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Abstract

We study the problem of auditing classiĄers for statistical subgroup fairness. Kearns et al. [20]
showed that the problem of auditing combinatorial subgroups fairness is as hard as agnostic learning.
Essentially all work on remedying statistical measures of discrimination against subgroups assumes
access to an oracle for this problem, despite the fact that no efficient algorithms are known for it. If
we assume the data distribution is Gaussian, or even merely log-concave, then a recent line of work
has discovered efficient agnostic learning algorithms for halfspaces. Unfortunately, the reduction
of Kearns et al. was formulated in terms of weak, Şdistribution-freeŤ learning, and thus did not
establish a connection for families such as log-concave distributions. In this work, we give positive
and negative results on auditing for Gaussian distributions: On the positive side, we present an
alternative approach to leverage these advances in agnostic learning and thereby obtain the Ąrst
polynomial-time approximation scheme (PTAS) for auditing nontrivial combinatorial subgroup
fairness: we show how to audit statistical notions of fairness over homogeneous halfspace subgroups
when the features are Gaussian. On the negative side, we Ąnd that under cryptographic assumptions,
no polynomial-time algorithm can guarantee any nontrivial auditing, even under Gaussian feature
distributions, for general halfspace subgroups.
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1 Introduction

The deployment of decision rules obtained using machine learning has raised the risk that the

rules may exhibit biases against historically marginalized communities. In particular, Kearns

et al. [20] raised the concern that these decision rules may be biased against sub-groups

characterized by a combination of ŞprotectedŤ attributes. Since there are an exponential

number of such subgroups, even detecting such statistical patterns of discrimination is a

nontrivial computational problem; indeed, Kearns et al. [20] showed that the problem of

Ąnding disadvantaged subgroups is equivalent to the problem of agnostic learning, which

is believed to be intractable in general for all but the simplest classes of sets. Essentially

all work [20, 23, 18] on remedying statistical measures of discrimination against subgroups

assumes access to an oracle for this problem, despite the fact that no efficient algorithms

are known for it. In this work we are proposing a solution for a variant of the fairness
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5:2 Distribution-SpeciĄc Auditing for Subgroup Fairness

auditing problem with provable guarantees of efficiency and correctness, as well as some

strong limitations on the extent to which these solutions can be extended to richer families

of subgroups.

1.1 Background and Motivation

Fairness learning has received massive attention in recent years. It turns out learning a fair

classiĄer, in most cases, is equivalent to auditing [20, 23, 18]. In particular, if auditing is

possible, learning a fair classiĄer is easy. There are many successful examples of fairness

learning with auditing over a relatively small number of predetermined subgroups [1, 29].

However, a small number of predetermined subgroups, in many cases, is not enough to cover

all the natural subgroups.

▶ Example 1. In the court case ŞDeGraffenreid v General MotorsŤ [6], Ąve Black women

brought suit against General Motors for its discrimination against the group of Black women.

Although no sex discrimination was revealed, the evidence showed that Black women hired

after 1970 were discriminated against by the companyŠs seniority system. Such discrimination

can be better illustrated by an example shown in Table 1. In particular, the hiring rate of a

company could seemingly be fair in terms of gender or race alone, but clearly discriminates

against the subgroups of white men and black women. The court rejected the plaintiffsŠ

attempt to bring a suit not on behalf of Blacks or women, but speciĄcally on behalf of Black

women. In the ruling, in favor of the defendant, the judge was speciĄcally concerned about

the proliferation of protected classes.

Table 1 an example of discrimination against subgroups.

men women total

black 50 0 50

white 0 50 50

total 50 50 100

More generally, a classiĄer may appear to be fair on each individual attribute, e.g., gender,

race, age, incomes, etc., and yet perform unfairly on subgroups deĄned on multiple attributes,

i.e., the conjunction of such attributes. In the case of DeGraffenreid v General Motors, it is

the conjunction of race and gender being discriminated against. The possible number of the

conjunctions grows exponentially as the number of the ŞprotectedŤ attributes increases.

Thereafter, [20] proposed more general notions of statistical fairness that require auditing

over subgroups deĄned on simple combinations of data features. SpeciĄcally, such combin-

ations of features can be any simple representations, such as conjunctions and halfspaces,

which, however, can generate exponentially many subgroups. They also showed that the

problem of auditing subgroups deĄned by such simple representation is as hard as Şweak

agnostic learningŤ in the standard Şdistribution-freeŤ setting [17, 22]. While the problem of

distribution-free weak agnostic learning is widely believed to be computationally intractable

[22, 12], its hardness does not necessarily hold for speciĄc distribution families. Thus, it

is natural to consider auditing using distribution-speciĄc agnostic learning approaches as

agnostic learning is a much more extensively studied problem. However, it turns out there

are still obstacles remaining for doing so.
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1.2 Challenges of Auditing through Agnostic Learning

The main challenge that prevents us from applying existing agnostic learning techniques to

perform auditing based on the reduction by [20] is that it is formulated in terms of weak

agnostic learning, that is, Ąnding classiĄers with error rates that are nonnegligibly better than

guessing, and correspondingly weak auditing guarantees. In particular, the approximation

guarantees we obtain for distribution-speciĄc agnostic learning yield vacuous guarantees for

weak learning. When we have guarantees for arbitrary distributions, ŞboostingŤ [28] enables

us to obtain high accuracy from such weak learners. Unfortunately, these techniques require

re-weighting the data examples after which the distribution-speciĄc properties may no longer

hold.

One might hope to dodge this issue by casting the problem of Ąnding a harmed subgroup

as a Mixed-Integer Program and using solvers that, though they lack polynomial-time

guarantees, obtain adequate performance in practice. In such an approach, the failure of the

solver to Ąnd a feasible solution to the optimization problem is taken as the proof that the

classiĄer is fair. Unfortunately, these solvers owe their speed in part to a lack of soundness,

both due to numerical issues [5] and the complexity of the heuristics used to prune the

search [2, 14], and it remains a current research challenge to obtain acceptable performance

(using the various advanced techniques employed by commercial solvers) while retaining the

guarantee that the solver correctly reports infeasibility [4]. In any case, the works by [20, 21]

and [24] that empirically studied these approaches to obtaining fair classiĄers used linear

regression as a proxy for the agnostic learning or cost-sensitive classiĄcation subroutines.

Unfortunately, these heuristics do not even provide in-principle guarantees.

In this paper, we will show auditing general halfspace subgroups is hard even for data

with a Gaussian distribution, and present an alternative auditing approach for subgroups

determined by homogeneous halfspaces with provable guarantees.

1.3 Our Contribution

Our Ąrst contribution is a more careful analysis of the relationship between auditing and

agnostic learning: Given a Ąxed positive classiĄcation rate, the harm (w.r.t. statistical parity)

suffered by a subgroup is affinely related to the error rate of the subgroup indicator. Thus,

a solution to the agnostic learning problem directly gives a harmed subgroup. Note that

whereas the fairness objective refers to conditioning on a group, which generally doesnŠt

preserve a distributional assumption, agnostic learning instead refers to the accuracy under

that ŞniceŤ distribution, and hence is easier to analyze. Also note that under a standard

normal distribution, the subclass of halfspaces with a Ąxed positive classiĄcation rate is given

by the halfspaces with unit normal vectors and the same threshold.

▶ Remark 2. Our reduction to learning halfspaces with Ąxed positive classiĄcation rates can

achieve arbitrarily high precision auditing and does not rely on re-weighting data examples

or make any assumptions on the potentially unfair classiĄers. This enables the use of the

existing distribution-speciĄc agnostic learning methods for auditing.

