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Abstract

We study bounded variation (BV) and fractional Sobolev functional spaces, L
p

Besov critical exponents and isoperimetric and Sobolev inequalities associated with
fractional Laplacians on metric measure spaces. The main tool is the theory of heat
semigroup based Besov classes in Dirichlet Metric Measure Spaces that was introduced
by the authors in previous works.
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1 Introduction

Two classical characterizations of the space of bounded variation functions (BV) have been
used to define BV on more general metric spaces: Caccioppoli’s characterization via relaxed
convergence of Sobolev functions was used by Miranda [57] in the setting of metric measure
spaces from the point of view of energy given by the local Lipschitz “constant” functions
related to Lipschitz continuous functions, while a version of the characterization via heat
semigroups due to De Giorgi [33] (see also Ledoux [55]) was used by the present authors in
the setting of metric measure spaces admitting a Dirichlet form with suitable estimates [5].
In the latter case, one of the properties assumed for the Dirichlet form was locality.
The first purpose of the present work is to show that a BV space can also be characterized
using a non-local form, namely that obtained by subordination of a local form like that
studied in [5], for a range of values of the subordination parameter δ. The second is to in-
vestigate the properties of the fractional Sobolev space which arises when the subordination
parameter δ is outside that range. This approach is complementary to existing work on frac-
tional Sobolev spaces and BV functions in various contexts, including manifolds and Carnot
groups, domains with fractal boundary as in [52, 56, 65], and the distributional approach
in [31]. We hope that the approach may steer further connections to research in PDE, for
example as in [34].
Our setting is a locally compact metric space (X, d) with a Radon measure µ and a strongly
local regular Dirichlet form E corresponding to a Laplacian L for which the associated heat
flow Pt = etL admits a kernel pt(x, y) with sub-Gaussian estimates having parameters dH
(Hausdorff dimension) and dW (walk dimension). Definitions and further details are provided
in Section 2. The study of function spaces in this context is an active area of research, with
substantial published literature, see for instance [2,9–11,13–19,36,41,42,45,46,51,53,54,58,
59,63].
In what follows, we consider the non-local fractional Laplacian (−L)δ for some 0 < δ < 1

and the corresponding subordinated semigroup P
(δ)
t with generator p

(δ)
t . The heat semigroup

Besov spaces B
p,α
δ (X) are defined via finiteness of the seminorm

‖f‖δ,p,α := sup
t>0

t−α

(
∫

X

∫

X

|f(x) − f(y)|pp
(δ)
t (x, y)dµ(y)dµ(x)

)1/p

. (1)
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If in addition Pt satisfies the weak Bakry-Émery estimate (6), then also the subordinated
semigroup does. Namely, there is some κ > 0 such that for all x, y ∈ X and f ∈ L∞(X,µ)

|P
(δ)
t f(x) − P

(δ)
t f(y)| ≤ C

d(x, y)κ

t
κ

δdW

‖f‖L∞(X,µ),

c.f. Lemma 2.8. When λ#
1 = dW −κ, then it is natural to define BV as the Korevaar-Schoen

space KSλ#
1 ,1(X), where, following [50], KSλ,p is the subspace of Lp determined by finiteness

of the seminorm

lim sup
r→0+

(
∫

X

∫

B(x,r)

|f(x) − f(y)|p

rλpµ(B(x, r))
dµ(y)dµ(x)

)1/p

, (2)

and λ#
p is the critical exponent defined as

λ#
p := sup{λ : KSλ,p(X) contains non-constant functions}. (3)

As we will see in Section 5, the space KSλ#
1 ,1 enjoys many classical BV properties, including

Sobolev embedding, isoperimetric inequalities, and a co-area formula, as well as an interpre-
tation of the variation as a “BV measure”. These properties will be established by comparing
the seminorm (2) with the heat Besov seminorm (1) for α = λ/(δdW ) and fixed 0 < δ < 1,
and the corresponding critical exponents λ#

p of the Korevaar-Schoen spaces and α#
δ,p of the

heat Besov spaces. Similar associations were studied in [3] for the non-fractional version of

the heat Besov spaces, where p
(δ)
t was replaced by the standard heat kernel pt associated

with E .
In Section 3 we classify the spaces B

p,α
δ (X) in terms of the parameter α: when α < 1

p
they

agree with Korevaar-Schoen spaces, when α = 1
p

they are fractional Sobolev spaces, and

when α > 1
p

they are trivial. We also compare them to metric Besov spaces studied by other
authors.
Typically the smaller the Besov spaces, the more useful they are. The smallest in the present
context are those that contain the smoothest functions subject to a non-triviality condition

leading to the study of the spaces B
p,α#

p,δ

δ (X) with the critical exponent

α#
p,δ = sup{α : Bp,α

δ (X) contains non-constant functions}.

The results of Section 3 ensure α#
p,δ ≤ 1

p
so that the critical heat Besov space is either

a Korevaar-Schoen space or a fractional Sobolev space. In general it may be difficult to
determine the critical exponent α#

p,δ, but we show in Section 4 that the a-priori assumption

of a weak Bakry-Émery inequality for the original (non-subordinated) semigroup provides
estimates for this exponent, and determines it completely in the case p = 1.
The preceding results provide circumstances under which we can identify the heat Besov

space B
1,α#

1,δ

δ (X) for the subordinated semigroup with the critical Korevaar Schoen space

KSλ#
1 ,1(X) which we consider to be the BV function space. Specifically, we need λ#

1 =

dW − κ so that KSλ#
1 ,1(X) is BV by the results of [5], and δ > 1 − κ

dW
to ensure this latter

coincides with the critical heat Besov space, see Theorem 5.3. A point of particular interest
is that this characterization is independent of the subordination parameter δ in the interval
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(λ#
1 /dW , 1) = (1−κ/dW , 1). Intuitively, this result says that although being in BV appears to

be a local property and was initially defined in terms of a local Dirichlet form and semigroup,
we can recover it from the non-local fractional Laplacian operator and semigroup, as long
as the latter it is not “too non-local” (meaning δ > λ#

1 /dW ). This property of stability in
the subordination parameter is consistent with the possibility of a non-trivial connection
between the condition λ#

1 /dW = 1 − κ/dW and the topological and metric structure of the
space. In Conjecture 5.4 of [5] the authors suggest that in some examples this quantity may
depend not only on the Hausdorff and walk dimensions but also on the topological Hausdorff
dimension defined in [8].

The characterization of BV by the critical heat Besov space B
1,α#

1,δ

δ (X) when δ > 1 − κ
dW

is
presented in Section 5.1, where we use results of [5] to express properties of BV in terms of

B
1,α#

1,δ

δ and the subordinated heat Besov seminorm, including the notions of variation, co-area
formula, Sobolev and isoperimetric inequalities and existence of BV measures. Section 5.2
contains the corresponding results for the fractional Sobolev space that arises when the
subordination parameter instead satisfies δ ≤ 1 − κ

dW
. In this case, one has α#

δ,1 = 1 and

B
1,1
δ (X) is an instance of the classical fractional Sobolev space W λ,p(X) defined by Gagliardo

in [39] for X = R
n, whose seminorm is

‖f‖Wλ,p :=

(
∫

X

∫

X

|f(x) − f(y)|p

d(x, y)dH+λp
dµ(x)dµ(y)

)1/p

.

An interesting observation is that the dominant role of the non-locality in the case δ ≤ 1− κ
dW

means that the proofs all require only elementary estimates, and the weak Bakry-Émery
condition plays no role beyond determining the critical value 1− κ

dW
. This contrasts strongly

with the central role of the weak Bakry-Émery inequality in Section 5.1, where the local
behavior of the semigroup is dominant.
We close the paper by determining, in Section 6, some properties of the fractional Sobolev
spaces in our setting as applications of this correspondence, including density of W δdW /p,p(X)
in Lp(X,µ) and when p ≥ 2, a Sobolev embedding theorem.

Acknowledgments

The authors thank Martin Barlow, Alexander Grigory’an, and Takashi Kumagai for questions
and suggestions leading to improvements in the authors’ work.

