Check for
Updates

Optimizing Irregular Communication with Neighborhood
Collectives and Locality-Aware Parallelism

Gerald Collom
Department of Computer Science
University of New Mexico
Albuquerque, USA

Rui Peng Li
Center for Advanced Scientific
Computing Lawrence Livermore
National Laboratory

Amanda Bienz
Department of Computer Science
University of New Mexico
Albuquerque, USA

Livermore, USA

ABSTRACT

Irregular communication often limits both the performance and
scalability of parallel applications. Typically, applications individ-
ually implement irregular communication as point-to-point, and
any optimizations are integrated directly into the application. As
a result, these optimizations lack portability. It is difficult to op-
timize point-to-point messages within MPI, as the interface for
single messages provides no information on the collection of all
communication to be performed. However, the persistent neighbor
collective API, released in the MPI 4 standard, provides an interface
for portable optimizations of irregular communication within MPI
libraries.

This paper presents methods for implementing existing optimiza-
tions for irregular communication within neighborhood collectives,
analyzes the impact of replacing point-to-point communication
in existing codebases such as Hypre BoomerAMG with neighbor-
hood collectives, and finally shows up to a 1.38x speedup on sparse
matrix-vector multiplication communication within a BoomerAMG
solve through the use of our optimized neighbor collectives. The
authors analyze three implementations of persistent neighborhood
collectives for Al1toallv: an unoptimized wrapper of standard
point-to-point communication, and two locality-aware aggregating
methods. The second locality-aware implementation exposes an
non-standard interface to perform additional optimization, and the
authors present the additional 0.07x speedup from the extended
interface.

All optimizations are available in an open-source codebase, MPI
Advance, which sits on top of MPI, allowing for optimizations to be
added into existing codebases regardless of the system MPI install.

ACM Reference Format:

Gerald Collom, Rui Peng Li, and Amanda Bienz. 2023. Optimizing Irreg-
ular Communication with Neighborhood Collectives and Locality-Aware
Parallelism. In Workshops of The International Conference on High Perfor-
mance Computing, Network, Storage, and Analysis (SC-W 2023), Novem-
ber 12-17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3624062.3624111

Keywords: Hypre, AMG, MPI, neighborhood collectives, locality-
aware parallelism, persistent communication

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

SC-W 2023, November 12—17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11...$15.00
https://doi.org/10.1145/3624062.3624111

427

1 INTRODUCTION

Parallel applications, such as simulations and iterative solvers, are
often bottlenecked by irregular point-to-point communication. For
instance, the performance and scalability of Hypre [1, 19], a widely-
used algebraic multigrid (AMG) solver, is limited by the irregular
communication that occurs throughout its numerous sparse matrix
operations. While there are many optimizations for point-to-point
communication, including persistent communication and locality-
aware aggregation, there is no widely used library supporting these
optimizations, requiring each application to optimize code by hand.
This paper presents two neighborhood collective implementations
that utilize existing optimizations of point-to-point communication,
and the performance of these implementations are analyzed within
the Hypre BoomerAMG solver.

Parallel applications typically implement their own irregular
communication with calls to MPI_Isend and MPI_Irecv, or some
variation of these methods. Communication optimizations are cur-
rently added within applications, and as a result not easily shared
among parallel codebases. For instance, the AMG solvers Hypre,
Muelu [3], and GAMG [32] each call separate implementations
for point-to-point communication within sparse matrix operations,
with optimizations unique to each. Furthermore, there is no easy
way to add point-to-point optimizations within methods such as
MPI_Isend and MPI_Irecv as these only pass information about a
single message rather than the collection of all messages.

This paper addresses the point-to-point communication bot-
tleneck through the use of MPI neighborhood collectives, which
execute irregular communication while allowing for optimization
within MPL The sparse neighbor collective, e.g., A11toallyv, inter-
face requires applications to provide information about all messages,
allowing for optimizations within the method. While neighborhood
collectives provide sufficient information for optimizations within
MPI, many communication optimizations incur large initial over-
heads which are offset during subsequent iterations. Therefore, the
addition of persistent neighborhood collectives in the MPI 4 stan-
dard allows for substantial irregular communication optimizations
to be added within MPI. Adding these optimizations within MPI
implementations allows for all applications to take advantage of
them by simply calling the appropriate neighborhood collective.

While neighborhood collectives have potential to alleviate criti-
cal communication bottlenecks in irregular applications, they have
yet to be widely adopted. While the interface has existed since
the MPI 3 standard, implementations of neighborhood collective
often simply wrap point-to-point communication with limited ex-
ploration of possible optimization. As few applications use these
methods, there is little incentive to improve optimizations. At the

https://doi.org/10.1145/3624062.3624111
https://doi.org/10.1145/3624062.3624111
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624111&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12-17, 2023, Denver, CO, USA

same time, while the implementations contain few optimizations,
there is little advantage to rewriting existing applications to utilize
these methods. To alleviate this standstill, the goal of the work
presented in this paper is two-fold: to present an optimized im-
plementation of the persistent version of the neighborhood collec-
tive MPI_Neighbor_alltoallv, and to restructure existing parallel
codebases, such as the widely used parallel multigrid solver Hypre,
to replace point-to-point communication with persistent neighbor-
hood collectives. All neighborhood implementations are added to a
lightweight open-source library, called MPI Advance !, which sits
on top of MPI, allowing it to optimize which system version of MPI
is installed. Furthermore, all neighborhood collective additions to
BoomerAMG are published in the neighbor collective branches of
Hypre.
The contributions of this paper include the following:

o Novel use of persistent neighborhood collectives to wrap
optimizations for irregular communication in a portable for-
mat.

e An analysis of the overhead of existing neighbor collective
operations, including topology communicator creation.

o Anovellocality-aware optimization, which minimizes expen-
sive message counts but not sizes, fitting within the current
neighbor collective APL

e A novel extension to the current neighbor collective API,
allowing for existing locality-aware aggregation techniques
to be utilized within neighbor collectives.

o A performance study within the state-of-the-art solver Hypre,
utilizing the portability of the neighborhood collective to
optimize large existing codebases with minimal changes.

The remainder of this paper analyzes reductions to the cost of
irregular communication through locality-aware neighbor collec-
tives. Modern supercomputers contain a hierarchy of regions, with
communication within a region being at different cost than between
regions. For example, parallel architectures typically contain many
nodes connected by a network, with each node containing many
processes, as exemplified in Figure 1.

This example symmetric multiprocessing (SMP) node contains
two non-uniform memory access (NUMA) regions, each with 16
cores. All processes within a NUMA region share a level of cache,
allowing intra-NUMA communication to be transferred through
cache. Similarly, as all processes on the node share main mem-
ory, inter-NUMA communication within a node can be transferred
through main memory. Finally, inter-node messages are injected
into the network and transferred across the interconnect to the node
of destination. As a result, computers achieve varying communica-
tion costs with regard to the locality of the messages. Locality-aware
communication restructures point-to-point messages to reduce the
most expensive messages in exchange for additional less costly
communication. This paper introduces multiple novel strategies for
adding locality-aware aggregation within neighborhood collectives,
and presents significant associated performance improvements
from replacing point-to-point communication within a widely used
parallel codebase with locality-aware neighborhood collectives.