Based on the reduction and a inspiration from Diakonikolas et al. [7], our second major

contribution is a lower bound on the unfairness detectable when auditing for halfspace

subgroups under Gaussian distributions by reducing the problem of continuous Learning

With Errors (cLWE) to auditing. Our hardness results include both multiplicative and

additive forms. More interestingly, we can further show that even Şnonconstructive auditingŤ

is hard, where we do not need to exhibit a discriminated subgroup for a failed audit.

FORC 2024



5:4 Distribution-SpeciĄc Auditing for Subgroup Fairness

For our algorithmic results, we will present a general auditing framework given an oracle

for (distribution-speciĄc) agnostic learning. Also, we give a randomized PTAS auditing

algorithm for subgroups determined by homogeneous halfspaces under Gaussian data by

applying the method from Diakonikolas et al. [8].

▶ Remark 3. We stress that a PTAS for auditing subgroups deĄned by homogeneous halfspaces

for Gaussian distributions is, in fact, the best guarantee we know so far, hence, not trivial.

At Ąrst blush, the reliance on a (prima facie unveriĄable) distributional assumption for

the analysis of our auditing algorithm may seem to be at odds with our desire to certify the

fairness of a classiĄer. Nevertheless, a line of recent works by Rubinfeld and Vasilyan [27]

and Gollakota et al. [15] have shown that the properties of the data that are crucial to these

algorithms for distribution-speciĄc learning of halfspaces can be veriĄed. Thus, these methods

give a way of certifying fairness for families of nice distributions: so long as the data passes

these tests and the audit reveals no subgroup that is signiĄcantly harmed, we may guarantee

that the classiĄer is fair.

This paper will be organized as follows. Some necessary background for our arguments

are given in Section 2. We will present the main reduction from auditing to agnostic learning

in Section 3. Then, we will show the hardness results in Section 4. Section 5 will present

our auditing framework as well as the distribution-speciĄc PTAS algorithm. Finally, we will

discuss the limitations of our approach and suggest directions for future work.

1.4 Related Work

Many authors have considered the problem of ensuring fairness in classiĄcation, and Barocas

et al. [3] give a good overview of the broader area. In particular, there are alternatives to the

statistical, group-fairness notions we are considering, for example individual-level fairness

as proposed by Dwork et al. [11], or based on causal modeling, such as the ŞcounterfactualŤ

fairness notion proposed by Kusner et al. [25]. We cannot do justice to the breadth of

literature and philosophical issues here, and we strongly encourage the interested reader to

consult Barocas et al. The group-fairness notions we consider have their roots in the game-

theory-based approach of Kearns et al. [20] for learning representations with subgroup fairness

by assuming there exists an efficient oracle for auditing. A follow-up study [21] evaluated their

algorithm on real-world datasets. Hébert-Johnson et al. [18] showed a method of obtaining

Şmulti-accurateŤ representations by assuming the existence of an efficient auditing oracle.

Further, Kim et al. [23] proposed a variant of statistical fairness called Şmulti-fairness,Ť which

allows them to efficiently learn a multi-fair classiĄer with querying Şrelative fairnessŤ of data

pairs. As we discussed previously, the auditing oracles in these works were provided by using

linear regression as a heuristic for the optimal halfspace, which does not provide guarantees.

They also did not consider auditing for speciĄc families of distributions. On the other hand,

the works on agnostic learning for speciĄc families of distributions, e.g., [19, 9, 8, 10, 13] do

not consider how their techniques may be applied to the subgroup fairness auditing problem.

2 Preliminaries

We use lowercase bold font characters to represent real vectors and subscripts to index the

coordinates of each vector, e.g., xi represents the i-th coordinate of vector x. We denote the

lp-norm by ∥x∥p = (
∑

i x
p
i )

1/p
, and x̄ = x/∥x∥2. We model each individual as a vector of

protected attributes, i.e., x ∈ X .
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Further, the probability of an event under a distribution D is denoted by Prx∼D¶·♢.
N (0, I) denotes a standard normal distribution, where I represents the identity matrix. For

simplicity of notation, we may use N ,Nσ instead of N (0, I),N (0, σ2I) or even drop D and

N from the subscript when it is clear from the context.

▶ Fact 4 (Rotational Invariance). For any real vector u, if x ∼ N (0, I), then ū
⊤

x ∼ N (0, 1).

To understand the problem of fairness auditing, it is necessary to deĄne fairness or

unfairness precisely. In this work, we focus on the notion of Statistical Parity Subgroup

Fairness (SPSF). Formally, we have the following deĄnition.

▶ DeĄnition 5 (Statistical Parity Subgroup Fairness). Fix any binary classiĄer c ∈ C such that

c : Rd → ¶−1, +1♢, data distribution D, collection of subgroups G, and parameter γ ∈ [0, 1].

DeĄne

dD(c, g) = Pr
x∼D
¶c(x) = 1♢ − Pr

x∼D
¶c(x) = 1 ♣ x ∈ g♢ (1)

We say that c does not satisfy γ-statistical parity fairness (or is γ-unfair) with respect to D
and G, if ∃g ∈ G such that

Pr
x∼D
¶x ∈ g♢ ♣dD(c, g)♣ ≥ γ (2)

Equation (1) is a straightforward way to quantify how much the positive classiĄcation rate

within a subgroup deviates from that of the overall population. The weighting by the size

of the group (i.e., Prx∼D¶x ∈ g♢) is a concession to address the statistical issues that arise

with estimating d on small groups: we cannot escape that our empirical estimates are less

accurate as the size shrinks. Our approach makes no assumptions on the form of the function

c; note therefore, that by replacing c with other functions of x, such as whether a given

classiĄer agrees with a given label, or whether the classiĄer makes a false-positive error, our

results will immediately extend to other standard notions of statistical subgroup fairness.

The goal of fairness auditing is to develop an Şauditing algorithmŤ to efficiently Ąnd such a

certiĄcate g ∈ G for any c ∈ C with sample access to D, formalized as follows.

▶ DeĄnition 6 (Constructive Auditing [20]). Fix a collection of group indicators G over the

protected features, and any δ, γ, γ′ ∈ (0, 1) such that γ′ ≤ γ. A constructive (γ, γ′)-auditing

algorithm for G with respect to distribution D is an algorithm A such that for any classiĄer

h, when given access the joint distribution (D, h(D)), A runs in time poly(1/γ′, log(1/δ)),

and with probability 1− δ, outputs a γ′-unfair certiĄcate for h whenever h is γ-unfair with

respect to D and G. If h is γ′-fair, A will output ŞfairŤ.

Moreover, we will consider a more general type of auditing task, called Şnon-constructive

auditingŤ, where the algorithms are only required to tell if a discriminated subgroup exists.

▶ DeĄnition 7 (Non-constructive Auditing). Under the same setting as DeĄnition 6, a non-

constructive (γ, γ′)-auditing algorithm for G with respect to distribution D is an algorithm

A such that for any classiĄer h, when given access the joint distribution (D, h(D)), A runs

in time poly(1/γ′, log(1/δ)), and with probability 1− δ, claims h is γ′-unfair whenever h is

γ-unfair with respect to D and G. If h is γ′-fair, A will output ŞfairŤ.