2 Preliminaries: Fractional Laplacians on metric mea-

sure spaces

In general, for expressions a and b, we write a ' b if there exist constants c1, c2 > 0 such
that c1a ≤ b ≤ c2a.
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2.1 Standing assumptions

Throughout the paper, (X, d, µ) will denote a proper metric measure space (i.e. where closed
and bounded subsets are compact) whose measure µ is Radon and supported on X. The
space X is equipped with a Dirichlet form (E ,F = dom(E)), that is a closed, symmetric and
Markovian bilinear form on L2(X,µ) whose domain F = {u ∈ L2(X) : E(u, u) < ∞} is
dense in L2(X), see [29,38]. The vector space of continuous functions with compact support
in X is denoted by Cc(X), and C0(X) is its closure with respect to the supremum norm.
Recall, see for example [38, p.6], that a Dirichlet form (E ,F) is regular if it admits a core,
which is a subset of Cc(X) ∩ F that is dense in Cc(X) in the supremum norm and dense in
F in the norm

‖f‖E1 :=
(

‖f‖2L2(X,µ) + E(f, f)
)1/2

.

Also, (E ,F) is said to be local if E(f, g) = 0 for any two functions f, g ∈ F that have compact
support and f vanishes on the support of g. The Dirichlet form E is said to be strongly local
if E(f, g) = 0 for any two functions f, g ∈ F that have compact support and such that
f is constant in a neighborhood of the support of g. The heat semigroup associated with
the Dirichlet form (E ,F) is denoted by {Pt}t>0, and its associated infinitesimal generator is
denoted by L.
The following assumptions on the Dirichlet space (X, E ,F , µ) will be required throughout
the paper.

Assumption 2.1 (Regularity).

(A1) For any x ∈ X and r > 0, B(x, r) := {y ∈ X | d(x, y) ≤ r} is compact;

(A2) The Dirichlet form (E ,F) is regular and strongly local.

Assumption 2.2 (Sub-Gaussian Heat Kernel Estimates). The semigroup {Pt}t>0 satisfies
Pt1 = 1 and there are constants c3, c4, c5, c6 ∈ (0,∞) and 2 ≤ dW < ∞ such that the
semigroup has a continuous heat kernel pt(x, y) satisfying

c5t
−dH/dW exp

(

−c6

(d(x, y)dW

t

)
1

dW−1

)

≤ pt(x, y) ≤ c3t
−dH/dW exp

(

−c4

(d(x, y)dW

t

)
1

dW−1

)

for µ×µ-a.e. (x, y) ∈ X ×X and each t ∈
(

0,+∞
)

.

The parameter dH is the Hausdorff dimension of X, and the parameter dW is usually called
the walk dimension of X associated with the Dirichlet form E . Note that for the standard
Dirichlet form associated with the Euclidean spaces, the walk dimension dW = 2 while the
Hausdorff dimension dH is the dimension of the Euclidean space. Under these assumptions,
the Dirichlet form satisfies

E(f, f) ' lim sup
r→0+

∫

X

∫

B(x,r)

|f(y) − f(x)|2

rdW+dH
dµ(y) dµ(x)

for any f ∈ F , c.f. [41, Section 5.3] and [21, Theorem 3.3.1].
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Remark 2.3. Assumption 2.1 together with Assumption 2.2 imply that µ(X) = +∞. They
also imply that (X, d, µ) is Ahlfors dH-regular, that is, µ

(

B(x, r)
)

' rdH , and that (E ,F) is
strongly local, see [42, Theorem 4.1].

Remark 2.4. While dW ≥ 2 always, it is possible that dH > dW : if (X, d, µ) has Hausdorff
dimension d′H ≤ dW , then for sufficiently large positive integer n the Cartesian product Xn

will have the same walk dimension dW but Hausdorff dimension dH = nd′H > dW .

2.2 Korevaar-Schoen spaces and weak Bakry-Émery inequality

The following class of Korevaar-Schoen spaces was introduced in [50], see also [51].

Definition 2.5. For λ > 0 and 1 ≤ p < ∞, set

KSλ,p(X) := {f ∈ Lp(X,µ) : ‖f‖KSλ,p(X) < ∞}, (4)

where

‖f‖p
KSλ,p(X)

:= lim sup
r→0+

∫

X

∫

B(x,r)

|f(x) − f(y)|p

rλpµ(B(x, r))
dµ(y) dµ(x).

The space KSλ,p(X) is defined analogously to (4) but with the semi-norm

‖f‖p
KSλ,p(X)

:= sup
r>0

∫

X

∫

B(x,r)

|f(x) − f(y)|p

rλpµ(B(x, r))
dµ(y) dµ(x). (5)

A priori we have that KSλ,p(X) ⊂ KSλ,p(X) and KSλ1,p(X) ⊂ KSλ2,p(X) when λ1 > λ2,
so that the following critical value of λ is well-defined.

Definition 2.6. The critical exponent for the spaces KSλ,p(X) is

λ#
p = sup{λ > 0 : KSλ,p(X) contains non-constant functions}.

Our discussion of BV functions relies heavily on the heat flow satisfying a Hölder continuity
condition that we called a weak Bakry-Émery estimate, see [5, Definition 3.1].

Definition 2.7. The heat flow Pt satisfies weak Bakry-Émery estimate with exponent κ ∈
(0, dW ) if there is Cκ > 0 such that for every t > 0, g ∈ L∞(X,µ) and x, y ∈ X,

|Ptg(x) − Ptg(y)| ≤ Cκ
d(x, y)κ

tκ/dW
‖g‖L∞(X,µ). (6)

Note that if this estimate holds for κ < dW then it is also valid for κ′ ∈ (0, κ] with constant
max(2, Cκ) by [5, Lemma 3.3]. In the context of our article, from [5, Remark 3.12] one has

0 < κ 6 dW/2.

We also note that if (X, d) satisfies a chain condition, then κ ≤ 1, see [5, Remark 3.2]
and [47, page 81].
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2.3 Subordination and fractional Laplacians

Let 0 < δ < 1 be a parameter that is fixed throughout the paper. The fractional power
(−L)δ, of the infinitessimal generator −L of the Dirichlet form E , can be defined via the
following formula, see (5) in [64, p. 260],

(−L)δf = −
δ

Γ (1 − δ)

∫ ∞

0

t−δ−1(Ptf − f) dt.

From Proposition 1 in [64, p.260] it is known that (−L)δ is the generator of a Markovian

semigroup {P
(δ)
t }t>0 is related to {Pt}t>0 by the subordination formula

P
(δ)
t f(x) :=

∫ ∞

0

η
(δ)
t (s)Psf(x) ds, (7)

where η
(δ)
t (s) is the non-negative continuous function (the subordinator) such that

∫ ∞

0

η
(δ)
t (s)e−sλds = e−tλδ

(8)

for every λ > 0. The heat kernel p
(δ)
t for (−L)δ is related to the heat kernel pt for −L by the

formula

p
(δ)
t (x, y) =

∫ ∞

0

η
(δ)
t (s) ps(x, y) ds.

In addition, the subordinator η
(δ)
t (s) satisfies the following upper bound

η
(δ)
t (s) ≤ C

(

1

t1/δ
∧

t

s1+δ

)

. (9)

For −∞ < α < δ we have
∫ +∞

0

η
(δ)
t (s)sαds =

Γ (1 − α/δ)

Γ (1 − α)
tα/δ, (10)

and for α ≥ δ we have
∫ +∞

0

η
(δ)
t (s)sαds = +∞.

The Markov semigroup P
(δ)
t is associated with the Dirichlet form

E (δ)(f, f) := lim
t→0+

1

t

∫

X

f(f − P
(δ)
t f)dµ. (11)

The domain F (δ) of E (δ) is the set of all functions f ∈ L2(X,µ) for which the limit (11) is
finite. For details and proofs regarding the above statements, we refer the reader to [64,
p.260]. From [41, Lemma 5.4], under Assumptions 2.1 and 2.2, the Dirichlet form (E (δ),F (δ))

associated with P
(δ)
t satisfies

E (δ)(f, f) '

∫

X

∫

X

|f(x) − f(y)|2

d(x, y)dH+δdW
dµ(y)dµ(x), (12)
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and that for the corresponding heat kernel p
(δ)
t (x, y) admits the estimates

c5t
−

dH
δdW

(

1 + c6
d(x, y)

t
1

δdW

)−dH−δdW

≤ p
(δ)
t (x, y) ≤ c3t

−
dH
δdW

(

1 + c4
d(x, y)

t
1

δdW

)−dH−δdW

. (13)

From (7) and (10) one readily obtains the following estimate.

