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Abstract

Powerful domain-independent planners have been developed
to solve various types of planning problems. These planners
often require a model of the acting agent’s actions, given in
some planning domain description language. Manually design-
ing such an action model is a notoriously challenging task.
An alternative is to automatically learn action models from
observation. Such an action model is called safe if every plan
created with it is consistent with the real, unknown action
model. Algorithms for learning such safe action models exist,
yet they cannot handle domains with conditional or universal
effects, which are common constructs in many planning prob-
lems. We prove that learning non-trivial safe action models
with conditional effects may require an exponential number
of samples. Then, we identify reasonable assumptions under
which such learning is tractable and propose SAM Learning
of Conditional Effects (Conditional-SAM) the first algorithm
capable of doing so. We analyze Conditional-SAM theoret-
ically and evaluate it experimentally. Our results show that
the action models learned by Conditional-SAM can be used
to solve perfectly most of the test set problems in most of the
experimented domains.

Introduction

Planning is the fundamental task of choosing which ac-
tions to perform to achieve a desired outcome. An auto-
mated domain-independent planner refers to an Artificial
Intelligence (AI) algorithm capable of solving a wide range
of planning problems (Ghallab, Nau, and Traverso 2016).
Developing a domain-independent planner is a long-term
goal of AI research. Researchers developed many domain-
independent planners for various types of planning problems.
Such planners include Fast Downward (Helmert 2006), Fast
Forward (Hoffmann 2001), ENHSP (Scala et al. 2016), and
more. These planners require a model of the acting agent’s
actions, given in some domain description language such as
the Planning Domain Definition Language (PDDL) (Ghal-
lab et al. 1998). Defining an agent’s action model to solve
real-world problems is extremely hard. Researchers acknowl-
edged this modeling challenge, and algorithms for learning
action models from observations have been proposed (Cress-
well and Gregory 2011; Aineto, Celorrio, and Onaindia 2019;
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Yang, Wu, and Jiang 2007; Juba, Le, and Stern 2021; Mor-
doch, Stern, and Juba 2023).

Since the learned model may differ from the domain’s ac-
tual action model, it is important to study whether the plans
provided offer execution-soundness guarantees. In general,
the learned model may be too permissive, in the sense that it
allows plans that either cannot be applied in the domain or
do not reach a state that satisfies the problem goals. We aim
for consistency between the validity of a plan as determined
by the learned model and its validity within the actual envi-
ronment. This ensures that an agent can confidently execute
actions, assured of achieving the goal despite possessing in-
complete knowledge of the environment. In problem settings
where execution failures are unacceptable or are very costly,
e.g., autonomous vehicles, high-end robotics, and medical
treatment planning, soundness becomes a hard constraint. We
focus on such cases and aim to learn an action model that
satisfies the strongest form of soundness: every plan gener-
ated using the learned model must be applicable and yield the
same states as an unknown, accurate model. An action model
that satisfies this requirement has been called safe (Juba, Le,
and Stern 2021; Juba and Stern 2022; Mordoch, Stern, and
Juba 2023).1 We view this as a “safety” notion in part since
it enables more conventional notions of safety to be enforced
during planning, and provides assurance that they will carry
over to the actual execution.

Algorithms from the Safe Action Model Learning (SAM)
family (Stern and Juba 2017; Juba, Le, and Stern 2021; Juba
and Stern 2022; Mordoch, Stern, and Juba 2023) address the
challenge of learning safe action models under different sets
of assumptions. However, these algorithms are not suitable
for learning actions that may include conditional effects. A
conditional effect is an effect that occurs only when a specific
condition holds. For example, consider an AI for planning
treatments for patients and the action of giving a flu medicine
to a patient, where that medicine causes an allergic reaction in
patients with a particular rare blood type. This action’s effects
include not having the flu, but there is also a conditional effect
specifying that an allergic reaction occurs if the patient has
a rare blood type. If the patient has a rare blood type, we

1This notion of safety has different definitions in different con-
texts. For example, safe Reinforcement Learning often refers to
ensuring that some safety function of the current state never goes
below some threshold value (Wachi and Sui 2020).
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would want to avoid applying this type of treatment. A safe
action model would never permit the execution of the action
in these cases.

Previous works on action model learning with conditional
effects (Oates and Cohen 1996; Zhuo et al. 2010) made no
safety guarantees for the learned models. This work addresses
this gap by exploring the problem of learning safe action mod-
els for PDDL (Ghallab et al. 1998) domains with conditional
effects. Specifically, we introduce the Conditional-SAM al-
gorithm, which is guaranteed to output a safe action model.
We show that Conditional-SAM requires an asymptotically
optimal number of trajectories when the size of the an-
tecedents for the conditional effects is restricted, which is
the only case where the problem is tractable. Then, we de-
scribe how Conditional-SAM can be extended to support
lifted action models (i.e., parameterized) and effects with
universally quantified variables. Finally, we demonstrate the
usefulness of Conditional-SAM in practice on benchmark
planning problems with conditional and universal effects.
Our results show that given a few observations, the model
Conditional-SAM learns is logically identical to the real ac-
tion models and can be used to solve test problems for most
of the experimented domains.