In this work, we will mainly focus on subgroups deĄned on halfspaces, a.k.a. linear

threshold functions (LTF) over a d-dimensional real domain. Formally:

FORC 2024



5:6 Distribution-SpeciĄc Auditing for Subgroup Fairness

▶ DeĄnition 8 (Halfspaces). The class of halfspaces over R
d is deĄned as Hd := ¶x 7→

sgn(v⊤
x − t) ♣ x, v ∈ R

d, t ∈ R♢ where sgn(x) =


1 x ≥ 0

−1 otherwise
. In particular, the class

of homogeneous halfspaces can be deĄned as ¶x 7→ sgn(v⊤
x) ♣ x, v ∈ R

d♢.

Since our reduction involves the subclass of halfspace subgroups of a Ąxed size, we give

the formal deĄnition of it as follows.

▶ DeĄnition 9 (Fixed-size Halfspaces). We use Hd to represent the collection of all halfspaces

in R
d. Then, for any arbitrary distribution D over R

d, we deĄne the collection of all

halfspaces with the same (relative) density µ as

HD
µ := ¶h ∈ Hd ♣ Pr

x∈D
¶h(x) = 1♢ = µ♢ (3)

In particular, the class of homogeneous halfspaces for a mean-0 Gaussian distribution is

HN (0,Σ)
1/2 .

For conciseness, we may abbreviate Pr¶f(x) = 1♢ and Pr¶f(x) = −1♢ to simply Pr¶f♢ and

Pr¶¬f♢ for any binary output functions f : X → ¶−1, +1♢ in the rest of the paper.

To state the hardness results, we denote S
d−1 := ¶x ∈ R

d ♣ ∥x∥2 = 1♢, Zq := ¶0, 1, . . . , q−
1♢, Rq := [0, q), and modq : Rd → Rq for the unique translation of the input by qZd to Rq

for q ∈ N. The hardness of distribution-speciĄc auditing is based on the assumption that

the problem of ŞLearning With ErrorsŤ (LWE) is computationally intractable. Informally

speaking, in the problem of LWE, we are given labelled examples from two hypothesis cases.

In one case, the labels are biased by some secret vector, while, in another case, the labels are

generated uniformly at random. We wish to distinguish between these cases. We formally

deĄne the problem of LWE [26], following [7]:

▶ DeĄnition 10 (Learning With Errors). For m, d ∈ N, q ∈ R+, let Dsample,Dsecret,Dnoise

be distributions on R
d,Rd,R respectively. In the LWE(m,Dsample,Dsecret,Dnoise, modq)

problem, with m independent samples (x, y), we want to distinguish between the following

two cases:

Alternative hypothesis: (x, y) is generated as y = modq(s⊤
x + z), where x ∼

Dsample, s ∼ Dsecret, z ∼ Dnoise.

Null hypothesis: y is sampled uniformly at random on the support of its marginal

distribution in the alternative hypothesis, independent of x ∼ Dsample.

An algorithm is said to be able to solve the LWE problem with ∆ advantage if the probability

that the algorithm outputs Şalternative hypothesisŤ is ∆ larger than the probability that it

outputs Şnull hypothesisŤ when the given data is sampled from the alternative hypothesis

distribution.

This problem is widely believed to be computationally hard, formalized as follows.

▶ Assumption 11 (Sub-exponential LWE Assumption). For q, κ ∈ N, α ∈ (0, 1) and C > 0

being a sufficiently large constant, the problem LWE(2O(nα),Zd
q ,Zd

q ,Nσ, modq) with q ≤ dκ

and σ = C
√

d cannot be solved in 2O(dα) time with 2O(−dα) advantage.

3 From Auditing To Agnostic Learning

In this section, we describe our reduction from auditing to agnostic learning. In addition, we

give a lower bound for fairness auditing under Gaussian distributions.
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We are considering the auditing problem w.r.t. SPSF as in DeĄnition 5, which naturally

rules out the statistically small subgroups. Indeed, if the probability of accessing the data of

certain sub-population is exponentially small, it is statistically hard to even estimate their

deviation. Therefore, it makes sense to just consider the collection of subgroups G that are

statistically large enough, e.g., Pr¶x ∈ g♢ = Θ(1) for x ∈ R
d.

Based on the observation, the following optimization program, PD
a,b(G), can capture the

most unfair subgroup which is also statistically signiĄcant enough. That is

max
g∈G

Pr
x∈D
¶x ∈ g♢ ♣dD(c, g)♣

s.t. a ≤ Pr
x∈D
¶x ∈ g♢ ≤ b (4)

for some constants 0 < a ≤ b < 1.

Furthermore, if we only consider the subgroups represented by halfspaces, i.e., G ≡ Hd,

there exists a simple reduction from PD
a,b(Hd) to agnostic learning that, in particular, preserves

the properties of the data distribution. We show our reduction as the following theorem.

▶ Theorem 12 (Main Reduction). Given any binary classiĄer c : Rd → ¶−1, +1♢, and a

data distribution D over R
d whose 1-dimensional marginals have continuous cumulative

distribution functions, if there exists an efficient algorithm for learning HD
µ in the agnostic

model on distribution D, then there is an efficient auditing algorithm for c on subgroups

represented by Hd over distribution D.

We delay the proof of the above theorem to the end of this section, and show two fundamental

hurdles we need to overcome in order to prove Theorem 12.

▶ Remark 13. While learning from a representation class like HD
µ may seems to be hard at

a Ąrst glance, there are actually examples [10] of learning HD
µ in an agnostic setting under

Gaussian data.

Instead of starting from the optimization problem (4), it turns out that solving a sequence

of simpler optimization problems suffices to certify the γ-unfairness as stated in DeĄnition 5.

We state the equivalence in the following proposition. Its proof is deferred to the appendix.

▶ Proposition 14. Consider any binary classiĄer c : Rd → ¶−1, +1♢, any data distribution

D over R
d whose 1-dimensional marginals have continuous cumulative distribution functions,

and any 0 < a ≤ b < 1. For each pair of non-negative integers k < n, let PD
a,b(k, n) denote

the optimization program

max
h∈Hd

Pr
x∈D
¶h(x) = 1♢ ♣dD(c, h)♣

s.t. Pr
x∈D
¶h(x) = 1♢ = a +

k(b− a)

n
.

Let h∗ be a global optimizer of PD
a,b(Hd), as deĄned in (4), and let γ∗ = Pr¶h∗♢ ♣dD(c, h∗)♣.

For each k = 0, . . . , n, let h∗
k be a global optimizer of PD

a,b(k, n). Then

max
k

Pr¶h∗
k♢ ♣dD(c, h∗

k)♣ ≥ γ∗ − 2(b− a)

n
.

The reason why this proposition is so crucial is that it allows us to solve a simpler

optimization problem without compromising the guarantee. Being able to Ąx Pr¶h(x) = 1♢
as a constant will signiĄcantly simplify the overall optimization as it reduces the degree of

FORC 2024



5:8 Distribution-SpeciĄc Auditing for Subgroup Fairness

the optimization objective. In fact, it is because we can optimize Pr¶h(x) = 1♢ ♣dD(c, h)♣
over HD

µ instead of Hd that we can conduct the reduction from auditing to agnostic learning.

The following lemma shows a direct relationship between the unfairness level and the

classiĄcation error.

▶ Lemma 15. Given any binary classiĄer c : X → ¶−1, +1♢, a data distribution D over X
and a collection of subgroups g ∈ G such that g : X → ¶−1, +1♢, we have

2 Pr¶g♢dD(c, g) = Pr¶¬c♢Pr¶¬g♢+ Pr¶c♢Pr¶g♢ − Pr¶c(x) = g(x)♢

for x ∼ D.