Lemma 2.8. If Pt satisfies a weak Bakry-Émery condition with exponent κ as in (6), then
there exists a constant C > 0 such that for every t > 0, g ∈ L∞(X,µ) and x, y ∈ X,

|P
(δ)
t g(x) − P

(δ)
t g(y)| ≤ C

d(x, y)κ

t
κ

δdW

‖g‖L∞(X,µ).

That is, P
(δ)
t satisfies a weak Bakry-Émery condition with dW replaced by δdW .

Proof. By virtue of (6),

|P
(δ)
t g(x) − P

(δ)
t g(y)| ≤

∫ ∞

0

η
(δ)
t (s)|Psg(x) − Psg(y)| ds ≤ Cκ

∫ ∞

0

η
(δ)
t (s)d(x, y)κs−κ/dW ‖g‖∞ds

≤ Cκd(x, y)κ‖g‖∞

∫ ∞

0

s−κ/dW η
(δ)
t (s) ds = Cκ

Γ
(

1 + κ
δdW

)

Γ
(

1 + κ
dW

)

d(x, y)κ

t
κ

δdW

‖g‖∞,

where the last equality follows from (10) since −κ/dW < δ.

2.4 Examples

In this section we give two examples of Dirichlet forms and metric measure spaces that satisfy
our standing assumptions.

Poisson kernel in R
d

The first classical example of non-local Dirichlet form is that associated with the fractional

Laplacian (−∆)1/2 . The corresponding Poisson kernel q
(
1
2
)

t : Rd × R
d → [0,∞) is given for

any t > 0 by

q
(
1
2
)

t (x, y) =
Γ
(

d+1
2

)

π− d+1
2

td

(

1 +
|x− y|2

t2

)− d+1
2

and provides the fundamental solution to the Poisson equation in R
d, ∂2

t f + ∆f = 0.

Non-local forms on nested fractals

The concept of fractal metric measure space with fractional diffusion was introduced by
Barlow in [9], to which we refer the reader for a precise definition. Both Assumption 2.1
and Assumption 2.2 are valid on such spaces. Nested fractals like the Vicsek set and the
Sierpinski gasket are examples that fall into this class of spaces and also satisfy the weak
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Bakry-Émery estimate with κ = dW − λ#
1 , which is the largest possible exponent for a weak

Bakry-Émery condition can be valid, see [5, Theorem 5.1].
The non-local Dirichlet form obtained through subordination from such a fractional diffusion
has been studied in the literature by many authors, see e.g. [24, 25, 30, 48, 53, 54, 62]. In
particular, it was proved in [53, 62] that for some values of δ, the associated stable-like
process whose corresponding Dirichlet form satisfies (12) can also be obtained as the trace
of a d-dimensional Brownian motion on X, assuming that X ⊂ R

d.
The Sierpinski carpet is a fractal metric measure space with a unique natural fractional
diffusion that satisfies a weak Bakry-Émery estimate [12,14]. The best exponent for the weak
Bakry-Émery estimate is not known, see [5, Conjecture 5.4] and the discussion preceding
Assumption 4.2 below.

3 Heat Besov classes for the fractional Laplacian

Recall that we have fixed a choice of δ ∈ (0, 1). As in [3–5], for any p ≥ 1 and α ≥ 0, we
consider the Besov seminorm

‖f‖δ,p,α := sup
t>0

t−α

(
∫

X

∫

X

|f(x) − f(y)|pp
(δ)
t (x, y)dµ(x)dµ(y)

)1/p

and the associated heat semigroup-based Besov class

B
p,α
δ (X) = {f ∈ Lp(X,µ) : ‖f‖δ,p,α < ∞}.

We refer to [3] for some of the basic properties of these spaces. The remainder of this
section is devoted to identifying and classifying them depending on the relation between the
parameters p and α.

3.1 The case α < 1/p

We start by comparing the space B
p,α
δ (X) to the Korevaar-Schoen classes defined in (4)

and (5).

Theorem 3.1. Let 1 ≤ p < ∞ and 0 < α < 1
p
. Then,

B
p,α
δ (X) = KSλ,p(X) = KSλ,p(X),

where
λ = α δ dW .

Moreover, Bp,α
δ (X) and KSλ,p(X) have equivalent seminorms for this choice of λ.

Proof. The inclusion KSαδdW,p(X) ⊂ KSαδdW,p(X) follows directly from the definition, while
KSαδdW,p(X) ⊂ KSαδdW,p(X) is obtained in exactly the same way as in [5, Proposition 4.1].
Thus it suffices now to prove that B

p,α
δ (X) = KSαδdW,p(X).

Let
Φ(s) = (1 + c6s)

−dH−δdW ,
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so that the heat kernel estimate (13) implies p
(δ)
t (x, y) ≥ c Φ(1)t

−dH
δdW for x ∈ B(y, t

1
δdW ). Then

Besov seminorm, ‖f‖p,α is given by

‖f‖pδ,p,α = sup
t>0

1

tαp

∫

X

∫

X

|f(x) − f(y)|pp
(δ)
t (x, y)dµ(x)dµ(y).

Note that

1

tαp

∫

X

∫

X

|f(x) − f(y)|pp
(δ)
t (x, y)dµ(x)dµ(y)

≥
1

tαp

∫

X

∫

B(y,t
1

δdW )

|f(x) − f(y)|pp
(δ)
t (x, y)dµ(x)dµ(y)

≥ c Φ(1)

∫

X

∫

B(y,t
1

δdW )

|f(x) − f(y)|p

t
αp+

dH
δdW

dµ(x)dµ(y).

Taking the supremum over t > 0 yields B
p,α
δ (X) ⊂ KSαδdW,p(X). For the reverse inclusion,

fix r > 0 and set

A(t, r) :=

∫

X

∫

X\B(y,r)

|f(x) − f(y)|pp
(δ)
t (x, y) dµ(x) dµ(y),

B(t, r) :=

∫

X

∫

B(y,r)

|f(x) − f(y)|pp
(δ)
t (x, y) dµ(x) dµ(y).

For each positive integer i we set Ai(y) := B(y, 2ir)\B(y, 2i−1r). By the Ahlfors dH-regularity
of µ (see Remark 2.3), the form of the function Φ, and (13),

∫

X\B(y,r)

p
(δ)
t (x, y) dµ(x) ≈

∑

i∈N

∫

Ai(y)

t−dH/δdWΦ(2ir/t1/δdW ) dµ

≈
∑

i∈N

t−dH/δdW (2ir)dH Φ(2ir/t1/δdW ) ≈
∑

i∈N

sdHi Φ(si),

where si = 2ir/t1/δdW . Note that we have used µ(Ai(y) ≤ C(2ir)dH here. It follows that

∫

X\B(y,r)

p
(δ)
t (x, y) dµ(x) ≤ C

∫ ∞

1
2
rt

−
1

δdW

sdHΦ(s)
ds

s
.

