BV functions and fractional Laplacians on Dirichlet
spaces

Patricia Alonso Ruiz* Fabrice Baudoin! Li Chen! Luke Rogers?
Nageswari Shanmugalingam¥ Alexander Teplyaev!

December 28, 2022

The authors dedicate this paper to the memory of Ka-Sing Lau, whose important contributions
to the general theory of Markov processes and Dirichlet forms on fractals and metric measure
spaces, especially in the papers [43, 44,48, 49], influenced the development of this work.

Abstract
We study bounded variation (BV) and fractional Sobolev functional spaces, LP
Besov critical exponents and isoperimetric and Sobolev inequalities associated with
fractional Laplacians on metric measure spaces. The main tool is the theory of heat
semigroup based Besov classes in Dirichlet Metric Measure Spaces that was introduced
by the authors in previous works.
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1 Introduction

Two classical characterizations of the space of bounded variation functions (BV) have been
used to define BV on more general metric spaces: Caccioppoli’s characterization via relaxed
convergence of Sobolev functions was used by Miranda [57] in the setting of metric measure
spaces from the point of view of energy given by the local Lipschitz “constant” functions
related to Lipschitz continuous functions, while a version of the characterization via heat
semigroups due to De Giorgi [33] (see also Ledoux [55]) was used by the present authors in
the setting of metric measure spaces admitting a Dirichlet form with suitable estimates [5].
In the latter case, one of the properties assumed for the Dirichlet form was locality.

The first purpose of the present work is to show that a BV space can also be characterized
using a non-local form, namely that obtained by subordination of a local form like that
studied in [5], for a range of values of the subordination parameter §. The second is to in-
vestigate the properties of the fractional Sobolev space which arises when the subordination
parameter ¢ is outside that range. This approach is complementary to existing work on frac-
tional Sobolev spaces and BV functions in various contexts, including manifolds and Carnot
groups, domains with fractal boundary as in [52,56,65], and the distributional approach
n [31]. We hope that the approach may steer further connections to research in PDE; for
example as in [34].

Our setting is a locally compact metric space (X, d) with a Radon measure p and a strongly
local regular Dirichlet form &£ corresponding to a Laplacian L for which the associated heat
flow P, = e'* admits a kernel p;(z,y) with sub-Gaussian estimates having parameters dy
(Hausdorff dimension) and dy (walk dimension). Definitions and further details are provided
in Section 2. The study of function spaces in this context is an active area of research, with
substantial published literature, see for instance [2,9-11,13-19,36,41,42,45,46,51,53,54,58,
59,63].

In what follows, we consider the non-local fractional Laplacian (—L) for some 0 < 0 < 1

and the corresponding subordinated semigroup Pt( ) with generator pt . The heat semigroup

Besov spaces BY®(X) are defined via finiteness of the seminorm

g =supe ([ [ 170~ sl (x,y)dﬂ(y)dﬂ(x))l/p- 1)



If in addition P, satisfies the weak Bakry-Emery estimate (6), then also the subordinated
semigroup does. Namely, there is some x > 0 such that for all z,y € X and f € L>(X, )

PO 1) = PO ) < O% S i,

w

c.f. Lemma 2.8. When \¥ = dy, — &, then it is natural to define BV as the Korevaar-Schoen
space KS)‘#’I(X ), where, following [50], KS? is the subspace of L? determined by finiteness

of the seminorm
([ ], Sttbnes) o

and /\;ﬁ7£ is the critical exponent deﬁned as

# oo . A, ; ;
A7 = sup{\ : KS™(X) contains non-constant functions}. (3)

As we will see in Section 5, the space KSM ! enjoys many classical BV properties, including
Sobolev embedding, isoperimetric inequalities, and a co-area formula, as well as an interpre-
tation of the variation as a “BV measure”. These properties will be established by comparing
the seminorm (2) with the heat Besov seminorm (1) for o = A/(ddy ) and fixed 0 < § < 1,
and the corresponding critical exponents /\;i7£ of the Korevaar-Schoen spaces and afp of the

heat Besov spaces. Similar associations were studied in [3] for the non-fractional version of

(9)

the heat Besov spaces, where p,”’ was replaced by the standard heat kernel p, associated

with £.
In Section 3 we classify the spaces BY®(X) in terms of the parameter a: when a < = they

agree with Korevaar-Schoen spaces, when a = ; L they are fractional Sobolev Spaces and

when o > % they are trivial. We also compare them to metric Besov spaces studied by other
authors.

Typically the smaller the Besov spaces, the more useful they are. The smallest in the present
context are those that contain the smoothest functions subject to a non-triviality condition

#
leading to the study of the spaces Bg’%"s (X) with the critical exponent

Ozjig = sup{a : BY"*(X) contains non-constant functions}.

< % so that the critical heat Besov space is either

The results of Section 3 ensure o ;
a Korevaar-Schoen space or a fractlonal Sobolev space. In general it may be difficult to

determine the critical exponent ozp s, but we show in Section 4 that the a-priori assumption
of a weak Bakry—Emery inequality for the original (non-subordinated) semigroup provides
estimates for this exponent, and determines it completely in the case p = 1.

The preceding results provide circumstances under which we can identify the heat Besov
1,a# . . . oy,

space B; "°(X) for the subordinated semigroup with the critical Korevaar Schoen space

KSA#’l(X ) which we consider to be the BV function space. Specifically, we need \¥ =

dw — K so that KS’\#J(X) is BV by the results of [5], and 6 > 1 — % to ensure this latter
coincides with the critical heat Besov space, see Theorem 5.3. A point of particular interest
is that this characterization is independent of the subordination parameter o in the interval



(A Jdw,1) = (1—k/dyw, 1). Intuitively, this result says that although being in BV appears to
be a local property and was initially defined in terms of a local Dirichlet form and semigroup,
we can recover it from the non-local fractional Laplacian operator and semigroup, as long
as the latter it is not “too non-local” (meaning & > A /dy,). This property of stability in
the subordination parameter is consistent with the possibility of a non-trivial connection
between the condition /\31’éé /dw =1 — k/dy and the topological and metric structure of the
space. In Conjecture 5.4 of [5] the authors suggest that in some examples this quantity may
depend not only on the Hausdorff and walk dimensions but also on the topological Hausdorff
dimension defined in [8].