Proof. By the law of total probability, we have

Pr¶c ∩ g♢ = Pr¶g♢ − (Pr¶¬c♢ − Pr¶¬c ∩ ¬g♢).

which along with DeĄnition 5 gives

dD(c, g) = Pr¶c♢ − Pr¶c ♣ g♢

=
Pr¶c♢Pr¶g♢ − Pr¶c ∩ g♢

Pr¶g♢

=
Pr¶¬c♢Pr¶¬g♢ − Pr¶¬c ∩ ¬g♢

Pr¶g♢ . (5)

Summing up the two different forms of dD(c, g) results to

2dD(c, g) =
Pr¶¬c♢Pr¶¬g♢ − Pr¶¬c ∩ ¬g♢

Pr¶g♢ +
Pr¶c♢Pr¶g♢ − Pr¶c ∩ g♢

Pr¶g♢

=
Pr¶¬c♢Pr¶¬g♢+ Pr¶c♢Pr¶g♢ − (Pr¶¬c ∩ ¬g♢+ Pr¶c ∩ g♢)

Pr¶g♢ (6)

Notice that, because c ∩ g and ¬c ∩ ¬g are two disjoint events, we have

Pr¶c(x) = g(x)♢ = Pr¶(c ∩ g) ∪ (¬c ∩ ¬g)♢
= Pr¶c ∩ g♢+ Pr¶¬c ∩ ¬g♢

Plugging it back in to Equation (6) produces the desired result. ◀

This immediately implies a duality between SPSF auditing and agnostic learning as follows.

▶ Corollary 16. Given any binary classiĄer c : Rd → ¶−1, +1♢, a data distribution D and a

collection of halfspaces HD
µ over R

d, we have the following two properties

(1) dD(c, h∗) ≥ dD(c, h),∀h ∈ HD
µ if and only if h∗ = argminh∈HD

µ
Prx∼D¶c(x) = h(x)♢

(2) dD(c, h∗) ≤ dD(c, h),∀h ∈ HD
µ if and only if h∗ = argmaxh∈HD

µ
Prx∼D¶c(x) = h(x)♢

Proof. Because Pr¶c♢ is a constant and Pr¶h♢ = µ,∀h ∈ HD
µ by DeĄnition 9, dD(c, h) is

simply an affine transformation of Pr¶c(x) = h(x)♢ for a Ąxed µ by Lemma 15, which implies

the desired results. ◀

Proposition 14 tells us that solving PD
a,b(k, n) for k = 0, . . . , n would give us a good

enough approximation to the maximum unfairness level, of course, with a large enough n.

Therefore, we just need to further show that solving each PD
a,b(k, n) is equivalent to learning

HD
µ to complete the reduction.
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Formally, because PD
a,b(k, n) can be equivalently written as

max
h∈HD

µ

Pr
x∈D
¶h(x) = 1♢ ♣dD(c, h)♣ (7)

for some µ = a + k(b− a)/n, it suffices to prove the following theorem.

▶ Lemma 17. Given any binary classiĄer c : Rd → ¶−1, +1♢, a data distribution D and a

collection of halfspaces HD
µ over R

d such that

optmin ≤ Pr
x∼D
¶c(x) = h(x)♢ ≤ optmax

for all h ∈ HD
µ , if hv , hu ∈ HD

µ satisfy that Pr¶c(x) = hv(x)♢ ≤ optmin + 2ϵ as well as

Pr¶c(x) = hu(x)♢ ≥ optmax − 2ϵ, we have either

Pr
x∼D
¶hv(x) = 1♢

∣
∣dD(c, hv)

∣
∣ ≥ γ∗ − ϵ (8)

or

Pr
x∼D
¶hu(x) = 1♢

∣
∣dD(c, hu)

∣
∣ ≥ γ∗ − ϵ (9)

where γ∗ = maxh∈HD
µ

Prx∼D¶h(x) = 1♢ ♣dD(c, h)♣.

Proof. By the proof of Lemma 15, we have

2 Pr¶h♢ ♣dD(c, h)♣ = ♣Pr¶¬c♢Pr¶¬h♢ − Pr¶¬c ∩ ¬h♢
︸ ︷︷ ︸

I1

+ Pr¶c♢Pr¶h♢ − Pr¶c ∩ h♢
︸ ︷︷ ︸

I2

♣

Let h∗ ∈ HD
µ be such that Pr¶h∗♢ ♣dD(c, h∗)♣ = γ∗. Then for I2, we have

I2 =(Pr¶c♢ − Pr¶c ♣ h∗♢+ Pr¶c ♣ h∗♢) Pr¶h♢ − Pr¶c ∩ h♢
= Pr¶h∗♢dD(c, h∗) + Pr¶c ∩ h∗♢ − Pr¶c ∩ h♢

where the last equation is because h∗ ∈ HD
µ , then Pr¶h♢ = Pr¶h∗♢ = µ by DeĄnition 9.

Similarly, for I1, we can write

I1 = Pr¶¬h∗♢(Pr¶¬c♢ − Pr¶¬c ♣ ¬h∗♢) + Pr¶¬c ∩ ¬h∗♢ − Pr¶¬c ∩ ¬h♢
= Pr¶h∗♢dD(c, h∗) + Pr¶¬c ∩ ¬h∗♢ − Pr¶¬c ∩ ¬h♢

where the last equation follows because we have shown in the proof of Lemma 15 that

dD(c, h∗) = Pr¶¬h∗♢(Pr¶¬c♢ − Pr¶¬c ♣ ¬h∗♢)/ Pr¶h∗♢.
Combining I1 and I2 will result to

Pr¶h♢ ♣dD(c, h)♣ =♣Pr¶h∗♢dD(c, h∗) +
Pr¶c(x) = h∗(x)♢ − Pr¶c(x) = h(x)♢

2
♣

≥γ∗ − ♣Pr¶c(x) = h∗(x)♢ − Pr¶c(x) = h(x)♢♣
2

by triangle inequality. Further, since h∗ maximizes ♣dD(c, h)♣, it either maximizes or minimizes

dD(c, h). Then, by Corollary 16, we know

Pr
x∼D
¶c(x) = h∗(x)♢ ∈ ¶optmin, optmax♢
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which implies either

∣
∣Pr¶c(x) = h∗(x)♢ − Pr¶c(x) = hv(x)♢

∣
∣ ≤ 2ϵ

or

∣
∣Pr¶c(x) = h∗(x)♢ − Pr¶c(x) = hu(x)♢

∣
∣ ≤ 2ϵ

Therefore, the proof is completed. ◀

▶ Remark 18. We emphasize that it is necessary for us to consider the guarantee of agnostic

learning in a additive form rather than multiplicative form. Although Corollary 16 shows

that the classiĄcation error, Pr¶c(x) ̸= h(x)♢, and the unfairness level, Pr¶h♢ ♣dD(c, h)♣,
are dual to each other over HD

µ , the affine relationship between them prohibits obtaining a

guarantee on the unfairness from a multiplicative error. This also explains why the guarantee

provided by [10] does not Ąt in our analysis.

Now we are ready to prove Theorem 12.