Applying the inequality |f(x) − f(y)|p ≤ 2p−1(|f(x)|p + |f(y)|p), the symmetry of p(δ)(x, y),
the Fubini theorem, and the preceding inequality, we obtain

A(t, r) ≤ 2p

∫

X

∫

X\B(y,r)

|f(y)|pp
(δ)
t (x, y) dµ(x) dµ(y)

≤ 2pC‖f‖pLp(X,µ)

∫ ∞

1
2
rt

−
1

δdW

sdHΦ(s)
ds

s

≤ Ctpαr−αδdW p‖f‖pLp(X,µ)

∫ ∞

1
2
rt

−
1

δdW

sdH+αδdW pΦ(s)
ds

s
. (14)

10



On the other hand, for B(t, r), writing rk = 2−kr and Ak(y) = B(y, rk) \B(y, rk+1), we have
by virtue of (13) that

B(t, r) ≤ Ct
−

dH
δdW

∞
∑

k=0

Φ
(

rk+1t
− 1

δdW

)

rdH+αδdW p
k

∫

X

∫

Ak(y)

|f(x) − f(y)|p

rαδdW p+dH
k

dµ(x) dµ(y)

≤ Ct
−

dH
δdW

∞
∑

k=0

Φ
(

rk+1t
− 1

δdW

)

rdH+αδdW p
k

∫

X

∫

B(y,rk)

|f(x) − f(y)|p

rαδdW p+dH
k

dµ(x) dµ(y)

≤ Ctαp‖f‖p
KSαδdW ,p(X)

∫ ∞

0

sdH+αδdW pΦ(s)
ds

s
. (15)

The integrals in both (14) and (15) are bounded because α < 1/p by assumption (note that
when α < 1/p we have

∫∞

1
sdH+αδdW pΦ(s)ds

s
≈

∫∞

1
sδdW (αp−1) ds

s
< ∞), and the bound on

A(t, r) + B(t, r) yields

1

tαp

∫

X

∫

X

|f(x) − f(y)|pp
(δ)
t (x, y)dµ(x) dµ(y) ≤ Cp,α

( 1

rdWαδp
‖f‖pLp(X,µ) + ‖f‖p

KSαδdW ,p(X)

)

for some Cp,α > 0 and any t > 0. Taking the supremum over t > 0, we obtain the inclusion
KSαδdW,p(X) ⊂ B

p,α
δ (X) and letting r → ∞ gives the equivalence of the seminorms.

3.2 The case α = 1/p

When α = 1/p, the space B
p,α
δ (X) does not compare to a Korevaar-Schoen class. We now

show that instead, it coincides with a suitable fractional Sobolev space, defined in general as

W λ,p(X) :=
{

f ∈ Lp(X,µ) : ‖f‖Wλ,p(X) < +∞
}

,

where the seminorm is

‖f‖Wλ,p(X) :=
(

∫

X

∫

X

|f(x) − f(y)|p

d(x, y)dH+λp
dµ(y)dµ(x)

)1/p

.

Remark 3.2. As pointed out in Section 1, in the case X = R
d, we have dW = 2 and the

fractional Sobolev space B
p,1/p
δ (Rd) coincides with Gagliardo’s Euclidean fractional Sobolev

space [39]

W 2δ/p,p(Rd) =

{

f ∈ Lp(Rd, dx) :

(
∫

Rd

∫

Rd

|f(x) − f(y)|p

|x− y|d+2δ
dy dx

)1/p

< ∞

}

.

This motivates our next proposition.

Proposition 3.3. Let 1 ≤ p < ∞. Then B
p,1/p
δ (X) = W δdW /p,p(X) with equivalent semi-

norms.

Proof. Observe from (13) that

c5
(

t
1

δdW + c6d(x, y)
)−dH−δdW ≤

1

t
p
(δ)
t (x, y) ≤ c3

(

t
1

δdW + c4d(x, y)
)−dH−δdW .

11



The upper bound gives

1

t

∫

X

∫

X

|f(x) − f(y)|pp
(δ)
t (x, y) dµ(x) dµ(y) ≤ C

∫

X

∫

X

|f(x) − f(y)|p

d(x, y)dH+δdW
dµ(y) dµ(x)

= C‖f‖p
W δdW /p,p(X)

, (16)

and by taking the supremum over t > 0 we obtain ‖f‖p,1/p ≤ C‖f‖p
W δdW /p,p(X)

. To obtain

the lower bound, we argue as follows. For each t > 0,

∫

X

∫

X

|f(x) − f(y)|p

(t
1

δdW + d(x, y))dH+δdW

dµ(y) dµ(x) ≤
C

t

∫

X

∫

X

|f(x) − f(y)|pp
(δ)
t (x, y) dµ(x) dµ(y)

≤ C‖f‖pδ,p,1/p. (17)

Taking lim inft→0+ and applying the Fatou lemma we obtain ‖f‖p
W δdW /p,p(X)

≤ C‖f‖δ,p,1/p as

desired.

In the course of the above proof we established the following locality-in-time estimate for
the Besov norm which will be useful later.

Corollary 3.4. Let 1 ≤ p < ∞. There exists C > 0 such that for any f ∈ B
p,1/p
δ (X),

‖f‖δ,p,1/p ≤ C lim inf
t→0+

1

t1/p

(
∫

X

∫

X

|f(x) − f(y)|pp
(δ)
t (x, y) dµ(x) dµ(y)

)1/p

.

This condition was previously considered in [3, Definition 6.7], where it was called property
(Pp,1/p).

3.3 The case α > 1/p

In this subsection we will show that the spaces Bp,α
δ (X) for α > 1/p are trivial and thus not

interesting for further analysis. This completes the classification of these spaces.

Proposition 3.5. Let 1 ≤ p < ∞ and α > 1/p. Then, B
p,α
δ (X) only contains the zero

function.

Proof. The estimate (17) gives

∫

X

∫

X

|f(x) − f(y)|p

(t
1

δdW + d(x, y))dH+δdW

dµ(y) dµ(x) ≤ Ctαp−1‖f‖pδ,p,α.

Applying Fatou’s lemma, we conclude from αp > 1 and ‖f‖δ,p,α < ∞ that

∫

X

∫

X

|f(x) − f(y)|p

d(x, y)dH+δdW
dµ(y) dµ(x) ≤ lim inf

t→0+

∫

X

∫

X

|f(x) − f(y)|p

(t
1

δdW + d(x, y))dH+δdW

dµ(y) dµ(x) = 0,

which implies that f is constant. Since µ(X) = ∞ (see Remark 2.3) and f ∈ Lp(X) we
conclude that f ≡ 0.

12



3.4 Critical exponent for the heat Besov spaces

Since the Besov spaces are nested and decreasing in the parameter α, it will be useful to
focus our attention on the Besov space with the largest exponent subject the condition that
B

p,α
δ (X) contains functions other than constants. The corresponding critical exponent is

thus defined as

α#
δ,p := sup{α > 0 : B

p,α
δ (X) contains non-constant functions}.

Corollary 3.6. For any 1 ≤ p < ∞,

(i) α#
δ,p ≤

1
p
;

(ii) α#
δ,p =

λ#
p

δdW
if α#

δ,p <
1
p
.

Proof. The first statement is an immediate consequence of Proposition 3.5 and the second
follows from the correspondence in Theorem 3.1.

3.5 Comparison to metric Besov spaces previously considered in

the literature

To compare the spaces B
p,α
δ (X) to the metrically-defined Besov type spaces previously con-

sidered by Grigor’yan in [41], let us define, for any f ∈ Lp(X,µ) and r > 0,

Nα
p (f, r) :=

1

rα+dH/p

(
∫∫

{d(x,y)<r}

|f(x) − f(y)|p dµ(x) dµ(y)

)1/p

.

For any real number q with max{1, p} ≤ q < ∞ we now set

Nα
p,q(f) :=

(
∫ ∞

0

(

Nα
p (f, r)

)q dr

r

)1/q

,

and for q = ∞
Nα

p,∞(f) := sup
r>0

Nα
p (f, r).

In [41], a version of the Besov space B
α
p,q(X) is defined as

B
α
p,q(X) :=

{

f ∈ Lp(X,µ) : Nα
p,q(f) < ∞

}

.

With these notations, we see from the definitions that B
α
p,∞(X) = KSα,p(X) for all α > 0.

On the other hand, from [40, Theorem 5.2] and the fact that µ is Ahlfors dH-regular, we
also know that B

α
p,p(X) = W α,p(X) for all α > 0. Thus we can rewrite Theorem 3.1 and

Proposition 3.3 as follows:

Proposition 3.7. Let p ≥ 1.

(i) If 0 ≤ α < 1/p we have B
p,α
δ (X) = B

αδdW
p,∞ (X) and ‖f‖δ,p,α ' NαδdW

p,∞ (f).

(ii) B
p,1/p
δ (X) = B

δdW /p
p,p (X) and ‖f‖p,1/p ' N

δdW /p
p,p (f).
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4 Critical exponents and the weak Bakry-Émery in-

equality

Recall that the weak Bakry-Émery inequality (6) is the Hölder regularity estimate

|Ptg(x) − Ptg(y)| ≤ Cκ
d(x, y)κ

tκ/dW
‖g‖L∞(X,µ).