Preliminaries
We focus on planning problems in domains where action out-
comes are deterministic, the states are fully observable and
contain Boolean variables only. Such problems are commonly
modeled using a fragment of the ADL (Action Description
Language) (Pednault 1989) and formulated in PDDL (Plan-
ning Domain Definition Language) (Ghallab et al. 1998). In
PDDL, a planning problem is described by a PDDL domain
and a PDDL problem. A PDDL domain is a tuple D = ⟨F,A⟩
where F is a finite set of Boolean variables, referred to as
fluents and A is a set of actions. A literal refers to either a
fluent or its negation. Let L be the set of every possible literal.
Note that |L| = 2|F |. A state is a conjunction of literals that
includes, for every fluent f , either f or ¬f . The value of a
fluent f is a state s is true if s includes f and false other-
wise. An action a ∈ A is a triple ⟨name(a), pre(a), eff(a)⟩
corresponding to the name of the action, its preconditions,
and effects. The preconditions of an action a, pre(a), is a
conjunction of literals that are sufficient and necessary condi-
tions for applying a. If the preconditions of a are satisfied in
a state s we say that a is applicable in s. If an action has no
preconditions, then it is applicable in any state. The effects
of an action a, eff(a), specify the outcome of applying a.
An effect is defined by a tuple ⟨c, e⟩ where c is called the
antecedent (condition) and e is called the result. Both c and e
are conjunctions of literals. The semantics of an effect ⟨c, e⟩
for an action a is that if a is applied in a state s where the
antecedent c holds then the result e will be true in the next
state. The antecedent can also be true, representing that the
result occurs regardless of the state where the action has been
applied. An effect where the antecedent is not true is called
a conditional effect. The outcome of applying a to a state
s, denoted a(s), is a state in which the value of every fluent
is as in state s except those fluents changed by the action’s
effects.

A PDDL problem is defined by a tuple P = ⟨I,G,D⟩
where I is the initial state of the world, G is a conjunction of
literals that define the desired goal, and D is a PDDL domain.
A plan Π = ⟨a1, a2, ...an⟩ is a sequence of actions. A plan
Π is called valid for a PDDL problem P = ⟨I,G,D⟩ if a1
is applicable in I , ai is applicable in ai−1(· · · (a1(I)) · · · ),
and G ⊆ an(an−1(· · · (a1(I)) · · · )).

An action model for a PDDL domain D = ⟨F,A⟩ is a pair
M = ⟨preM , effM ⟩ where preM maps every action in A to a
(possibly empty) conjunction of literals in F , and effM maps
actions in A to a (possibly empty) set of effects over F . The
real action model of a domain, denoted M∗, is the action
model where every action a is mapped to its real precondition
and effects, i.e., preM∗(a) = pre(a) and effM∗(a) = eff(a).
For an action a, state s, and action model M , we denote by
aM (s) the state that results from applying a in s assuming
that M is the real action model.
Definition 1 (Safe Action Model). An action model M is
safe w.r.t. an action model M ′ if for every state s and action
a it holds that if a is applicable in s according to M then (1)
it is also applicable in s according to M ′, and (2) applying
a in s results in exactly the same state according to both M
and M ′. Formally:

preM (a) ⊆ s→
(

pre
′

M (a) ⊆ s ∧ aM (s) = a′

M (s)
)

(1)

An action model is said to be safe in a domain if it is safe
w.r.t. its real action model. This paper deals with the case
where the planning agent does not know the real action model
of a given domain, yet it aims to learn an action model that is
safe in it. A major benefit of learning such a safe action model
is that any plan generated with the learned action model for
any problem in the same domain is also valid with respect
to the real, unknown, action model. Following prior works
on learning action models (Amir and Chang 2008; Cresswell,
McCluskey, and West 2013; Aineto, Jiménez, and Onaindia
2018) in general and safe action models in particular (Stern
and Juba 2017; Juba, Le, and Stern 2021; Mordoch, Stern,
and Juba 2023), we assume as input a set of observations of
previously executed plans, represented as a set of trajectories.
A trajectory T = ⟨s0, a1, s1, . . . an, sn⟩ is an alternating se-
quence of states (s0, . . . , sn) and actions (a1, . . . , an) that
starts and ends with a state. The trajectory created by ap-
plying π to a state s is the sequence

〈

s0, a1, . . . , a|π|, s|π|
〉

such that s0 = s and for all 0 < i ≤ |π|, si = ai(si−1).
A trajectory is often represented as a set of action triplets
{

⟨si−1, ai, si⟩
}|π|

i=1
.

Problem Definition and Assumptions

We deal with the problem of learning a safe action model for a
domain D given a set of trajectories T collected by executing
plans for different problems in D. Ideally, the learned action
model will be able to generalize beyond the given set of
trajectories and enable finding plans for other problems in D.
We make the following assumptions:
1. The given trajectories are fully observable and noise-free.
2. For each literal l′ and action a, there is at most one effect

of a for which l′ is a result.
3. The maximal number of literals in an antecedent is at

most n, a fixed parameter known in advance.
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Assumption 1 means we observe all the actions and the
values of all the fluents in all states in every trajectory in
O. This assumption is common in the action model learning
literature and relaxing it in the context of conditional effects
is left for future work. Assumption 2 means that there are
no disjunctive antecedents, i.e., multiple effects for the same
action having the same result but with different antecedents.
The implication of this assumption is that if (c, e) is an effect
of some action a, then no conjunction of literals except c is
an antecedent of the literals in the result e. Formally:

∀l′, a : ((c, e) ∈ eff(a) : l′ ∈ e)

→ (∄(c′, e′) ∈ eff(a) : l′ ∈ e′ ∧ c ̸= c′) (2)

This assumption crucially improves the efficiency of learning.
We discuss relaxing this assumption later. Assumption 3
means that a human modeler must specify an upper bound
on the number of literals in an antecedent for the domain at
hand. Specifying such a bound is significantly easier than
manually defining the entire action model. We prove later
that without the third assumption, learning conditional effects
is intractable.