Proof of Theorem 12. To solve the auditing problem, we just need to solve the sequence of

optimization problems, ¶PD
a,b(k, n) ♣ k = 0, . . . , n♢ as described in Proposition 14. We can

solve each PD
a,b(k, n) with an additive error ϵ by calling the given oracle of learning halfspaces

with the same strategy speciĄed in Lemma 17. Eventually, we solve all of these optimization

problems with an 2(b− a)/n + ϵ additive error and a running time of O(n) factor overhead

compared with that of the oracle. ◀

4 Intractability Of Auditing Under Gaussian Data

In this section, we will show that the problem of auditing halfspaces subgroups under a

Gaussian distribution is computationally hard in two forms: the multiplicative form and

additive form. To do so, we Ąrst show that distinguishing between fair and unfair cases with

respect to halfspace subgroups for Gaussian data is hard. Then, the hardness of auditing

will follow as corollaries.

4.1 Indistinguishability Of Unfairness

We claim it is computationally hard to distinguish between halfspace subgroups that are

evenly fair and halfspace subgroups among which there exists a slightly unfair subgroup with

signiĄcant advantage.

▶ Theorem 19. Under Assumption 11, for any d ∈ N, any constants α ∈ (0, 1), β ∈ R+, and

any logβ d ≤ k ≤ cd where c is a sufficiently small constant, there is no algorithm that runs

in time dO(kα) and distinguishes between the following two cases of a joint distribution D of

(x, c(x)) supported on R
d × ¶−1, +1♢ with marginal Dx = N (0, I), with d−O(kα) advantage:

(i) Alternative Hypothesis: There exist non-negligibly unfair halfspace subgroups, spe-

ciĄcally ∃h ∈ Hd, PrD¶h(x) = 1♢♣dD(c, h)♣ = Ω(1/
√

k log d).

(ii) Null Hypothesis: All halfspace subgroups are perfectly fair, i.e., PrD¶h(x) =

1♢♣dD(c, h)♣ = 0,∀h ∈ Hd.

The above theorem simply states that the closer the unfairness level of the alternative

hypothesis is to zero (k log d is large), the harder it is to distinguish between these two cases,

where the hardness is reĆected on the running time dO(kα). Hence, if we restrict the running
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time to a certain order, there is a limitation on how large k log d can be for someone to be

able to distinguish between them with a signiĄcant enough advantage. It is this observation

that allows us to prove the hardness of auditing in the next section.

The idea behind the proof of this theorem is to observe that the data generated in the

two hypotheses in certain LWE instances can be reduced to binary labelled ones through

rounding. With such a reduction, the distribution from the null hypothesis case of LWE

will produce perfectly fair data, while the distribution from alternative hypothesis will yield

slightly biased labels where a unfair halfspace subgroup therefore exists. Thus, if we can

distinguish between the fair case from the unfair case with some marginal error, we can solve

the LWE problem. We defer the formal proof to the appendix.

4.2 Auditing With Small Error Is Hard

We now show that the hardness of distinguishability implies the hardness of auditing with

both multiplicative error and additive error.

Suppose an auditing algorithm is guaranteed to return us a γ′-unfair certiĄcate (a

halfspace) given a γ-unfair classiĄer c, where γ′ ≤ γ ≤ 1. The following corollaries show that

γ′ can never be close to γ.

▶ Corollary 20 (multiplicative form). Given Assumption 11, there is no polynomial-time

1/poly(d)-approximation algorithm for constructive auditing for halfspace subgroups under

Gaussian marginals in R
d.

Proof. Suppose there exists an auditing algorithm that guarantees to return a δγ-unfair

certiĄcate given a γ-unfair collection of halfspace subgroup and access to data with a Gaussian

marginal, where δ ∈ (0, 1).

For the alternative hypothesis case as described in Theorem 19, given a 1/
√

k log d-unfair

collection of halfspace subgroups, we run such an algorithm to obtain a δ/
√

k log d-unfair

certiĄcate, i.e., a halfspace h such that Prx∼N ¶h(x) = 1♢♣dN (c, h)♣ ≥ δ/
√

k log d. By the

Hoeffding Bound, we can verify that the empirical estimation of Prx∼N ¶h(x) = 1♢♣dN (c, h)♣
is ε1-close to δ/

√
k log d with high probability by drawing O(1/ε2

1) examples from the

distribution constructed in the alternative hypothesis case.

For the null hypothesis case, with the same argument, we can verify there is no ε2-unfair

subgroup with high probability given O(1/ε2
2) examples from the distribution in the null

hypothesis case.

Suppose δ = Ω(1/poly(d)), notice that we only need ε1, ε2 to be O(1/poly(d)) to ensure

δ/
√

k log d − ε1 > ε2. However, this implies that our auditing algorithm can distinguish

between the two cases in Theorem 19 with high probability and only runs in polynomial

time, which contradicts to the hardness assumption. ◀

▶ Corollary 21 (additive form). Given Assumption 11, for any constants α ∈ (0, 1), β ∈ R+,

and any C/
√

d log d ≤ ϵ ≤ c′/ log(1+β)/2 d where C is a sufficiently large constant and c′

is a sufficiently small constant, no auditing algorithm can return a unfair certiĄcate for

halfspace subgroups in R
d with an additive error ϵ under Gaussian marginals and runs in

time dO(1/(ϵ2 log d)α).

Proof. Suppose there exists an auditing algorithm that guarantees to return a γ − ϵ-unfair

certiĄcate given a γ-unfair collection of halfspace subgroups and access to data with a

Gaussian marginal, where ϵ ∈ (0, 1).

Similar to the proof of Corollary 20, given a 1/
√

k log d-unfair collection of halfspace

subgroups, we run such an algorithm to obtain a (1/
√

k log d− ϵ)-unfair certiĄcate. Observe

that, if ϵ = c′/
√

k log d for some sufficiently small constant c′, we can solve the testing problem
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in Theorem 19 within time dO(kα) by running this algorithm as well as drawing enough

examples to estimate the unfairness of the returned certiĄcates from the two cases respectively.

On the other hand, given ϵ = c′/
√

k log d, we can rewrite dO(kα) = dO(1/(ϵ2 log d)α).

However, Theorem 19 tells that the above case is impossible for any C/
√

d log d ≤ ϵ ≤
c′/ log(1+β)/2 d, where C is a sufficiently large constant. ◀

Besides the general general auditing problem, we also consider the Şnon-constructive

auditingŤ problem as in DeĄnition 7, where the algorithm is only required to tell if there

exists an unfair subgroup without returning the unfair certiĄcate. Actually, it turns out any

non-constructive auditing algorithm can distinguish the two cases in Theorem 19.

▶ Corollary 22 (non-constructive auditing is hard). Given Assumption 11, for any constants

α ∈ (0, 1), β ∈ R+, and any C/
√

d log d ≤ ϵ ≤ c′/ log(1+β)/2 d where C is a sufficiently large

constant and c′ is a sufficiently small constant, no auditing algorithm can tell if there exists

a unfair certiĄcate for halfspace subgroups in R
d with

an additive error ϵ under Gaussian marginals and running in time dO(1/(ϵ2 log d)α).

or a multiplicative approximation factor of 1/poly(d) and running in polynomial time.

Proof. Suppose there exists an auditing algorithm that can either tell if a δγ-unfair certiĄcate

or a γ− ϵ-unfair certiĄcate exists given a γ-unfair collection of halfspace subgroup and access

to data with a Gaussian marginal, where δ, ϵ ∈ (0, 1). With the same argument as that of

Corollary 20 and 21, we can achieve the desired results. ◀

To the best of our knowledge, there does not exist any PTAS for properly learning general

halfspaces in the agnostic model with guarantees of additive error close to O(1/
√

log d).

However, in the next section, we will show that if we restrict out attention to just homogeneous

halfspaces under a standard normal distribution, it is possible to achieve additive error of

O(1/ log1/C d) for some constant C > 2.

