
A LINEAR SECOND-ORDER MAXIMUM BOUND

PRINCIPLE-PRESERVING BDF SCHEME FOR THE ALLEN-CAHN

EQUATION WITH A GENERAL MOBILITY∗

DIANMING HOU1 LILI JU2 ZHONGHUA QIAO3

Abstract. In this paper, we propose and analyze a linear second-order numerical method for

solving the Allen-Cahn equation with a general mobility. The proposed fully-discrete scheme is

carefully constructed based on the combination of first and second-order backward differentiation

formulas with nonuniform time steps for temporal approximation and the central finite difference

for spatial discretization. The discrete maximum bound principle is proved of the proposed

scheme by using the kernel recombination technique under certain mild constraints on the time

steps and the ratios of adjacent time step sizes. Furthermore, we rigorously derive the discrete

H1 error estimate and energy stability for the classic constant mobility case and the L∞ error

estimate for the general mobility case. Various numerical experiments are also presented to

validate the theoretical results and demonstrate the performance of the proposed method with a

time adaptive strategy.

1. Introduction

In this paper, we consider the following Allen-Cahn equation with a general mobility:
∂φ

∂t
= −M(φ)µ, (x, t) ∈ Ω× (0, T ],

µ = −ε2∆φ+ F ′(φ), (x, t) ∈ Ω× (0, T ],
(1.1)

with the initial condition φ(x, 0) = φ0(x) for any x ∈ Ω and subject to the homogeneous Neumann

or the periodic boundary condition, where Ω is a bounded Lipschitz domain in Rd (d = 1, 2, 3),

T > 0 is the terminal time, φ(x, t) is the unknown function, ε > 0 represents the interfacial
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width parameter, M(φ) ≥ 0 is a general mobility function, and F (φ) = 1
4(1− φ2)2 is the double-

well potential function. This problem has a structure of L2 gradient flow corresponding to the

following free energy functional E(φ), defined by

E(φ) =

∫
Ω

(ε2

2
|∇φ|2 + F (φ)

)
dx. (1.2)

This structure implies that solution of (1.1) will approach to a steady state as t→∞, provided all

steady states are isolated. It is a physically attractive and thermodynamically-consistent model

often used to describe the transitions of the phases in the binary alloys. More specifically, the

Allen-Cahn equation (1.1) satisfies the following energy dissipation law

d

dt
E(φ) = −

∫
Ω
M(φ)µ2dx ≤ 0, (1.3)

which indicates that the free energy E(φ) monotonically decreases in time. Furthermore, the

Allen-Cahn equation (1.1) satisfies the maximum bound principle (MBP), i.e., |φ(x, t)| ≤ 1 if

|φ(x, 0)| ≤ 1 for any x ∈ Ω and t ≥ 0, and we refer to [46] for more discussions. The MBP

and energy dissipation law are two important features of the equation (1.1), and thus it is highly

desired for the numerical schemes to preserve these physical properties in the discrete level.

During the past decades, there have been extensive works devoted to the development of nu-

merical methods for the Allen-Cahn equation (1.1) with preservation of discrete MBP and energy

stability, especially for the constant mobility case. First-order (in time) linear stabilized schemes

with central finite difference method for spatial discretization were obtained for the Allen-Cahn

equation (1.1) with a constant mobility in [50] and the generalized Allen-Cahn equation with an

advection term in [46], which are unconditionally energy stable and preserve the MBP simultane-

ously. A second-order convex splitting scheme based on Crank-Nicolson approach was investigated

for fractional-in-space Allen-Cahn equation in [26], in which the discrete MBP and energy dissi-

pation were rigorously established. However, it results in a nonlinear system to be solved at each

time step. Hou et al. [25] developed a stabilized second-order Crank-Nicolson/Adams-Bashforth

scheme for the Allen-Cahn equation, which preserves the discrete MBP and energy stability con-

ditionally, and leads to solutions of only linear Poisson-type equations with constant coefficients

at each time step. Recently, Cheng et al. [13, 14] proposed a Lagrange multiplier approach to

construct positivity and bound preserving schemes for a class of semi–linear and quasi–linear

parabolic equations. They have provided a new interpretation for the cut-off approach. Based

on cut-off approach and the scalar auxiliary variable (SAV) method [1, 48], Yang et al. devel-

oped a class of arbitrarily high-order energy-stable and maximum bound preserving schemes for

Allen-Cahn equation with a constant mobility in [56].

Du et al. developed first-order exponential time differencing (ETD) and second-order ETD

Runge-Kutta (ETDRK2) schemes for the nonlocal Allen-Cahn equation, which preserves the

discrete MBP unconditionally in [16], and later they also established an abstract framework on

the MBP for a class of semilinear parabolic equations in [17]. These ETD approaches were also

successfully applied to the conservative Allen-Cahn equations in [28, 34] of preserving the MBP

and mass conservation in the discrete level, and the molecular beam epitaxial model [7, 11] of

maintaining the discrete energy stability. Combining SAV technique with the stabilized first-

order ETD and ETDRK2 methods, Ju et al. [29, 30] successfully constructed both the energy
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dissipation law and the MBP preserving schemes for a class of Allen-Cahn type gradient flows.

The unconditional energy stability of the stabilized ETDRK2 scheme for the gradient flows are

also established in [18]. Based on integrating factor Runge-Kutta (IFRK) method, high-order

MBP preserving schemes in time were recently developed for the semilinear parabolic equations

in [31]. Subsequently, a family of stabilized IFRK schemes (up to the third-order and fourth-

order) were proposed in [35, 57, 58] to preserve the discrete MBP unconditionally. Recently, an

arbitrarily high-order multistep exponential integrator method was presented in [33] by enforcing

the maximum bound via a cut-off operation. However, these high-order MBP-preserving ETD

and IFRK methods seem difficultly to be extended to the problems with variable mobilities, since

they are derived from either the variation-of-constant formula or an exponential transformation

of the solution. We also would like to remark that all above MBP-preserving and energy stable

scheme are based on the single time-stepping approach. There also exist few research and results

on the MBP preservation of multiple time-stepping method, such as the popular high-order BDF

schemes. Liao et al. studied the two-step second-order backward differentiation formula (BDF2)

scheme for the time discretization of the Allen-Cahn equation with a constant mobility in [41], in

which the MBP preservation and energy stability are established under certain mild constraints

on the time steps and the ratios of adjacent time step sizes. However, it uses fully implicit

treatment for the nonlinear term and thus leads to solving a nonlinear system at each time step.

There also have been a lot of research work [6, 10, 12, 20, 36, 37, 44, 55] on high-order BDF

schemes for gradient flows, which maintain certain discrete energy stability.

Another common feature of the Allen-Cahn equation (1.1) is that its evolution process often

takes quite long time before it settles at a steady state. Moreover, it usually undergoes both

fast and slow changing stages during the whole evolution process. Therefore, it is also highly

useful to develop high-order structure-preserving numerical schemes with variable time steps for

the Allen-Cahn equation, so that some existing time adaptive strategies can be easily applied. In

this paper, we will propose and analyze an efficient linear second-order numerical method with

nonuniform time steps for solving the Allen-Cahn equation with a general (constant or variable)

mobility, which is based on the nonuniform BDF2 approach [4, 9, 23, 41] and preserves the discrete

MBP under some mild constraints like [41].

The rest of the paper is organized as follows: In Section 2, we first review some preliminaries

on the temporal and spatial discretization, and then propose the linear second-order BDF scheme

for Allen-Cahn equation (1.1). Next we establish the discrete MBP of the proposed scheme using

the kernel recombination technique in Section 3. In Section 4, some results on error estimates in

the L∞ and H1 norms and energy stability are rigorously derived. Several examples are tested

in Section 5 to numerically validate the theoretical prediction and demonstrate the performance

of the proposed scheme. Finally, some concluding remarks are drawn in section 6.

2. The linear second-order BDF scheme with nonuniform time steps

We first briefly review the BDF2 formula for approximating time derivative and the central

finite difference for discretizing the Laplacian, and then propose a linear second-order BDF scheme

for the Allen-Cahn equation with a general mobility (1.1). Without loss of generality, we focus on

the two-dimensional problem (d = 2) with the homogenous Neumann boundary condition, i.e.,
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∂φ
∂n

∣∣
∂Ω

= 0 in what follows. It is easy to extend the corresponding results to the cases of higher

dimensional spaces and/or the periodic boundary condition.

2.1. The BDF2 formula with nonuniform time steps and its reformulation through

kernel recombination. Let {τn = tn − tn−1 > 0}Nn=1 denote the time step sizes of a general

partition of the time interval [0, T ] such that t0 = 0 and
∑N

n=1 τn = T , and {γn+1 = τn+1

τn
> 0}N−1

n=1

denote the ratios of the corresponding two adjacent time step sizes. Define τ = max
1≤n≤N

τn as the

maximum time step size of such time partition and γmax = max
1≤n≤N

γn as the maximum adjacent

time-step ratio.