!https://github.com/mpi-advance

428

Gerald Collom, Rui Peng Li, and Amanda Bienz

Node

NUMA 0 NUMA 1
Core | Core | Core | Core Core | Core | Core | Core
0 1 2 3 16 17 18 19
Core | Core | Core | Core Core | Core | Core | Core
4 5 6 7 20 21 22 23
Core | Core | Core | Core Core | Core | Core | Core
8 9 10 11 24 25 26 27
Core | Core | Core | Core Core | Core | Core | Core
12 13 14 15 28 29 30 31
Cache ‘ ‘ Cache
Main Memory

Figure 1: An example symmetric multiprocessing (SMP) node
with two NUMA regions and 32 cores.

The remaining sections of this paper are organized as follows.
Section 2 describes communication optimizations and neighbor-
hood collectives in more detail and describes a number of related
research works. Section 3 details the various neighborhood collec-
tive optimizations, and performance results associated with these
implementations are presented in Section 4. Finally, conclusions
and future directions are discussed in Section 5.

2 BACKGROUND

Each generation of supercomputer brings unique architectural de-
sign choices. In recent history, parallel systems have continuously
increased potential compute power with additional complexity
within each node. While older supercomputers such as the Blue
Gene/L consisted of only a single dual-core chip per node [13], Blue
Gene/Q systems such as Sequoia, were comprised of symmetric
multiprocessing (SMP) nodes with 16 cores per node split across 2
CPUs [11]. More recent systems, such as Summit, contain nodes
with 2 22-core CPUs [21], and emerging systems, such as Frontier,
contain a single 64-core chip per node, split into 4 16-core NUMA
regions [31]. The additional per-node complexity of each gener-
ation of parallel systems increases the variety in communication
costs, with notable differences between intra-CPU, inter-CPU, and
inter-node communication [6]. While these performance differences
between locality regions vary by system, inter-CPU communication
within the same node is significantly more costly than between
nodes on current and emerging systems [10].

Parallel applications often fail to take full advantage of avail-
able compute power due to performance and scaling constraints
associated with inter-process communication. Many simulations
and numerical solvers are dominated by irregular communication,
which requires each process to communicate varying amounts of
data with varying subsets of other processes. Algebraic multigrid,
for instance, relies on the performance of sparse matrix operations,
such as the sparse matrix-matrix and sparse matrix-vector (SpMV)
multiples. AMG first creates a hierarchy of increasingly dense ma-
trices that approximate lower frequencies, with each successive
matrix formed through a triple sparse matrix-matrix multiply. After

Optimizing Irregular Communication with Neighborhood Collectives and Locality-Aware Parallelism

the hierarchy is created, the solution is iteratively refined through
numerous SpMVs on each level of the hierarchy. Sparse matrix op-
erations require each process to receive data associated with every
non-zero column held by the process. As a result, each process com-
municates varying amounts of data with a subset of other processes,
as determined by the sparsity pattern of the given sparse matrix. As
coarse levels within AMG are increasingly dense, communication
requirements are often increased on levels near the middle of the hi-
erarchy. Finally, at scale, the cost of these sparse matrix operations
is dominated by the cost of irregular inter-process communication.

EXAMPLE 2.1. Assume a system has multiple regions, each contain-
ing four processes, as displayed in Figure 2. Each process within region
0 holds two unique values, represented as a circle and square. The
shaded regions of these objects correspond to the processes in region
1 to which each object must be sent. For example, process PO holds a
circle shaded both red and green, and therefore must send this object
to processes P5 and P6. Furthermore, the square held by PO is shaded
blue, red, and orange, and therefore must be sent to processes P4, P5,
and P7. Throughout the remainder of this paper, the authors present
multiple methods for communicating these values between regions 0
and 1.

Region 0

Sl |SH
P2

P1

O S
PO P3

P4 P5 P6 pP7

Region 1

Figure 2: Visualization of the irregular communication pat-
tern described in Example 2.1.

Example 2.1 describes a simple irregular communication pattern.
This paper shows the effects of locality-aware neighborhood col-
lectives on communication throughout the iterative solve phase of
AMG, as the associated SpMVs require a large range of communi-
cation patterns. Optimized neighbor collectives, however, are not
limited to AMG and can be used to reduce the cost of irregular
communication within other solvers and simulations.

Standard methods of irregular communication consist of collect-
ing all data to be sent to a process before sending it directly as a
single message. This approach fails to account for the locality of
the sending and receiving processes. For instance, two processes
within the same CPU are able to transfer data through cache, often
at a significantly faster rate than data can be transported through

429

SC-W 2023, November 12-17, 2023, Denver, CO, USA

the interconnect. Locality-aware methods, on the other hand, ag-
gregate data within a region of locality to minimize the number and
size of inter-region messages. The locality-aware neighborhood
collectives presented in Section 3 utilize three-step aggregation [9],
in which every process in a region performs all communication
with a unique subset of other regions. The intra-region data is ini-
tially redistributed so that each process per region holds all data to
be sent to its unique subset of regions. Each process then sends a
single inter-region message to each of its assigned regions. Finally,
received data is redistributed within each region to transfer data
to each final destination process. Note, there are many additional
strategies for aggregation that could be utilized within neighbor-
hood collectives. The authors focus on the three-step aggregation
as this paper presents the effects of communication optimizations
on sparse matrix-vector multiplication throughout AMG, where
this method of aggregation has been shown to perform best [9].
However, other simulations and solvers may be better optimized
with additional locality-aware strategies.

While neighborhood collectives provide the necessary interface
for optimizing irregular communication within MPI, they do require
some overhead compared to standard point-to-point communica-
tion, namely with forming the neighborhood topology. Before a
neighborhood collective, such as the MPI_Neighbor_alltoallv,
is executed, a neighborhood must first be formed. For irregular
communication, a neighborhood communicator is formed at scale
with the method MPI_Dist_graph_create_adjacent. This graph
creation is passed data about each process that a given process
sends to and receives from, and returns a directed neighborhood
of processes with which each process communicates. There is syn-
chronization overhead associated with this graph creation. Only a
single neighborhood is needed for each required communication
pattern, however, such as each unique sparse matrix within a solver.
Therefore, within iterative methods, the graph creation is amortized
over subsequent iterations.

Persistent neighborhood collectives allow for further amorti-
zations of setup costs across all iterations. Persistent MPI com-
munication consists of initializing communication once, before
starting and waiting on all communication at every iteration. Per-
sistent neighborhood collectives first set up the collective with
the MPI_Neighbor_alltoallv_init method. Then, each iteration
of communication consists of calls to MPI_Start and MPI_Wait,
during which all communication is completed. Furthermore, the
separate start and wait methods allow for an overlap of communica-
tion and computation, assuming the MPI implementation supports
strong progress [22]. This paper utilizes the persistent neighbor-
hood API, allowing all locality-aware setup costs, such as load
balancing while determining which intra-region process communi-
cates with each region, to be incurred once within
MPI_Neighbor_alltoallv_init. These overheads are then quickly
offset by per-iteration reductions to communication costs.