It was established in [5] that a weak Bakry-Émery inequality for the semigroup constrains
the possible values of the critical exponent introduced in Section 3.4. It is convenient to
define a parameter

βp :=
(

1 −
2

p

) κ

dW
+

1

p
.

Theorem 4.1. The following hold:

1. If 1
2
≤ δ < 1, then

(i) for 1 ≤ p < 2δ we have 1
2δ

≤ α#
δ,p ≤ min{βp

δ
, 1
p
}, and

(ii) for p ≥ 2δ we have α#
δ,p = 1

p
.

2. If 0 < δ < 1
2
, then for every p ≥ 1, α#

δ,p = 1
p
.

In particular, for every δ ∈ (0, 1) and p ≥ 2δ, α#
δ,p = 1

p
and B

p,α#
δ,p

δ (X) = W
δdW
p

,p(X).

Proof. Corollary 3.6 says that α#
δ,p ≤ 1

p
. If α#

δ,p < 1
p
, then by Theorem 3.1 we have that

B
p,α#

δ,p

δ (X) = KSδdWα#
δ,p,p(X). As increasing the value of α slightly beyond α#

δ,p leads to

B
p,α
δ (X) being trivial, it follows also that increasing λ slightly beyond δdWα#

δ,p only results

in KSλ,p(X) being trivial. It follows that δdWα#
δ,p = λ#

p , where λ#
p is the critical exponent

for the Korevaar-Schoen space, see (3). Combining this with the estimates for λ#
p obtained

in [5, Theorem 3.11] yields the claim. (Note that in the latter we have λ#
p = dWα#

p , where
α#
p is the critical exponent for the heat Besov space of the original, local, heat flow.)

4.1 Critical weak Bakry-Émery inequality

From [5, Remark 3.12] it follows that the maximal possible value of κ in a weak Bakry-
Émery inequality (6) is dW − λ#

1 , where λ#
1 is the critical exponent for non-triviality of the

L1 Korevaar-Schoen space, see Definition 2.6. In the remainder of this section and all of the
next section we assume that the weak Bakry-Émery condition is valid at this critical value.

Assumption 4.2 (Critical Weak Bakry-Émery estimate). The heat flow Pt satisfies the
weak Bakry-Émery estimate (6) with exponent κ = dW − λ#

1 .

Under this assumption we obtain the precise value of the critical exponent when p = 1.
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Theorem 4.3. Suppose that Assumption 4.2 holds. Then

α#
δ,1 = min

{

1,
1

δ

(

1 −
κ

dW

)

}

.

Proof. From Theorem 4.1 with p = 1, we see that if 1
2
< δ < 1, then (noting that β1 = 1− κ

dW
),

we have 1
2δ

≤ α#
δ,1 ≤ min{1,

(

1 − κ
dW

)

/δ}. If 0 < δ ≤ 1
2
, then we have α#

δ,1 = 1.

If α#
δ,1 < 1, (and recalling that we now have p = 1), then by Theorem 3.1 we have that

B
1,α
δ (X) = KSδdWα,1(X) for each 0 < α < α#

δ,1, and just as in the proof of Theorem 3.1 we

see that δdWα#
δ,1 = λ#

1 = dW − κ. Thus when 1
2
< δ < 1, we have the desired identity.

Now we consider the case that 0 < δ ≤ 1
2
. In this case, as observed above, α#

δ,1 = 1, and so by

Theorem 3.1 we have that for each 0 < α < 1 the space B
p,α
δ (X) = KSλ,1(X) is non-trivial.

It follows that λ#
1 ≥ αδdW for each α < 1, and so λ#

1 ≥ δdW . Hence, as κ = dW − λ#
1 , we

have that 1
δ

(

1 − κ
dW

)

≥ 1, and so the desired inequality holds in this case as well.

Example 4.4. Let δ ∈ (0, 1) and consider the Dirichlet form (E (δ),F (δ)) on R
d associated

with the fractional Laplacian (−∆)δ, namely

E (δ)(f, f) '

∫

Rn

∫

Rn

|f(x) − f(y)|2

|x− y|d+2δ
dy dx.

Then, κ = 1 and dW = 2, so that βp = 1
2
, α#

p = min
{

1
p
, 1
2δ

}

and

B
p,α#

δ,p

δ (X) =

{

KS1,p(Rd) if 1 ≤ p < 2δ,

W 2δ/p,p(Rd) if p ≥ max{1, 2δ}.

Note that the spaces KS1,p(Rd) coincide with the usual Sobolev spaces W 1,p(Rd) when p > 1,
while for p = 1 we have

B
1,α#

δ,1

δ (Rd) =

{

KS1,1(Rd) = BV (Rd) if δ > 1/2,

W 2δ,1(Rd) if δ ≤ 1/2.

Interestingly, for δ = 1
2
, one has

B
1,α#

δ,1

δ (Rd) = W 2δ,1(Rd) =

{

f ∈ L1(Rd, dx) :

∫

Rd

∫

Rd

|f(x) − f(y)|

|x− y|d+1
dy dx < +∞

}

which, by [26, Proposition 1], is a trivial space containing only the zero function.

Example 4.5. Let δ ∈ (0, 1) and consider the Dirichlet form (E (δ),F (δ)) on an unbounded
nested fractal X associated with the fractional Laplacian (−∆)δ, namely

E (δ)(f, f) '

∫

X

∫

X

|f(x) − f(y)|2

d(x, y)dH+δdW
dµ(y)dµ(x).
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Then, κ = dW −dH by [5, Theorem 3.7] and λ#
1 = dH by [5, Theorem 5.1]. In particular, also

Assumption 4.2 is valid. The bounds in Theorem 4.1 do not determine α#
δ,p for 1 < p < 2,

but for p = 1 we obtain from Theorem 4.3 that α#
δ,1 = min

{

1, dH
δdW

}

and

B
1,α#

δ,1

δ (X) =

{

KSdH ,1(X) if δ > dH/dW ,

W δdW ,1(X) if δ ≤ dH/dW .

Example 4.6. Let X denote the unbounded Vicsek fractal. There is a Dirichlet form on
X which satisfies Assumptions 2.1, 2.2, 4.2 with dH = ln 5

ln 3
and dW = ln 15

ln 3
= dH + 1. For

δ ∈ (0, 1) let (E (δ),F (δ)) be the form of the subordinated semigroup, so that

E (δ)(f, f) '

∫

X

∫

X

|f(x) − f(y)|2

d(x, y)dH+δdW
dµ(y)dµ(x).

The critical exponents of the Korevaar-Schoen spaces for this fractal have been computed
in [23] and we have

B
p,α#

δ,p

δ (X) =

{

KSβpdW,p(X) if 1 ≤ p < 2 − (1 − δ)dW ,

W dW δ/p,p(X) if p ≥ max{1, 2 − (1 − δ)dW}.

For the Vicsek fractal, the spaces KSβpdW,p(X) are a natural class of Sobolev spaces and were
studied in detail in [22,23].

5 Properties of BV and W δdW ,1 from heat Besov spaces

Under Assumption 4.2, it was argued in [5] that one should consider KSλ#
1 ,1 to be the

space BV of functions of bounded variation. The justification was that there is a natural
notion of variation which admits a co-area formula, and measures that play the role of the
classical total variation of a gradient, and that functions in the space satisfy Sobolev and
isoperimetric inequalities. The proofs formed the bulk of the paper [5] and relied heavily on
Assumption 4.2. The variation is defined as follows.

Definition 5.1. Under assumption 4.2 (so λ#
1 = dW −κ) let BV (X) := KSλ#

1 ,1(X) and for
f ∈ BV (X) let

Var(f) := lim inf
r→0+

∫

X

∫

B(x,r)

|f(y) − f(x)|

rλ
#
1 µ(B(x, r))

dµ(y) dµ(x).