Approach

Conditional-SAM learns an action model by applying the
following rules:

Definition 2 (Conditional-SAM Inductive Rules). For every
action triplet ⟨s, a, s′⟩ ∈ T
1. [Not a precondition] For every literal l /∈ s, l /∈ pre(a)
2. [Not a result] For every literal l′ /∈ s′, ∄(c, e) ∈ eff(a)

where (c ∧ s ⊬ ⊥) ∧ (l′ ∈ e)
3. [Must be an effect] For every literal l′ ∈ s′ \ s, ∃(c, e) ∈

eff(a) : (c ∧ s ⊬ ⊥) ∧ (l′ ∈ e)
4. [Not an antecedent] For every literal l′ ∈ s′ \ s, and

conjunction of literals c: if c∧s ⊢ ⊥, then ∄(c′, e) ∈ eff(a)
such that c ⊆ c′ and l′ ∈ e.

The first three rules generalize the SAM-Learning (Juba, Le,
and Stern 2021) inductive rules to support conditional effects.
Rule 4 is derived from Assumption 2 (no conditional effects
with disjunctive antecedents): if we observe l′ as the result of
the action, any conjunction of literals c that is not satisfied in
s cannot be the antecedent of the conditional effect for l′.

Example 1. Consider a domain with three fluents f1, f2,
and f3, where the size of antecedents is bounded by 1 (i.e.,
n = 1), and assume a Boolean vector of size 3 repre-
sents a state. Now, assume we observed an action triplet
⟨(T, T, F ), a, (F, T, F )⟩. Using the Rule 1 in Def. 2, we infer
that ¬f1, ¬f2, and f3 are not preconditions of the action a.
By applying Rule 2 in Def. 2, a cannot include an effect (c, e)
such that c is consistent with f1∧f2∧¬f3 and the result is ei-
ther f1, ¬f2, or f3. Since n = 1, this rules out the conditional
effects where c is one of the following {true, f1, f2,¬f3} and
e is either f1 or ¬f2 or f3, e.g., (c, e) = (f1,¬f2). Accord-
ing to Rule 3 in Def. 2 there exists (c, e) ∈ eff(a) such that
c is one of {true, f1, f2,¬f3} and e = ¬f1. Finally, accord-
ing to Rule 4 in Def. 2 (¬f2,¬f1) and (f3,¬f1) cannot be
conditional effects.

Conditional-SAM Algorithm

Next, we describe the Conditional-SAM algorithm, which
uses the Conditional-SAM inductive learning rules (Defini-
tion 2). The pseudo-code for Conditional-SAM is given in
Algorithm 1. Let A(T ), L(T ) be the set of actions and literals
observed in the trajectories T . Conditional-SAM maintains
three data structures: pre(a) and MustBeResult(a) for every
action a, and PosAnte(l, a) for every action a and literal l.
pre(a) is a set of literals, representing which literals may be
preconditions of a. It is initialized to all the literals l ∈ L(T )
(line 4). PosAnte(l, a) is a set of conjunctions of literals, rep-
resenting all the conjunctions that may be antecedents of a
conditional effect of a that results in l.2 This data structure is
initialized to include every conjunction of literals of size n
or less (line 6). MustBeResult(a) maintains the set of literals
observed to be a result of applying a. This data structure is
initialized as an empty set (line 5). Conditional-SAM updates
these data structures by applying the inductive learning rules
for each action triplet in the given trajectories. That is, it
removes literals from pre(·) according to Rule 1, removes
conjunctions of literals from PosAnte(l, a) using Rules 2
and 4, and adds literals to MustBeResult(a) using Rule 3
(lines 7- 15).

Then, Conditional-SAM iterates over every action a ∈
A(T ) using pre(a), PosAnte(·, a), and MustBeResult(a) to
generate the preconditions and effects of a in the resulting
safe action model. This part of Conditional-SAM is encapsu-
lated in the function BuildActionModel, listed in Algorithm 2.
BuildActionModel stores the preconditions and effects of
the resulting safe action model in pre∗(a) and eff∗(a), re-
spectively. Initially, eff∗(a) is an empty set and pre∗(a) is
set to be pre(a). Then, it iterates over every literal l and
considers adding an effect to eff∗(a) with a l as a result,
as follows. Let PA be the subset of PosAnte(l, a) contain-
ing only conjunctions that are disjoint from pre(a) (line 6).
Conditional-SAM uses PA to compute two formulas, Ante
and NotAnte. NotAnte is the conjunction of the negation of
every clause c in PA, and Ante is the conjunction of all the
clauses c ∈ PA (lines 7, 8). Observe that applying a in a state
where Ante is true guarantees that l will be true in the subse-
quent state. Similarly, applying a in a state where NotAnte
is true guarantees that l will not be true in the subsequent
state unless it was true before. We apply unit propagation
on the clauses to minimize their number size (line 9). After-
ward, the function verifies whether l ∈ MustBeResult(a). If
so, the tuple (Ante, l) is added to eff(a). If PosAnte(l, a) in-
cludes more than a single clause of possible antecedents, then
there is an ambiguity on which antecedent causes l. To miti-
gate this, Conditional-SAM adds to pre∗(a) the disjunction
(l ∨ NotAnte ∨ Ante) (line 13). This disjunction is composed
of three parts as follows: First, allowing the action to be ap-
plicable if the result, l, is observed in the pre-state. Second,
the action is permitted if none of the antecedents hold in the
pre-state. Last, a is applicable if all the antecedents hold in