For any function φ(t) defined on [0, T ], denote Π2,nφ(t) as its quadratic interpolation operator

using the three points (tn−1, φ(tn−1)), (tn, φ(tn)) and (tn+1, φ(tn+1)), and we then have

Π2,nφ(t) = φ(tn−1)
(t− tn)(t− tn+1)

τn(τn + τn+1)
− φ(tn)

(t− tn−1)(t− tn+1)

τnτn+1
+ φ(tn+1)

(t− tn−1)(t− tn)

(τn + τn+1)τn+1

for any t ∈ [tn−1, tn+1] and consequently

∂Π2,nφ

∂t
(tn+1) =

1

τn+1

(1 + 2γn+1

1 + γn+1
φ(tn+1)− (1 + γn+1)φ(tn) +

γ2
n+1

1 + γn+1
φ(tn−1)

)
.

Thus the correspondingly derived second-order BDF approximation to φ′(t) at t = tn+1 reads:

φ′(tn+1) ≈ Fn+1
2 φ =

1

τn+1

(1 + 2γn+1

1 + γn+1
φn+1 − (1 + γn+1)φn +

γ2
n+1

1 + γn+1
φn−1

)
= bn0δτφ

n+1 + bn1δτφ
n, n = 1, 2, · · · , N − 1,

(2.1)

where δτφ
n+1 = φn+1 − φn, φn is a certain approximation to φ(tn), and the discrete convolution

kernels

bn0 =
1 + 2γn+1

τn+1(1 + γn+1)
> 0, bn1 = −

γ2
n+1

τn+1(1 + γn+1)
< 0.

For n = 0, if we set b00 = 1/τ1 and b01 = 0, then F 1
2 φ = δτφ1

τ1
degrades to the first-order BDF

approximation to φ′(t) at t1, i.e., the well-know backward Euler approximation

φ′(tn+1) ≈ Fn+1
1 φ =

δτφ
n+1

τn+1
, n = 0, 1, · · · , N − 1.

A novel technique through variable-weights recombination of a new specially-created variable

was first proposed in [43] to achieve 3 − α order accuracy for the discrete form of α-th order

fractional Caputo derivative under the uniform time partition, in which the reformed convolu-

tion kernels are positive and monotone and play an important role in stability and convergence

analysis. Also see [40, 41] for some recent developments in this direction. Following this kernel

recombination technique, we define a new variable ψ as

ψn+1 = φn+1 − ηφn, n = 0, 1, · · · , N − 1, (2.2)

with ψ0 = φ0, where η is a constant parameter to be determined such that the reformed discrete

convolution kernels are positive and monotone. Then we have for n = 0, 1, · · · , N − 1,

φn+1 =
n+1∑
k=0

ηn+1−kψk, δτφ
n+1 =

n∑
k=0

ηn−kδτψ
k+1 + ηn+1φ0.



A LINEAR MBP-PRESERVING BDF2 SCHEME FOR THE ALLEN-CAHN EQUATION 5

Combing (2.1) and the above identities, we can equivalently reform the BDF2 formula (2.1) as

follows

Fn+1
2 φ =

n∑
k=0

dnn−kδτψ
k+1 + dnn+1ψ

0, 1 ≤ n ≤ N − 1, (2.3)

where the reformed discrete convolution kernels are defined by

dn0 = bn0 , dnk = ηk−1
(
bn0η + bn1

)
, 1 ≤ k ≤ n+ 1. (2.4)

Thus we have

dnk+1 = ηdnk , 1 ≤ k ≤ n. (2.5)

In order to make {dnk}
n+1
k=0 positive and decreasing, i.e., dn0 ≥ dn1 ≥ · · · ≥ dnn+1 ≥ 0, we need to

require η to satisfy that

0 <
γ2
n+1

1 + 2γn+1
= −b

n
1

bn0
≤ η < 1

for all n = 1, 2, · · · , N − 1. Since 0 < γn+1 ≤ γmax and x2

1+2x is increasing in (0,+∞), we then

have
γ2
max

1 + 2γmax
≤ η < 1, (2.6)

which also implies 0 < γmax < 1 +
√

2.

2.2. The central finite difference for the Laplacian. We firstly recall some notations and

results of the discrete function spaces and operators from [2, 3, 27, 38, 47, 51, 52, 54]. Let

Ω = (0, Lx) × (0, Ly), and we also assume Lx = Ly = L and the spatial grid spacing h = L/M

for simplicity. We first define the following two finite grid sets:

E = {xi+ 1
2

= ih
∣∣ i = 0, 1, · · · ,M}, C = {xi =

(
i− 1

2

)
h
∣∣ i = 1, · · · ,M},

and then we introduce the following discrete function spaces:

Ch ={U : C×C→ R
∣∣ Ui,j , 1 ≤ i, j ≤M},

exh ={U : E×C→ R
∣∣ Ui+ 1

2
,j , 0 ≤ i ≤M, 1 ≤ j ≤M},

eyh ={U : C×E→ R
∣∣ Ui,j+ 1

2
, 1 ≤ i ≤M, 0 ≤ j ≤M},

ex0,h ={U ∈ exh
∣∣ U 1

2
,j = UM+ 1

2
,j = 0, 1 ≤ j ≤M},

ey0,h ={U ∈ eyh
∣∣ Ui, 1

2
= Ui,M+ 1

2
= 0, 1 ≤ i ≤M}.

Under the homogeneous Neumann boundary condition, the discrete gradient operator ∇h =

(∇xh,∇
y
h) : Ch → (ex0,h, e

y
0,h) is defined by

(∇xhU)i+ 1
2
,j =

Ui+1,j − Ui,j
h

, 1 ≤ i ≤M − 1, 1 ≤ j ≤M, (2.7)

(∇yhU)i,j+ 1
2

=
Ui,j+1 − Ui,j

h
, 1 ≤ i ≤M, 1 ≤ j ≤M − 1 (2.8)

for any U ∈ Ch, and the discrete divergence operator ∇h· : (exh, e
y
h)→ Ch is represented by

(∇h · (Ux, Uy)T )i,j =
Ux
i+1/2,j

−Ux
i−1/2,j

h +
Uy
i,j+1/2

−Uy
i,j−1/2

h , 1 ≤ i, j ≤M (2.9)
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for any (Ux, Uy)T ∈ (exh, e
y
h). Then the discrete LapLacian ∆h : Ch → Ch by the central finite

difference is defined by

(∆hU)i,j = (∇h · (∇hU))i,j , 1 ≤ i, j ≤M.

The two average operators ax : exh → Ch and ay : eyh → Ch are defined by

(axU)i,j = 1
2(Ui+ 1

2
,j + Ui− 1

2
,j), 1 ≤ i, j ≤M,

and

(ayU)i,j = 1
2(Ui,j+ 1

2
+ Ui,j− 1

2
), 1 ≤ i, j ≤M

for any U ∈ eyh. We define some related discrete inner-products as follows:

〈
U, V

〉
Ω

= h2
M∑
i,j=1

Ui,jVi,j , ∀U, V ∈ Ch,

[Ux, V x]x =
〈
ax(UxV x), 1

〉
Ω
, ∀Ux, V x ∈ exh,

[Uy, V y]y =
〈
ay(U

yV y), 1
〉

Ω
, ∀Uy, V y ∈ eyh,

[(Ux, Uy)T , (V x, V y)T ]Ω = [Ux, V x]x + [Uy, V y]y.

Then we have the following result for the discrete analogue of integration by parts.

Lemma 2.1 ([38, 51]). For any U, V ∈ Ch, it holds

−
〈
∆hU, V

〉
Ω

= [∇hU,∇hV ]Ω.

For any U ∈ Ch, we define the following discrete L2, H1 and L∞ norms/semi-norms:

‖U‖2h =
〈
U,U

〉
Ω
,

‖∇hU‖2h = [∇hU,∇hU ]Ω = [dxU, dxU ]x + [dyU, dyU ]y,

‖U‖2H1
h

= ‖U‖2h + ‖∇hU‖2h, ‖U‖∞ = max
1≤i≤M

M∑
j=1

|Ui,j |

For convenience of description, we also define ~U ∈ RM2
as the vector representation of U ∈ Ch,

in which the elements are arranged first along the x-direction then along the y-direction. Note

that we do not differ them in places there is no ambiguity.

2.3. The linear second-order BDF scheme for the Allen-Cahn equation. Denote by ΠCh
the operator pointwisely limiting a function onto Ch. Let us first recall the fully-discrete linear

first-order BDF scheme (called “BDF1”) proposed in [46, 50] for solving the Allen-Cahn equation

with a general mobility (1.1): given Φ0 = ΠChφ0, for n = 0, 1, · · · , N − 1, find Φn+1 ∈ Ch such

that

Fn+1
1 Φ− ε2M(Φn)∆hΦn+1 + f(Φn) + S(Φn+1 − Φn) = 0, (2.10)

where Fn+1
1 Φ = Φn+1−Φn

τn+1
and f(φ) = M(φ)F ′(φ) and S ≥ 0 is a constant stabilizing parameter.

We will denote the scheme (2.10) as Φn+1 = BDF1(Φn, τn+1). The above linear BDF1 scheme

(2.10) also be rewritten in the following vector form:

Fn+1
1

~Φ− ε2ΛnDh
~Φn+1 + f(~Φn) + S(~Φn+1 − ~Φn) = 0, (2.11)
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where Dh = I ⊗ G + G ⊗ I ∈ RM2×M2
with I denoting the identity matrix (with the matched

dimensions) and

G =
1

h2


−1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −1


M×M

,

and f(~Φn) = Λn
((
~Φn
).3

+~Φn
)

is defined elementwise with the diagonal matrix Λn = diag(M(~Φn)).