The characterization of BV by the critical heat Besov space B bef *(X) when ¢ > 1 — = is

presented in Section 5.1, where we use results of [5] to express propertles of BV in terms of

Laf : : : : : .y
B; “19 and the subordinated heat Besov seminorm, including the notions of variation, co-area
formula, Sobolev and isoperimetric inequalities and existence of BV measures. Section 5.2
contains the corresponding results for the fractional Sobolev space that arises when the
K

subordination parameter instead satisfies 6 < 1 — pn In this case, one has 04?7&1 =1 and

B(ls’l(X ) is an instance of the classical fractional Sobolev space W*?(X) defined by Gagliardo
in [39] for X = R", whose seminorm is

= ([ [ IO gy

An interesting observation is that the dominant role of the non-locality in the case § < 1— ﬁ

means that the proofs all require only elementary estimates, and the weak Bakry—Emery

condition plays no role beyond determining the critical value 1 — ﬁ. This contrasts strongly

with the central role of the weak Bakry-Emery inequality in Section 5.1, where the local
behavior of the semigroup is dominant.

We close the paper by determining, in Section 6, some properties of the fractional Sobolev
spaces in our setting as applications of this correspondence, including density of W /P2 (X)
in LP(X, p) and when p > 2, a Sobolev embedding theorem.
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2 Preliminaries: Fractional Laplacians on metric mea-
sure spaces

In general, for expressions a and b, we write a ~ b if there exist constants c;,co > 0 such
that cia < b < ca.



2.1 Standing assumptions

Throughout the paper, (X, d, 1) will denote a proper metric measure space (i.e. where closed
and bounded subsets are compact) whose measure p is Radon and supported on X. The
space X is equipped with a Dirichlet form (£, F = dom(€)), that is a closed, symmetric and
Markovian bilinear form on L?(X, u) whose domain F = {u € L*(X) : &(u,u) < oo} is
dense in L*(X), see [29,38]. The vector space of continuous functions with compact support
in X is denoted by C.(X), and Cy(X) is its closure with respect to the supremum norm.
Recall, see for example [38, p.6], that a Dirichlet form (&, F) is regular if it admits a core,
which is a subset of C..(X) N F that is dense in C,(X) in the supremum norm and dense in
F in the norm

/
7l = (1B + 05 1)

Also, (&€, F) is said to be local if £(f, g) = 0 for any two functions f, g € F that have compact
support and f vanishes on the support of g. The Dirichlet form £ is said to be strongly local
if £(f,g) = 0 for any two functions f,¢g € F that have compact support and such that
f is constant in a neighborhood of the support of g. The heat semigroup associated with
the Dirichlet form (€, F) is denoted by {P;}+~¢, and its associated infinitesimal generator is
denoted by L.

The following assumptions on the Dirichlet space (X, &, F, u) will be required throughout
the paper.

Assumption 2.1 (Regularity).
(A1) Foranyxz € X andr >0, B(x,r) :={y € X | d(z,y) <r} is compact;
(A2) The Dirichlet form (€, F) is regular and strongly local.

Assumption 2.2 (Sub-Gaussian Heat Kernel Estimates). The semigroup {P;}i~o satisfies
P1 = 1 and there are constants cs,cq,c5,c6 € (0,00) and 2 < dy < oo such that the
semigroup has a continuous heat kernel p,(x,y) satisfying

d dw 17 d w 17
et~ /dw exp<_cﬁ<%)dw > < pulw,y) < gt~/ exp<_c4< (x’f) >dw )

for pxp-a.e. (x,y) € X x X and each t € (O,+oo).

The parameter dy is the Hausdorff dimension of X, and the parameter dy, is usually called
the walk dimension of X associated with the Dirichlet form £. Note that for the standard
Dirichlet form associated with the Euclidean spaces, the walk dimension dy, = 2 while the
Hausdorff dimension dy is the dimension of the Euclidean space. Under these assumptions,
the Dirichlet form satisfies

Ufﬂmw//” @ = F@E ) ()

d d
r—0t réwten

for any f € F, c.f. [41, Section 5.3] and [21, Theorem 3.3.1].



Remark 2.3. Assumption 2.1 together with Assumption 2.2 imply that p(X) = +oo. They
also imply that (X, d, ) is Ahlfors dy-regular, that is, ,u(B(x, 7“)) ~ rdi and that (€,F) is
strongly local, see [42, Theorem 4.1].

Remark 2.4. While dy > 2 always, it is possible that dy > dw : if (X, d, p) has Hausdorff
dimension dyy < dy, then for sufficiently large positive integer n the Cartesian product X"
will have the same walk dimension dy but Hausdorff dimension dg = ndy > dy .

2.2 Korevaar-Schoen spaces and weak Bakry-Emery inequality

The following class of Korevaar-Schoen spaces was introduced in [50], see also [51].

Definition 2.5. For A > 0 and 1 < p < oo, set

KSM(X) :={f € L’(X,p) : |flxsrox) < 00}, (4)

where

gy = tims [ LU ) )

r—0+t

The space KSM (X) is defined analogously to (4) but with the semi-norm

g =sup [ [ B L) auto) 5)

r>0

A priori we have that XS (X) c KS*(X) and KSM?(X) C KS*?(X) when A\; > ),
so that the following critical value of A is well-defined.

Definition 2.6. The critical exponent for the spaces KSM(X) is

)\f = sup{\ > 0 : KS*(X) contains non-constant functions}.

Our discussion of BV functions relies heavily on the heat flow satisfying a Holder continuity
condition that we called a weak Bakry-Emery estimate, see [5, Definition 3.1].

Definition 2.7. The heat flow P, satisfies weak Bakry—Emery estimate with exponent k €
(0,dw) if there is C, > 0 such that for everyt >0, g € L*°(X, pn) and z,y € X,

1Pala) — Pa)] < G g e, (6)

Note that if this estimate holds for k < dy then it is also valid for &’ € (0, k] with constant
max(2,C,) by [5, Lemma 3.3]. In the context of our article, from [5, Remark 3.12] one has

0< k< dw/2

We also note that if (X, d) satisfies a chain condition, then x < 1, see [5, Remark 3.2]
and [47, page 81].