Observe that the crucial difference between this and the KSdW−κ,1(X) seminorm is that
Var(f) is a limit infimum rather than a limit supremum.
We saw in Theorem 4.3 that under Assumption 4.2, the critical parameter α#

δ,1 is determined,

and hence so is the critical heat Besov space. From Theorem 3.1, if α#
δ,1 < 1, or equivalently

1 − κ
dW

< δ < 1, then this space is KSλ#
1 ,1 = KSdW−κ,1(X), which we consider to be the

space BV (X) in Definition 5.1. However, when α#
δ,1 = 1, or equivalently 0 < δ ≤ 1 − κ

dW
,
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we saw in Proposition 3.3 that the critical heat Besov space was the nonlocal Sobolev space
W δdW ,1(X). Thus, in the case δ > 1− κ

dW
the local behavior of the semigroup predominates,

while in the case δ ≤ 1− κ
dW

it is the nonlocal structure that is determinative. An interesting
dichotomy is that all arguments about the structure of functions in the critical space for the
case δ > 1 − κ

dW
depend heavily on the weak Bakry-Émery inequality, while the only use

of the inequality in the case δ ≤ 1 − κ
dW

is to determine that then α#
δ,1 = 1. Of course, the

fact that 1− κ
dW

is the value of δ at which the behavior changes from local to non-local does

depend on the weak Bakry-Émery condition.
In this section we discuss the properties of the spaces BV and W δdW ,1 that can be derived
from the characterization by heat Besov spaces.

5.1 The case δ > 1 − κ
dW

: Characterizing BV properties of heat

Besov spaces

In this section we record how the main results of [5] regarding the space BV can be written
in terms of the heat Besov spaces for the subordinated semigroup. Most proofs are short
because the results are obtained directly from the seminorm correspondence in Theorem 3.1
and results in [5]. The validity of the weak Bakry-Émery inequality at the critical exponent
κ = dW − λ#

1 from Assumption 4.2 is used throughout this section.

Remark 5.2. By Assumption 4.2, the condition δ > 1− κ
dW

is equivalent to α#
δ,1 < 1, for in

this case α#
δ,1 = 1

δ

(

1 − κ
dW

)

.

Theorem 5.3. For δ > 1 − κ
dW

we have B
1,α#

δ,1

δ (X) = BV (X) and there exist constants
c, C > 0 such that for every f ∈ BV (X),

Var(f) ' ‖f‖δ,1,α#
δ,1
.

Proof. By Theorem 3.1 we know that when α#
δ,1 < 1, we have B

1,α#
δ,1

δ (X) = KSλ,1(X) =

KSλ,1(X) with λ = α#
δ,1δdW . Note that BV (X) = B

1,α#
δ,1

δ (X). By considering the non-

triviality of the spaces B
1,α
δ (X) for α < α#

δ,1, we see that λ#
1 = α#

δ,1δdW .

According to [5, Proposition 4.1, Theorem 4.9], the weak Bakry-Émery estimate implies that
the Korevaar-Schoen norm ‖f‖KSdW−κ,1(X) is bounded above and below by Var(f). Since

dW − κ = λ#
1 by Assumption 4.2 and α#

δ,1 < 1 we obtain the result from Corollary 3.6.

It is important to note that generally B
1,α
δ (X) depends on both α and the subordination pa-

rameter δ, but from Theorem 3.1 and Theorem 4.3 we know that B
1,α#

δ,1

δ (X) = KSdW−κ,1(X)
does not depend on δ when δ > 1− κ

dW
, though the Besov norm could depend on δ. Accord-

ingly, we can restate the characterization in Theorem 5.3 in a manner that emphasizes the
distinction between this result and [5, Theorem 4.9].
A key feature of any function space that is considered for candidacy of BV class is that almost
every super-level set of a BV function is in BV (X) and the BV norm can be reconstructed
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from that of the level sets (the co-area formula). This feature is verified for our candidate
BV (X) next. In addition, we have a pseudo-Poincaré inequality for p = 1. Pseudo-Poincaré
inequalities were introduced in [32, 60] and are a useful tool to prove Sobolev inequalities,
see e.g. [61] and [1].

Theorem 5.4. Let δ > 1 − κ
dW

.

(i) For any non-negative f ∈ L1(X,µ),
∫ ∞

0

‖1Et(f)‖δ,1,α#
δ,1

dt '

∫ ∞

0

Var(1Et(f)) dt ' ‖f‖δ,1,α#
δ,1
.

where Et(f) := {x ∈ X : f(x) > t} is a super-level set. In particular, 1Et(f) ∈ B
1,α#

δ,1

δ (X)

for any f ∈ B
1,α#

δ,1

δ (X) and almost every t > 0.

(ii) For every f ∈ B
1,α#

δ,1

δ (X), we have the following pseudo-Poincaré inequality

‖P
(δ)
t f − f‖L1(X,µ) ≤ Ctα

#
δ,1Var(f).

Proof. By virtue of Theorem 5.3, the first two claims follow from [5, Theorem 4.15].
To prove the claim related to the pseudo-Poincaré inequalities, we argue as follows. By our
assumptions, the subordinated heat semigroup P

(δ)
t is also conservative. Hence, applying (7),

Fubini’s theorem, and [5, Proposition 3.10] (where β1 stands in for 1 − κ
dW

), we get

‖P
(δ)
t f − f‖L1(X,µ) =

∫

X

∣

∣

∣

∫ ∞

0

η
(δ)
t (s)Ps(f − f(x))(x) ds

∣

∣

∣
dµ(x)

≤

∫ ∞

0

η
(δ)
t (s)‖Psf − f‖L1(X,µ) ds

≤ C

∫ ∞

0

η
(δ)
t (s) s

1− κ
dW ds

(

lim inf
τ→0+

1

τ
1− κ

dW

∫

X

Pτ (|f − f(x)|)(x) dµ(x)

)

.

Since α#
δ,1 < 1, we have that α#

δ,1 = 1
δ
(1 − κ/dW ). From [5, Lemma 4.13] we have

Var(f) ≈ lim inf
t→0+

1

t
1−

κ
dW

∫

X

∫

X

pt(x, y)|f(y) − f(x)| dµ(y) dµ(x).

Now, by using (10) and Theorem 5.3, we see that the expression on the right-hand side of

the above displayed ineqality is bounded by C
Γ (1−α#

δ,1)

Γ (κ/dW )
tα

#
δ,1Var(f).

We next prove the Sobolev embedding property and isoperimetric inequality under an addi-
tional assumption on the dimension dH .

Theorem 5.5. Assume that dW−κ < dH . Then B
1,dW−κ
δ (X) = BV(X) ⊂ LdH/(dH−dW+κ)(X)

and there exists C > 0 such that for f ∈ BV(X),

‖f‖LdH/(dH−dW+κ)(X) ≤ C‖f‖δ,1,dW−κ.

In particular, for any set E for which 1E ∈ BV , we have

µ(E)
dH−dW+κ

dH ≤ C‖1E‖δ,1,dW−κ.
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Proof. This theorem follows from combining [5, Theorem 4.18] with Theorem 5.3.

In classical analysis the gradient of a BV function is a vector-valued signed Radon measure.
The natural candidate in our setting, when α#

δ,1 < 1, was identified in [5] in the following
manner. For f ∈ L1(X,µ), let

Mrf(x) :=
1

rdW−κµ(B(x, r))

∫

B(x,r)

|f(x) − f(y)|dµ(y) (18)

so that Var(f) = lim infr→0+
∫

X
Mrf(x) dµ(x). A BV measure is then a weak*-limit of a

subsequence of the family of Radon measures Mrfdµ, r > 0; note that as Var(f) is finite,
the total mass of each of these Radon measures is uniformly bounded, and so by the Riesz
representation theorem such a subsequence and limit exists. This limit measure can be
considered to be a BV measure of f .
Recall that we assume α#

δ,1 < 1.

Definition 5.6. Let f ∈ B
1,α#

δ,1

δ (X) = BV (X). A BV measure γf is a Radon measure on
X such that there exists a sequence rn → 0+, such that for every g ∈ C0(X)

lim
n→+∞

∫

X

gMrnfdµ =

∫

X

gdγf . (19)

The existence of at least one BV measure associated with a given function implies that the
function is in BV (X).

Proposition 5.7. Let f ∈ L1(X,µ) and assume that there is a monotone decreasing sequence
of real numbers rn → 0+ and a finite Radon measure γf on X such that (19) holds for all
g ∈ C0(X). Then, f ∈ BV(X) and Var(f) ≤ γf (X).

