1.00 0.90 27
EPI-SAM* 3 1.00 1.00 1.00 1.00 - 6 1.00 0.95 1.00 0.90 -
Floortile FAMA 5 0.84 0.80 0.79 0.80 18 9 0.87 0.82 0.80 0.83 60
(10,7,2,4,40) | PI-SAM 5 1.00 0.87 1.00 0.87 15 9 1.00 0.85 1.00 0.85 50
EPI-SAM* 5 1.00 0.89 1.00 0.90 - 9 1.00 0.87 1.00 0.87 -
Gripper FAMA 5 1.00 1.00 1.00 1.00 8 10 1.00 1.00 1.00 1.00 30
(4,3,2,3,20) PI-SAM 5 1.00 1.00 1.00 1.00 5 10 1.00 1.00 1.00 1.00 24
EPI-SAM* 5 1.00 1.00 1.00 1.00 - 10 1.00 1.00 1.00 1.00 -
Hanoi FAMA 1 0.85 1.00 1.00 1.00 1 1 0.81 1.00 1.00 1.00 60
(3,1,2,3,31) PI-SAM 1 1.00 1.00 1.00 1.00 1 1 1.00 1.00 1.00 1.00 15
EPI-SAM* 1 1.00 1.00 1.00 1.00 - 1 1.00 1.00 1.00 1.00 -
Npuzzle FAMA 1 1.00 1.00 1.00 1.00 1 1 0.83 1.00 1.00 1.00 23
(3,1,2,3,48) PI-SAM 1 1.00 1.00 1.00 1.00 1 1 1.00 1.00 1.00 1.00 17
EPI-SAM* 1 1.00 1.00 1.00 1.00 - 1 1.00 1.00 1.00 1.00 -
Parking FAMA 6 0.85 0.85 1.00 1.00 13 8 0.83 0.85 0.90 1.00 60
(5,4,2,3,50) PI-SAM 6 1.00 0.88 1.00 1.00 8 8 1.00 0.83 1.00 1.00 49
EPI-SAM* 6 1.00 0.88 1.00 1.00 - 8 1.00 0.85 1.00 1.00 -
Sokoban FAMA 2 1.00 1.00 1.00 1.00 8 5 1.00 1.00 1.00 1.00 40
(4,2,3,5,28) PI-SAM 2 1.00 1.00 1.00 1.00 6 5 1.00 1.00 1.00 1.00 33
EPI-SAM* 2 1.00 1.00 1.00 1.00 - 5 1.00 1.00 1.00 1.00 -
Transport FAMA 5 0.77 0.80 0.80 0.90 14 9 0.80 0.80 0.84 0.90 60
(5,3,2,5,36) PI-SAM 5 1.00 0.83 1.00 0.90 9 9 1.00 0.80 1.00 0.90 48
EPI-SAM* | 5 1.00 0.85 1.00 | 0.92 - 9 1.00 0.83 1.00 | 092 -
Table 1: Empirical precision and recall results under random masking with = 0.1 and n = 0.3.
|T| =3 |T|=5 |T| =7 SAM PI-SAM

PI-SAM FAMA |PI-SAM FAMA |PI-SAM FAMA Alg. n=10| n=03) (n=0.1)

P(pre)| 1.00 090 | 1.00 0.87 | 1.00 0.90 Hanoi 1 10 95

R(pre)] 090 090 | 092 088 | 093 090 Npuzzle 1 9 92

P(eff) | 1.00 1.00 | 1.00 0.95 1.00 1.00 Ferry 4 42 355

R(eff)| 095 089 | 096 087 | 096 0.90 Gripper 5 51 476

Sokoban 6 55 563

Table 2: Results on Blocks with n = 0.3.

over three independent runs. Columns “P(pre)”, “R(pre)”,
“P(eff)”, and “R(eff)” show the empirical precision and re-
call for preconditions and effects for every evaluated algo-
rithm. |7 is determined as the point that FAMA started de-
creasing performance (i.e. precision-recall) or reaching the
time limit. We limited the running time of each algorithm
to 60 seconds. Column “T” is the runtime of each algo-
rithm in seconds. Since EPI-SAM#* is unsafe, we do not
report its runtime. Since PI-SAM and EPI-SAM*, by defi-
nition, never remove a literal that is an actual precondition
from the preconditions or add a literal that is not an actual
effect, their empirical precision is perfect for both precon-
ditions and effects, as opposed to FAMA, which does not
always achieve this. PI-SAM tends to have a higher empir-
ical recall under lower masking probability (high 7)), while