2.3 Subordination and fractional Laplacians

Let 0 < 6 < 1 be a parameter that is fixed throughout the paper. The fractional power
(—L)°, of the infinitessimal generator —L of the Dirichlet form £, can be defined via the
following formula, see (5) in [64, p. 260],

0 X st B
5[ rws-pa

(—=L)f = T =9)

From Proposition 1 in [64, p.260] it is known that (—L)° is the generator of a Markovian
semigroup {Pt(a)},»o is related to {P;}¢~o by the subordination formula

PO f(a) = / T 0O(s) Puf(a) ds, (7)

where nf‘s)(s) is the non-negative continuous function (the subordinator) such that

/ n(s)e s = e (8)
0

for every A > 0. The heat kernel p,@ for (—L)° is related to the heat kernel p, for —L by the
formula

P (x,y) = / 1 (s) ps(x, y) ds.
0

In addition, the subordinator 77155) (s) satisfies the following upper bound

s 1 t
7775)(3)§0<m/\@>- (9)
For —oo < a < § we have
+oo r'(l1—a/d)
(9) g — ta/& 1
| s = e (10)

and for o > 6 we have

+oo
/ ngé)(s)so‘ds = +00.
0

The Markov semigroup Pt(d) is associated with the Dirichlet form

t—0t

EOf, 1) = Jim 7 [ (5= PO D (11)
i/

The domain F© of £9 is the set of all functions f € L?(X, ) for which the limit (11) is
finite. For details and proofs regarding the above statements, we refer the reader to [64,

p.260]. From [41, Lemma 5.4], under Assumptions 2.1 and 2.2, the Dirichlet form (£©), F(©)

(9)

associated with P,"’ satisfies

e = [ [ SO duwauto) (12
7



and that for the corresponding heat kernel p,g(s)(a:, y) admits the estimates

. —dg—ddw d ~du—0dw
et Faw <1 + cﬁd(ml’ y>) < pV(@,y) < st (1 + C4d(xfy)) - (13)

$3dw +3dy

From (7) and (10) one readily obtains the following estimate.

Lemma 2.8. If P, satisfies a weak Bakry-E’mery condition with exponent k as in (6), then
there exists a constant C' > 0 such that for everyt >0, g € L>(X,u) and x,y € X,

d(z,y)"
9 ) 3
1P g(x) — PP g(y)] < C==Z|gll oo (x -

w

That s, Pt(5) satisfies a weak Bakry—Emery condition with dyw replaced by ddyy .
Proof. By virtue of (6),

1P g(x) — PP g(y)| < / 1 (s)| Pog(z) — Pag(y)| ds < C, / > (s)d(a,y)"s ™| g|| ods
0 0

oo F(l + —6; ) d(x. v)F
K —K Y y
< Cud(e )l [ 50 ) s = O A g
0 F(l n ﬁ) 5w
where the last equality follows from (10) since —k/dy < 0. O

2.4 Examples

In this section we give two examples of Dirichlet forms and metric measure spaces that satisfy
our standing assumptions.

Poisson kernel in R?

The first classical example of non-local Dirichlet form is that associated with the fractional
1

Laplacian (—A)Y2 . The corresponding Poisson kernel qt( 5): R? x R? — [0, 00) is given for
any t > 0 by

1 d41y, —4+L 2\ —
(3) I(5)m |z -yl 2
Qt2 (q;ﬁy):%(l—i— 2

and provides the fundamental solution to the Poisson equation in R% 02 f + Af = 0.

Non-local forms on nested fractals

The concept of fractal metric measure space with fractional diffusion was introduced by
Barlow in [9], to which we refer the reader for a precise definition. Both Assumption 2.1
and Assumption 2.2 are valid on such spaces. Nested fractals like the Vicsek set and the
Sierpinski gasket are examples that fall into this class of spaces and also satisfy the weak



Bakry—Emery estimate with Kk = dy — /\:’f, which is the largest possible exponent for a weak
Bakry-Emery condition can be valid, see [5, Theorem 5.1].

The non-local Dirichlet form obtained through subordination from such a fractional diffusion
has been studied in the literature by many authors, see e.g. [24, 25,30, 48,53, 54, 62]. In
particular, it was proved in [53,62] that for some values of J, the associated stable-like
process whose corresponding Dirichlet form satisfies (12) can also be obtained as the trace
of a d-dimensional Brownian motion on X, assuming that X C R9.

The Sierpinski carpet is a fractal metric measure space with a unique natural fractional
diffusion that satisfies a weak Bakry—Emery estimate [12,14]. The best exponent for the weak
Bakry—Emery estimate is not known, see [5, Conjecture 5.4] and the discussion preceding
Assumption 4.2 below.

3 Heat Besov classes for the fractional Laplacian

Recall that we have fixed a choice of 6 € (0,1). As in [3-5], for any p > 1 and a > 0, we
consider the Besov seminorm

Wl =g ([ 1) s itan)

and the associated heat semigroup-based Besov class
By(X) ={f € LP(X, 1) : | fllsp.a <00}

We refer to [3] for some of the basic properties of these spaces. The remainder of this
section is devoted to identifying and classifying them depending on the relation between the
parameters p and «.

3.1 The case a < 1/p

We start by comparing the space BY®(X) to the Korevaar-Schoen classes defined in (4)
and (5).

Theorem 3.1. Let 1 <p< oo and 0 < o < %. Then,
B} (X) = KSM(X) = KSM(X),
where

/\:Oé(SdW

Moreover, BE*(X) and KS*(X) have equivalent seminorms for this choice of \.

Proof. The inclusion KS*W#(X) C K S*w»(X) follows directly from the definition, while
K S§*%wp(X) C KS*WP(X) is obtained in exactly the same way as in [5, Proposition 4.1].
Thus it suffices now to prove that B2*(X) = KS* WP (X).
Let

D(s) = (1+ cgs) "M,

9



—dyg 1
so that the heat kernel estimate (13) implies pg) (r,y) > c@(l)tf‘dvg for x € B(y,t%w ). Then
Besov seminorm, || f||, . is given by

1 =590 725 [ 156) = PP (o))
Note that
v / / f(@) = F )PP (@, y)dp()dpy)
2 / / — FW)Ppe” (2, y)dp() dps(y)
f( )P
> cd(1 —2d d .
// tpﬂdw p(z)dp(y)

Taking the supremum over ¢ > 0 yields B?*(X) € KS®™?(X). For the reverse inclusion,
fix r > 0 and set

Alt,r) = / /X o 1) = SO o) ) ),
B(t,r) = //y ()P (z, y) dp(x) duly).