5 Auditing Via Agnostic Learning Under Gaussian Distribution

In this section, we present our algorithmic results. Our approach is based on Theorem 12:

auditing over subgroups determined by halfspaces can be accomplished by solving a sequence

of simpler tasks of learning halfspaces. As a result, we are able to take advantage of existing

agnostic learning methods to solve the auditing problem.

Meanwhile, we will discuss the testability of Gaussian distributions and show that existing

distribution testing methods [15, 27] for learning halfspaces will not increase the running time

signiĄcantly for our task. In fact, the running time of the testing method is asymptotically

no greater than that of our auditing algorithm.

5.1 Auditing Algorithm for Homogeneous Halfspaces

Assuming there exists an efficient oracle for agnostic learning, Algorithm 1 will eventually

return a halfspace h′ as a certiĄcate of the subgroup that has the highest unfairness level.

Notice, we create a negatively labelled data sets at Line 3 because maximizing (minim-

izing) the unfairness Pr¶h♢ ♣dD(c, h)♣ for the c(x) = 1 labelling is equivalent to minimizing

(maximizing) Pr¶h♢ ♣dD(c, h)♣ for c(x) = −1. Thus, by reversing the labels, we can use the

oracle to solve both the maximization and minimization directions.

In the loop, we simply follow our previous reduction by dividing the population constraint

into multiple approximately-Ąxed-size constraints at Line 11. Then, we solve each sub-task

with a Ąxed population size by calling the oracle on both data sets at Lines 7 and 8.
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Algorithm 1 Fairness Auditing.

Input : n, a, b, ϵ, δ,D, classiĄer c, oracle O
Result: µ′, h′

1 X̂ ← draw N(d, ϵ, δ) i.i.d. samples from D;

2 D̂+ ← ¶X̂ , c(X̂ )♢;
3 D̂− ← ¶X̂ ,−c(X̂ )♢;
4 µ← a;

5 (µ′, h′)← (1, c);

6 while µ ≤ b do

7 h+
µ ← O(ϵ, δ/2n, µ, D̂+);

8 h−
µ ← O(ϵ, δ/2n, µ, D̂−);

9 if
∣
∣dD(c, h+

µ )
∣
∣ <

∣
∣dD(c, h−

µ )
∣
∣ then h+

µ ← h−
µ ;

10 if µ′ ♣dD(c, h′)♣ ≤ µ
∣
∣dD(c, h+

µ )
∣
∣ then (µ′, h′)← (µ, h+

µ ) ;

11 µ← µ + (b− a)/n;

12 end

We give the guarantees of our algorithm below and defer the proof to the appendix.

▶ Theorem 23 (Auditing Framework). Given any binary classiĄer c : Rd → ¶−1, +1♢, a

data distribution D whose 1-dimensional marginals have continuous cumulative distribution

functions, and collections of halfspaces ¶HD
µ ♣ µ > 0♢ over R

d, if there exists an oracle O
that takes ϵ, δ, µ ∈ (0, 1) and N(d, ϵ, δ) labelled i.i.d. samples from D in the form of (x, c(x)),

runs in time T (d, ϵ, δ), and returns a halfspace hµ such that, with at least 1− δ probability

Pr
x∼D
¶hµ(x) ̸= c(x)♢ ≤ min

h∈HD
µ

Pr
x∼D
¶h(x) ̸= c(x)♢+ ϵ

then there exists an algorithm that takes n ∈ Z
+, 0 < a ≤ b < 1, ϵ, δ ∈ (0, 1) and

O(N(d, ϵ, δ/n)) labeled i.i.d samples from D, runs in time O(nT (d, ϵ, δ/n)) and returns a

halfspace h′ as a certiĄcate such that a ≤ Prx∼D¶h′♢ ≤ b and

Pr
x∼D
¶h′♢ ♣dD(c, h′)♣ ≥ max

h∈Hd
Pr

x∼D
¶h♢ ♣dD(c, h)♣ −O(ϵ)

with at least 1− δ probability.

While our framework heavily relies on the methods of agnostic learning with small additive

error, unfortunately, there are no known methods for learning general halfspaces that can

achieve additive error better than a constant, even under distributions as nice as standard

normal ones.

However, if we restrict our audit to the class of homogeneous halfspaces, Diakonikolas et

al. [8] proposed an agnostic learning PTAS for homogeneous halfspaces under Gaussian data.

That is, we only audit for subgroups with probability mass 1/2.

▶ Lemma 24 (Learning Homogeneous Halfspaces [8]). Let D be a distribution on labeled

examples (x, y) ∈ R
d×¶−1, +1♢ whose x-marginal is N (0, I). There exists an algorithm that,

given τ, ϵ, δ > 0, and N = dpoly(1/τ)poly(1/ϵ) log(1/δ) i.i.d. samples from D, the algorithm

runs in time poly(N, d), and computes a halfspace hv such that, with probability at least

1− δ, it holds that PrD¶y ̸= hv(x)♢ ≤ (1 + τ) minh∈HN

1/2

PrD¶y ̸= h(x)♢+ ϵ.

FORC 2024



5:14 Distribution-SpeciĄc Auditing for Subgroup Fairness

Now, notice that Lemma 24 gives us an oracle for auditing halfspace subgroups with

population size 1/2 under Gaussian distributions, since by Lemma 15, we know that agnostic

learning with Ąxed threshold will have constant population size under a Gaussian distribution

and, hence, is equivalent to auditing with Ąxed population size. Therefore, we can use

this oracle in Algorithm 1 to audit the subgroup class Hd
1/2 for D = N (0, I). We show our

algorithmic guarantee of a PTAS in the following corollary.

▶ Corollary 25 (Auditing Under Gaussian). Given any binary classiĄer c : Rd → ¶−1, +1♢, a

data distribution N (0, I) and a collection of halfspaces HN
1/2 over R

d, there exists an auditing

algorithm that takes ϵ, δ > 0 and N = dpoly(1/ϵ)poly(1/ϵ) log(1/δ) labeled i.i.d. examples from

N (0, I) in the form of (x, c(x)), runs in time poly(N, d), and returns a halfspace h′ as a

certiĄcate such that Prx∼D¶h′♢ = 1/2 and

♣dN (c, h′)♣ ≥ max
h∈HN

1/2

♣dN (c, h)♣ − 2ϵ

with at least 1− δ probability.

Proof. We can simply run Algorithm 1 for just one iteration with the same set of parameters

except that D = N (0, I), n = 1, a = b = 1/2 and the oracle being as described by Lemma

24 for τ = ϵ. Notice that Lemma 24 guarantees us that the requirement on the oracle in

Theorem 23 is satisĄed. Thus, we can refer to the proof of Theorem 23 to establish that

running Algorithm 1 for just one iteration suffices. Also, since we only run the algorithm for

one iteration, we have T = 1, hence, the running time is dominated by the running time of

the oracle, which is poly(N, d). ◀

5.2 Testability Of Gaussian Distribution

Given the assumption that our algorithm only works under Gaussian distributions, one might

ask if a set of data examples can be tested to be Gaussian without increasing the running

time guarantee in Corollary 25 asymptotically. We will show that this kind of testing can be

accomplished within the same running time as our auditing algorithm.