2According to Assumption 2, in the real action model there
can be only one such conjunction. Conditional-SAM maintains in
PosAnte(l, a) a set of conjunctions since it does not know the real
action model.
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Algorithm 1: Conditional-SAM Algorithm

1: Input: T , n
2: Output: A safe action model.
3: for a ∈ A(T ) do
4: pre(a)← L(T )
5: MustBeResult(a)← ∅
6: PosAnte(l, a) ←

⋃n

i=1{l1 ∧ ... ∧ li|∀1 ≤ j ≤ i : lj ∈
L(T )} ∪ {true}

7: for ⟨s, a, s′⟩ ∈ T do
8: for l such that l /∈ s do
9: pre(a)← pre(a) \ {l} ▷ Rule 1

10: for l ∈ s′ \ s do ▷ Rule 3
11: MustBeResult(a)← MustBeResult(a) ∪ {l}

12: for l′ /∈ s′ and c ∈ PosAnte(l′, a) s.t. (c ∧ s ⊬ ⊥) do
13: PosAnte(l′, a)← PosAnte(l′, a) \ c

▷ Rule 2
14: for l′ ∈ s′ \ s and c ∈ PosAnte(l′, a) s.t. c ∧ s ⊢ ⊥ do ▷

Rule 4
15: PosAnte(l′, a)← PosAnte(l′, a) \ c

16: return BuildActionModel(pre,MustBeResult,PosAnte)

Algorithm 2: BuildActionModel

1: Input: pre,MustBeResult,PosAnte
2: Output: pre∗ and eff∗ for all actions.
3: for a ∈ A(T ) do
4: eff(a)← ∅; pre∗(a)←

∧

l∈pre(a) l

5: for l ∈ L(T ) \ pre(a) where PosAnte(l, a) ̸= ∅ do
6: PA← {c ∈ PosAnte(l, a)|(pre(a) ∩ c) = ∅}
7: NotAnte←

∧

c∈PA ¬c
8: Ante←

∧

c∈PA c
9: Minimize Ante and NotAnte using unit propagation.

10: if l ∈ MustBeResult(a) then
11: Add to eff(a): (Ante, l)
12: if PA is not a single clause then
13: pre∗(a)← pre∗(a) ∧ (l ∨ NotAnte ∨ Ante)

14: else
15: pre∗(a)← pre∗(a) ∧ (l ∨ NotAnte)

16: return ⟨pre∗, eff⟩

the pre-state. If one of the above holds, the action can be
executed.

If l was not observed as a result of the action, i.e., l /∈
MustBeResult(a), the function adds (l ∨ NotAnte) to pre∗(a)
(line 15).

Since we have yet to observe l as a result of the action,
then l /∈ eff(a); Thus, to prevent l from triggering unexpect-
edly, we do not permit the action to be executed if Ante is
true. After repeating this for every action, BuildActionModel
returns the safe action model comprising pre∗ and eff∗.

Example 2. Given a domain with 3 literals and an action a
where pre(a) = ∅, l1 ∈ MustBeResult(a), PosAnte(l1, a) =
{{l2}, {l3}}, PosAnte(l2, a) = ∅, and PosAnte(l3, a) = ∅.
The resulting preconditions and effects after applying Buil-
dActionModel are pre∗(a) = (l1) ∨ (¬l2 ∧ ¬l3) ∨ (l2 ∧ l3)
and eff∗(a) = (l2 ∧ l3, l1), i.e., when l2 ∧ l3 then l1.

Theorem 0.1. The action model M ′ learned by
Conditional-SAM is safe w.r.t. the action model that
generated the input trajectories T .

Proof. Let M∗ be the real action model, i.e., the one used to
generate the input trajectories. The preconditions for every
action a in M ′ are a superset of the preconditions for a
in M∗. Thus, for each action a and state s such that a is
applicable according to M ′, it is guaranteed to be applicable
according to M∗. Next, we prove that for every action a that
is applicable in the state s according to M ′, then s′ = aM ′(s),
is equivalent to s′∗ = a∗M (s). For contradiction, assume that
s′ ̸= s′∗. This means either (1) ∃l ∈ s′ such that l /∈ s′∗, or
(2) ∃l /∈ s′ such that l ∈ s′∗. Since Conditional-SAM only
adds effects observed in the trajectories, according to Rule 3,
there cannot be a literal l such that (1) holds. If l ∈ s′∗ but
l /∈ s′, then Conditional-SAM did not observe l as a result of
a and thus did not add it as an effect. According to line 15
one of (l∨NotAnte) hold in s. If l ∈ s, then l ∈ s′ according
to M ′ (since a does not remove it), which contradicts (2).
Similarly, if NotAnte ⊆ s, then the antecedent of l according
to M∗ is negated in s thus l /∈ s′∗ which also contradicts
(2).

Theoretical Analysis

Next, we analyze the Conditional-SAM algorithm. We prove
that under a fixed antecedent size (n) its space, runtime, and
sample complexity are tractable, and show that our sample
complexity bound is tight.

Lemma 0.2. The space complexity of Conditional-SAM is

O
(

|A||F |n+1
(

e
n

)n)

, where e is the base of the natural log-
arithm.

Lemma 0.3. The runtime complexity of Conditional-SAM is
O
(

|A||F |n
(

e
n
)n
)

+ |T ||F |n+1
(

e
n
)n
))

As can be seen from Lemmas 0.2 and 0.3, the complexity
of the algorithm is independent of the number of effects and is
only affected by the maximal size of the antecedents and the
number of literals and actions in the domain. The complexity
does, however, increase exponentially with n.