Proof. The weak*-convergence to a finite Radon measure implies that the sequence of mea-
sures Mrnfdµ is tight. Thus lim infr→0+

∫

X
Mrfdµ ≤ γf (X) < ∞ and the result follows by

Theorem 4.9 in [5].

The existence and properties of BV measures when α#
δ,1 < 1 can be proved by subordination

of results for the original semigroup. The following result was proved as Theorem 4.24
of [5] for the situation where δ = 1 and p

(δ)
t is replaced by pt; what is added here are the

estimates (20). Note that the functions D = {Pεu : ε > 0, u ∈ Cc(X)} are supremum-norm
dense in C0(X) because Pt is Feller.

Theorem 5.8. Let δ > 1 − κ
dW

. Then,

(i) there is at least one BV measure associated to f ∈ B
1,α#

δ,1

δ (X);

(ii) the class of all such BV measures associated to f ∈ B
1,α#

δ,1

δ (X) ∩ L∞(X,µ) are mutually
absolutely continuous;
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(iii) for any f ∈ B
1,α#

δ,1

δ (X) ∩ L∞(X,µ) and any associated BV measure γf , if g ∈ D with
g ≥ 0, then

lim sup
t→0+

∫

X

g(y)Q
(δ)
t f(y)dµ(y) '

∫

X

g(y)dγf (y), (20)

where

Q
(δ)
t f(y) = t

− 1
δ

(

1− κ
dW

) ∫

X

p
(δ)
t (x, y)|f(x) − f(y)| dµ(x).

Proof. Since B
1,α#

δ,1

δ (X) = BV (X) the existence of a BV measure and the mutual absolute
continuity of BV measures are established in Lemma 4.22 and Theorem 4.24 of [5]. Theo-

rem 4.24 of [5] also provides the stated bounds for the case where δ = 1, p
(δ)
t is replaced by

pt and the corresponding operator from (20) is denoted Qt. If we now expand the subordi-
nation (7) and use the Fubini theorem we have

∫

X

g(y)Q
(δ)
t f(y) dµ(y) = t

− 1
δ

(

1− κ
dW

) ∫

X

∫

X

p
(δ)
t (x, y)|f(x) − f(y)|g(y) dµ(x) dµ(y)

= t
− 1

δ

(

1− κ
dW

) ∫ ∞

0

η
(δ)
t (s)

∫

X

∫

X

ps(x, y)|f(x) − f(y)|g(y) dµ(x) dµ(y) ds

=

∫ ∞

0

η
(δ)
t (s)

( s

t1/δ

)1− κ
dW

∫

X

g(y)Qsf(y) dµ(y) ds.

However, for some constant C > 0, Cη
(δ)
t (s)

(

s
t1/δ

)1− κ
dW is an approximate identity at 0 as

t → 0 by virtue of (8), (9) and (10); the latter is applicable because 1
δ

(

1− κ
dW

)

= α#
1 < 1 by

hypothesis. Moreover, g ∈ D and it is immediate from the definition of the BV norm that

∣

∣

∣

∫

X

g(y)Qtf(y) dµ(y)
∣

∣

∣
≤ ‖g‖∞‖f‖1,1−κ/dW .

so we conclude that

lim inf
t→0+

∫

X

g(y)Q
(δ)
t f(y) dµ(y) = C lim inf

t→0+

∫

X

g(y)Qtf(y) dµ(y)

lim sup
t→0+

∫

X

g(y)Q
(δ)
t f(y) dµ(y) = C lim sup

t→0+

∫

X

g(y)Qtf(y) dµ(y)

and the result follows from the estimate in Theorem 4.24 of [5], in which the constants do
not depend on δ.

5.2 The case δ <
(

1 − κ
dW

)

: Characterizing W δdW ,1 by heat Besov

spaces.

In this section we assume Assumption 4.2, but use it only to determine (from Theorem 4.3)
that when δ ≤

(

1 − κ
dW

)

we have α#
δ,1 = 1. Then from Proposition 3.3 we see that

B
1,1
δ (X) = W δdW ,1(X). We will show in this section that the space B

1,1
δ (X) has all of
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the properties established for the critical Besov space with α#
δ,1 < 1, with appropriate mod-

ifications. However, rather than relying on the weak Bakry-Émery property via the results
of [5], the proofs here are more elementary, and rest mostly on the proof of Proposition 3.3.
We begin by considering the notion of variation and the co-area formula. In a Sobolev
space one might expect that the variation is just the Sobolev norm. That this is the correct
interpretation here may be seen by comparing Definition 5.1 for Var(f) to the left side of
the following equation, the validity of which was established in the proof of Proposition 3.3.

lim inf
t→0+

1

t

∫

X

∫

X

|f(x)−f(y)|p
(δ)
t (x, y)dµ(x)dµ(y) '

∫

X

∫

X

|f(x) − f(y)|

d(x, y)dH+δdW
dµ(y)dµ(x) = ‖f‖W δdW ,1 .

When X = R
d, one has dH = d, dW = 2, κ = 1 and the above notion of variation of

a function related to the fractional Laplacian (−∆)δ, δ ≤ 1/2, coincides with the notion
of fractional variation and associated fractional perimeter which are extensively studied in
relation to the theory of non-local minimal surfaces, see for instance [6,20,27,28,35,37] and
the references therein.
Under this interpretation of the variation, the co-area formula and the pseudo-Poincaré
inequality read as follows.

Theorem 5.9. Let δ ≤ 1 − κ
dW

. Then,

(i) for any non-negative f ∈ L1(X,µ) and t > 0,

‖f‖δ,1,1 =

∫ ∞

0

‖1Et(f)‖δ,1,1 dt.

In particular, for each f ∈ B
1,1
δ (X) we have that 1Et(f) ∈ B

1,1
δ (X) almost every t > 0;

(ii) if 1Et(f) ∈ B
1,1
δ (X) for almost every t > 0 and

∫ ∞

0

‖1Et(f)‖δ,1,1 dt < ∞, then f ∈

B
1,1
δ (X);

(iii) for any f ∈ B
1,1
δ (X),

‖P
(δ)
t f − f‖L1(X,µ) ≤ Ct

∫

X

∫

X

|f(x) − f(y)|

d(x, y)dH+δdW
dµ(y)dµ(x).

Proof. Since f ≥ 0, for µ-almost every x, y ∈ X we can write

|f(y) − f(x)| =

∫ +∞

0

|1Et(f)(x) − 1Et(f)(y)|dt.

Therefore,

WδdW ,1(f) =

∫

X

∫

X

|f(x) − f(y)|

d(x, y)dH+δdW
dµ(y)dµ(x) =

∫

X

∫

X

∫ +∞

0

|1Et(f)(x) − 1Et(f)(y)|

d(x, y)dH+δdW
dt dµ(y)dµ(x),

and (i) follows from Fubini’s theorem and Proposition 3.3 for non-negative functions f . To
prove (iii), note that

‖P
(δ)
t f − f‖L1(X,µ) ≤

∫

X

∫

X

p
(δ)
t (x, y)|f(x) − f(y)| dµ(y) dµ(x).

The assertion follows thus as in (16).
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To establish Sobolev and isoperimetric inequalities for W δdW ,1(X) we begin with the Sobolev
embedding established for a heat Besov space in [3].

Theorem 5.10. Suppose that dH > δdW . Then there exists a constant C > 0 such that for
every f ∈ B

1,1
δ (X),

‖f‖Lq(X,µ) ≤ C

∫

X

∫

X

|f(x) − f(y)|

d(x, y)dH+δdW
dµ(y)dµ(x) = C‖f‖W δdW ,1 ,

where q = dH
dH−δdW

.

Proof. Since Corollary 3.4 establishes the property (P1,1) defined in [3, Definition 6.7], the
assertion follows from [3, Theorem 6.9] and Proposition 3.3.

In the above theorem, we could have merely required that f ∈ L1
loc(X), for if f 6∈ B

1,1
δ (X),

then the right-hand side of the claimed inequality there would be infinite and so the inequality
would trivially hold. Therefore, as an immediate corollary, we have the following fractional
isoperimetric inequality, which is the global analogue in our setting of the known fractional
relative isoperimetric inequalities noted in the Euclidean setting in [37], see also [35].