Clearly, Dh is the corresponding matrix representation of ∆h.

In analogous to the energy E(φ) defined in (1.2), we define the discrete energy Eh(~Φn) as

Eh(~Φn) = −h2 ε
2

2
(~Φn)TDh

~Φn + h2
M2∑
i=1

F (~Φn
i ) =

ε2

2
[∇hΦn,∇hΦn]Ω +

〈
F (Φn), 1

〉
Ω
. (2.12)

Then the unconditional energy stability and the discrete maximum bound principle of the fully-

discrete BDF1 scheme (2.10) hold as stated in the following lemma, and we refer to Theorem 3.2

in [46] and Theorem 3 in [50] for details.

Lemma 2.2 ([46, 50]). Asssume that ‖~Φ0‖∞ ≤ 1 and the stabilizing parameter

S ≥ max
ρ∈[−1,1]

(
M ′(ρ)F ′(ρ) +M(ρ)F ′′(ρ)

)
, (2.13)

then it unconditionally holds for the BDF1 scheme (2.10) that ‖~Φn+1‖∞ ≤ 1 for n = 0, 1, · · · , N−
1. Particularly, if the mobility function M(φ) ≡ 1, then

Eh(~Φn+1) ≤ Eh(~Φn) (2.14)

for all n = 0, 1, · · · , N − 1, provided that S ≥ 2.

Now we are ready to construct a fully-discrete linear second-order BDF scheme with nonuni-

form time steps (called “BDF2” hereafter) for the Allen-Cahn equation with a general mobil-

ity (1.1) under the homogenous Neumann boundary condition: given Φ0 = ΠChφ0, compute

Φ1 = BDF1(φ0, τ1) and for n = 1, 2 · · · , N − 1, find Φn+1 ∈ Ch such that{
Φ∗,n+1 = BDF1(Φn, τn+1),

Fn+1
2 Φ− ε2M(Φ∗,n+1)∆hΦn+1 + f(Φ∗,n+1) + S(Φn+1 − Φ∗,n+1) = 0,

(2.15a)

(2.15b)

where Fn+1
2 Φ = bn0 (Φn+1 − Φn) + bn1 (Φn − Φn−1). We denote the scheme (2.15) as φn+1 =

BDF2(φn, φn−1, τn+1, τn). The above linear BDF2 scheme (2.15) can be rewritten in the following

vector form: ~Φ
∗,n+1 = BDF1(~Φn, τn+1),

Fn+1
2

~Φ− ε2Λ∗,n+1Dh
~Φn+1 + f(~Φ∗,n+1) + S(~Φn+1 − ~Φ∗,n+1) = 0,

(2.16a)

(2.16b)

where Λ∗,n+1 = diag(M(~Φ∗,n+1)).
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3. The discrete maximum bound principle

In this section, we will prove the discrete maximum bound principle of the proposed BDF2

scheme (2.15) using the kernel recombination technique described in Section 2.1. Define ~Ψn =
~Φn−η~Φn−1, and then we can combine (2.2) and (2.3) to obtain the following kernel recombination

form for (2.16b): for n = 1, 2, · · · , N − 1,(
(dn0 + S)I − ε2Λ∗,n+1Dh

)
~Φn+1 = ηdn0

~Φn +
n∑
k=0

(dnn−k − dnn−k+1)~Ψk + S~Φ∗,n+1 − f(~Φ∗,n+1). (3.1)

Substituting ~Φn+1 =

n+1∑
k=0

ηn+1−k~Ψk into (3.1) yields

(
(dn0 + S)I − ε2Λ∗,n+1Dh

)
~Ψn+1 =

n∑
k=0

Qnn−k
~Ψk + S~Φ∗,n+1 − f(~Φ∗,n+1), (3.2)

where

Qnk = (dnk − dnk+1 − Sηk+1)I + ηk+1ε2Λ∗,n+1Dh, 0 ≤ k ≤ n. (3.3)

The following result for the estimation of Qnk holds (we also refer to Lemma 4.1 in [41] which is

only for the specific case M(φ) ≡ 1).

Lemma 3.1. Let n be any fixed integer such that 1 ≤ n ≤ N − 1 and suppose ‖~Φ∗,n+1‖∞ ≤ 1.

Assume that 0 < γn+1 < 1 +
√

2, the parameter η satisfies (2.6), and

τn+1 ≤
g(γn+1, η)

S + 4Lε2/h2
, (3.4)

where L = max
ρ∈[−1,1]

M(ρ) and

g(s, z) =
(1− z)

(
(1 + 2s)z − s2

)
z2(1 + s)

, s ∈ (0, γmax], z ∈
[ γ2

max

1 + 2γmax
, 1
)
.

Then it holds

‖Qnk‖∞ ≤ dnk − dnk+1 − Sηk+1, ∀ 0 ≤ k ≤ n. (3.5)

Proof. From the definition of Qnk in (3.3) and (2.4), it follows

Qnk =
(
ηk−1(bn0η + bn1 )− ηk(bn0η + bn1 )− Sηk+1

)
I + ηk+1ε2Λ∗,n+1Dh,

= ηk+1
((
η−2(1− η)(bn0η + bn1 )− S

)
I + ε2Λ∗,n+1Dh

)
= ηk+1

((g(γn+1, η)

τn+1
− S

)
I + ε2Λ∗,n+1Dh

)
, 1 ≤ k ≤ n,

which means that all the entries of Qnk are nonnegative based on the definition of Dh, the fact of

‖Λ∗,n+1‖∞ ≤ L, and (3.4). Thus we deduce that

‖Qnk‖∞ = max
1≤i≤M2

∑M2

j=1

(
Qnk
)
i,j
≤ dnk − dnk+1 − Sηk+1, ∀ 1 ≤ k ≤ n,

by using the fact
∑M2

j=1

(
Λ∗,n+1Dh

)
i,j

= 0 for any 1 ≤ i ≤M2.
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For the case of k = 0, using (2.4) and (3.4), we get

Qn0 =
(
dn0 − dn1 − Sη

)
I + ηε2Λ∗,n+1Dh

=
(
bn0 − bn0η − bn1 − Sη

)
I + ηε2Λ∗,n+1Dh

= η
((
η−2(bn0η + bn1 − bn0η2 − bn1η)− η−2bn1 − S

)
I + ε2Λ∗,n+1Dh

)
≥ η

((
η−2(1− η)(bn0η + bn1 )− S

)
I + ε2Λ∗,n+1Dh

)
,

which means that all the entries of Qn0 are also nonnegative and consequently we obtain ‖Qn0‖∞ ≤
dn0 − dn1 − Sη by similar arguments as above. �

This lemma plays an important role in deriving the MBP property of the BDF2 scheme (2.15).

We also remark that the inequality (3.4) doesn’t explicitly give a principle for determining the

range of feasible time step size τn+1 in practice, since γn+1 in the righthand side of (3.4) depends

on τn+1. Next we drive a uniform upper bound for the time step size τn+1 independent on γn+1

such that the estimate (3.5) for the matrix Qnk holds. In the numerical simulations, one can always

set a pre-determined maximum adjacent time-step ratio γ∗ such that γn+1 ≤ γ∗ for all n ≥ 1.

Since it is required that 0 < γn+1 < 1 +
√

2 (see Section 2.1), we choose γ∗ from [1, 1 +
√

2).

Noting that

∂g

∂s
(s, z) =

(1− z)(−s2 − 2s+ z)

z2(1 + s)2
, s ∈ (0, γ∗], z ∈

[ γ2
∗

1 + 2γ∗
, 1
)
,

and combining with
√

1 + z− 1 <
√

2− 1 < 1 ≤ γ∗, it can be verified that for any fixed z, g(s, z)

is increasing in (0,
√

1 + z− 1) and decreasing in (
√

1 + z− 1, γ∗) with respect to s. Furthermore,

since g(0, z) = 1−z
z > (1−z)(3z−1)

2z2
= g(1, z) ≥ g(γ∗, z) for z ∈

[
γ2∗

1+2γ∗
, 1
)

, we have

g(γ∗, z) ≤ g(γn+1, z)

for all γn+1 ∈ (0, γ∗) and z ∈
[

γ2∗
1+2γ∗

, 1
)
. Thus, it follows from Lemma 3.1 that the estimate (3.5)

for the matrix Qnk holds for 0 < γn+1 ≤ γ∗ < 1 +
√

2, and

τn+1 ≤
g(γ∗, η)

S + 4Lε2/h2
, ∀ η ∈

[ γ2
∗

1 + 2γ∗
, 1
)
. (3.6)

Taking the fact
∂g

∂η
(γ∗, η) =

2γ2
∗ − (1 + γ∗)

2η

(1 + γ∗)η3
,

together with γ2∗
1+2γ∗

< 2γ2∗
(1+γ∗)2

< 1, we see that g(γ∗, η) is increasing in
( γ2∗

1+2γ∗
, 2γ2∗

(1+γ∗)2

)
and

decreasing in
( 2γ2∗

(1+γ∗)2
, 1
)

with respect to η. Thus, the optimal value of η for (3.6) is

η∗ =
2γ2
∗

(1 + γ∗)2
. (3.7)

Summarizing the above discussions, we obtain the following result.