2.1 Related Work

Before costly communication can be optimized, architectures and
paths of communication must be accurately benchmarked and mod-
eled for emerging systems to pinpoint the costs of the various mes-
sages. As emerging systems increase in complexity, performance

SC-W 2023, November 12-17, 2023, Denver, CO, USA

models and benchmarks are adapted to fully capture the costs of the
various paths of irregular communication. While the postal mod-
els typically suffice for simple point-to-point communication [2],
many extensions have been necessary to capture costs that dom-
inate SMP architectures. For instance, the maxrate model greatly
improves inter-node communication costs over the postal model
by adding in measures for injection bandwidth limits [17]. The
maxrate model is further optimized through locality-awareness,
modeling intra-CPU, inter-CPU, and inter-node messages sepa-
rately [6]. While the maxrate model accurately captures costs of
inter-node communication, intra-node communication models are
further improved by adding constraints for all active processes,
as bandwidth varies within a node based on the number of active
processes [33]. Finally, models for irregular communication, par-
ticularly for the large number of messages that occur within the
coarse levels of AMG, are further improved by estimating queue
search and network contention costs [6].

Locality-aware communication has previously been explored
extensively, both with point-to-point communication and in MPI
collectives. Three-step aggregation, the focus of this paper, has
shown to greatly improve instances of irregular communication in
which many small messages are sent, such as in the solve phase
of AMG [9]. Similarly, two-step aggregation greatly reduces the
costs associated with sending numerous larger messages such as
within sparse matrix-matrix multiplies [7], while ideal aggregation,
which combines portions of messages ranging from two-step to
three-step, optimizes the costs of medium-sized messages, such as
within sparse matrix-multi-vector multiplies [25]. Similar aggre-
gation techniques have shown large speedups within inter-GPU
communication on heterogeneous architectures [20, 26].

Node-awareness is also a common technique for improving the
performance of collective communication. Hierarchical communi-
cation consists of creating one or more master processes per node,
and only performing steps of inter-node communication between
these master processes [15, 23, 24, 34]. Multi-lane approaches have
further optimized inter-node communication within large collec-
tives by having each process per node communicate a portion of
the inter-node data [35]. Locality-aware collective algorithms re-
duce the cost of small collectives by minimizing the number of
inter-node steps, having each process per node communicate with
a separate node at each inter-node step [5, 8].

Topology-awareness, or optimizing algorithms for a given inter-
connect, is another common approach for minimizing collective
communication costs. There are two categories of topology-aware
algorithms, those which remap data to cores to minimize the num-
ber of hops messages are communicated [4, 27, 28], and those that
reformulate algorithms to minimize the number of steps for a given
topology [29, 30]. Topology-aware neighborhood collectives have
previously been shown to improve sparse matrix-matrix multipli-
cation [14]. While topology-aware algorithms greatly improve the
performance of collective algorithms, they are specific to a given
interconnect, which varies with emerging architectures.

There are a number of APIs for irregular communication that
exist within the MPI 4 standard, and therefore implemented within
all versions of MPI, including persistent and partitioned commu-
nication. Persistent communication reduces initialization costs
by having an initialization so that all overhead is only incurred

430

Gerald Collom, Rui Peng Li, and Amanda Bienz

once [18]. All subsequent communications then communicate data
without initialization overhead. Persistent communication exists
for both point-to-point communication and collective operations.
Partitioned communication extends the persistent point-to-point
interface, allowing multiple threads or tasks to contribute data to
a single message [12, 16]. As a result, large messages that are par-
titioned across threads are sent in chunks rather than incurring
a synchronization cost waiting for all threads to initialize corre-
sponding communication.

3 PERSISTENT NEIGHBORHOOD

COLLECTIVE IMPLEMENTATIONS

Neighborhood collectives, such as the MPI_Neighbor_alltoallv
provide the API for irregular communication optimizations within
MPI. Furthermore, the persistent version of this method (released
in MPT 4) allows for further optimizations because overhead, such
as load balancing, is only incurred once and amortized over all
successive iterations. Persistent neighbor collectives can wrap ir-
regular communication throughout parallel applications, replacing
point-to-point communication with a single initialization step,
MPI_Neighbor_alltoallv_init, followed by MPI_Start and
MPI_Wait to begin and complete each iteration of communication,
respectively. All neighborhood collectives, regardless of persistence,
do require an additional step of setup beyond point-to-point com-
munication, as the topology communicator must first be formed
with a method such as MPI_Dist_graph_create_adjacent.

3.1 Standard Neighborhood Collectives

The standard MPI_Neighbor_alltoallv_init implementation
consists of initializing a persistent non-blocking send and receive
for all data to be sent to any process, regardless of regions of sending
and receiving processes, as displayed in Algorithm 1, in which args
are the standard MPI_Neighbor_alltoallv_init arguments.

Algorithm 1: standard_init
Input: args

{Standard method arguments}
// Send count and processes, recv count and Pprocesses, in communicator

Get nsend Psends Mrecvs Precy from communicator

for i < 0 to ng.,q do
L MPLIsendiinit to psendi {Send buffer, displacements, and size in args}

for i « 0 to nyecy do
MPLIrecvfinit from precvi {Recv buffer, displacements, and size in

args}

Similarly, during each instance of communication, all messages
are started at once, as shown in Algorithm 2.

The calling process then waits for all messages to complete, such
as with MPI_Waitall, as displayed in Algorithm 3.

Standard implementations directly wrap point-to-point messages
within a single API This approach fails to optimize communication
by, e.g., minimizing expensive communication between non-local

Optimizing Irregular Communication with Neighborhood Collectives and Locality-Aware Parallelism

Algorithm 2: standard_start
Input: args

{Standard method arguments}

// Send count and processes, recv count and processes, in communicator

Get ngends Psends Mrecvs Precy from communicator

for i « 0 to ng,,y do
L Start send i

for i « 0 to nyecy do
L Start recv i

Algorithm 3: standard_wait

{Standard method arguments}

Input: args

// Send count and recv count, in communicator

Get ngends Nrecy from communicator

Wait for ngeng sends and nrecy receives to complete

regions. For instance, standard neighborhood collective communi-
cation of Example 2.1 consists of each process in region 0 communi-
cating with all processes in region 1, as displayed in Figure 3. This
figure displays all messages originating on process P2. This proce-
dure retrieves both values represented by the circle and square, and
sends them in a single messages to process P4, as both shapes on P2
have shaded blue regions, indicating P4 requires both values. The
value represented by the square is then additionally sent multiple
times, once to P5 and once to P6. Finally, the value represented
by the circle is also sent to P7. In total, this example requires 15
messages to be sent from region 0 to region 1, and all data values
with multiple indicating colors are sent in multiple inter-region
messages.

Region 0
S| (S| SH
P1 P2 P3

~-@- IO I

O
PO

P4 P5 P6 pP7

Region 1

Figure 3: Standard point-to-point communication. Processes
send messages directly to each destination process. E.g., P2
sends a message to P4 with both data values (circle and
square), and a message to P5 with only the second value
(square), etc.

431

SC-W 2023, November 12-17, 2023, Denver, CO, USA

3.2 Aggregating Messages

The MPI_Neighbor_alltoallv_init interface provides the nec-
essary information for locality-aware optimizations, such as aggre-
gation of data within local regions, to be performed within MPI
libraries. The method arguments include information on all pro-
cesses with which to send or receive data, and the amount of data
to be sent to each. This is sufficient information for all processes
within a region to determine the regions to which they send to and
receive from and the inter-region data sizes. Methods of aggrega-
tion, such as locality-aware strategies, partition the communication
across all processes per region so that each sends a minimal portion
of messages for small data sizes, or an equal portion of data when
sizes are large.