Theorem 0.4. Let D be a distribution over pairs ⟨P,Π⟩
where P is a problem from a fixed domain D and Π is a plan
solving P . Given

m ≥
1

ϵ

(

ln(3)|F ||A|+ 2 ln(2)|F ||A|

(

2|F |e

n

)n

+ ln
1

δ

)

trajectories obtained by executing Π for m independent
draws from D, Conditional-SAM returns an action model
M ′ such that with probability 1− δ, for a new P drawn from
D, the probability that there exists a plan consistent with M ′

solving P is at least 1− ϵ.

We supply the proofs for the space, runtime, and sample
complexity in (Mordoch et al. 2024). At a high level, the
sample complexity follows since the learned preconditions of
each action of a plan Π sampled from D are satisfied and the
action model is safe. Either at least one literal is deleted from
pre or at least one clause c is deleted from some PosAnte(e, a)
when such an action a would be used by the plan Π. Thus
if a specific literal or clause would prohibit the action with
probability greater than ϵ, that literal/clause is eliminated
with high probability given a sample of the specified size.
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Conditional-SAM, therefore enjoys approximate com-
pleteness with high probability so long as the number of
training trajectories is sufficiently large. The one unsatisfying
aspect of our bound is that the number of trajectories is expo-
nential in the size of the antecedents of the conditions in the
conditional effects we consider. Unfortunately, we find that
this is unavoidable and our bound is asymptotically optimal
(for any fixed n) for safe action model learning for domains
with conditional effects:

Theorem 0.5. Any learning algorithm that is guaranteed
to return a safe action model must be given at least m ≥
Ω( 1

ϵ
(|F ||A||(|F |/3n)n|+log 1

δ
)) samples to be able to guar-

antee that with probability at least 1− δ the learned model
permits a plan solving Π drawn from D with probability at
least 1− ϵ for 0 < ϵ, δ < 1/4.

The full proof of the lower bound is provided in (Mordoch
et al. 2024). At a high level, the hard distribution involves
initial states that have all |A| “goal” fluents set to false, all
but one (uniformly random) of the (p− |A|)/2 “forbidden”
fluents true, and exactly n out of the (p−|A|)/2 “flag” fluents
(uniformly at random) true. With probability 4ϵ, the goal
includes a single goal fluent, chosen uniformly at random,
that should be set to true. All other goal fluents, as well as the
one forbidden fluent, must be set to false. The corresponding
Π consists of a plan with a single action, where the agent
takes an action corresponding to the fluent to be set true in the
goal. Otherwise there is an empty goal, where the agent takes
a no-op action. For any problem with a non-empty goal that
we did not observe in the training set, no safe action model
can permit taking the action needed to achieve the goal. We
need to observe at least a 3/4 fraction of the possible goals
for a safe action model to attain probability 1− ϵ.

Learning Lifted Action Models

Defining PDDL domains and problems in a lifted manner
is common. A lifted domain defines fluents and actions in
a parameterized manner, where every parameter has a type.
For example, the action (stop ?f - floor) and the fluent (destin
?person - passenger ?floor - floor) from the IPC Miconic
domain are parameterized by objects of type floor and person.
A state is a conjunction of grounded fluents, which are pairs
of the form ⟨l, bl⟩ where l is a fluent, and bl is a function
that maps parameters of l to concrete objects. A plan is a
sequence of grounded actions, which are pairs in the form
⟨a, ba⟩ where a is an action and ba maps action parameters
to objects. A trajectory is an alternating sequence of states
and grounded actions.

Generally, the parameters in an action’s preconditions
and effects are bound to the action’s parameters. Thus, pre-
conditions and effects of an action in a lifted domain are
parameter-bound literals. A parameter-bound literal for an
action a is a pair (l, bla) where l is a literal and bla is a
function that maps every parameter of l to a parameter in
a. Let bindings(a) be the function that returns all parameter-
bound literals that can be bound to a. For a grounded action
aG = ⟨a, ba⟩ and parameter-bound literal l ∈ bindings(a),
we define g(aG, l) to be the grounded literal resulting from
assigning the objects in the parameters of aG to the parame-

ters of l. Given a conjunction of parameter-bound literals c,
g(aG, c) returns the corresponding conjunction of grounded
literals cG such that ∀l ∈ c : g(aG, l) ∈ cG. Similarly, for
a pair of conjunctions of parameter-bound literals (c, e) we
define g(aG, c, e) to be the pair (cG, eG) that are the corre-
sponding conjunctions of grounded literals. SAM learning
has already been extended to learn lifted classical planning
domains (Juba, Le, and Stern 2021) without conditional ef-
fects. We extend Conditional-SAM to support lifted domains
in a similar manner, based on the following extension to the
Conditional-SAM inductive rules (Def. 2).

Definition 3 (Lifted Conditional-SAM Inductive Rules). For
every action triplet ⟨s, aG = ⟨a, ba⟩ , s

′⟩ ∈ T ,

1. [Not a precondition] For every l ∈ bindings(a) s.t.
g(aG, l) /∈ s, l /∈ pre(a)

2. [Not a result] For every l′ ∈ bindings(a) s.t. g(aG, l
′) /∈

s′, ∄(c, e) ∈ eff(a) where (g(aG, c) ∧ s ⊬ ⊥) ∧ (l′ ∈ e)
3. [Must be an effect] For every l′ ∈ bindings(a), if

g(aG, l
′) ∈ s′ \s then ∃(c, e) ∈ eff(a), where (g(aG, c)∧

s ⊬ ⊥) ∧ (l′ ∈ e)
4. [Not an antecedent] For every l′ ∈ bindings(a) and set

of literals c ⊆ bindings(a) if g(aG, l
′) ∈ s′ \ s and

g(aG, c) ∧ s ⊢ ⊥ then ∄(c′, e) ∈ eff(a) such that c ⊆ c′

and l′ ∈ e

The rest of the Conditional-SAM algorithm remains essen-
tially the same, where MustBeResult and PosAnte may now
contain parameter-bound literals. The complete pseudo-code
for the lifted version of Algorithm 1 is available in (Mordoch
et al. 2024).