Lemma 3.2. Let n be any fixed integer such that 1 ≤ n ≤ N − 1 and suppose ‖~Φ∗,n+1‖∞ ≤ 1.

Assume that 0 < γn+1 ≤ γ∗ < 1 +
√

2, η = η∗, and the time step size τn+1 satisfies

τn+1 ≤
G(γ∗)

S + 4Lε2/h2
(3.8)
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with

G(γ∗) = g
(
γ∗,

2γ2
∗

(1 + γ∗)2

)
=

(1 + 2γ∗ − γ2
∗)

2

4γ2
∗(1 + γ∗)

.

Then it holds

‖Qnk‖∞ ≤ dnk − dnk+1 − Sηk+1
∗ , ∀ 0 ≤ k ≤ n. (3.9)

Remark 3.1. Note that G(γ∗) is decreasing with respect to γ∗ ∈ (1, 1 +
√

2). Especially, we

have G(1) = 1
2 for the case of uniform time steps (γ∗ = 1), and G(2) = 1

48 for the case of γ∗ = 2.

In what follows, by default we always set η = η∗ which is defined in (3.7). We next state the

following useful lemmas.

Lemma 3.3 ([26, 41, 50]). Suppose B = (bi,j) is a real P × P matrix satisfying

bi,i < 0, |bi,i| ≥ max
1≤i≤P

∑P
j 6=i |bi,j |.

Let A = aI −B where a > 0 is a constant, then

‖A
−→
U ‖∞ ≥ a‖

−→
U ‖∞, ∀

−→
U ∈ RP .

Lemma 3.4 ([50]). If the stabilizing parameter S satisfies (2.13), then∣∣Sρ− f(ρ)
∣∣ ≤ S, ∀ ρ ∈ [−1, 1]. (3.10)

Proof. Let h(ρ) = Sρ− f(ρ). From (2.13), we have

h′(ρ) = S − [M ′(ρ)F ′(ρ) +M(ρ)F ′′(ρ)] ≥ 0, ∀ ρ ∈ [−1, 1].

Together with h(−1) = −S and h(1) = S, we obtain (3.10). �

Now, we are ready to show the MBP of the BDF2 scheme (2.15).

Theorem 3.1. Assume that the stabilizing parameter S satisfies (2.13) and 0 < γn+1 ≤ γ∗ <

1 +
√

2 for all 1 ≤ n ≤ N − 1. In addition, assume that

τ1 ≤
1− η∗

η∗(S + 4Lε2/h2)
, (3.11)

and τn+1 satisfies (3.8) for n = 1, 2, · · · , N −1. If ‖~Φ0‖∞ ≤ 1, then it holds for the BDF2 scheme

(2.15) that ‖~Φn+1‖∞ ≤ 1 for n = 0, 1, · · · , N − 1.

Proof. For the first step, i.e., ~Φ1 = BDF1(~Φ0, τ1) when n = 0, it follows directly from Lemma 2.2

that ‖~Φ1‖∞ ≤ 1. Substituting ~Φ1 = ~Ψ1 + η∗~Φ
0 into (2.10) gives(( 1

τ1
+ S

)
I − ε2Λ0Dh

)
~Ψ1 =

((1− η∗
τ1

− η∗S
)
I + η∗ε

2Λ0Dh

)
~Ψ0 + S~Φ0 − f(~Φ0). (3.12)

Noting the constraint (3.11) together with the definition of Dh and a similar analysis used in

Lemma 3.1, we derive that((1− η∗
τ1

− η∗S
)
I + η∗ε

2Λ0Dh

)
i,j
≥ 0, 1 ≤ i, j ≤M2,

and consequently ∥∥∥(1− η∗
τ1

− η∗S
)
I + η∗ε

2Λ0Dh

∥∥∥
∞
≤ 1− η∗

τ1
− η∗S. (3.13)
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From (3.12), (3.13) and Lemma 3.3, it follows that(
1
τ1

+ S
)
‖~Ψ1‖∞ ≤

∥∥∥(( 1
τ1

+ S
)
I − ε2Λ0Dh

)
~Ψ1
∥∥∥
∞

≤
∥∥∥((1−η∗

τ1
− η∗S

)
I + η∗ε

2Λ0Dh

)
~Ψ0
∥∥∥
∞

+
∥∥S~Φ0 − f(~Φ0)

∥∥
∞

≤
(

1−η∗
τ1
− η∗S

)
+ S

=
( 1

τ1
+ S

)
(1− η∗),

where we have used Lemma 3.4. Thus we have ‖~Ψ1‖∞ ≤ 1− η∗.
Next, for any 1 ≤ n ≤ N − 1, we assume ‖~Φk‖∞ ≤ 1 and ‖~Ψk‖∞ ≤ 1 − η∗ for 1 ≤ k ≤ n.

Using ~Φ∗,n+1 = BDF1(~Φn, τn+1), ‖~Φn‖∞ ≤ 1, and Lemma 2.2, we obtain ‖~Φ∗,n+1‖∞ ≤ 1. Thus,

together with (3.1), (2.5) and Lemmas 3.3 and 3.4, we have

(dn0 + S)‖~Φn+1‖∞ ≤ ‖
(
(dn0 + S)I − ε2Λ∗,n+1Dh

)
~Φn+1‖∞

≤ η∗dn0‖~Φn‖∞ +

n∑
k=0

(dnn−k − dnn−k+1)‖~Ψk‖∞ + ‖S~Φ∗,n+1 − f(~Φ∗,n+1)‖∞

≤ η∗dn0 +
n∑
k=1

(dnn−k − dnn−k+1)(1− η∗) + (dnn − dnn+1) + S

= η∗d
n
0 + (dn0 − dnn)(1− η∗) + (1− η∗)dnn + S

= dn0 + S,

which gives ‖~Φn+1‖∞ ≤ 1. Using (3.2) together with (2.5), Lemmas 3.2, 3.3 and 3.4, we get

(dn0 + S)‖~Ψn+1‖∞ ≤ ‖
(
(dn0 + S)I − ε2Λ∗,n+1Dh

)
~Ψn+1‖∞

≤
n∑
k=0

‖Qnn−k‖∞‖~Ψk‖∞ + ‖S~Φ∗,n+1 − f(~Φ∗,n+1)‖∞

≤ (1− η∗)
n∑
k=1

(dnn−k − dnn+1−k − Sηn+1−k
∗ ) + (dnn − dnn+1 − Sηn+1

∗ ) + S

= (dn0 + S)(1− η∗).

which gives ‖~Ψn+1‖∞ ≤ 1− η∗. The proof is completed. �

4. Error analysis and energy stability

In this section, we investigate the error estimate and energy stability of the proposed BDF2

scheme (2.15). Let Φ(t) = ΠChφ(t) where φ denotes the exact solution of (1.1). We also use C

and Ci’s to denote some needed generic positive constants independent of h and τ .

4.1. Discrete H1 error estimate and energy stability for the constant mobility case.

In this subsection, we study the discrete H1 error estimate and energy stability of the BDF2

scheme (2.15) for the Allen-Cahn equation with constant mobility, i.e., M(φ) ≡ C > 0. Without

loss of generality, we assume M(φ) ≡ 1 and thus (2.13) becomes S ≥ 2. Firstly, we recall a useful
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inequality (see [22–24, 39, 42]) presented below, which will play an important role in our error

analysis and energy stability: for any {γn > 0}N+1
n=1 ,

〈
Fn+1

2
~Φ, ~Φn+1 − ~Φn

〉
Ω
≥
( γ

3/2
n+2

1 + γn+2

‖~Φn+1 − ~Φn‖2h
2τn+1

−
γ

3/2
n+1

1 + γn+1

‖~Φn − ~Φn−1‖2h
2τn

)
+G(γn+1, γn+2)

‖~Φn+1 − ~Φn‖2h
2τn+1

, n = 1, 2, · · · , N − 1,

(4.1)

where G(s, z) = 2+4s−s3/2
1+s − z3/2

1+z . Note that γN+1 is not used in the BDF2 scheme. It is easy to

verify that for any fixed z ∈ (0,+∞), G(s, z) is increasing in (0, 1) and decreasing in (1,+∞)

with respect to s. Then it follows from G(0, z) = G(4, z) that for any 0 < s, z ≤ γ∗ < 1 +
√

2,

G(s, z) ≥ min{G(0, γ∗), G(γ∗, γ∗)} ≥ G(0, γ∗) > G(0, 1 +
√

2) > 0.

Define the errors en = ~Φn − ~Φ(tn) and e∗,n = ~Φ∗,n − ~Φ(tn). With a reasonable requirement on

the exact solution φ of the problem (1.1), we are able to establish a discrete H1 error estimate

for the BDF2 scheme (2.15).