A recent work by Rubinfeld and Vasilyan [27] has proposed a moment matching method for

testing Gaussian assumptions speciĄcally for agnostic learning. Their method is based on the

observation that linear threshold functions have degree poly(1/ϵ) polynomial approximations

with additive error of ϵ [19, 8]. Abstractly, this moment matching testing method estimates

the moments of the data samples up to degree O(1/ϵ4) and check if the element-wise difference

between the estimated moments and the actual Gaussian moments are small. They proved

that running their testing method along with the agnostic learning algorithm proposed by

Kalai et al. [19] will not increase the running asymptotically, i.e., dO(1/ϵ4).

To see why the testing method in [27] will not increase the asymptotic running time of

our auditing algorithm, we need to dig deeper into the algorithm described by Lemma 24

from [8]. First, they run the learning algorithm of Kalai et al. [19] to get an approximating

polynomial of degree O(1/ϵ4). Then, they estimate the moments of the outer product of

the derivatives of the learned polynomial. Finally, they estimate the classiĄcation error of a

collection of halfspaces in a subspace of degree O(1/ϵ4). See [8] for further details.

The most important observation is that every step in the algorithm stated in Lemma 24

only requires estimating the moments of the data up to degree O(1/ϵ4). Thus, running the

moment matching testing method of [27] will only require an additional dO(1/ϵ4) running

time, which will not increase the asymptotic running time of the agnostic learning algorithm

in Lemma 24 or our auditing algorithm.
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6 Future Work

The major drawback of our result is still the lack of approaches of learning halfspaces with a

sub-constant error guarantee for more general distributions. Therefore, a major direction

for fairness auditing remains to develop an agnostic learning method with additive error

guarantees for broader classes, such as log-concave distributions Ű subject to the constraints

of Corollary 21/Diakonikolas et al. [7]. Even a computationally efficient learning algorithm

for general halfspaces that can achieve additive error close to O(1/
√

log d) under Gaussian

distributions would be an interesting improvement.

An alternative direction is to seek stronger guarantees for conjunctions on such families

of distributions. Conjunctions are more natural in the context of auditing, and their relative

lack of expressive power might enable a better guarantee.
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Proof of Proposition 14. For conciseness of the proof, we deĄne

α(k) := a +
k(b− a)

n

Since a ≤ Pr¶h∗(x) = 1♢ ≤ b by deĄnition, there must exists a k ∈ ¶0, . . . , n− 1♢ such that

α(k) < Pr¶h∗(x) = 1♢ < α(k + 1)

Then, since we assumed that D has a continuous CDF w.r.t. the normal of h∗, we can

construct another halfspace h′ by either increasing or decreasing the threshold of h∗ until

Pr¶x ∈ h′♢ hits either α(k) or α(k + 1). We thus obtain

Pr¶h′(x) ̸= h∗(x)♢ =♣Pr¶h∗♢ − Pr¶h′♢♣
≤α(k + 1)− α(k)

=
(b− a)

n
(10)

Let dom := ¶x ♣ h′(x) ̸= h∗(x)♢. Then, by the triangle inequality and the fact that

Pr¶c(x) = 1♢ ≤ 1, we have

♣Pr¶h∗♢dD(c, h∗)♣ −
∣
∣Pr¶h′♢dD(c, h′)

∣
∣ ≤♣ Pr¶h∗♢ − Pr¶h′♢♣ + ♣ Pr¶h′ ∩ c♢ − Pr¶h∗ ∩ c♢♣

≤
(b − a)

n
+ ♣ Pr¶h′ ∩ c ∩ dom♢ − Pr¶h∗ ∩ c ∩ dom♢♣

≤
(b − a)

n
+ ♣ Pr¶x ∈ dom♢♣

≤
2(b − a)

n
(11)

where the second inequality is obtained by expanding Pr¶h∩ c♢ on the event x ∈ dom using

the law of total probability and exploiting the fact that h′ always agrees with h∗ on the

complement of dom, i.e., Pr¶h′ ∩ c∩dom
c♢ = Pr¶h∗ ∩ c∩dom

c♢; the third inequality holds

because at most one of h∗(x) = 1 and h′(x) = 1 holds for any x ∈ dom by deĄnition; and

the last inequality is due to equation (10).

Finally, due to the optimality of h∗
k, we have

Pr¶h∗
k♢ ♣dD(c, h∗

k)♣ ≥Pr¶h′♢ ♣dD(c, h′)♣ − γ∗ + γ∗

≥γ∗ − 2(b− a)

n

by inequality (11) with Pr¶h∗(x) = 1♢ ♣dD(c, h∗)♣ = γ∗. ◀

B Proof Of Hardness

We will need the following proposition from [16, 7] in the proof of theorem 19.

▶ Proposition 26 ([16, 7] Hardness of cLWE). Given Assumption 11, for any d ∈ N, any

constants κ ∈ N, α ∈ (0, 1), β ∈ R+ and any logβ d ≤ k ≤ Cd where C > 0 is a sufficiently

small universal constant, the problem LWE(dO(kα),N ,Sd−1,Nσ, modT ) over Rd with σ ≥ k−κ

and T = 1/C ′
√

k log d, where C ′ > 0 is a sufficiently large universal constant, cannot be

solved in time dO(kα) with d−O(kα) advantage

The problem of continuous Learning With Error (cLWE) under Gaussian distribution is

known to be as hard as LWE. Now we are ready to prove the main theorem.
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Proof of Theorem 19. We give an efficient method taking as input samples from a dis-

tribution D′, that is either from the alternative hypothesis or the null hypothesis of

LWE(dO(kα),N (0, I),Sd−1,N (0, σ), modT ) from Proposition 26, and generate samples from

another distribution D with the following properties: if D′ is from the alternative (resp. null)

hypothesis of the LWE problem, then the resulting distribution D will satisfy the alternative

(resp. null) hypothesis requirement of the theorem for the halfspace auditing problem.

The reduction process can be formulated as follow: for a sample (x, y) from a instance D′

of the problem LWE(dO(kα),N (0, I),Sd−1,N (0, σ), modT ) from Proposition 26, we simply

output (x, c(x)) ∼ D, where

c(x) =

{

+1, if y ≤ T/2

−1, otherwise

We argue that D satisĄes the desired requirement stated above.

For the alternative hypothesis case, let D′ be from the alternative hypothesis case of

the LWE. Let s be the secret vector in the LWE problem. We consider the following two

halfspaces:

h1(x) = sgn(s⊤
x − T/6)

h2(x) = sgn(−s
⊤

x + T/3)

If we can show
∣
∣
∣Prx∼Dx

¶h1(x) = 1♢dD(c, h1) + Prx∼Dx
¶h2(x) = 1♢dD(c, h2)

∣
∣
∣ = Ω(T ), then

either h = h1 or h = h2 satisĄes Prx∼Dx
¶h(x) = 1♢ ♣dD(c, h)♣ = Ω(T ), which implies the

desired property of the alternative hypothesis we would like to prove. By Lemma 15, we have

2 Pr
x∼Dx

¶h1(x) = 1♢dD(c, h1) + 2 Pr
x∼Dx

¶h2(x) = 1♢dD(c, h2)

= Pr¶¬c♢(Pr¶¬h1♢+ Pr¶¬h2♢) + Pr¶c♢(Pr¶h1♢+ Pr¶h2♢)
︸ ︷︷ ︸

I1

− (Pr¶c(x) = h1(x)♢+ Pr¶c(x) = h2(x)♢
︸ ︷︷ ︸

I2

)

To bound I1, I2, we Ąrst examine the subset of domain where h1 and h2 agree, namely