For each positive integer ¢ we set A;(y) := B(y, 2'r)\B(y, 271r). By the Ahlfors dg-regularity
of 11 (see Remark 2.3), the form of the function @, and (13),

/ P () du(z) =) / 0 (2 1100
X\B(y,r) Aqi(y)

ieN
~ Z ¢ du /ddw (2ir)dH @(Zir/tl/édw) ~ Z sfH@(si),
€N ieN

where s; = 2/ /t'/%9w  Note that we have used u(A;(y) < C(2'r)% here. It follows that

o ds
/ p (@, y) du(z) < C , sMP(s)—
X\B(y,r)

Lt Sdw S

Applying the inequality |f(x) — f(y)[? < 2°7'(|f(x)[ + | f(y)[), the symmetry of p®(z,y),
the Fubini theorem, and the preceding inequality, we obtain

Alt.r) <20 /X /X o W ) ) ity

> ds
<PO Wy [y 0T
irt w
* d
< Ctror —aédeHf“Lp X / L SdH-i-Oééde@(S)_S‘ (14)
th sdyy S

10



On the other hand, for B(t,r), writing ry, = 27%r and Ax(y) = B(y, ) \ B(y, rx+1), we have
by virtue of (13) that

[e.e]

.4 o y)IP
sty <o S o(rar i) [ S i) iy
k

Ct iw Z@(Tkﬂt ‘”W dH+a6dwp// /( a(;deJrElH)‘ dp(x) dp(y)
k=0 B(y,ry)

<
< Ctapr”’CSagdW p(X) /0 SdH‘f’Ot(;de@( )? (15)

The integrals in both (14) and (15) are bounded because av < 1/p by assumption (note that
when o < 1/p we have [ stntotdwrg(g)ds ~ [ g0dwlep=1)ds — o0) and the bound on
A(t,r) + B(t,r) yields

S WNIC O )dia) i) < Cpa (g Wi + 1 s )

for some C),, > 0 and any ¢ > 0. Taking the supremum over ¢ > 0, we obtain the inclusion
KS*wr(X) € B2Y(X) and letting r — oo gives the equivalence of the seminorms. O

3.2 The case a=1/p

When o = 1/p, the space BY*(X) does not compare to a Korevaar-Schoen class. We now
show that instead, it coincides with a suitable fractional Sobolev space, defined in general as

WAP(X) i= {f € LX) [ fllwnr) < 00}

where the seminorm is

1 sy = // |fxde+Ap|p u(y)du(fc)>l/p~

Remark 3.2. As pointed out in Section 1, in the case X = R?, we have dy = 2 and the
fractional Sobolev space Bf;’l/p(Rd) coincides with Gagliardo’s Fuclidean fractional Sobolev
space [39]

W26/p,p(Rd) _ {f cLr Rd <Ad /]R;d |f|‘r = |d+25‘pd i ) - OO}

This motivates our next proposition.

Proposition 3.3. Let 1 < p < co. Then BY'/P(X) = Wow/pv(X) with equivalent semi-
norms.

Proof. Observe from (13) that

~dn—sdy 1 1 o —dy—dw
P :

05(75@ + cgd(z, y)) z,y) < c3 (t“w + cyd(z,y))

11



The upper bound gives

i [ - s e dan < ¢ [ [ B LB ) dute)
- CHfHWMW/p,p(X), (16)

and by taking the supremum over ¢ > 0 we obtain ||f|[,1/, < C|f|* To obtain

— W6dW/p,p(X)'
the lower bound, we argue as follows. For each ¢ > 0,

f)lP c " )
// (t5w +dg; y))dH+6deu(y) ) < //If DIPp (2, ) du(x) duly)
< ClN5p1/p (17)

Taking lim inf; o+ and applying the Fatou lemma we obtain || f|[? 5, /5. x) < O\ fllop/p as
desired. O

In the course of the above proof we established the following locality-in-time estimate for
the Besov norm which will be useful later.

Corollary 3.4. Let 1 < p < co. There exists C > 0 such that for any f € Bg’l/p(X),

Mlsnase = CRn G 5 (//lf ol (ﬂ%y)du(ﬂf)du(y)y/p.

This condition was previously considered in [3, Definition 6.7], where it was called property
(7 p,l/p)-

3.3 The case a > 1/p

In this subsection we will show that the spaces BY®(X) for o > 1/p are trivial and thus not
interesting for further analysis. This completes the classification of these spaces.

Proposition 3.5. Let 1 < p < oo and a > 1/p. Then, BY*(X) only contains the zero
function.

Proof. The estimate (17) gives

// TP y) dw) < o £,
(£ + d(x, )0

Applying Fatou’s lemma, we conclude from ap > 1 and || f ||57p7a < oo that

‘f 11m 11 ( >|p =
/ / d(z,y) dHHdW duly) dplz) < 1Ho+f/ / tédW +d (z,y))dn+odw dpuly) dpulw) =0,

which implies that f is constant. Since u(X) = oo (see Remark 2.3) and f € LP(X) we
conclude that f = 0. O

12



3.4 Critical exponent for the heat Besov spaces

Since the Besov spaces are nested and decreasing in the parameter «, it will be useful to
focus our attention on the Besov space with the largest exponent subject the condition that
BY“(X) contains functions other than constants. The corresponding critical exponent is
thus defined as

#

aj =sup{a > 0: BY*(X) contains non-constant functions}.

7p '

Corollary 3.6. For any 1 < p < oo,

(1) aj;%p < %)’

(i) off = 24

_ p : # 1
Xsp = Sd if As,p < p’

Proof. The first statement is an immediate consequence of Proposition 3.5 and the second
follows from the correspondence in Theorem 3.1. O

3.5 Comparison to metric Besov spaces previously considered in
the literature

To compare the spaces BY®(X) to the metrically-defined Besov type spaces previously con-
sidered by Grigor’yan in [41], let us define, for any f € LP(X, ) and r > 0,

N = i ([, @ = S duty)) "

For any real number ¢ with max{1,p} < ¢ < oo we now set
00 dr 1/q
« « q
Np,q(f) = (A (Np (f,?")) 7) )

N2 (f) = sup N2 (f. 7).

r>0

and for ¢ = oo

In [41], a version of the Besov space B (X) is defined as
By, (X) = {f € L"(X,p) : Ny, (f) < oo}

With these notations, we see from the definitions that B3 _(X) = KS“?(X) for all a > 0.
On the other hand, from [40, Theorem 5.2] and the fact that p is Ahlfors dy-regular, we
also know that B9 (X) = W*P(X) for all @ > 0. Thus we can rewrite Theorem 3.1 and
Proposition 3.3 as follows:

Proposition 3.7. Let p > 1.
(i) If 0 < a < 1/p we have BY*(X) = %;‘i‘i"‘/(){) and || flls.p.a = Nggﬁw(f).