Theorem 4.1. Assume that 0 < γn+1 ≤ γ∗ < 1 +
√

2 for all 1 ≤ n ≤ N − 1, S ≥ 2, and the

time step sizes satisfy (3.8) and (3.11). Let γN+1 be any number in (0, γ∗). In addition, assume

that τ1 ≤ C1τ
4
3 and φ ∈ W 3,∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;W 4,∞(Ω)). Then it holds for the BDF2

scheme (2.15) in the constant mobility case that

γ
3/2
n+2

1 + γn+2

‖en+1 − en‖2h
τn+1

+ ε2‖∇hen+1‖2h + S‖en+1‖2h

≤ C exp(T )
(
τ4‖φ‖2W 3,∞(0,T ;L∞(Ω)) + h4‖φ‖2L∞(0,T ;W 4,∞(Ω))

)) (4.2)

for all 0 ≤ n ≤ N − 1.

Proof. It follows from ‖~Φ‖∞ ≤ 1, ‖~Φn‖∞ ≤ 1 (by the discrete MBP stated in Theorem 3.1), and

f(·) ∈ C1(R) that

max{‖f(~Φ)‖∞, ‖f
′
(~Φ)‖∞, ‖f(~Φn)‖∞, ‖f

′
(~Φn)‖∞} ≤ C2 (4.3)

for all n = 0, 1, · · · , N. Comparing (1.1) and (2.15) gives the error equations of e∗,n+1 and en+1:
e∗,n+1 − en

τn+1
− ε2∆he

∗,n+1 + Se∗,n+1 = Sen − S(~Φ(tn+1)− ~Φ(tn))

+ f(~Φ(tn+1))− f(~Φn) + Tn1 + Tn2 ,

Fn+1
2 e− ε2∆he

n+1 + Sen+1 = Se∗,n+1 + f(~Φ(tn+1))− f(~Φ∗,n+1) + Tn2 + Tn3

(4.4a)

(4.4b)

for n = 1, 2, · · · , N − 1, where the truncation errors Tni , i = 1, 2, 3 are given by

Tn1 = ~Φt(tn+1)− ~Φ(tn+1)−~Φ(tn)
τn+1

, Tn2 = ε2∆~Φ(tn+1)− ε2∆h
~Φ(tn+1),

Tn3 = ~Φt(tn+1)− ∂t(Π2,n
~Φ)(tn+1).
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Taking the discrete L2 inner products of (4.4a) and (4.4b) with 2τn+1e
∗,n+1 and 2(en+1 − en),

respectively, we obtain by Lemma 2.1 that

‖e∗,n+1‖2h − ‖en‖2h + 2τn+1ε
2‖∇he∗,n+1‖2h + 2τn+1S‖e∗,n+1‖2h,

= 2τn+1

〈
Sen − S(~Φ(tn+1)− ~Φ(tn)) + f(~Φ(tn+1))− f(~Φn) + Tn1 + Tn2 , e

∗,n+1
〉

Ω
, (4.5a)

2
〈
Fn+1

2 e, en+1 − en
〉

Ω
+ ε2

(
‖∇hen+1‖2h − ‖∇hen‖2h

)
+ S

(
‖en+1‖2h − ‖en+1‖2h

)
≤ 2
〈
Se∗,n+1 + f(~Φ(tn+1))− f(~Φ∗,n+1) + Tn2 + Tn3 , e

n+1 − en
〉

Ω
. (4.5b)

For (4.5b), using the inequality (4.1), Cauchy-Schwarz inequality and Young’s inequality, we have

γ
3/2
n+2

1 + γn+2

‖en+1 − en‖2h
τn+1

−
γ

3/2
n+1

1 + γn+1

‖en − en−1‖2h
τn

+G(γ∗, γ∗)
‖en+1 − en‖2h

τn+1

+ε2
(
‖∇hen+1‖2h − ‖∇hen‖2h

)
+ S

(
‖en+1‖2h − ‖en+1‖2h

)
≤ C3τn+1

(
‖e∗,n+1‖2h + ‖f(~Φ(tn+1))− f(~Φ∗,n+1)‖2h + ‖Tn2 ‖2h + ‖Tn3 ‖2h

)
+G(γ∗, γ∗)

‖en+1 − en‖2h
τn+1

≤ C3 max{1, (C2)2}τn+1

(
‖e∗,n+1‖2h + ‖Tn2 ‖2h + ‖Tn3 ‖2h

)
+G(γ∗, γ∗)

‖en+1 − en‖2h
τn+1

,

(4.6)

where we have used the fact

‖f(~Φ(tn+1))− f(~Φ∗,n+1)‖2h ≤ (C2)2‖e∗,n+1‖2h

derived from (4.3). Thus we deduce that

γ
3/2
n+2

1 + γn+2

‖en+1 − en‖2h
τn+1

−
γ

3/2
n+1

1 + γn+1

‖en − en−1‖2h
τn

+ ε2
(
‖∇hen+1‖2h − ‖∇hen‖2h

)
+S
(
‖en+1‖2h − ‖en‖2h

)
≤ C3 max{1, (C2)2}τn+1

(
‖e∗n+1‖2h + ‖Tn2 ‖2h + ‖Tn3 ‖2h

)
.

(4.7)

In a similar way, we can obtain the following estimate from (4.5a)

‖e∗,n+1‖2h − ‖en‖2h + 2τn+1ε
2‖∇he∗,n+1‖2h + 2τn+1S‖e∗,n+1‖2h

≤ C4τ
2
n+1

(
‖en‖2h + ‖~Φ(tn+1)− ~Φ(tn)‖2h + ‖f(~Φ(tn+1))− f(~Φn)‖2h

+‖Tn1 ‖2h + ‖Tn2 ‖2h
)

+ 1
2‖e
∗,n+1‖2h

≤ C5τ
2
n+1

(
‖en‖2h + τ2

n+1‖φt‖2L∞(0,T ;L∞(Ω)) + ‖Tn1 ‖2h + ‖Tn2 ‖2h
)

+ 1
2‖e
∗,n+1‖2h,

(4.8)

where we have used the fact

‖f(~Φ(tn+1))− f(~Φn)‖2h ≤‖f(~Φ(tn+1))− f(~Φ(tn))‖2h + ‖f(~Φ(tn))− f(~Φn)‖2h
≤(C2)2

(
‖~Φ(tn+1)− ~Φ(tn)‖2h + ‖en‖2h

)
≤(C2)2

(
τ2
n+1‖φt‖2L∞(0,T ;L∞(Ω)) + ‖en‖2h

)
.

Then it follows from (4.8) that

‖e∗,n+1‖2h ≤ 2‖en‖2h + 2C5τ
2
n+1

(
‖en‖2h + τ2

n+1‖φt‖2L∞(0,T ;L∞(Ω)) + ‖Tn1 ‖2h + ‖Tn2 ‖2h
)
. (4.9)
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Combining with (4.7) and (4.9), gives

γ
3/2
n+2

1 + γn+2

‖en+1 − en‖2h
τn+1

−
γ

3/2
n+1

1 + γn+1

‖en − en−1‖2h
τn

+ ε2
(
‖∇hen+1‖2h − ‖∇hen‖2h

)
+S
(
‖en+1‖2h − ‖en‖2h

)
≤ C6τn+1

(
‖en‖2h + τ4

n+1‖φt‖2L∞(0,T ;L∞(Ω)) + τ2
n+1‖Tn1 ‖2h + ‖Tn2 ‖2h + ‖Tn3 ‖2h

)
.

(4.10)

For the truncation errors Tni , i = 1, 2, 3, we have the following estimates (see [38, 41]):

‖Tn1 ‖2h ≤ C7τ
2
n+1‖φ‖2W 2,∞(0,T ;L∞(Ω)), ‖Tn2 ‖2h ≤ C8h

4‖φ‖2L∞(0,T ;W 4,∞(Ω)),

‖Tn3 ‖2h ≤ C9(τn + τn+1)4‖φ‖2W 3,∞(0,T ;L∞(Ω)).
(4.11)

Thus, summing up the inequality (4.10) from 1 to n gives

γ
3/2
n+2

1 + γn+2

‖en+1 − en‖2h
τn+1

+ ε2‖∇hen+1‖2h + S‖en+1‖2h

≤ γ
3
2
2

1 + γ2

‖e1‖2h
τ1

+ ε2‖∇he1‖2h + S‖e1‖2h + C10

n∑
k=1

τk+1‖ek‖2h

+C11

(
τ4‖φ‖2W 3,∞(0,T ;L∞(Ω)) + h4‖φ‖2L∞(0,T ;W 4,∞(Ω))

)
.

(4.12)

For the case of n = 0, the corresponding error equation (by BDF1) reads as

e1

τ1
− ε2∆he

1 + Se1 = f(~Φ(t1))− f(~Φ0) + T 0
2 + T 0

3 .

Similar to the arguments for the case n ≥ 1, the following estimate can be derived under the

assumption τ1 ≤ C1τ
4/3:

‖e1‖2h
τ1

+ ε2‖∇e1‖2h + S‖e1‖2h ≤ C12τ1

(
τ2

1 + h4
)
≤ C12 max{1, (C1)3}

(
τ4 + h4

)
. (4.13)

Combining (4.12) and (4.13) and using the discrete Gronwall’s lemma, we then obtain the desired

estimate (4.2). �

Remark 4.1. It often imposes a further restriction on the time step size when using the

Gronwall’s inequality for the error analysis. However, in the above proof of Theorem 4.1, we

note that the term G(γ∗, γ∗)
‖en+1−en‖2h

τn+1
on the right-hand side of the error inequality (4.6) can be

eliminated by a term from the left-hand side of the equation. Consquently, we are able to obtain

the error inequality (4.12), which only contains the norm terms of en+1 with positive coefficients

on the left-hand side. Thus, there is no further time step restriction from the use of the Gronwall’s

inequality in our error analysis.