Aggregation within the persistent neighborhood collectives is
shown in Algorithm 4. The black text, excluding red text, describes
aggregation within the standard MPI_Neighbor_alltoallv_init
APL

Algorithm 4: aggregated_init

Input: args {Standard method arguments}
send_idx {Unique send indices}
recv_idx {Unique recv indices}

// Send count and processes, recv count and processes, in communicator

Get nsends Psends Mrecvs Precy from communicator

// Form aggregated communication args
// 1 : fully local communication, s : initial local redistribution
// g : global, inter-region communication, r : final redistribution of received data

setup_aggregation(l, s, g, r, send_idx, recv_idx)

standard_init(l)
standard_init(s)
standard_init(g)
standard_init(r)

The method setup_aggregation creates the path of aggregation,
assigning a portion of the inter-region communication to each pro-
cess within a region. Both aggregating implementations presented
in this paper use three-step aggregation [9], but this could be re-
placed by any aggregation strategy. The aggregated communication
consists of fully local communication and three aggregation steps:

o ¢: fully local communication, with source and destination

process located within the same region

e s : initial redistribution of data within a region

e g:inter-region communication

o r: final redistribution of received data within a region
Fully local communication is executed in parallel with the three
aggregation steps. Persistent communication is initialized for each
of these four steps.

During each instance of communication, all fully local ¢ and
inter-region g communication is started within the method start,
as described in Algorithm 5.

The initial redistribution of data within the region must be fully
completed before inter-region communication can begin. Therefore,
this method consists of both starting and completing the initial
redistribution s, before starting the inter-region communication

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Algorithm 5: aggregated_start

Input: [3rgs

{fully local communication arguments}

Sargs {initial local redistribution arguments}
Jargs {global, inter-region communication arguments}
Targs {final local redistribution arguments}

// Start fully local communication
standard_start(largs)

// Start and complete initial redistribution
standard_start(sargs)
standard_wait(sargs)

// Start inter-region communication

standard_start(gargs)

g. Because of this, starting synchronizes within regions but not
globally.

Finally, each instance of communication is completed within the
wait method, described in Algorithm 6.

Algorithm 6: aggregated_wait

{fully local communication arguments}

Input: [yrgs

Sargs {initial local redistribution arguments}
UE] rgs {global, inter-region communication arguments}
Targs {final local redistribution arguments}

// Complete fully local communication
standard_wait(largs)

// Complete inter-region communication
standard_wait(gargs)

// Start and complete final redistribution
standard_start(rargs)
standard_wait(rargs)

The inter-region communication g must complete before the final
intra-region redistribution of data can be performed. Therefore, this
method consists of completing the inter-region step g, before both
starting and completing the final intra-region redistribution r.

This approach greatly reduces the number of inter-region mes-
sages. For instance, the inter-region communication required within
Example 2.1 is performed in three steps, as shown in Figure 4. Ini-
tially, all inter-region messages are redistributed locally so that
each process holds all data to be sent to a unique subset of regions.
For example, in Figure 4, all data to be communicated to region 1 is
first sent locally to process P2. Each row of values on P2 represent
values from processes 0 — 3 respectively. Then, process P2 sends a
single inter-region message to P6. Finally, process P6 redistributes
the received values locally.

3.3 Extensions for Duplicate Data

By default, duplicate values are communicated between regions
when a process in one region needs to communicate a certain value
to multiple destination processes co-located in a second region. For
instance, Example 2.1 displays a scenario in which P0 sends the
same data value represented by a circle to both P5 and P6. This
situation could arise in, for example, sparse matrix-vector multipli-
cation, when the vector is partitioned across processes. The SpMV

432

Gerald Collom, Rui Peng Li, and Amanda Bienz

l

P4 P5 4¢TP6 P

Region 1

Figure 4: Aggregated neighborhood communication. For each
destination region, processes in a region send messages to
a single process, e.g., P2 which then sends a single message
to a process, e.g., P6 in the destination region. Then, the re-
ceiving process (P6) sends messages to their final destination
processes within the same region.

operation requires values in each partition to be communicated to
any processes (possibly co-located) containing non-zero values in
the corresponding columns of the matrix. In previous approaches,
these values are communicated between regions in duplicate, once
per destination. As the current Al1toallv interface does not allow
providing unique identifiers of values being communicated, there
is no simple way for users to provide the information necessary to
remove these duplicates.

While the persistent neighborhood collective API provides suffi-
cient information to aggregate messages within each region, it fails
to include necessary information for removal of duplicate values. A
small extension to the API, requiring uniquely identifying indices
associated with each data value to be communicated, allows for min-
imization of inter-region message sizes on top of doing aggregation.
This extension to MPI_Neighbor_alltoallv_init is displayed as
red text throughout Algorithm 4. The uniquely identifying indices
are used while setting up aggregation to remove duplicate values
from intra-region aggregation and inter-region communication.
Note, besides three-step aggregation, any aggregation technique
can use this information to minimize inter-region data sizes.

Figure 5 displays the deduplicating approach for communicating
the values in Example 2.1. As discussed, each value from each source
process now has only one copy sent both within the two regions
for aggregation and between the two regions. Each row of values
(circle and square) on P2 represent the unique aggregated values
from processes 0 to 3 respectively.

4 EXPERIMENTAL RESULTS

The performance of the neighborhood collective implementations
presented in Section 3 were analyzed throughout the sparse matrix-
vector multiplies of the solve phase of Hypre’s BoomerAMG.

Optimizing Irregular Communication with Neighborhood Collectives and Locality-Aware Parallelism SC-W 2023, November 12-17, 2023, Denver, CO, USA

Region 0

T o [
g,_I_EE P

d

A

P4 P5 _4—+P6 | | P7

Region 1

Figure 5: Deduplicating neighborhood communication.
Based on the previous aggregating neighborhood communi-
cation, only unique identifiers for values are used to avoid
communicating duplicate values. E.g., multiple processes in
region 1 require P0’s data values, but only one copy is sent
both to P2 for aggregation and to P6 for inter-region commu-
nication.

Throughout the presented results, the following four communi-
cation protocols are analyzed :

e Standard Hypre : persistent point-to-point communication
as implemented in release 2.28 of Hypre

e Unoptimized neighborhood collectives : standard commu-
nication within a persistent neighborhood collective, as de-
scribed in Section 3.1.

e Aggregating neighborhood collectives : locality-aware ag-
gregation within a persistent neighborhood collective, as
described in Section 3.2

e Deduplicating neighborhood collectives : locality-aware ag-
gregation with additional removal of duplicate values, as
described in Section 3.3

4.1 Experimental Setup

All neighborhood collective implementations are implemented
within a lightweight open-source library, MPI Advance, that is
then linked within Hypre. Implementations within MPI Advance
then call necessary instances of point-to-point communication us-
ing the system install of MPI. All experiments are performed on a
7-point rotated anisotropic diffusion system, with rotated of 45 de-
grees and anisotropy of 0.001. All experiments are run on the CPU
cores of Lassen, a Power9 system at Lawrence Livermore National
Laboratory, using the system install of Spectrum MPI. Each node
of Lassen contains two 22-core CPUs. While intra-CPU communi-
cation outperforms inter-node, inter-CPU communication within
a node requires over twice the cost of inter-node for large mes-
sages [10]. Therefore, all presented results use only 16 cores per
node on a single CPU to avoid inter-CPU expenses.