Learning Effects with Universal Quantifiers

Some PDDL domains and planners support universal quan-
tifiers, which allow actions’ preconditions and effects to in-
clude additional parameters that are not bound to the actions’
parameters. More formally, Universally quantified precondi-
tions and effects define one or more universally quantified
variables (UQV) that may be bound to any parameter of a
literal used in them. The result of universally quantified con-
ditional effects must include at least one UQV. Otherwise,
if only the antecedents include UQVs, then we can interpret
such antecedents as disjunctive universal preconditions. For
example, suppose we need to represent an elevator with a
stopping functionality that ensures all waiting passengers get
in or out once the elevator stops. Figure 1 presents the stop
action schema to implement this functionality. The UQV in
this example is ?p.

(:action stop
:parameters (?f - floor)
:precondition (and (lift-at ?f))
:effect
(and (forall (?p - passenger)

(when
(and (boarded ?p) (destin ?p ?f))
(and (not (boarded ?p)) (served ?p))))))

Figure 1: Parts of the action stop from Miconic domain that
contains universally conditional effects.
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Domain |A| |F | # U.E. n |T | |t|

Satellite 5 8 0 1 100 36.2 (6.1)
Maintenance 1 3 1 1 100 5.6 (1.3)
Miconic 3 6 2 2 100 46.7 (4.9)
Citycar 7 10 1 1 100 19.7 (4.0)
Briefcase 3 3 1 1 100 76.6 (15.6)
Nurikabe 4 12 2 3 52 78.2 (5.17)

Table 1: Statistics regarding the experimented domains.

We focus below on learning universal effects since they
are more common, but our approach also supports learning
universal preconditions. Note that universal effects may be
unconditional and occur every time the action is executed,
in which case the antecedent is the trivial antecedent true.
Conditional-SAM can learn these universal effects as well.
We briefly describe how Conditional-SAM can be extended
to support universal effects.

In general, the number of UQVs a universal effect can
define is exponential in the arity of the domain fluents. Still,
universal effects with more than two UQV are rare. Thus,
we will assume the number of UQVs in a universal effect is
a known fixed constant k. To support universal effects, the
bindings(a) function is modified to also return parameter-
bound literals that bind one or more literal parameters to
UQVs that may be used in action a’s effects. Similarly, the
g(aG, l) function is modified such that if l is a parameter-
bound literal that includes UQVs then g(aG, l) returns a set of
grounded literals matching the grounded action’s parameters
combined with the UQVs. In addition, g(aG, c, e) returns a
set of matching pairs (cG, eG) if either c or e include one or
more UQVs. We now present the changes in the inductive
rules to support universally quantified variables.

Definition 4 (Conditional-SAM Inductive Rules with UQVs).
For every action triplet ⟨s, aG = ⟨a, ba⟩ , s

′⟩ ∈ T :

1. For every l ∈ bindings(a) such that ∃lG ∈ g(aG, l) where
lG /∈ s, then l /∈ pre(a)3

2. For every l′ ∈ bindings(a) such that ∃l′G ∈ g(aG, l
′)

and l′G /∈ s′ then ∄(c, e) ∈ eff(a) such that ∃(cG, eG) ∈
g(aG, c, e) where (cG ∧ s ⊬ ⊥) ∧ (l′G ∈ eG)

3. For every l′ ∈ bindings(a) if ∃l′G ∈ g(aG, l
′) such that

l′G ∈ s′ \ s then ∃(c, e) ∈ eff(a), where ∃(cG, eG) ∈
g(aG, c, e) such that cG ∧ s ⊬ ⊥ ∧ l′G ∈ eG

4. For every l′ ∈ bindings(a) and c ⊆ bindings(a) if
∃(l′g, cG) ∈ g(aG, c, l

′) such that l′G ∈ s′ \ s and

cG ∧ s ⊢ ⊥ then ∄(c′, e) ∈ eff(a) such that c ⊆ c′ and
l′ ∈ e

Here too, the core Conditional-SAM algorithm remains
the same, where MustBeResult and PosAnte may now contain
parameter-bound literals that include UQVs. We assume that
for each action the algorithm is aware of the types of objects
that might include universal effects.