With the help of the MBP property (Theorem 3.1) and the discrete H1 error estimate (Theorem

4.1), we are able to achieve the energy stability property of the BDF2 scheme (2.15).

Theorem 4.2. Under the assumption of Theorem 4.1, the BDF2 scheme (2.15) in the constant

mobility case is energy stable in the sense that

En+1
h − Enh ≤ C(h4 + τ2) (4.14)
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for all 0 ≤ n ≤ N − 1, where the modified discrete energy Enh is defined by

Enh = Eh(~Φn) +
γ

3/2
n+1

1 + γn+1

‖~Φn − ~Φn−1‖2h
2τn

.

Proof. Taking the discrete L2-inner product of (2.15) with ~Φn+1 − ~Φn, we get that〈
Fn+1

2
~Φ, ~Φn+1 − ~Φn

〉
Ω

+ ε2
〈
∇h~Φn+1,∇h(~Φn+1 − ~Φn)

〉
Ω

+
〈
f(~Φn+1), ~Φn+1 − ~Φn

〉
Ω

=
〈
f(~Φn+1)− f(~Φ∗,n+1), ~Φn+1 − ~Φn

〉
Ω
− S

〈
~Φn+1 − ~Φ∗,n+1, ~Φn+1 − ~Φn

〉
Ω

≤ (C2)2 + S2

2
‖~Φn+1 − ~Φ∗,n+1‖2h + ‖~Φn+1 − ~Φn‖2h

≤ max
{

1
2((C2)2 + S2), 1, ‖φt‖L∞(0,T ;L∞(Ω))

}(
‖en‖2h + ‖en+1‖2h + ‖e∗,n+1‖2h + τ2

n+1

)
,

(4.15)

where we have used the following inequalities

‖~Φn+1 − ~Φ∗,n+1‖2h = ‖~Φn+1 − ~Φ(tn+1) + ~Φ(tn+1)− ~Φ∗,n+1‖2h
≤ ‖en+1‖2h + ‖e∗,n+1‖2h,

‖~Φn+1 − ~Φn‖2h = ‖~Φn+1 − ~Φ(tn+1) + ~Φ(tn+1)− ~Φ(tn) + ~Φ(tn)− ~Φn‖2h
≤ ‖en+1‖2h + τ2

n+1‖φt‖L∞(0,T ;L∞(Ω)) + ‖en‖2h.

Noting that

a(a− b) =
1

2

(
a2 − b2 + (a− b)2

)
, a, b ∈ R,〈

F (~Φn+1)− F (~Φn), 1
〉

Ω
≤
〈
f(~Φn+1), ~Φn+1 − ~Φn

〉
Ω

+
1

2
‖~Φn+1 − ~Φn‖2h,

and using (4.1) and (4.15), we can derive

En+1
h − Enh ≤ max

{
1
2((C2)2 + S2), 3

2 ,
3
2‖φt‖L∞(0,T ;L∞(Ω))

}
·
(
‖en‖2h + ‖en+1‖2h + ‖e∗,n+1‖2h + τ2

n+1

)
.

(4.16)

Combining with (4.2), (4.9), and (4.16), we then obtain (4.14). �

Remark 4.2. For the quasi-uniform temporal mesh, there exits a finite constant β such that

max
1≤n≤N

τn/ min
1≤n≤N

τn ≤ β and thus τ ≤ βT
N . When τ is sufficient small and h = O(

√
τ), we can

obtain

Eh(~Φn) ≤ Enh ≤ E1
h + C ≤ Eh(~Φ0) + C, ∀ 1 ≤ n ≤ N

for the BDF2 scheme (2.15) in the constant mobility case.

Remark 4.3. The inequality (4.1) plays an important role in the above error and energy

stability analysis. Unfortunately, we have not been able to prove a similar result as (4.1) for the

estimate of
〈
(Λ∗,n+1)−1Fn+1

2
~Φ, ~Φn+1 − ~Φn

〉
Ω

in the case of variable mobility. Thus the results in

Theorems 4.1 and 4.2 could not be applied to the variable mobility case, and deeper analysis for

this issue certainly needs more efforts.
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4.2. Error estimate in the L∞ norm for the general mobility case. In this subsection,

we study the discrete L∞ error estimate of the BDF2 scheme (2.15) for the Allen-Cahn equation

with a general mobility M(φ). Let us define

F2
~Φ(tn+1) = bn0

(
~Φ(tn+1)− ~Φ(tn)

)
+ bn1

(
~Φ(tn)− ~Φ(tn−1)

)
for 1 ≤ n ≤ N − 1 and Λ(~Φ(tn)) = diag(M(~Φ(tn))) for 0 ≤ n ≤ N − 1.

Lemma 4.1. Assume that {gk}N−1
k=0 and {ωk}Nk=0 are two non-negative sequences and there

exist some constants ζ > 0 and λ ∈ (0, 1) such that

n+1∑
k=1

dnn−k+1δτω
k ≤ ζ

n∑
k=0

λn−kωk + gn, ∀ 0 ≤ n ≤ N − 1, (4.17)

where the discrete kernels {dnk}nk=0 are defined in (2.4). Then it holds

ωn+1 ≤ exp
(ζtn+1

1− λ

)(
ω0 +

n∑
k=0

gk

bk0

)
. (4.18)

The proof of this lemma is similar to that of Lemma 5.1 in [41] and Theorem 3.1 in [40] by

using the technique of the discrete complementary convolution kernels of {dnk}nk=0. We omit it

here and leave it for the interested readers. Comparing with Lemma 5.1 in [41] and Theorem 3.1

in [40], there is no term ωn+1 on the right-hand side of the condition (4.17). Then the time step

restriction required in [41] and [40] for the result (4.18) can be removed.

Theorem 4.3. Assume that 0 < γn ≤ γ∗ < 1 +
√

2 for all 1 ≤ n ≤ N − 1, M(·) ∈ C1(R), the

stabilizing parameter satisfies (2.13), and the time step sizes satisfy (3.8) and (3.11). Let γN+1 be

any number in (0, γ∗). In addition, assume φ ∈ W 3,∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;W 4,∞(Ω)). Then

it holds for the BDF2 scheme (2.15) in the general mobility case that

‖en+1‖∞ ≤
C1tn+1

1− η∗
exp

(C2tn+1

1− η∗

)(
τ2‖φ‖W 3,∞(0,T ;L∞(Ω)) + h2‖φ‖L∞(0,T ;W 4,∞(Ω))

)
(4.19)

for all 0 ≤ n ≤ N − 1.

Proof. From (1.1), we deduce that the exact solution ~Φ satisfies the following equation: for any

1 ≤ n ≤ N − 1,

F2
~Φ(tn+1) + Λ(~Φ(tn+1))

(
− ε2Dh

~Φ(tn+1) + F ′(~Φ(tn+1))
)

+ T n2 + T n3 = 0, (4.20)

where

T n2 = Λ(~Φ(tn+1))(−ε2∆~Φ(tn+1) + ε2Dh
~Φ(tn+1)), T n3 = ~Φt(tn+1)− ∂t(Π2,n

~Φ)(tn+1).

It is easy to verify that

‖T n2 ‖∞ ≤ C3h
2‖φ‖L∞(0,T ;W 4,∞(Ω)), ‖T n3 ‖∞ ≤ C4(τn + τn+1)2‖φ‖W 3,∞(0,T ;L∞(Ω)).

Subtracting (2.16b) from (4.20), we derive the error equation of en+1 as

Fn+1
2 e+ Sen+1 − ε2Λ∗,n+1Dhe

n+1

= Se∗,n+1 − Λ∗,n+1
(
F ′(~Φ∗,n+1)− F ′(~Φ(tn+1))

)
− (Λ∗,n+1 − Λ(~Φ(tn+1)))(

− ε2Dh
~Φ(tn+1) + F ′(~Φ(tn+1))

)
+ T n2 + T n3 =: In.