In an effort to achieve performance reproducibility, each perfor-
mance result presented in this section acquires the time required to

433

perform 1000 calls to MPI_Start and MPI_Wait, and then finds the
average cost of a single instance of those 1000 steps of communica-
tion. Each test is run three separate times and the minimum of the
three resulting averages is taken, in order to show the performance
with minimal impact of other jobs running concurrently on the
system.

4.2 Overhead Costs

There is an overhead to using neighborhood collectives over point-
to-point communication, namely in creating the topology commu-
nicator. Neighborhood collectives require creating the topology
communicator only once, amortizing this cost over all iterations of
communication. For irregular communication, this communicator
is formed with the method MPI_Dist_graph_create_adjacent.
The cost of this method was evaluated for two MPI implementa-
tions available on the test system, Spectrum MPI and MVAPICH2,
over a range of process counts in Figure 6. As shown in Figure 6, the
method can be called with minimal overhead, but the choice of MPI
implementation is important. For the problem tested, MVAPICH2
performs the method 8.6x as fast as Spectrum MPI at the scale of
2048 cores. The cost with MVAPICH2 also demonstrates improved
strong scaling.

spectrum

—— mvapich
0.08 -

0.06 -

0.04 -

Graph Creation Cost (Seconds)

0.02 -

0.00- ///
2 256 512 1024 2048
Number of Processes

Figure 6: Cost of calling MPI_Dist_graph_create_adjacent
once per level of the AMG hierarchy at a variety of process
counts. This problem is strongly scaled, with each rotated
anisotropic diffusion system containing 524 288 rows.

Persistent neighborhood collectives incur all setup costs only
once during the initialization method. As a result, costly setup of
optimizations, such as load balancing inter-region communication
across all processes within a region, are amortized over all iter-
ations of communication. Figure 7 displays the costs associated
with initializing each of the neighborhood collectives for a rotated
anisotropic diffusion system containing 524 288 rows run on 2048
cores. The figure shows the cost of communication for a number
of iterations added to the initialization cost across a range of it-
eration counts. The diamond markers at iteration count 0 denote
the initialization costs of the different methods. Intersections, de-
noted by dotted vertical lines, indicate the number of iterations

SC-W 2023, November 12-17, 2023, Denver, CO, USA

at which the higher initialization cost is outweighed by a lower
per-iteration communication cost. The crossover points found are
40 iterations for the aggregating implementation, and 22 iterations
for the deduplicating implementation. There is minimal overhead

—— Standard Hypre
0.020 - —— Unoptimized Neighbor =
---- Aggregating Neighbor 7

—-— Deduplicating Neighbor e g
0.015- :

0.010 -

0.005 -

Communication Cost (Seconds)

0 10 20 30 40 50 60
Number of Iterations

Figure 7: Cost of communication for a range of iter-
ation counts. At each iteration count, cost is calling
MPI_Neighbor_alltoallv_init once per level of the AMG hi-
erarchy, plus calling MPI_Start and MPI_Wait once per AMG
level per iteration. The diamond markers indicate the ini-
tialization cost of each method, and the vertical dotted lines
indicate intersections. This problem is a rotated anisotropic
diffusion system containing 524 288 rows run on 2048 cores

associated with the standard neighborhood implementation, as this
method simply wraps point-to-point communication. The aggre-
gating implementation demonstrates a higher initialization cost
than the deduplication implementation because the former simply
wraps the latter. The aggregating initialization time could be fur-
ther reduced by implementing it directly. The overheads associated
with aggregated communication techniques are due to forming the
aggregated path of communication and load balancing. Note, as this
cost is only incurred once per communication pattern, more sig-
nificant initialization overheads are acceptable for higher iteration
counts. For communication with fewer iterations, however, simpler
aggregation techniques would be necessary to reduce initialization
overheads.

4.3 Per-Level Analysis

Algebraic multigrid requires sparse matrix operations to be per-
formed across a hierarchy of levels, with each level decreasing in
dimension but often increasing in density. As a result, the commu-
nication pattern and created graph topology are unique to each
level and communication dominates coarse levels near the mid-
dle of the hierarchy. Locality-aware neighbor collectives reduce
the inter-region message count and sizes in exchange for addi-
tional intra-region communication. This section analyzes the im-
pact of locality-aware neighborhood collectives on each level of
a rotated anisotropic diffusion hierarchy. The fine-level system
contains 524 288 split across 2048 cores. Test runs of hypre were

434

Gerald Collom, Rui Peng Li, and Amanda Bienz

- c0- —— Standard Hypre
§ ---- Aggregating Neighbor
=l
e
5 50-
o
o
s
on
40 -
S
= PR
g 30- e N
K % .
3
%: 20- TS ~ .
E N7 N
z R
% 10- h
3 k
.
0- 1 ‘ ‘ ‘ |
0 5 10 15
AMG Level
(a) Intra-region
5 60- —— Standard Hypre
Z ---- Aggregating Neighbor
&
5 50-
o
8
g
§ 40 -
=
=
2 30-
o
G
=}
5 20-
e
El
z
x 10-
<
= — /7 &
0- ro-mmmm====T ‘__-_ T ~__—~~___‘ ________
0 5 10 15
AMG Level

(b) Inter-region

Figure 8: Per-level message counts when performing a SpMV
on each level of the hierarchy.

performed on this problem that included printing of message meta-
data such as number of intra-region and inter-region messages per
process, as well as the sizes of inter-region messages.

Figure 8a displays the maximum number of intra-region mes-
sages sent by any process on each level of the hierarchy. Locality-
aware neighbor collectives greatly increase the intra-region com-
munication requirements, as both initial and received data is redis-
tributed among processes within each region. Figure 8b displays
the maximum number of inter-region messages sent by any process
on each level of the hierarchy. While locality-aware aggregation
greatly increased intra-region message counts, it results in a similar
decrease in the more costly inter-region communication for both
optimized implementations.

As discussed in Section 3.3, standard and aggregating communi-
cation techniques result in data values being communicated mul-
tiple times between regions. Deduplicating neighbor collectives
eliminate values from being communicated more than once be-
tween any region pair. For each AMG level, Figure 9 displays the

Optimizing Irregular Communication with Neighborhood Collectives and Locality-Aware Parallelism

largest global message size for the aggregating versus deduplicat-
ing neighbor collectives. As shown, locality-aware deduplication
results in up to a 35% reduction of the maximum size of global
messages per process for level 4 of the AMG hierarchy for the same
524 288 row problem tested on 2048 processes.

2 A\ ---- Aggregating Neighbor
c% 4000 - /, \“ —-— Deduplicating Neighbor
~ /
2 /I ‘\
S / N
&3000- 7N
o) /) v
2 /.
o /I~/ \ “
g p4 v
£ 2000~/ (S}
\. ‘\
8 v\
2 \
5 L\
3 1000 - —
E AN \\\
& o\
% 2
= [maa_
= q- Smmee
0 5 10 15
AMG Level

Figure 9: Per-level inter-region message sizes when perform-
ing a SpMYV on each level of the hierarchy.

—— Standard Hypre
—— Unoptimized Neighbor

0.00005 - ---- Aggregating Neighbor
- —-— Deduplicating Neighbor
1]
3
£ 0.00004 -
3
2
Q
'E 0.00003 -
F
=]
B
£ 0.00002 -
<
7]

0.00001 -

0.00000 - i i i

0 5 10 15
AMG Level

Figure 10: The cost of communicating data during a SpMV on
each level of a rotated anisotropic diffusion hierarchy. The
fine-level system contains 524 288 rows split across 2048 cores.