Experimental Results

We implemented Conditional-SAM and conducted experi-
ments on six planning domains that include conditional ef-

3The first inductive rule enables learning universal preconditions

Domain %S %TO %NS %ER Solver Rsem

Satellite 100 0 0 0 Both 0.99
Maintenance 100 0 0 0 FF 1.00
Miconic 100 0 0 0 Both 1.00
Citycar 25 75 0 0 FD 0.99
Briefcase 16 25 0 59 FF 1.00
Nurikabe - - - - - -

Table 2: Experimental results for Conditional-SAM.

fects. Specifically, we used the CityCar, Nurikabe, and Main-
tenance domains from the International Planning Compe-
tition (IPC) 2014 (Vallati et al. 2015); the Briefcase and
Miconic are from AIPS-2000 (Bacchus 2001), and Satellite,
which is an ADL version of the classical IPC (Long and Fox
2003) domain 4. Table 1 presents relevant information about
the domains we experimented on. The column ‘Domain‘ rep-
resents the domain’s name that was experimented on, and the
columns ‘|A|‘ and ‘|F |‘ present the number of lifted actions
and fluents in the domain respectively. The column ‘# U.E.‘
presents the number of universally conditional effects present
in the domains (The satellite domain has conditional effects
that do not contain UQVs) and the column ‘n‘ is the maximal
number of antecedents for the conditional effects in the do-
mains. The column |T | represents the size of the trajectories
dataset of the domain. The column |t| is the average number
of action triplets in a trajectory (the standard deviation is
displayed in brackets).

We generated our problems dataset for each domain using
a PDDL problem generator (Seipp, Torralba, and Hoffmann
2022).5 Using the problem generator, we created a dataset
of 100 problems that were used to create the trajectories.
To solve the generated problems and create the input tra-
jectories, we used two well-known classical planners that
support ADL, Fast-Downward (FD) (Helmert 2006) using
FF heuristic and context-enhanced additive heuristic, and
Fast-Forward (FF) (Hoffmann 2001) with a Greedy BFS con-
figuration. We restricted the solvers to solve the problems in
up to 60 seconds. For the Nurikabe domain, only 52 problems
were solved with our planners, resulting in a smaller dataset.

We split our dataset into train and test sets, trained
Conditional-SAM on the trajectories in the train set, and
used the generated action models to solve the test set prob-
lems. We used VAL (Howey, Long, and Fox 2004) to validate
the generated plans’ correctness. We followed a 5-fold cross-
validation methodology by repeating each experiment 5 times,
sampling different trajectories for learning and testing. All
the presented results are averaged over the five folds. The
experiments were run on a Linux machine with 8 cores and
16 GB of RAM.

Evaluation Metrics

We evaluated our algorithm using two metrics: the percent-
age of the test set problems solved using Conditional-SAM’s

4All the domains are available in https://github.com/AI-
Planning/classical-domains We provide an extensive explanation of
the experimented domains as well as domains that were not used in
our experiments in (Mordoch et al. 2024).

5Action costs were ignored in all domains we experimented on.
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learned model, and the correctness of the learned model using
precision and recall measures. A test set problem is regarded
as solved if one of the planners we used (FD and FF) was
able to solve it with the learned action model. Measuring
the syntactic precision and recall of the learned model, i.e.,
measuring the textual difference between the real and learned
domains, may not represent the usefulness of the learned do-
main in solving problems. Instead, we measure the semantic
precision and recall of the learned model’s preconditions and
effects, as follows. For each state in our trajectories, we try
to apply the actions of the learned and real action models
on the state. We measure the precision and recall based on
which action is applicable in the tested states. Formally, the
semantic precision and recall of the preconditions are:

P sem
pre (a) =

|appM∗(a) ∩ appM (a)|

|appM (a)|

Rsem
pre (a) =

|appM∗(a) ∩ appM (a)|

|appM∗(a)|

Where appM (a) denotes the states in a set of trajectories
where a is applicable according to the action model M . Fi-
nally, average the results over all actions of the domain.

Since Conditional-SAM learns a safe action model, the
semantic precision of the preconditions is always one.
Furthermore, the Conditional-SAM’s safety property indi-
cates that whenever an action is applicable according to
Conditional-SAM its effects are identical to the real domain’s
effects. Thus the precision and recall of the effects is always
one as well. Thus, our evaluation below only presents seman-
tic recall of the actions’ preconditions.

Results

Table 2 displays the experimental results with the maximal
number of trajectories given as input. The column %S rep-
resents the percent of the problems that were solved by the
planners, %TO represents the percentage of problems in
which the planner had timed out (i.e., reached our 60-second
time limit), and %NS represents the percent of problems that
were declared unsolvable with the learned domain. This is
caused when the learned domain is too restrictive and thus
some problems cannot be solved with it. The column %ER
represents the percentage of problems in which the solver en-
countered an error while solving the test set problems. Such
errors were caused when the planner was killed due to ex-
tensive resource consumption. The column Solver represents
the planner that had the best performance and their results
are being presented. Finally, the column Rpre denotes the
preconditions’ semantic recall.

For the Satellite, Maintenance, and Miconic domains, all
the test set problems were solved perfectly using the domain
learned with Conditional-SAM. The results for CityCar and
Briefcase are significantly worse, where the percent of prob-
lems that were solved are 25% and 19%, respectively. A pos-
sible explanation for these results is that the learned domain
returned by Conditional-SAM may contain complex univer-
sal preconditions. These preconditions affect the solvers in
their ability to solve the test set problems. Indeed, every prob-
lem that was not solved in CityCar domain was not solved

due to our timeout restrictions. Similarly, in the Briefcase
domain, the planning process terminated on many occasions
because it consumed too many resources (expressed in the
%ER column). However, the calculated preconditions’ se-
mantic recall for both domains is 0.99. That suggests that
while the learned domains may appear to be more complex
than their original counterpart, they are nearly semantically
identical. For the Nurikabe domain, Conditional-SAM could
not solve any test problem with the learned domain. This may
be because this domain has the largest antecedents (n = 3).