(4.21)
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Since F (ρ) = (1− ρ2)2/4, we have maxρ∈[−1,1] F
′(ρ) = 2

3
√

3
and maxρ∈[−1,1] F

′′(ρ) = 2. Therefore,

we can get

‖Λ∗,n+1 − Λ(~Φ(tn+1))‖∞ ≤ max
ρ∈[−1,1]

∣∣M ′(ρ)
∣∣‖e∗,n+1‖∞,

and thus

‖In‖∞ ≤ S‖e∗,n+1‖∞ + 2L‖e∗,n+1‖∞ +
(
ε2‖φ‖L∞(0,T,W 2,∞(Ω)) + 2

3
√

3

)
‖Λ∗,n+1 − Λ(~Φ(tn+1))‖∞ + ‖T n2 ‖∞ + ‖T n3 ‖∞

≤ C4‖e∗,n+1‖∞ + C5

[
τ2‖φ‖W 3,∞(0,T ;L∞(Ω)) + h2‖φ‖L∞(0,T ;W 4,∞(Ω))

]
,

(4.22)

where L is defined in Lemma 3.1,

C4 = S + 2L+ max
ρ∈[−1,1]

∣∣M ′(ρ)
∣∣(ε2‖φ‖L∞(0,T,W 2,∞(Ω)) + 2

3
√

3

)
= S + 2L+ C6, (4.23)

and we have used the fact

‖ε2Dh
~Φ(tn+1)‖∞ = ‖ε2∆~Φ(tn+1) + T n2 ‖∞ ≤ ε2‖φ‖L∞(0,T,W 2,∞(Ω)) + ‖T n2 ‖∞. (4.24)

Following the similar process of deriving (4.21), we can easily obtain the error equation of e∗,n+1

from (1.1) and (2.16a) as:

e∗,n+1 − en

τn+1
+ Se∗,n+1 − ε2ΛnDhe

∗,n+1

= Sen − S(~Φ(tn+1)− ~Φ(tn))− Λn
[
F ′(~Φn)− F ′(~Φ(tn+1))

]
−
[
Λn − Λ(~Φ(tn+1))

][
− ε2Dh

~Φ(tn+1) + F ′(~Φ(tn+1))
]

+ T n1 + T n2 ,

(4.25)

where T n1 = ~Φt(tn+1)− ~Φ(tn+1)−~Φ(tn)
τn+1

satisfies

‖T n1 ‖∞ ≤ C7τn+1‖φ‖W 2,∞(0,T ;L∞(Ω)).

Noting that

‖F ′(~Φn)− F ′(~Φ(tn+1))‖∞ = ‖F ′(~Φn) + F ′(~Φ(tn))‖∞ + ‖F ′(~Φ(tn))− F ′(~Φ(tn+1))‖∞
≤ 2
[
‖en‖∞ + ‖φ‖W 1,∞(0,T ;L∞(Ω))τn+1

]
,∥∥Λn − Λ(~Φ(tn+1))

∥∥
∞ ≤

∥∥Λn − Λ(~Φ(tn))
∥∥
∞ +

∥∥Λ(~Φ(tn))− Λ(~Φ(tn+1))
∥∥
∞

≤ max
ρ∈[−1,1]

∣∣M ′(ρ)
∣∣[‖en‖∞ + τn+1‖φ‖W 1,∞(0,T ;L∞(Ω))

]
.

Multiplying (4.25) with τn+1, and combining it with (4.23) and (4.24), we derive that

(1 + Sτn+1)‖e∗,n+1‖∞ ≤
∥∥e∗,n+1 + Sτn+1e

∗,n+1 − ε2τn+1ΛnDhe
∗,n+1

∥∥
∞

≤
(
1 + τn+1(S + 2L+ C6)

)
‖en‖∞

+C8

(
τ2
n+1‖φ‖W 2,∞(0,T ;L∞(Ω)) + τn+1h

2‖φ‖L∞(0,T ;W 4,∞(Ω))

)
.

Therefore, we obtain

‖e∗,n+1‖∞ ≤ C9‖en‖∞ + C10

(
τ2
n+1‖φ‖W 2,∞(0,T ;L∞(Ω)) + τn+1h

2‖φ‖L∞(0,T ;W 4,∞(Ω))

)
, (4.26)

where C9 = 1 + (2L+ C6)τn+1 ≥ 1+τn+1(S+2L+C6)
1+Sτn+1

.
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Define en+1 = en+1 − η∗en for 0 ≤ n ≤ N − 1 with e0 = e0 = 0. Then we have

e1 = e1, en+1 =

n+1∑
k=0

ηn+1−k
∗ ek, 1 ≤ n ≤ N − 1, (4.27)

and it is easy to check that

‖e1‖∞ = ‖e1‖∞ ≤ C11

(
τ2

1 ‖φ‖W 2,∞(0,T ;L∞(Ω)) + τ1h
2‖φ‖L∞(0,T ;W 4,∞(Ω))

)
with the BDF1 scheme as the starting step. Using the similar process to derive (3.2) from (2.16b),

we can obtain the following equation for en+1 from (4.21):

(
(dn0 + S)I − ε2Λ∗,n+1Dh

)
en+1 =

n∑
k=0

Qnn−ke
k + In, (4.28)

where Qnk is defined in (3.3) with η = η∗. Consequently, we can use Lemma 3.2 and (4.28) to get

dn0‖en+1‖∞ ≤
∥∥((dn0 + S)I − ε2Λ∗,n+1Dh

)
en+1

∥∥
∞

≤
∑n

k=0(dnn−k − dnn−k+1 − Sηn+1−k
∗ )‖ek‖∞ + ‖In‖∞

≤
∑n

k=0(dnn−k − dnn−k+1)‖ek‖∞ + ‖In‖∞.

Rewriting the above inequality gives

n+1∑
k=1

dnn−k+1δτ‖ek‖∞ ≤ ‖In‖∞. Combining it with (4.22),

(4.26) and (4.27), we obtain

n+1∑
k=1

dnn−k+1δτ‖ek‖∞ ≤ C2‖ek‖∞ + C12

(
τ2‖φ‖W 3,∞(0,T ;L∞(Ω)) + h2‖φ‖L∞(0,T ;W 4,∞(Ω))

)
≤ C2

∑n
k=1 η

n−k
∗ ‖ek‖∞ + C12

(
τ2‖φ‖W 3,∞(0,T ;L∞(Ω))

+ h2‖φ‖L∞(0,T ;W 4,∞(Ω))

) (4.29)

with C2 = C4C8. Next, it follows from Lemma 4.1 that

‖en+1‖∞ ≤ C1 exp
(C2tn+1

1− η∗

)(
τ2‖φ‖W 3,∞(0,T ;L∞(Ω)) + h2‖φ‖L∞(0,T ;W 4,∞(Ω))

)∑n
k=0

1
bk0

≤ C1tn+1 exp
(C2tn+1

1− η∗

)(
τ2‖φ‖W 3,∞(0,T ;L∞(Ω)) + h2‖φ‖L∞(0,T ;W 4,∞(Ω))

)
,

where we have used the fact that 1
b00

= τ1 and 1
bk0

=
1+γk+1

1+2γk+1
τk+1 ≤ τk+1 for 1 ≤ k ≤ n. Finally,

we obtain

‖en+1‖∞ ≤
n+1∑
k=1

ηn+1−k
∗ ‖ek‖∞

≤ C1tn+1

1− η∗
exp

(C2tn+1

1− η∗

)(
τ2‖φ‖W 3,∞(0,T ;L∞(Ω)) + h2‖φ‖L∞(0,T ;W 4,∞(Ω))

)
,

which completes the proof. �
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Remark 4.4. Similar to the derivation of linear BDF2 scheme (2.15), one can also construct

a linear second order in time scheme with variable time step sizes based on the Crank-Nicolson

formulation as follows: given Φ0 = ΠChφ0, and for n = 1, 2 · · · , N − 1, find Φn+1 ∈ Ch such that
Φn+ 1

2 = BDF1(Φn, τn+1/2),

Φn+1 − Φn

τn+1
− ε2M(Φn+ 1

2 )∆h
Φn+1 + Φn

2
+ f(Φn+ 1

2 ) + S
(Φn+1 + Φn

2
− Φn+ 1

2

)
= 0,

(4.30a)

(4.30b)

The above theoretical analysis for the BDF2 scheme (2.15) can be applied to the Crank-Nicolson

scheme (4.30) to derive similar results obtained for the BDF2 scheme (2.15), including the con-

ditional MBP preserving and corresponding error estimates.

5. Numerical results

In this section we perform various experiments on the Allen-Cahn equation (1.1) to numerically

validate the theoretical results of the proposed BDF2 scheme (2.15) in terms of accuracy and

preservation of the MBP. The homogenous Neumann boundary condition is always imposed.

5.1. Test of temporal convergence. We consider two types of mobility functions: one is the

constant mobility M(φ) ≡ 1 and the other is the nonlinear degenerate mobility M(φ) = 1 − φ2.

We choose Ω = (0, 1)2, ε = 0.1, the initial value

φ0(x, y) = 0.1(cos 3x cos 2y + cos 5x cos 5y),

and the terminal time T = 1. The stabilizing parameter is set to be S = 2 to satisfy the

requirement (2.13) for both mobility functions.

The central finite difference method is used for the spatial discretization with the fixed small

mesh size h = 1/1024. Since there is no analytical solution available for this example to exactly

evaluate the numerical solution errors, we instead compute their approximations in the discrete

L∞ and H1 norms, respectively:

eT∞ = ‖~ΦN − ~Φ2N‖∞, eTH1 = ‖~ΦN − ~Φ2N‖H1
h
,

where ~ΦN and ~Φ2N denote the numerical solution at the terminal time T = 1 with N and 2N

subintervals for the time domain [0, 1], respectively. To validate the theoretical temporal accuracy,

we firstly investigate the error behaviors of the BDF2 scheme (2.15) with the uniform time steps

by repeatedly refining the time step size τ from 1/10 to 1/640 (i.e., N changes from 10 to 640).