B :=¶x ∈ R
d ♣ h1(x) = h2(x)♢

=¶x ∈ R
d ♣ h1(x) = 1 ∩ h2(x) = 1♢

=¶x ∈ R
d ♣ s

⊤
x ∈ [T/6, T/3]♢

Then, for I1, by the law of total probability, we have

I1 = Pr¶c(x) = −1♢(Pr¶h1(x) = −1♢ + Pr¶h2(x) = −1♢ + Pr¶x ∈ B♢ − Pr¶x ∈ B♢)

+ Pr¶c(x) = 1♢(Pr¶h1(x) = 1♢ + Pr¶h2(x) = 1 ∩ x /∈ B♢ + Pr¶h2(x) = 1 ∩ x ∈ B♢)

(i)
= Pr¶c(x) = −1♢(1 − Pr¶x ∈ B♢) + Pr¶c(x) = 1♢(1 + Pr¶x ∈ B♢)

=1 + Pr¶x ∈ B♢(Pr¶c(x) = 1♢ − Pr¶c(x) = −1♢)

=1 + Pr¶x ∈ B♢(2 Pr¶c(x) = 1♢ − 1)
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where (i) is because ¶x ∈ R
d ♣ h1(x) = −1♢, ¶x ∈ R

d ♣ h2(x) = −1♢, ¶x ∈ B♢ are pairwise

disjoint and their union equals to R
d, ¶x ∈ R

d ♣ h1(x) = 1♢, ¶x ∈ R
d ♣ h2(x) = 1 ∩ x /∈ B♢

are disjoint and their union equals to R
d; and since ¶x ∈ B♢ ⊂ ¶x ∈ R

d ♣ h2(x) = 1♢ by

deĄnition, ¶x ∈ B♢ = ¶x ∈ B ♣ h2(x) = 1♢.
For I2, because for any x ∈ B, h1(x) = h2(x) = 1 by construction, and by the law of

total probability, we have

I2 = Pr¶c(x) = h1(x) ∩ x /∈ B♢ + Pr¶c(x) = h2(x) ∩ x /∈ B♢ + 2 Pr¶c(x) = 1 ∩ x ∈ B♢

= Pr¶x /∈ B♢ + 2 Pr¶c(x) = 1 ∩ x ∈ B♢

=1 + Pr¶c(x) = 1 ∩ x ∈ B♢ − Pr¶c(x) = −1 ∩ x ∈ B♢

=1 − Pr¶x ∈ B♢(1 − 2 Pr¶c(x) = 1 ♣ x ∈ B♢

By the deĄnition of c as well as the Alternative case distribution of the LWE problem,

¶x ∈ R
d ♣ c(x) = 1♢ is equivalent to ¶x ∈ R

d ♣ mod T (s⊤
x + z) ≤ T/2♢ for some

z ∼ N (0, σ2). Furthermore, we have

¶x ∈ R
d ♣ modT (s⊤

x + z) ≤ T/2♢ ≡
⋃

k∈Z

¶s⊤
x + z ∈ (kT, kT + T/2]♢

Notice that s
⊤

x + z is a one dimensional Gaussian random variable, which, by symmetry of

Gaussian distribution, implies Pr¶c(x) = 1♢ = Pr¶ ∪ k∈Z¶s⊤
x + z ∈ (kT, kT + T/2]♢♢ = 1/2.

Therefore, combining I1 and I2 gives

I1 − I2 =2 Pr¶x ∈ B♢(Pr¶c(x) = 1♢ − Pr¶c(x) = 1 ♣ x ∈ B♢)

=Ω(T )(1/2− Pr¶c(x) = 1 ♣ x ∈ B♢) (12)

where the last equation is because s
⊤

x ∼ N (0, 1), hence, Pr¶x ∈ B♢ = Pr¶s⊤
x ∈

[T/6, T/3]♢ = Ω(T ). Since we were only concerned with showing ♣I1 − I2♣ is large, it

suffices to show Pr¶c(x) = 1 ♣ x ∈ B♢ − 1/2 = Ω(1).

For x ∈ B, we have s
⊤

x ∈ [T/6, T/3], therefore c(x) = −1 only if ♣z♣ ≥ T/6. Notice

that z ∼ N (0, σ2) and Proposition 26 states that the LWE problem is hard for any Ąxed

constant κ ∈ N and σ ≥ k−κ. Given the constant β ∈ R+ in this theorem, we can take

κ = ⌈1/2β + 1/2 + 1⌉, which is a Ąxed constant. Then, by Proposition 26, the LWE problem

is hard for σ = k−κ ≤ 1/(k3/2
√

log d) = o(T ). Therefore, by a Gaussian tail bound, we have

Pr
x∼Dx

¶c(x) = −1 ♣ x ∈ B♢ ≤ Pr
z∼N (0,σ2)

¶♣z♣ ≥ T/6♢ = o(1)

Plugging the above back into Equation (12), we can conclude that

Pr
x∼Dx

¶h1(x) = 1♢dD(c, h1) + Pr
x∼Dx

¶h2(x) = 1♢dD(c, h2) = Ω(T )

Thus, either h = h1 or h = h2 must satisfy Prx∼Dx
¶h(x) = 1♢ ♣dD(c, h)♣ = Ω(T ), which

completes the proof for the alternative hypothesis case.

For the null hypothesis, we can immediately see that Prx∈N ¶h♢dN (c, h) = 0,∀h ∈ Hd

because c(x) is independent from each h ∈ Hd.

It remains to verify the time lower bound and the distinguishing advantage for auditing

halfspace subgroups. From Proposition 26, we know that under Assumption 11, for the

problem LWE(dO(kα),N (0, I),Sd−1,N (0, σ2), modT ) with any σ ≥ k−κ (where κ ∈ N is a
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constant) and T = 1/c′
√

k log d, where c′ > 0 is a sufficiently large universal constant, the

problem cannot be solved in dO(kα) time with d−O(kα) advantage. Therefore, under the same

assumption, there is no algorithm that can solve the decision version of auditing problem

w.r.t. halfspace subgroups in dO(kα) time with d−O(kα) advantage. ◀

C Analysis Of Algorithm

We prove the correctness, time and sample complexity of Algorithm 1.

Proof of Theorem 23. LetŠs notice that, although each iteration of the loop in Algorithm 1

solves minh∈HD
µ

Pr¶c(x) ̸= h(x)♢ and maxh∈HD
µ

Pr¶c(x) ̸= h(x)♢, it is essentially equivalent

to solving maxh∈HD
µ
♣dD(c, h)♣ according to Lemma 17. As the oracle returns a halfspace

with additive error smaller than ϵ with probability at least 1− δ, we have that

max(
∣
∣dD(c, h+

µ )
∣
∣ ,

∣
∣dD(c, h−

µ )
∣
∣) ≥ max

h∈HD
µ

∣
∣dD(c, h+

µ )
∣
∣− ϵ

µ

with probability at least 1− δ/n because of Lemma 17 as well as a union bound.

Across all iterations, the algorithm maximizes µ
∣
∣dD(c, h+

µ )
∣
∣ over HD

µ for µ increase from

a to b with step size (b− a)/n. With a union bound over all n iterations, we obtain the same

additive error ϵ in every iteration, with probability at least 1− δ. As a result, the algorithm

equivalently solves

max
h∈Hd

Pr
x∈D
¶h(x) = 1♢ ♣dD(c, h)♣

s.t. a ≤ Pr
x∈D
¶h(x) = 1♢ ≤ b

with probability at least 1 − δ for an additive error at most 2(b − a)/n + ϵ according to

Proposition 14, which completes the proof. ◀
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