Figure 2 presents the solving statistics as a function of the
number of trajectories used to train Conditional-SAM for the
domains Satellite, Miconic, CityCar, and Briefcase. We do
not present the Maintenance domain results graphically since
all the test set problems were solved perfectly after a single
trajectory. For the Satellite and Miconic domains, the per-
centage of the solved problems increases monotonically with
the number of examples. On the other hand, in the CityCar
domain, we observe a decrease in the number of solved prob-
lems as the number of trajectories increases. This is because
with a single trajectory, the domain Conditional-SAM learns
does not contain the action destroy_road, which has universal
effects. Without this action the domain is less complex and
the planners could solve more test set problems. Once the ac-
tion is learned, the domain becomes much more complex and
thus the planners timeout more often. Finally, the poor results
observed in the Briefcase domain were due to insufficient
resources with 59% of the test set problems not being solved
since the planning process was killed due to high resource
consumption.

Supporting Disjunctive Antecedents
We focused on conditional effects where the result can appear
only once in each action (Assumption 2). There are cases
where such an assumption does not hold. For example, in our
flu treatment action imagine that now the allergic reaction
can appear if the patient has a rare blood type or if they are
sleep deprived. In this case, our action would look as follows:

In Figure 3 we present the action treat-flu-symptoms-X
that contains disjunctive antecedents. Supporting disjunctive
antecedents requires altering the first assumption to address
only the actions’ preconditions and completely removing the
second assumption. Removing the second assumption affects
Conditional-SAM’s fourth inductive rule since it no longer
holds that if a conjunction of literals does not hold in a state,
it cannot be an antecedent of the observed result. That is since
now conditional effects might be disjunctive.

Supporting the new capability requires a minor change to
the Conditional-SAM algorithm. We change the initialization
process of PosAnte to have every possible CNF clause with
up to n antecedents, i.e., now PosAnte includes CNFs and
not just conjunctions of literals. The rest of the algorithm is
not affected. We note that this change highly increases the al-
gorithm’s complexity since now it has to eliminate every pos-
sible CNF expression before it can determine the correct set
of antecedents. Note that the available benchmark domains
do not contain disjunctive antecedents for conditional effects.
Furthermore, due to its prohibitive complexity, we decided
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Figure 2: Solving statistics of Satellite, CityCar, Briefcase and Miconic domains.

(:action treat-flu-symptoms-X
:parameters (?p - patient ?b_type - bloodType)
:precondition (and (has-flu ?p))
:effect
(and (when (is-rare-blood-type ?b_type)

(allergic-reaction ?p))
(when (sleep-deprived ?p)

(allergic-reaction ?p))
(and (not (has-flu ?p)))))

Figure 3: An action representing a flu medicine with a condi-
tional effect.

not to support disjunctive antecedents in Conditional-SAM
and leave this functionality for future work.

Related Work

Several prior works learn action models from trajectories.
The Action-Relation Modelling System (ARMS) (Yang, Wu,
and Jiang 2007) algorithm learns a PDDL description of ac-
tion models by extracting a set of weighted constraints from
the input plan examples. The Simultaneous Learning and
Filtering (SLAF) (Amir and Chang 2008) algorithm is a dif-
ferent algorithm for learning action models designed for par-
tially observable deterministic domains. The Learning Object-
Centred Models (LOCM, LOCM2) (Cresswell, McCluskey,
and West 2013; Cresswell and Gregory 2011) is another ac-
tion model learning algorithm that analyzes plan sequences,
where each action appears as an action name and arguments
in the form of a vector of object names. FAMA (Aineto,
Celorrio, and Onaindia 2019) is a state-of-the-art algorithm
that learns action models with minimal state and action ob-
servability. FAMA can learn from gapped action sequences
of actions, and in the extreme, FAMA can even learn when
only given the initial and the final states as input.

The algorithms presented above learn action models that do
not guarantee that the actions learned are applicable accord-
ing to the agent’s actual action model definition. Contrary to
these algorithms, the SAM family of algorithms is designed
to learn action models in a setting where execution failures
must be avoided (Stern and Juba 2017; Juba, Le, and Stern
2021; Juba and Stern 2022). To this end, SAM generates
a conservative action model. Planning with such an action
model produces sound plans but may fail to find a plan even
if such exists (i.e., it is incomplete).

To the best of our knowledge, there is no work focusing on
learning safe action models with conditional effects. Oates
and Cohen (1996) created an algorithm that can learn plan-
ning operators for STRIPS (Fikes and Nilsson 1971) by inter-
acting with the environments and performing random actions,

and using search techniques to learn the context-dependent
operators. This approach uses random walks which are costly
in case the agent cannot recover from failures. Furthermore,
the resulting action model generated is grounded while our
approach learns a lifted PDDL domain. Zhuo et al. (2010)
focused on learning action models with quantifiers and impli-
cations, and proved that their algorithm could learn simple
conditional effects with only one antecedent. They aimed
to reduce the domain compilation time for domain experts.
Thus, the domains their algorithm outputs may be incomplete
or even wrong. This means that their algorithm does not work
in mission-critical settings.

Conclusions and Future Work

In this work, we presented Conditional-SAM, an algo-
rithm that can learn action models for domains that in-
clude conditional and universal effects. We showed that
Conditional-SAM learns a safe action model w.r.t. the real un-
known action model and runs in reasonable time. Moreover,
we presented tight sample complexity results, showing that
Conditional-SAM is, in a sense, asymptotically optimal. Our
experimental results show that using a small number of trajec-
tories, Conditional-SAM learns an action model that solves
the test set problems. In future works, we aim to explore
methods to improve the algorithm’s scalability and support
domains with more expressive conditional effects that might
contain unbounded disjunctive antecedents or even include
numeric conditions and effects.
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