Figure 10 displays the cost of communication within a sparse
matrix-vector multiply on each level of the AMG hierarchy. Fine lev-
els incur minimal communication overheads, as they are relatively
sparse. Overheads incurred during local redistributions of data in-
creases the cost of locality-aware neighborhood collectives over
standard point-to-point communication on these levels. However,
as per-level costs increase on the coarse levels, locality-aware aggre-
gation techniques pay off, with optimized neighborhood collectives
greatly outperforming standard communication near the middle

435

SC-W 2023, November 12-17, 2023, Denver, CO, USA

of the hierarchy. Finally, there are additional benefits to removing
values from being communicated multiple times between a single
set of regions. Note, the coarsest levels are small enough in dimen-
sion that few processes participate in communication, resulting in
minimal differences between communication strategies.

4.4 Scaling Analysis

The cost of communication, and performance of the various neigh-
borhood collective implementations, varies with problem scale. This
section analyzes the cost of communicating within a SpMV on every
level of the AMG hierarchy at various scales. At each scale, the tim-
ing is a sum of the times required to perform SpMV communication
on each level of the hierarchy at the given scale. The aggregating
and deduplicating neighborhood results use the standard commu-
nication strategy on finer levels when it outperforms the locality-
aware optimizations, summing up the least expensive of standard
communication and the given optimized neighbor collective at each
step. This demonstrates the maximum possible improvement over
standard communication techniques. To achieve this performance,
however, a selection strategy, such as a simple performance model,
is needed to dynamically choose the optimal neighborhood collec-
tive implementation for a given communication pattern.

Figure 11a presents a strong scaling study of communication
costs for a rotated anisotropic diffusion system with 524 288 rows
split across process counts ranging from 32 to 2048.

The unoptimized neighborhood collective performs similarly to
the standard point-to-point communication within Hypre, with
both strategies communicating equivalent message counts and
sizes. The aggregating neighbor collective significantly improves
the scalability of this communication, achieving a speedup of 1.32x
over standard communication at 2048 processes. The deduplicat-
ing neighbor collectives achieve an additional 0.07x speedup by
reducing the size of inter-region communication. As the problem is
strongly scaled, the impact of the locality-aware neighborhood col-
lectives increases, indicating that the optimized neighbor collective
have increasingly large impacts and message counts increase, and
per-message sizes decrease.

Figure 11b presents weak scaling results for the communication
cost of a rotated anisotropic diffusion hierarchy with 16 384 rows
per process, scaling from 32 to 2048 processes. The weak scaling
study shows that the impact of locality-aware aggregation increases
with process count. As a larger number of processes are performing
communication, there is an additional benefit to reducing duplicate
messages between processes. For the weakly scaled problem at
20438 cores, locality-aware aggregation results in a speedup of 1.96x,

while reducing duplicate messages provides an additional 0.21x
speedup.

5 CONCLUSIONS AND FUTURE DIRECTIONS
Persistent neighborhood collectives provide the interface for locality-
aware optimizations to be efficiently implemented within MPL. Stan-
dard point-to-point communication can be efficiently replaced with
neighbor collectives, incurring only an additional overhead asso-
ciated with graph creation. However, while forming the topology

SC-W 2023, November 12-17, 2023, Denver, CO, USA

0.000275- Standard Hypre
—— Unoptimized Neighbor

0.000250 - —--- Aggregating Neighbor
2 —-— Deduplicating Neighbor
2 0.000225 -
3
£ 0.000200 -
Q
£
£0.000175 -
3
i 0.000150 -
8
“0.000125 -

0.000100 -

0.000075 - i i i i i i

32 64 128 256 512 1024 2048
Number of Processes
(a) Strong scaling with 524 288 rows
0.0012 - —— Standard Hypre
—— Unoptimized Neighbor
---- Aggregating Neighbor

5 0.0010- . Deduplicating Neighbor
E
2
£, 0.0008 -
Q
£
= .
= 0.0006 - =
< .
5 -
=1
5 -
A 00004 S -2

0.0002 -

512 1024 2048

256
Number of Processes

32 64 128

(b) Weak scaling with 16 384 rows per process

Figure 11: Cost of communication within SpMV for a rotated
anisotropic diffusion system.

communicator has a significant cost at scale, this cost is only in-
curred once and then amortized over all iterations of communi-
cation. Methods are in development to avoid this cost with an
alternate, more light-weight topology creation interface. Similarly,
initialization of locality-aware aggregation techniques can incur
large overheads. The persistent neighborhood collective, however,
only requires this initialization once per communication pattern,
before also being amortized over all iterations of communication.
Locality-aware neighbor collectives, implemented in MPI Ad-
vance, significantly improve the performance of irregular commu-
nication throughout the coarse levels of Hypre, in which commu-
nication requirements are the largest. Furthermore, the optimized
neighbor collectives improve both weak and strong scalability of
the solver when the appropriate communication strategy is selected
at each level of the hierarchy. Eliminating values from being com-
municated multiple times between a single set of regions further
increases these improvements. Finally, as the neighborhood collec-
tive implementations exist within MPI Advance, they are accessible

10

436

Gerald Collom, Rui Peng Li, and Amanda Bienz

to all applications that are limited by irregular communication,
requiring the application only to replace point-to-point communi-
cation with neighborhood collective and link with MPI Advance.

While locality-aware neighbor collectives have the potential to
greatly improve performance, they also are capable of greatly in-
creasing communication costs, particularly for patterns with fewer
communication requirements. As a result, a simple performance
measure is needed within the neighborhood collective to dynami-
cally select the optimal communication strategy. Furthermore, there
are many existing aggregation techniques for locality-aware com-
munication not discussed in this paper. Additional aggregation
strategies should be added into MPI Advance, allowing for the dy-
namic selection not only of locality-aware aggregation, but also
of the optimal type of aggregation. Finally, other optimizations
should also be added within the implementations of neighborhood
collectives. For instance, large messages have been optimized sepa-
rately with both locality-aware methods and partitioned communi-
cation [12]. The combination of these optimizations, partitioning
locality-aware messages, can have an even larger impact on com-
munication requirements.

Currently, neighborhood collective implementations optimize
only inter-CPU communication. State-of-the-art computers such
as Lassen, however, consist of heterogeneous nodes with multi-
ple GPUs per node. Many applications, such as Hypre, achieve
full performance through acceleration on these GPUs, relying on
inter-GPU communication. Neighborhood collective strategies can
be extended to optimize inter-GPU communication, not only dy-
namically selecting the optimal locality-aware strategy, but also
determining whether to communicate data directly between GPUs,
to first copy to CPUs, or to copy a portion of the data to each avail-
able CPU core, allowing each to communicate with a smaller subset
of regions.

ACKNOWLEDGMENTS

This work was performed with partial support from the National
Science Foundation under Grant No. CCF-2151022, the U.S. De-
partment of Energy’s National Nuclear Security Administration
(NNSA) under the Predictive Science Academic Alliance Program
(PSAAP-IIT), Award DE-NA0003966, and under the auspices of the
US Department of Energy by Lawrence Livermore National Labora-
tory under Contract DE-AC52-07NA27344 (LLNL-CONF-854677).

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation
and the U.S. Department of Energy’s National Nuclear Security
Administration.