.. , 8d 5d
(i) BYYP(X) = Bp/P(X) and || fllpajp = Nog P (f).
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4 Critical exponents and the weak Bakry-Emery in-
equality

Recall that the weak Bakry-Emery inequality (6) is the Holder regularity estimate

d(x,y)"
|P.g(x) — Pg(y)| < Co—r— Y 19l oo (x ) -

It was established in [5] that a weak Bakry—Emery inequality for the semigroup constrains
the possible values of the critical exponent introduced in Section 3.4. It is convenient to

define a parameter
2\ K 1
fim (1-3) 24 L
- dw p

Theorem 4.1. The follouing hold:
1. ]f%§5<1, then

(i) for 1 <p < 26 we have 55 <Oz# <m1n{6” 1} and

d,p
(i) for p > 28 we have afp = ]l).

2. If 0 < 6 < 3, then for every p > 1, afp =1

In particular, for every § € (0,1) and p > 24, ozép 2 cmd Bp ‘“’(X) =W P(X).

Proof. Corollary 3.6 says that a?fp < %. It a?fp < %, then by Theorem 3.1 we have that
Bg’a}%”(X ) = KSowed,» (X). As increasing the value of « slightly beyond afp leads to
BY“(X) being trivial, it follows also that increasing A slightly beyond (deafp only results
in KS™(X) being trivial. It follows that ddy o L, = AIf, where \# is the critical exponent
for the Korevaar-Schoen space, see (3). Combining this with the estimates for )\f obtained
in [5, Theorem 3.11] yields the claim. (Note that in the latter we have \# = dy o, where

af is the critical exponent for the heat Besov space of the original, local, heat flow.) O]

4.1 Critical weak Bakry-Emery inequality

From [5, Remark 3.12] it follows that the maximal possible value of x in a weak Bakry-
Emery inequality (6) is dy — A, where A\ is the critical exponent for non-triviality of the
L' Korevaar-Schoen space, see Definition 2.6. In the remainder of this section and all of the
next section we assume that the weak Bakry—Emery condition is valid at this critical value.

Assumption 4.2 (Critical Weak Bakry-Emery estimate). The heat flow P, satisfies the
weak Bakry-Emery estimate (6) with exponent k = dy — ¥

Under this assumption we obtain the precise value of the critical exponent when p = 1.

14



Theorem 4.3. Suppose that Assumption 4.2 holds. Then

of, = min{1, 2(1 - %)}

Proof. From Theorem 4.1 with p = 1, we see that if% < 6 < 1, then (noting that g; = 1—%),
we have 55 < a5#1 < min{1, ( ) /6}. If 0 < § < 1, then we have a}ﬁ = 1.

If 0‘5,1 < 1, (and recalling that we now have p = 1), then by Theorem 3.1 we have that
B;*(X) = KS*™*!(X) for each 0 < a < 0‘?5%17 and just as in the proof of Theorem 3.1 we
see that 5dwaf1 = )ﬁf& = dw — k. Thus when % < 0 < 1, we have the desired identity.

Now we consider the case that 0 < § < % In this case, as observed above, ozfl =1, and so by
Theorem 3.1 we have that for each 0 < o < 1 the space BY*(X) = KS*!(X) is non-trivial.
It follows that )\# > addyy for each o < 1, and so )\# > ddw. Hence, as k = dy — )\f, we

have that % (1 — —) > 1, and so the desired inequality holds in this case as well. [

Example 4.4. Let § € (0,1) and consider the Dirichlet form (£©), F®) on R? associated
with the fractional Laplacian (—A)°, namely

EO(f, f) ~ / /n%dwx.

Then, =1 and dw = 2, so that 8, = 5, o :min{1

} and

» 26

5P (x) = KSY(RY)  if 1< p< 26,
’ W2/pe(RY) i p > max{1,26}.

Note that the spaces KS'?(RY) coincide with the usual Sobolev spaces W1?(R?) when p > 1,
while for p = 1 we have

Lof, (R = KSY(RY) = BV(RY)  if § > 1/2,
| WL(RY) if 6 <1/2.

Interestingly, for 6 = %, one has

10451

B, "'(RY) = W*HRY) = f € LY(R?, dx) / / |dyda:<+oo
Re JRd |I_ |dJrl

which, by [26, Proposition 1], is a trivial space containing only the zero function.

Example 4.5. Let § € (0,1) and consider the Dirichlet form (€©®), F®) on an unbounded
nested fractal X associated with the fractional Laplacian (—A)‘;, namely

« // |fx ) dH+5dW du(y)dp(z).

15



Then, k = dy —dy by [5, Theorem 3.7] and \X¥ = dy by [5, Theorem 5.1]. In particular, also
Assumption 4.2 is valid. The bounds in Theorem 4.1 do not determine a}%p forl <p<2,

but for p =1 we obtain from Theorem /.3 that 0451 min {1, P and

KS™ Y (X)) if§ > dy/dw,
W(de’l(X) Zf5 S dH/dW

#
Lag,

B; '(X)—{

Example 4.6. Let X denote the unbounded Vicsek fractal. There is a Dirichlet form on
X which satisfies Assumptions 2.1, 2.2, 1.2 with dg = }E—g and dy = 1“15 =dyg + 1. For

§€(0,1) let (9, FO)) be the form of the subordinated semigroup, so that

// |f:cde+6dV’V2 dp(y)dp(z).

The critical exponents of the Korevaar-Schoen spaces for this fractal have been computed
in [23] and we have

Bp,agp(X) _JKSPR(X)  if1<p<2—(1-6)dw,
’ S\ Wewdlee(X) if p> max{1,2 — (1 — 0)dw }.
For the Vicsek fractal, the spaces KS*™P(X) are a natural class of Sobolev spaces and were
studied in detail in [22, 25].

5 Properties of BV and W™! from heat Besov spaces

Under Assumption 4.2, it was argued in [5] that one should consider KSM! to be the
space BV of functions of bounded variation. The justification was that there is a natural
notion of variation which admits a co-area formula, and measures that play the role of the
classical total variation of a gradient, and that functions in the space satisfy Sobolev and
isoperimetric inequalities. The proofs formed the bulk of the paper [5] and relied heavily on
Assumption 4.2. The variation is defined as follows.