Corollary 5.11. Assume that dH > δdW . There is C > 0 such that for every measurable
set E ⊂ X,

µ(E)
dH−δdW

dH ≤ C

∫

E

∫

X\E

1

d(x, y)dH+δdW
dµ(y)dµ(x).

The endpoint case dH = δdW is that at which we get an embedding into L∞. In the following
theorem, note that since we always assume δ < 1, the condition dH = δdW can only hold
when dH < dW . Moreover, let us stress that we actually do not know examples of X for
which B

1,1
δ (X) is non-trivial when dH = δdW (see the remark at the end of Example 4.4).

Proposition 5.12. Assume dH = δdW . Then, B
1,1
δ (X) ⊂ L∞(X,µ) and there exists a

constant C > 0 such that for every f ∈ B
1,1
δ (X)

‖f‖L∞(X,µ) ≤ C

∫

X

∫

X

|f(x) − f(y)|

d(x, y)dH+δdW
dµ(y)dµ(x).

Proof. Let f ∈ B
1,1
δ (X). Without loss of generality, we assume f ≥ 0 almost everywhere.

For t ≥ 0 we define the set Et(f) = {x ∈ X : f(x) > t}. Since dH = δdW , according
to [3, Corollary 6.6], there is c > 0 such that for every set E of positive measure satisfying
‖1E‖1,1 < +∞, one has ‖1E‖1,1 ≥ c. However, from Theorem 5.9,

∫ ∞

0

‖1Et(f)‖1,1 dt = ‖f‖1,1 < +∞.

Therefore, the set Σ(f) := {t > 0 : µ(Et(f)) > 0} has finite Lebesgue measure. Indeed, we
have

cH1(Σ(f)) ≤ ‖f‖1,1.

Note that if 0 < t1 < t2, then Et2(f) ⊂ Et1(f); and so Σ(f) is an interval of the form
[0, ‖f‖L∞(X,µ)); and so we obtain the truth of the claim in the proposition from the above
inequality.
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From Theorem 5.10, Corollary 5.11 and Proposition 5.12 we deduce the following result for
the Sobolev space W δdW ,1. Note that the fact we identify the critical range for δ distinguishes
our result from the corresponding one that appears, with a different proof, in [7, Theorem
9.1].

Corollary 5.13. Suppose δ ≤ 1 − κ
dW

. If δ < dH
dW

then there is C > 0 so that any f ∈

W δdW ,1(X) satisfies ‖f‖Lq ≤ C‖f‖W δdW ,1 and any measureable set satisfies

µ(E)
1
q ≤ C

∫

E

∫

X\E

1

d(x, y)dH+δdW
dµ(y)dµ(x),

where q = dH
dH−δdW

. Moreover, W dH ,1(X) ⊂ L∞(X) with ‖f‖L∞ ≤ ‖f‖W dH,1.

Finally, we observe that the notion of a BV measure from Definition 5.6 was intended to be
an analogue of the absolute value measure associated with the gradient. In an L1 Sobolev
space we would expect this to be an L1 function multiplied by the measure dµ. Again, this
expectation is fulfilled. If we consider a quantity analogous to Mrf(y) from (18) it should
be

M̃rf(x) =
1

rδdWµ(B(x, r))

∫

B(x,r)

|f(x) − f(y)| dµ(y),

although the corresponding non-local variation is not a limit but the integral
∫ ∞

0

∫

X

M̃rf(x) dµ(x)
dr

r
;

this is readily verified by comparing it to the W δdW ,1 norm of f . The natural definition of a
corresponding BV measure γf would then be absolutely continuous with respect to µ, with
the Radon-Nikodym derivative

dγf
dµ

(x) =

∫ ∞

0

M̃rf(x)
dr

r
=

∫

X

(
∫ ∞

d(x,y)

1

rδdWµ(B(x, r))

dr

r

)

|f(x) − f(y)| dµ(y) (21)

so that by Ahlfors regularity
dγf
dµ

(x) '
∫

X
|f(x) − f(y)|d(x, y)−(δdW+dH) dµ(y). Since f ∈

W δdW ,1(X) we see
dγf
dµ

∈ L1(µ). The preceding justifies defining a BV measure in the situation
where the non-locality dominates as follows.

Definition 5.14. If α#
δ,1 = 1 and f ∈ B

1,1
δ (X) = W δdW ,1(X), the unique BV measure γf

corresponding to f is the measure γf with density as in (21).

6 Further properties of W δdW /p,p

We saw in Theorem 4.1 that whenever p ≥ 2δ the critical exponent α#
δ,p = 1

p
. According

to Proposition 3.3 the corresponding space B
p,1/p
δ (X) is then the fractional Sobolev space

W δdW /p,p(X), and the seminorms are equivalent. The purpose of this section is to record
some properties of these fractional Sobolev spaces that can be established using their heat
semigroup characterization.
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6.1 W δdW /p,p(X) is dense in Lp(X,µ) for p ≥ 2.

Proposition 6.1. Let p ≥ 2. There exists C > 0 such that for any t > 0 and f ∈ Lp(X,µ)

‖P
(δ)
t f‖δ,p,1/p ≤

C

t1/p
‖f‖Lp(X,µ).

Proof. When f ∈ L∞(X,µ), we have for a.e. x, y ∈ X,

|Ptf(x) − Ptf(y)| ≤ 2‖f‖L∞(X,µ).

It follows that, for any s > 0, the operator P
(δ)
t : L∞(X,µ) → L∞(X ×X, p

(δ)
s µ⊗ µ) defined

by P
(δ)
t f(x, y) = P

(δ)
t f(x) − P

(δ)
t f(y) has its operator norm bounded by 2. On the other

hand, we know from [3, Theorem 5.1] that

‖P
(δ)
t f‖δ,2,1/2 ≤

C

t1/2
‖f‖L2(X,µ),

i.e. P
(δ)
t : L2(X,µ) → L2(X × X, p

(δ)
s µ ⊗ µ) is bounded by C(s/t)1/2. The Riesz-Thorin

interpolation theorem now yields that P
(δ)
t : Lp(X,µ) → Lp(X ×X, psµ⊗ µ) is bounded by

C(s/t)1/p, hence

1

s1/p

(
∫

X

∫

X

p
(δ)
t (x, y)|P

(δ)
t f(x) − P

(δ)
t f(y)|pdµ(y) dµ(x)

)1/p

≤
C

t1/p
‖f‖Lp(X,µ).

Taking the supremum over s > 0 on the left hand side yields the result.

A consequence of the previous proposition is that the Sobolev space W δdW /p,p(X) is large.

Corollary 6.2. For p ≥ 2, B
p,1/p
δ (X) = W δdW /p,p(X) is dense in Lp(X,µ).

Proof. Let f ∈ Lp(X,µ). Proposition 6.1 provides that for t > 0, Ptf ∈ W δdW /p,p(X),
but by the Lp-strong continuity of the heat semigroup we have ‖Ptf − f‖Lp(X,µ) → 0 when
t → 0+.

6.2 Sobolev and isoperimetric inequalities

The following result generalizes Theorem 5.10, and has the same proof.

Theorem 6.3. Let p ≥ 1. Assume dH > δdW . There is C > 0 such that for every
f ∈ B

p,1/p
δ (X),

‖f‖Lq(X,µ) ≤ C

(
∫

X

∫

X

|f(x) − f(y)|p

d(x, y)dH+δdW
dµ(y)dµ(x)

)1/p

,

where q = pdH
dH−δdW

.

Proof. In Corollary 3.4 we saw that the condition (Pp,1/p) of [3, Definition 6.7] holds. By
assumption dH

δdW
> 1 ≥ 1

p
, hence [3, Theorem 6.9] yields the desired inequality.

This provides a corresponding result for the Sobolev space.

Corollary 6.4. Let p ≥ 1, δ ≤ 1 − κ
dW

and δ < dH
dW

. Every f ∈ W δdW /p,p(X) satisfies

‖f‖Lq(X,µ) ≤ C‖f‖W δdW /p,p

for q = pdH
dH−δdW

.
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