REFERENCES

[1] [n.d.]. HYPRE: High performance preconditioners. http://www.lInl.gov/CASC/
hypre/.

[2] Amotz Bar-Noy and Shlomo Kipnis. 1992. Designing broadcasting algorithms
in the postal model for message-passing systems. In Proceedings of the fourth
annual ACM symposium on Parallel algorithms and architectures. 13-22.

[3] Luc Berger-Vergiat, Christian A. Glusa, Jonathan J. Hu, Matthias Mayr, Andrey
Prokopenko, Christopher M. Siefert, Raymond S. Tuminaro, and Tobias A. Wies-
ner. 2019. MueLu User’s Guide. Technical Report SAND2019-0537. Sandia National
Laboratories.

[4] Abhinav Bhatele, Todd Gamblin, Steven H. Langer, Peer-Timo Bremer, Erik W.
Draeger, Bernd Hamann, Katherine E. Isaacs, Aaditya G. Landge, Joshua A. Levine,

http://www.llnl.gov/CASC/hypre/
http://www.llnl.gov/CASC/hypre/

Optimizing Irregular Communication with Neighborhood Collectives and Locality-Aware Parallelism

(5

=

[10]

[11]

[12

[14]

[15

[16]

[17

Valerio Pascucci, Martin Schulz, and Charles H. Still. 2012. Mapping Applications
with Collectives over Sub-communicators on Torus Networks. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis (Salt Lake City, Utah) (SC ’12). IEEE Computer Society Press, Los
Alamitos, CA, USA, Article 97, 11 pages. http://dlLacm.org/citation.cfm?id=
2388996.2389128

Amanda Bienz, Shreeman Gautam, and Amun Kharel. 2022. A Locality-Aware
Bruck Allgather. In Proceedings of the 29th European MPI Users’ Group Meeting
(Chattanooga, TN, USA) (EuroMPI/USA’22). Association for Computing Machin-
ery, New York, NY, USA, 18-26. https://doi.org/10.1145/3555819.3555825
Amanda Bienz, William D. Gropp, and Luke N. Olson. 2018. Improving Perfor-
mance Models for Irregular Point-to-Point Communication. In Proceedings of the
25th European MPI Users’ Group Meeting, Barcelona, Spain, September 23-26, 2018.
7:1-7:8. https://doi.org/10.1145/3236367.3236368

Amanda Bienz, William D. Gropp, and Luke N. Olson. 2020. Reducing
communication in algebraic multigrid with multi-step node aware commu-
nication. The International Journal of High Performance Computing Ap-
plications 34, 5 (2020), 547-561. https://doi.org/10.1177/1094342020925535
arXiv:https://doi.org/10.1177/1094342020925535

Amanda Bienz, Luke N. Olson, and William D. Gropp. 2019. Node-Aware Im-
provements to Allreduce. In Proceedings of ExaMPI 2019. IEEE, United States,
19-28. https://doi.org/10.1109/ExaMPI49596.2019.00008

Amanda Bienz, Luke N. Olson, and William D. Gropp. 2019. Node aware sparse
matrix-vector multiplication. J. Parallel and Distrib. Comput. 130 (2019), 166 —
178. https://doi.org/10.1016/j.jpdc.2019.03.016

Amanda Bienz, Luke N. Olson, William D. Gropp, and Shelby Lockhart. 2021.
Modeling Data Movement Performance on Heterogeneous Architectures. In
2021 IEEE High Performance Extreme Computing Conference (HPEC). 1-7. https:
//doi.org/10.1109/HPEC49654.2021.9622742

Dong Chen, Noel Eisley, Philip Heidelberger, Sameer Kumar, Amith Mamidala,
Fabrizio Petrini, Robert Senger, Yutaka Sugawara, Robert Walkup, Burkhard
Steinmacher-Burow, Anamitra Choudhury, Yogish Sabharwal, Swati Singhal,
and Jeffrey J. Parker. 2012. Looking under the hood of the IBM Blue Gene/Q
network. In SC ’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. 1-12. https://doi.org/10.1109/SC.
2012.72

Matthew G.F. Dosanjh, Andrew Worley, Derek Schafer, Prema Soundararajan,
Sheikh Ghafoor, Anthony Skjellum, Purushotham V. Bangalore, and Ryan E.
Grant. 2021. Implementation and evaluation of MPI 4.0 partitioned communi-
cation libraries. Parallel Comput. 108 (2021), 102827. https://doi.org/10.1016/j.
parco.2021.102827

A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A.
Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,
B. D. Steinmacher-Burow, T. Takken, and P. Vranas. 2005. Overview of the Blue
Gene/L system architecture. IBM Journal of Research and Development 49, 2.3
(2005), 195-212. https://doi.org/10.1147/rd.492.0195

S. Mahdieh Ghazimirsaeed, Qinghua Zhou, Amit Ruhela, Mohammadreza Bay-
atpour, Hari Subramoni, and Dhabaleswar K. DK Panda. 2020. A Hierarchical
and Load-Aware Design for Large Message Neighborhood Collectives. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-13. https://doi.org/10.1109/SC41405.2020.00038

Richard Graham, Manjunath Gorentla Venkata, Joshua Ladd, Pavel Shamis, Ishai
Rabinovitz, Vasily Filipov, and Gilad Shainer. 2011. Cheetah: A Framework for
Scalable Hierarchical Collective Operations. In 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. 73-83. https://doi.org/10.
1109/CCGrid.2011.42

Ryan E. Grant, Matthew G. F. Dosanjh, Michael J. Levenhagen, Ron Brightwell,
and Anthony Skjellum. 2019. Finepoints: Partitioned Multithreaded MPI Com-
munication. In High Performance Computing, Michéle Weiland, Guido Juckeland,
Carsten Trinitis, and Ponnuswamy Sadayappan (Eds.). Springer International
Publishing, Cham, 330-350.

William Gropp, Luke N. Olson, and Philipp Samfass. 2016. Modeling MPI Com-
munication Performance on SMP Nodes: Is It Time to Retire the Ping Pong Test.
In Proceedings of the 23rd European MPI Users’ Group Meeting (Edinburgh, United
Kingdom) (EuroMPI 2016). Association for Computing Machinery, New York, NY,
USA, 41-50. https://doi.org/10.1145/2966884.2966919

Masayuki Hatanaka, Atsushi Hori, and Yutaka Ishikawa. 2013. Optimization of
MPI Persistent Communication. In Proceedings of the 20th European MPI Users’
Group Meeting (Madrid, Spain) (EuroMPI ’13). Association for Computing Ma-
chinery, New York, NY, USA, 79-84. https://doi.org/10.1145/2488551.2488566
Van Emden Henson and Ulrike Meier Yang. 2002. BoomerAMG: A Parallel
Algebraic Multigrid Solver and Preconditioner. Appl. Numer. Math. 41, 1 (April
2002), 155-177. https://doi.org/10.1016/S0168-9274(01)00115-5

Mert Hidayetoglu, Tekin Bicer, Simon Garcia de Gonzalo, Bin Ren, Vincent De An-
drade, Doga Gursoy, Raj Kettimuthu, Ian T. Foster, and Wen-mei W. Hwu. 2020.
Petascale XCT: 3D Image Reconstruction with Hierarchical Communications
on Multi-GPU Nodes. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-13. https://doi.org/10.1109/