Definition 5.1. Under assumption 4.2 (so X¥ = dy — k) let BV (X) := KS’\#J(X) and for
f e BV(X) let

Var(f —11m1nf/ / B gf N ) du(z).

r—0+ 7»))

Observe that the crucial difference between this and the KS™ ~!(X) seminorm is that
Var(f) is a limit infimum rather than a limit supremum.
We saw in Theorem 4.3 that under Assumption 4.2, the critical parameter 04?7&1 is determined,

and hence so is the critical heat Besov space. From Theorem 3.1, if a}%l < 1, or equivalently
1 — &~ <4 < 1, then this space is KSMt = K S4w=%1(X), which we consider to be the

space BV (X) in Definition 5.1. However, when a}%l =1, or equivalently 0 < 0 < 1— 2,
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we saw in Proposition 3.3 that the critical heat Besov space was the nonlocal Sobolev space
Wow.1(X). Thus, in the case § > 1 — ﬁ the local behavior of the semigroup predominates,
while in the case § < 1— ﬁ it is the nonlocal structure that is determinative. An interesting
dichotomy is that all arguments about the structure of functions in the critical space for the
case 6 > 1 — i depend heavily on the weak Bakry—Emery inequality, while the only use

of the mequahty in the case 6 <1 — 7, 18 to determine that then a5#1 = 1. Of course, the
fact that 1 — d— is the value of & at which the behavior changes from local to non-local does

depend on the weak Bakry—Emery condition.
In this section we discuss the properties of the spaces BV and W?%Ww:! that can be derived
from the characterization by heat Besov spaces.

K

5.1 The case 6 > 1 — ek Characterizing BV properties of heat
Besov spaces

In this section we record how the main results of [5] regarding the space BV can be written
in terms of the heat Besov spaces for the subordinated semigroup. Most proofs are short
because the results are obtained directly from the seminorm correspondence in Theorem 3.1
and results in [5]. The validity of the weak Bakry-Emery inequality at the critical exponent
Kk =dwy — )\fE from Assumption 4.2 is used throughout this section.

K

Remark 5.2. By Assumption 4.2, the condition § > 1 — preel equivalent to 04}%1 <1, forin
this case af;’fl <1 — —)

dw

Theorem 5.3. For § > 1 — =% we have By ; ‘“(X) = BV(X) and there exist constants
¢,C > 0 such that for every f E BV(X)

Var(f) = [1fll;, o6,

ot
Proof. By Theorem 3.1 we know that when af, < 1, we have B;’ (X)) = KSM(X) =

ot
KSM(X) with A = a}ﬁédw Note that BV (X) = B;’ *(X). By considering the non-

triviality of the spaces By®(X) for a < 045#1, we see that \f = a515dW

According to [5, Proposition 4.1, Theorem 4.9], the weak Bakry- Emery estimate implies that
the Korevaar-Schoen norm || f|| xgaw —r1(x) is bounded above and below by Var(f). Since

dyw — k= X\ by Assumption 4.2 and afl < 1 we obtain the result from Corollary 3.6. [

It is important to note that generally Bclg’a(X ) depends on both « and the subordination pa-

#
rameter 0, but from Theorem 3.1 and Theorem 4.3 we know that Bl’a‘“( X) = KS™W—r(X)
does not depend on § when 6 > 1 — preet , though the Besov norm could depend on §. Accord-
ingly, we can restate the characterization in Theorem 5.3 in a manner that emphasizes the
distinction between this result and [5, Theorem 4.9].

A key feature of any function space that is considered for candidacy of BV class is that almost
every super-level set of a BV function is in BV (X)) and the BV norm can be reconstructed

17



from that of the level sets (the co-area formula). This feature is verified for our candidate
BV (X) next. In addition, we have a pseudo-Poincaré inequality for p = 1. Pseudo-Poincaré
inequalities were introduced in [32,60] and are a useful tool to prove Sobolev inequalities,
see e.g. [61] and [1].

Theorem 5.4. Let 6 > 1 — 3~.
(i) For any non-negative f € LY (X, ),

/0 ||1Et<f>||a,1,a§;dt2/o Var (L) di = || fll5 o2,

#
10451

where Ey(f) == {x € X : f(x) > t} is a super-level set. In particular, 1g,5) € Bs “'(X)

ot
for any f € B;’ *(X) and almost every t > 0.
ot
(ii) For every f € B(ls’ *(X), we have the following pseudo-Poincaré inequality
ot
1P f = Flliixp < Ct%aVar(f).

Proof. By virtue of Theorem 5.3, the first two claims follow from [5, Theorem 4.15].

To prove the claim related to the pseudo-Poincaré inequalities, we argue as follows. By our
assumptions, the subordinated heat semigroup P(a) is also conservative. Hence, applying (7),
Fubini’s theorem, and [5, Proposition 3.10] (Where By stands in for 1 — ), we get

1RO = flcen = [ | [ 0GR = e ds | duto
< [ AP = Ml ds
<o [T s (it Lo [ P - @) dute)).

T—0t+

Since a?ﬁ < 1, we have that afl = +(1 — k/dw). From [5, Lemma 4.13] we have

1
Var(f) ~ liminf = d(x,y)|f(y) — fx)]d du(x).
D = timint e [ pia i) - S ) (o)

Now, by using (10) and Theorem 5.3, we see that the expression on the right-hand side of
Var( f)- O

ra- O‘&#l
T(k/dw) )
We next prove the Sobolev embedding property and isoperimetric inequality under an addi-
tional assumption on the dimension dg.

Theorem 5.5. Assume that dy—k < dg. Then By™ (X)) = BV(X) C Lén/(dn—dw+r)(X)
and there exists C' > 0 such that for f € BV(X),

||f||LdH/(dH —dw +r) (X < CHf”éldW K

In particular, for any set E for which 1g € BV, we have

the above displayed ineqality is bounded by C' ——>+

di—dw +k

w(E) T < C1gpllsdy—«-
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Proof. This theorem follows from combining [5, Theorem 4.18] with Theorem 5.3. [

In classical analysis the gradient of a BV function is a vector-valued signed Radon measure.
The natural candidate in our setting, when 0433%1 < 1, was identified in [5] in the following
manner. For f € L'(X, u), let

1
M) = ey o W@ = Swldnty) (15)

so that Var(f) = liminf, o+ [, M, f(z)du(z). A BV measure is then a weak*-limit of a
subsequence of the family of Radon measures M, fdu, r > 0; note that as Var(f) is finite,
the total mass of each of these Radon measures is uniformly bounded, and so by the Riesz
representation theorem such a subsequence and limit exists. This limit measure can be
considered to be a BV measure of f.