The solution errors vs. the time step sizes are plotted in Fig. 1 in the log-log scale for both

mobility functions. It is observed that the BDF2 scheme (2.15) achieves the expected second-

order temporal accuracy for all test cases. Next, we numerically study the error behaviors of the

BDF2 scheme (2.15) with nonuniform time steps. The nonuniform time step sizes {t̂n}Nn=0 used

here is produced by 25% perturbation of the uniform ones {tn = n/N}Nn=0. As reported in Table

1, the second-order temporal accuracy is still achieved by the BDF2 scheme for all cases.

5.2. Test of MBP preservation. We demonstrate the MBP preservation of the proposed BDF2

scheme (2.15) through two well-known benchmark examples governed by the Allen-Cahn equa-

tions. One is the shrinking bubble problem [5] and the other is the grain coarsening problem.
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Figure 1. Plots of the numerical solution errors vs. the time step sizes in the

log-log scale for the BDF2 scheme (2.15) with uniform time steps. Left: M(φ) ≡ 1;

right: M(φ) = 1− φ2.

Table 1. Numerical solution errors and convergence rates of the BDF2 scheme

(2.15) with nonuniform time steps.

Time steps M(φ) ≡ 1 M(φ) = 1− φ2

N τ max{γn} eT∞ Order eT
H1

h
Order eT∞ Order eT

H1
h

Order

10 1.393e-1 2.282 1.669e-2 – 1.375e-1 – 1.886e-3 – 1.005e-2 –

20 7.033e-2 2.358 5.834e-3 1.54 4.941e-2 1.50 6.399e-4 1.58 3.371e-3 1.60

40 3.408e-2 2.218 1.597e-3 1.79 1.376e-2 1.77 1.782e-4 1.76 9.391e-4 1.76

80 1.785e-2 2.656 3.728e-4 2.25 3.262e-3 2.23 4.255e-5 2.21 2.239e-4 2.22

160 9.061e-3 2.712 9.872e-5 1.96 8.648e-4 1.96 1.136e-5 1.95 6.002e-5 1.94

320 4.638e-3 2.832 2.511e-5 2.05 2.201e-4 2.04 2.904e-6 2.04 1.537e-5 2.03

640 2.289e-3 2.717 6.293e-6 1.96 5.527e-5 1.96 7.160e-7 1.98 3.849e-6 1.96

The shrinking bubble problem. We consider the Allen-Cahn equation (1.1) with M(φ) ≡ 1

and ε = 0.01 in a rectangular domain (−0.5, 0.5)2. The initial bubble is given by

φ0(x) =

{
1, |x|2 < 0.22,

−1, |x|2 ≥ 0.22.

As discussed in [5, 15, 21, 32], this model describes the evolution in time of a shrinking bubble

with the initial radius R0 = 0.2, and the velocity of this circular moving interface approximately

satisfies the following relation

R(t) =
√
R2

0 − 2ε2t, (5.1)

if ε is sufficiently small. Here, R(t) is the radius of the circle at time t.

The simulation is performed by the BDF2 scheme (2.15) with h = 1/512. The uniform time

steps are used here with the time step size τ = G(1)/[S + 4ε2/h2], which is the maximum

value satisfying the requirement (3.8). Snapshots of the simulated bubble at the times t =

0, 20, 80, 120, 180, 200 are displayed in Fig. 2, which shows that the bubble disappears at t = 200
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Figure 2. Snapshots of the simulated phase structures at the times t = 0, 20, 80,

120, 180, and 200 produced by the BDF2 scheme (2.15) for the shrinking bubble

problem.

as expected. Moreover, we plot the evolution in time of the radius of the simulated bubble in

Fig. 3-(a), which matches the prediction (5.1) very well. Several cross-section views with y = 0

for the simulated solution are presented in Fig. 3-(b) and the evolution of its supremum norm

along with the time is displayed in Fig. 3-(c), which demonstrate the MBP preservation of the

proposed BDF2 scheme (2.15) during the whole simulation. Furthermore, it is also observed that

the energy of the simulated solution is monotonically decreasing in time as shown in Fig. 3-(d).

The grain coarsening dynamics with a time adaptive strategy. Finally, we investigate the

efficiency and the MBP preservation of the proposed BDF2 scheme (2.15) with a time adaptive

strategy for the simulation of the grain coarsening. The coarsening dynamic process usually goes

through several different stages within a long period: changes quickly at the beginning and then

rather slowly until it reaches a steady state. In particular, we consider the coarsening dynamics

governed by the Allen-Cahn equation (1.1) with the nonlinear degenerate mobility M(φ) = 1−φ2

and ε = 0.01. Particularly, it is of great importance to preserve the numerical solution φ ∈ [−1, 1]

in the numerical algorithm for such a nonlinear mobility function. Otherwise, the numerical

solutions may blow up during the time simulation.

The domain is set to be Ω = (−0.5, 0.5)2, and the initial value configuration is given by a

randomly sampled data ranging from −0.9 to 0.9. There already exist several efficient time

adaptive strategies [19, 41, 45, 46, 49] available to be used together with numerical schemes with

variable time steps. In this simulation, we will adopt the following robust time adaptive strategy

based on the energy variation proposed in [45]:

τn+1 = min
(

max
(
τmin,

τmax√
1 + α|E′(t)|2

)
, γmaxτn

)
, (5.2)

where τmin, τmax denote the predetermined minimum and maximum time step sizes, γmax ∈
(0, 1 +

√
2) is the predetermined maximum time step ratio, and α > 0 is a constant parameter.

Such time adaptive strategy will automatically select large time steps when energy decays rapidly

and small ones otherwise. We numerically solve the coarsening dynamics problem using the BDF2
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Figure 3. The evolutions in time of the radius, the cross section of y = 0, the

supremum norm, and the energy of the simulated solution produced by the BDF2

scheme (2.15) with uniform time steps for the shrinking bubble problem.

scheme with four different types of temporal meshes, including the uniform time stepping with

a large step size τ = 0.1, two different ones from the time adaptive strategy (5.2), and the

uniform time stepping with a small step size τ = 0.01. For the time adaptive strategy (5.2),

we always set γmax = 1.5, α = 105 and τmin = 10−5. Also the predetermined maximum time

step sizes are set to be τmax = G(1.5)/[S + 4Lε2/h2] = 0.0159 satisfying the requirement (3.8)

and a large one τmax = 0.1 for the two tested adaptive temporal meshes, respectively. A visual

comparison on the numerical solution evolution between these four types of temporal meshes is

presented in Figs. 4 and 5. It is observed that there is no obvious difference at about t = 10

for the four tested temporal meshes as shown in the first line of Fig. 4, in which the snapshot

of the simulated phase structure with the uniform large time step size τ = 0.1 only differs from

other three temporal grids in a few small details. As shown in Figs. 4 and 5-(b), these minor

phase-structure differences at t = 10 gradually lead to inaccurate solution evolution and energy

evolution for the case of the uniform large time step size τ = 0.1, while the tested two adaptive

time strategies still produce correct coarsening pattern which is consistent with the numerical

results computed by the small time step case τ = 0.01. In Fig. 5-(a), we successfully verify

the MBP-preserving property of the BDF2 scheme by displaying the evolution of the supremum

norm of the numerical solution. We also note that although both the uniform large time step
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case τ = 0.1 and the adaptive time strategy case with τmax = 0.1 don’t satisfy the condition

(3.8), they still maintain the MBP-preserving property. It suggests that the constraint (3.8) on

the time step size may not be optimal for the proposed BDF2 scheme (2.15) in term of preserving

the discrete MBP property. Furthermore, the evolutions of the energy and the adaptive time step

sizes, plotted in Fig. 5-(b)&(c), demonstrate the monotonic energy dissipation and the efficiency

of the BDF2 scheme with the time adaptive strategy.

6. Concluding remarks

In this paper we propose a second-order BDF scheme with nonuniform time steps for the

Allen-Cahn equation with a general mobility. The MBP preservation of the proposed scheme is

successfully established with mild restrictions on the time step sizes and the ratio of adjacent

time step sizes. Moreover, the discrete H1 error estimate and energy stability are rigorously

derived for the constant mobility case and so does the L∞ error estimate for the general mobility

case. Finally, various numerical experiments are carried out to validate the theoretical results and

demonstrate the performance of the proposed scheme adopted with a time adaptive strategy. It

remains interest to further theoretically explore the discrete H1 error analysis and energy stability

for the general mobility case, and study the Allen-Cahn equation with the logarithmic potential,

instead of the double-well potential studied in this paper. Moreover, we also would like extend the

present work to the time-fractional Allen-Cahn equation, in which it is urgently desired to make

use of variable-step structure-preserving high-order time stepping schemes to overcome the initial

singularity from fractional derivatives. In addition, there are two non-constant coefficient Poisson-

type equations to be solved at each time step for the model with non-constant mobility in the

proposed linear BDF2 scheme. Consequently, it may not be computationally cheaper and more

accurate than a comparable second-order nonlinear scheme with the use of nonlinear multigrid

method [8, 53]. Thus, it is also an interesting future work to study nonlinear MBP-preserving

numerical schemes for the Allen-Cahn equation with variable mobility.
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