437

SC-W 2023, November 12-17, 2023, Denver, CO, USA

S5C41405.2020.00041

Jonathan Hines. 2018. Stepping up to Summit. Computing in Science & Engineering
20, 2 (2018), 78-82. https://doi.org/10.1109/MCSE.2018.021651341

Daniel J. Holmes, Anthony Skjellum, and Derek Schafer. 2020. Why is MPI
(Perceived to Be) so Complex? Part 1—Does Strong Progress Simplify MPI?. In
Proceedings of the 27th European MPI Users’ Group Meeting (Austin, TX, USA)
(EuroMPI/USA °20). Association for Computing Machinery, New York, NY, USA,
21-30. https://doi.org/10.1145/3416315.3416318

Krishna Kandalla, Hari Subramoni, Gopal Santhanaraman, Matthew Koop, and
Dhabaleswar K. Panda. 2009. Designing multi-leader-based Allgather algorithms
for multi-core clusters. In 2009 IEEE International Symposium on Parallel & Dis-
tributed Processing. 1-8. https://doi.org/10.1109/IPDPS.2009.5160896

N.T. Karonis, B.R. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan.
2000. Exploiting hierarchy in parallel computer networks to optimize collective
operation performance. In Proceedings 14th International Parallel and Distributed
Processing Symposium. IPDPS 2000. 377-384. https://doi.org/10.1109/IPDPS.2000.
846009

Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson. 2023. Perfor-
mance Analysis and Optimal Node-Aware Communication for Enlarged Conju-
gate Gradient Methods. ACM Trans. Parallel Comput. 10, 1, Article 2 (mar 2023),
25 pages. https://doi.org/10.1145/3580003

Shelby Lockhart, Amanda Bienz, William D. Gropp, and Luke N. Olson. 2023.
Characterizing the performance of node-aware strategies for irregular point-
to-point communication on heterogeneous architectures. Parallel Comput. 116
(2023), 103021. https://doi.org/10.1016/j.parco.2023.103021

Teng Ma, George Bosilca, Aurelien Bouteiller, and Jack Dongarra. 2012. Hi-
erKNEM: An adaptive framework for kernel-assisted and topology-aware col-
lective communications on many-core clusters. In 2012 IEEE 26th International
Parallel and Distributed Processing Symposium. IEEE, 970-982.

Seyed H. Mirsadeghi and Ahmad Afsahi. 2016. Topology-Aware Rank Reordering
for MPI Collectives. In 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 1759-1768. https://doi.org/10.1109/IPDPSW.
2016.139

Shuo Ouyang, Dezun Dong, Yemao Xu, and Liquan Xiao. 2021. Communication
optimization strategies for distributed deep neural network training: A survey. 7.
Parallel and Distrib. Comput. 149 (2021), 52-65. https://doi.org/10.1016/j.jpdc.
2020.11.005

P. Patarasuk and X. Yuan. 2007. Bandwidth Efficient All-reduce Operation on
Tree Topologies. In 2007 IEEE International Parallel and Distributed Processing
Symposium. 1-8. https://doi.org/10.1109/IPDPS.2007.370405

David Schneider. 2022. The Exascale Era is Upon Us: The Frontier supercomputer
may be the first to reach 1,000,000,000,000,000,000 operations per second. IEEE
Spectrum 59, 1 (2022), 34-35. https://doi.org/10.1109/MSPEC.2022.9676353
Barry Smith. 2011. PETSc (Portable, Extensible Toolkit for Scientific Computation).
Springer US, Boston, MA, 1530-1539. https://doi.org/10.1007/978-0-387-09766-
4 87

Andreas Thune, Sven-Arne Reinemo, Tor Skeie, and Xing Cai. 2023. Detailed
Modeling of Heterogeneous and Contention-Constrained Point-to-Point MPI
Communication. IEEE Transactions on Parallel and Distributed Systems 34, 5
(2023), 1580-1593. https://doi.org/10.1109/TPDS.2023.3253881

[34] Jesper Larsson Traff. 2006. Efficient Allgather for Regular SMP-Clusters. In

Proceedings of the 13th European PVM/MPI User’s Group Conference on Recent
Advances in Parallel Virtual Machine and Message Passing Interface (Bonn, Ger-
many) (EuroPVM/MPI’06). Springer-Verlag, Berlin, Heidelberg, 58-65. https:
//doi.org/10.1007/11846802_16

Jesper Larsson Traff and Sascha Hunold. 2020. Decomposing MPI Collectives for

Exploiting Multi-lane Communication. In 2020 IEEE International Conference on
Cluster Computing (CLUSTER). 270-280. https://doi.org/10.1109/CLUSTER49012.
2020.00037

http://dl.acm.org/citation.cfm?id=2388996.2389128
http://dl.acm.org/citation.cfm?id=2388996.2389128
https://doi.org/10.1145/3555819.3555825
https://doi.org/10.1145/3236367.3236368
https://doi.org/10.1177/1094342020925535
https://arxiv.org/abs/https://doi.org/10.1177/1094342020925535
https://doi.org/10.1109/ExaMPI49596.2019.00008
https://doi.org/10.1016/j.jpdc.2019.03.016
https://doi.org/10.1109/HPEC49654.2021.9622742
https://doi.org/10.1109/HPEC49654.2021.9622742
https://doi.org/10.1109/SC.2012.72
https://doi.org/10.1109/SC.2012.72
https://doi.org/10.1016/j.parco.2021.102827
https://doi.org/10.1016/j.parco.2021.102827
https://doi.org/10.1147/rd.492.0195
https://doi.org/10.1109/SC41405.2020.00038
https://doi.org/10.1109/CCGrid.2011.42
https://doi.org/10.1109/CCGrid.2011.42
https://doi.org/10.1145/2966884.2966919
https://doi.org/10.1145/2488551.2488566
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1109/SC41405.2020.00041
https://doi.org/10.1109/SC41405.2020.00041
https://doi.org/10.1109/MCSE.2018.021651341
https://doi.org/10.1145/3416315.3416318
https://doi.org/10.1109/IPDPS.2009.5160896
https://doi.org/10.1109/IPDPS.2000.846009
https://doi.org/10.1109/IPDPS.2000.846009
https://doi.org/10.1145/3580003
https://doi.org/10.1016/j.parco.2023.103021
https://doi.org/10.1109/IPDPSW.2016.139
https://doi.org/10.1109/IPDPSW.2016.139
https://doi.org/10.1016/j.jpdc.2020.11.005
https://doi.org/10.1016/j.jpdc.2020.11.005
https://doi.org/10.1109/IPDPS.2007.370405
https://doi.org/10.1109/MSPEC.2022.9676353
https://doi.org/10.1007/978-0-387-09766-4_87
https://doi.org/10.1007/978-0-387-09766-4_87
https://doi.org/10.1109/TPDS.2023.3253881
https://doi.org/10.1007/11846802_16
https://doi.org/10.1007/11846802_16
https://doi.org/10.1109/CLUSTER49012.2020.00037
https://doi.org/10.1109/CLUSTER49012.2020.00037

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work

	3 Persistent Neighborhood Collective Implementations
	3.1 Standard Neighborhood Collectives
	3.2 Aggregating Messages
	3.3 Extensions for Duplicate Data

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Overhead Costs
	4.3 Per-Level Analysis
	4.4 Scaling Analysis

	5 Conclusions and Future Directions
	Acknowledgments
	References