Recall that we assume oﬁ;l < 1.

ot
Definition 5.6. Let f € B;’ *(X) = BV(X). A BV measure v; is a Radon measure on
X such that there exists a sequence 1, — 07, such that for every g € Co(X)

iim_ [ oM, fdn= [ gy (19)
n—-+00 X X

The existence of at least one BV measure associated with a given function implies that the
function is in BV (X).

Proposition 5.7. Let f € L'(X, p) and assume that there is a monotone decreasing sequence
of real numbers r, — 07 and a finite Radon measure v¢ on X such that (19) holds for all
g € Co(X). Then, f € BV(X) and Var(f) < v¢(X).

Proof. The weak*-convergence to a finite Radon measure implies that the sequence of mea-
sures M, fdp is tight. Thus liminf, o+ [, M, fdu < v4(X) < oo and the result follows by
Theorem 4.9 in [5]. O

The existence and properties of BV measures when oz?tl < 1 can be proved by subordination

of results for the original semigroup. The following result was proved as Theorem 4.24
of [5] for the situation where 6 = 1 and pff) is replaced by p;; what is added here are the
estimates (20). Note that the functions D = {P.u: ¢ > 0,u € C.(X)} are supremum-norm
dense in Cy(X) because P, is Feller.

Theorem 5.8. Let 6 > 1 — ﬁ. Then,

Laf
() there is at least one BV measure associated to f € By L(X);

ot
(ii) the class of all such BV measures associated to f € B(ls’ (X)) N L(X, u) are mutually
absolutely continuous;
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ot
(iii) for any f € B;’ "(X) N L>®(X,p) and any associated BV measure ¢, if g € D with
g >0, then

limsup /X o) Q7 f(y)du(y) ~ /X 9(y)ds (9), (20)

t—0t+

where

0 f(y) = ¢+ (=) / P (@, 9)|f (@) — F@)] du(z).

ot
Proof. Since B;’ *'(X) = BV(X) the existence of a BV measure and the mutual absolute

continuity of BV measures are established in Lemma 4.22 and Theorem 4.24 of [5]. Theo-

rem 4.24 of [5] also provides the stated bounds for the case where § = 1, pgé) is replaced by

pr and the corresponding operator from (20) is denoted Q;. If we now expand the subordi-
nation (7) and use the Fubini theorem we have

/X 9() Q0 f(y) duly) = ¢~ 1=3) / / 2 (e (@) — F@)lg(y) duu() diuly)

:f%(lfdw / (5) / /ps z,9)|f(x) = F(W)]g(y) du(z) duly) ds
= [ 00 (5w [ swesw ) is

1— -t
However, for some constant C' > 0, C’nt(é)( )(t%) "W is an approximate identity at 0 as

t — 0 by virtue of (8), (9) and (10); the latter is applicable because 3 (1 — —) —aff <1by
hypothesis. Moreover, g € D and it is immediate from the definition of the BV norm that

[ o2t aut)| < gl 1

so we conclude that

fimint | )@ 1) dnty) = Climint [ (1) Quf () du(y)

t—0+

lim sup /X 9(1)2 f(y) dpu(y) = Climsup /X 9(y)Quf (y) du(y)

t—0+ t—0-+

and the result follows from the estimate in Theorem 4.24 of [5], in which the constants do
not depend on 4. n

5.2 The case § < (1 — 7=): Characterizing Wow.l by heat Besov
spaces.

In this section we assume Assumption 4.2, but use it only to determine (from Theorem 4.3)
that when § < ( — ﬁ) we have Oz?fl = 1. Then from Proposition 3.3 we see that

B;'(X) = Ww1(X). We will show in this section that the space By'(X) has all of
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the properties established for the critical Besov space with ozfl < 1, with appropriate mod-

ifications. However, rather than relying on the weak Bakry—Emery property via the results
of [5], the proofs here are more elementary, and rest mostly on the proof of Proposition 3.3.
We begin by considering the notion of variation and the co-area formula. In a Sobolev
space one might expect that the variation is just the Sobolev norm. That this is the correct
interpretation here may be seen by comparing Definition 5.1 for Var(f) to the left side of
the following equation, the validity of which was established in the proof of Proposition 3.3.

imnt - [ [ 10~ 1 b nduterdnt) = [ [ ED T dug)aute) = 1l

When X = R? one has dgy = d, dyw = 2, = 1 and the above notion of variation of
a function related to the fractional Laplacian (—A)°, § < 1/2, coincides with the notion
of fractional variation and associated fractional perimeter which are extensively studied in
relation to the theory of non-local minimal surfaces, see for instance [6,20,27,28 35,37 and
the references therein.

Under this interpretation of the variation, the co-area formula and the pseudo-Poincaré
inequality read as follows.

Theorem 5.9. Let § <1 — ﬁ. Then,
(i) for any non-negative f € LY (X, ) and t > 0,

1l = / L0l dt.
0

In particular, for each f € By'(X) we have that 15,5y € By'(X) almost every t > 0;

(il) if gy € By'(X) for almost every t > 0 and/ 11e,(plls11dt < oo, then f €
0

B;' (X);

(i) for any f € By'(X),

(6) /(=) = f(w)|
||Pt f - fHLl(X,,u) < Ct/x/x W du(y)du(x).
Proof. Since f > 0, for p-almost every =,y € X we can write

) - 1)l = | " @) = Ly ()l

Therefore,

r) — e 1Et 1g,(p)
Wéde(f):/X lef(:i,;)—di%v' /// | d(z dew(J:( thdu(y)du(x),

and (i) follows from Fubini’s theorem and Proposition 3.3 for non-negative functions f. To
prove (iii), note that

12D F =l < / / P ()| £ () — F)| dpu(y) dia(z).

The assertion follows thus as in (16 O
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To establish Sobolev and isoperimetric inequalities for W:1(X) we begin with the Sobolev
embedding established for a heat Besov space in [3].

Theorem 5.10. Suppose that dy > ddy . Then there exists a constant C' > 0 such that for
1,1
every f € By (X),

s <€ [ [ LB ) duta) = s,

where ¢ = de—%IdW'
Proof. Since Corollary 3.4 establishes the property (P ) defined in [3, Definition 6.7], the
assertion follows from [3, Theorem 6.9] and Proposition 3.3. O

In the above theorem, we could have merely required that f € L}, (X), for if f & By'(X),
then the right-hand side of the claimed inequality there would be infinite and so the inequality
would trivially hold. Therefore, as an immediate corollary, we have the following fractional
isoperimetric inequality, which is the global analogue in our setting of the known fractional
relative isoperimetric inequalities noted in the Euclidean setting in [37], see also [35].