20166

Table 3: # of transitions needed to learn the preconditions

FAMA tends to obtain higher recall under higher masking
probability (low 7). EPI-SAM* generally outperforms both.
Note that FAMA’s performance may decrease as more in-
put is given, while PI-SAM cannot. To demonstrate this, we
picked a domain (Blocks) and recorded their performance
as given an increasing number of trajectories as input. The
results are shown in Table 2. We also compared the number
of transitions required to correctly learn the preconditions
(i.e., P(pre) and R(pre) = 1.0) when using PI-SAM with
n € {0.1,0.3} and when having full observability and us-
ing SAM. The results are shown in Table 3. As expected, the
number of transitions required scales inversely with the ran-
dom masking probability 12, which verifies the tightness of
the bound in Theorem 2. The source code of the experiments

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

is available at https://github.com/hsle/pisam_learning.

Conclusion and Future Work

We proposed two algorithms for learning safe action mod-
els in domains with partial observability. The first algorithm,
PI-SAM, extends the SAM learning algorithm (Juba, Le,
and Stern 2021) to partially observable domains and out-
puts classical planning action models. The second algorithm,
EPI-SAM, provides the outputs in the form of conformant
planning problems, but can work on general observations.
In practice, we can choose either PI-SAM or EPI-SAM, de-
pending on the specific observation sets (e.g., whether they
satisfy the bounded concealment assumption or not). For fu-
ture work, we aim to extend safe action model learning to
more complicated domains, such as domains with stochastic
effects, numeric state variables, etc.

Acknowledgments

This work was partially funded by NSF awards IIS-
1908287, 11S-1939677, and IIS-1942336, and BSF grant
#2018684 to Roni Stern.

References

Aineto, D.; Celorrio, S.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence, 275: 104-137.

Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI).

Bonet, B. 2010. Conformant plans and beyond: Principles
and complexity. Artificial Intelligence, 174(3): 245-269.

Brafman, R.; and Shani, G. 2012. A multi-path compilation
approach to contingent planning. In AAAI Conference on
Artificial Intelligence.

Cresswell, S.; and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In International Con-
ference on Automated Planning and Scheduling (ICAPS),
42-49.

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using LOCM. The
Knowledge Engineering Review, 28(2): 195-213.

Grastien, A.; Scala, E.; and Kessler, F. B. 2017. Intelligent
Belief State Sampling for Conformant Planning. In IJCAI,
4317-4323.

Hoffmann, J.; and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
ICAPS, volume 2005.

Juba, B.; Le, H. S.; and Stern, R. 2021. Safe Learning of
Lifted Action Models. In International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR),
379-389.

Juba, B.; and Stern, R. 2022. Learning Probably Approx-
imately Complete and Safe Action Models for Stochastic
Worlds. In AAAI Conference on Artificial Intelligence.

20167

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.;
and Koenig, S. 2020. Lifelong Multi-Agent Path Finding
in Large-Scale Warehouses. In International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS),
1898-1900.

Majercik, S. M.; and Littman, M. L. 2003. Contingent plan-
ning under uncertainty via stochastic satisfiability. Artificial
Intelligence, 147(1): 119-162.

McDermott, D. 2000. The 1998 Al Planning Systems Com-
petition. AI Magazine, 21(2): 13.

Michael, L. 2010. Partial observability and learnability. Ar-
tificial Intelligence, 174(11): 639-669.

Mordoch, A.; Portnoy, D.; Stern, R.; and Juba, B. 2022.
Collaborative Multi-Agent Planning with Black-Box Agents
by Learning Action Models. In Learning with Strategic
Agents (LSA) Workshop in the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS).

Stern, R.; and Juba, B. 2017. Efficient, Safe, and Probably
Approximately Complete Learning of Action Models. In
the International Joint Conference on Artificial Intelligence

(IJCAI), 4405-4411.

Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: An automatic
knowledge engineering tool for learning action models for
Al planning. The Knowledge Engineering Review, 22(2):
135-152.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence, 171(2-3): 107-143.