Corollary 5.11. Assume that dg > ddw . There is C' > 0 such that for every measurable
set B C X,

dp—8dyy

u(E) T SC/E/X\EWW(?J)W(%)

The endpoint case dy = ddyy is that at which we get an embedding into L*°. In the following
theorem, note that since we always assume ¢ < 1, the condition dy = ddy can only hold
when dy < dw. Moreover, let us stress that we actually do not know examples of X for
which By (X) is non-trivial when dy = ddy (see the remark at the end of Example 4.4).

Proposition 5.12. Assume dy = édw. Then, By'(X) C L™®(X,u) and there evists a
constant C' > 0 such that for every f € By (X)

flmcen <€ [ [ ST dutyinco)

Proof. Let f € Bﬁ’l(X ). Without loss of generality, we assume f > 0 almost everywhere.
For t > 0 we define the set E(f) = {v € X : f(z) > t}. Since dy = ddw, according
to [3, Corollary 6.6], there is ¢ > 0 such that for every set E of positive measure satisfying
|1gll11 < 400, one has ||1g||11 > ¢. However, from Theorem 5.9,

/ sl dt = [l < +oo.
0

Therefore, the set X(f) := {t > 0: u(E(f)) > 0} has finite Lebesgue measure. Indeed, we
have

cHHZ(f) < If Il

Note that if 0 < t; < t9, then Ey,(f) C E (f); and so X(f) is an interval of the form
[0, || fll Lo (x,)); and so we obtain the truth of the claim in the proposition from the above
inequality. O
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From Theorem 5.10, Corollary 5.11 and Proposition 5.12 we deduce the following result for
the Sobolev space W1 Note that the fact we identify the critical range for § distinguishes
our result from the corresponding one that appears, with a different proof, in [7, Theorem
9.1].

Corollary 5.13. Suppose 6 < 1 — . If§ < YL then there is C > 0 so that any f €

dw dw

Wodw:L(X) satisfies || f|lze < O f|lwoaw1 and any measureable set satisfies

H(E)s < C[E/X\Emdu(y)du(x),

where q = de—%IdW' Moreover, WaH(X) C L®(X) with || f|lze < ||f|lyyam1-

Finally, we observe that the notion of a BV measure from Definition 5.6 was intended to be
an analogue of the absolute value measure associated with the gradient. In an L' Sobolev
space we would expect this to be an L' function multiplied by the measure du. Again, this
expectation is fulfilled. If we consider a quantity analogous to M., f(y) from (18) it should

be
1

M) = B o, )~ F i)

although the corresponding non-local variation is not a limit but the integral

| | s duta)

this is readily verified by comparing it to the W% norm of f. The natural definition of a
corresponding BV measure vy would then be absolutely continuous with respect to u, with
the Radon-Nikodym derivative

Do = [“as@ = [ (|7 g I - Gl dut) (2)

(=,y)

so that by Ahlfors regularity dd%f(x) ~ [ |f(@) = fy)|d(z, y)~CdwHdm) dp(y). Since f €
Wodw 1(X) we see % € L'(u). The preceding justifies defining a BV measure in the situation
where the non-locality dominates as follows.

Definition 5.14. If afl =1 and f € By'(X) = WoW.L(X), the unique BV measure ~y;
corresponding to f is the measure vy with density as in (21).

6 Further properties of W/ odw /p:p

We saw in Theorem 4.1 that whenever p > 2§ the critical exponent afp = %. According

to Proposition 3.3 the corresponding space Bg’l/ P(X) is then the fractional Sobolev space
Wodw/pp(X) and the seminorms are equivalent. The purpose of this section is to record
some properties of these fractional Sobolev spaces that can be established using their heat
semigroup characterization.
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6.1 W°w/Pr(X) is dense in LP(X, u) for p > 2.
Proposition 6.1. Let p > 2. There ezists C > 0 such that for anyt >0 and f € LP(X, )

C

5

1P Fllspsp < 7o Il x-

Proof. When f € L>*(X, u), we have for a.e. z,y € X,
[Fof () = Pof ()] < 2[| fll oo -

It follows that, for any s > 0, the operator P\ : L®(X, ) — L>(X x X, P ) defined
by Pt(é)f(a:,y) = Pt(a)f(a:) — Pt(é)f(y) has its operator norm bounded by 2. On the other
hand, we know from [3, Theorem 5.1] that
C
5
1P flls2/2 < I llz2cen,

ie. Pt((s): LA(X,pn) — LA(X x X, P @ p) is bounded by C(s/t)'/2. The Riesz-Thorin
interpolation theorem now yields that Pt(é) c LP(X, p) — LP(X x X, psp @ p) is bounded by
C(s/t)'/?, hence

1/p C
1/p(/ / o $ y |P( ( ) ( )|pdllz( )dﬂ($)) < MHfHU’(X,u)'
Taking the supremum over s > 0 on the left hand side yields the result. [

A consequence of the previous proposition is that the Sobolev space W%w/PP(X) is large.
Corollary 6.2. For p > 2, BY'/P(X) = Wiw/p2(X) is dense in LP(X, 1).

Proof. Let f € LP(X,p). Proposition 6.1 provides that for ¢t > 0, P,f € Ww/pr(X),
but by the LP-strong continuity of the heat semigroup we have ||P,f — fl|zr(x,) — 0 when
t— 0%, O

6.2 Sobolev and isoperimetric inequalities

The following result generalizes Theorem 5.10, and has the same proof.
Theorem 6.3. Let p > 1. Assume dy > ddy. There is C' > 0 such that for every

feBY(X),
@)~ f)l v
Wi = ([ [ LT antwane))

pdg

dpg—odw °
Proof. In Corollary 3.4 we saw that the condition (P,;/,) of [3, Definition 6.7] holds. By
assumption 5 dH >1> 1 , hence [3, Theorem 6.9] yields the desired inequality. O

where q =

This provides a correspondlng result for the Sobolev space.
Corollary 6.4. Letp>1,6<1— 7 and 0 < g—vfé. Every f € Wow/pr(X) satisfies

I fllaxy < CN fllywsaw o

_ __pdg
forq= T
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