A LINEAR SECOND-ORDER MAXIMUM BOUND
PRINCIPLE-PRESERVING BDF SCHEME FOR THE ALLEN-CAHN
EQUATION WITH A GENERAL MOBILITY*

DIANMING HOU' LILI JU? ZHONGHUA QIAQO?

ABSTRACT. In this paper, we propose and analyze a linear second-order numerical method for
solving the Allen-Cahn equation with a general mobility. The proposed fully-discrete scheme is
carefully constructed based on the combination of first and second-order backward differentiation
formulas with nonuniform time steps for temporal approximation and the central finite difference
for spatial discretization. The discrete maximum bound principle is proved of the proposed
scheme by using the kernel recombination technique under certain mild constraints on the time
steps and the ratios of adjacent time step sizes. Furthermore, we rigorously derive the discrete
H' error estimate and energy stability for the classic constant mobility case and the L* error
estimate for the general mobility case. Various numerical experiments are also presented to
validate the theoretical results and demonstrate the performance of the proposed method with a
time adaptive strategy.

1. INTRODUCTION

In this paper, we consider the following Allen-Cahn equation with a general mobility:

%‘f — M), (1) € O x (0,7, )
p=—2Ap+ F'(¢), (x,t) € Qx (0,717,

with the initial condition ¢(x,0) = ¢o(x) for any € Q and subject to the homogeneous Neumann
or the periodic boundary condition, where € is a bounded Lipschitz domain in R¢ (d = 1,2, 3),
T > 0 is the terminal time, ¢(x,t) is the unknown function, ¢ > 0 represents the interfacial
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width parameter, M(¢) > 0 is a general mobility function, and F(¢) = 1(1 — ¢?)? is the double-
well potential function. This problem has a structure of L? gradient flow corresponding to the
following free energy functional E(¢), defined by

B0) = [ (1967 + Fio))do (12)

This structure implies that solution of (1.1) will approach to a steady state as ¢ — oo, provided all
steady states are isolated. It is a physically attractive and thermodynamically-consistent model
often used to describe the transitions of the phases in the binary alloys. More specifically, the
Allen-Cahn equation (1.1) satisfies the following energy dissipation law

d

GEO) == [ Meyids <o, (13)

which indicates that the free energy F(¢) monotonically decreases in time. Furthermore, the
Allen-Cahn equation (1.1) satisfies the maximum bound principle (MBP), i.e., |¢(z,t)| < 1 if
|p(x,0)| < 1 for any & € Q and ¢ > 0, and we refer to [46] for more discussions. The MBP
and energy dissipation law are two important features of the equation (1.1), and thus it is highly
desired for the numerical schemes to preserve these physical properties in the discrete level.

During the past decades, there have been extensive works devoted to the development of nu-
merical methods for the Allen-Cahn equation (1.1) with preservation of discrete MBP and energy
stability, especially for the constant mobility case. First-order (in time) linear stabilized schemes
with central finite difference method for spatial discretization were obtained for the Allen-Cahn
equation (1.1) with a constant mobility in [50] and the generalized Allen-Cahn equation with an
advection term in [46], which are unconditionally energy stable and preserve the MBP simultane-
ously. A second-order convex splitting scheme based on Crank-Nicolson approach was investigated
for fractional-in-space Allen-Cahn equation in [26], in which the discrete MBP and energy dissi-
pation were rigorously established. However, it results in a nonlinear system to be solved at each
time step. Hou et al. [25] developed a stabilized second-order Crank-Nicolson/Adams-Bashforth
scheme for the Allen-Cahn equation, which preserves the discrete MBP and energy stability con-
ditionally, and leads to solutions of only linear Poisson-type equations with constant coefficients
at each time step. Recently, Cheng et al. [13, 14] proposed a Lagrange multiplier approach to
construct positivity and bound preserving schemes for a class of semi-linear and quasi-linear
parabolic equations. They have provided a new interpretation for the cut-off approach. Based
on cut-off approach and the scalar auxiliary variable (SAV) method [1, 48], Yang et al. devel-
oped a class of arbitrarily high-order energy-stable and maximum bound preserving schemes for
Allen-Cahn equation with a constant mobility in [56].

Du et al. developed first-order exponential time differencing (ETD) and second-order ETD
Runge-Kutta (ETDRK2) schemes for the nonlocal Allen-Cahn equation, which preserves the
discrete MBP unconditionally in [16], and later they also established an abstract framework on
the MBP for a class of semilinear parabolic equations in [17]. These ETD approaches were also
successfully applied to the conservative Allen-Cahn equations in [28, 34] of preserving the MBP
and mass conservation in the discrete level, and the molecular beam epitaxial model [7, 11] of
maintaining the discrete energy stability. Combining SAV technique with the stabilized first-
order ETD and ETDRK2 methods, Ju et al. [29, 30] successfully constructed both the energy
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dissipation law and the MBP preserving schemes for a class of Allen-Cahn type gradient flows.
The unconditional energy stability of the stabilized ETDRK2 scheme for the gradient flows are
also established in [18]. Based on integrating factor Runge-Kutta (IFRK) method, high-order
MBP preserving schemes in time were recently developed for the semilinear parabolic equations
in [31]. Subsequently, a family of stabilized IFRK schemes (up to the third-order and fourth-
order) were proposed in [35, 57, 58] to preserve the discrete MBP unconditionally. Recently, an
arbitrarily high-order multistep exponential integrator method was presented in [33] by enforcing
the maximum bound via a cut-off operation. However, these high-order MBP-preserving ETD
and IFRK methods seem difficultly to be extended to the problems with variable mobilities, since
they are derived from either the variation-of-constant formula or an exponential transformation
of the solution. We also would like to remark that all above MBP-preserving and energy stable
scheme are based on the single time-stepping approach. There also exist few research and results
on the MBP preservation of multiple time-stepping method, such as the popular high-order BDF
schemes. Liao et al. studied the two-step second-order backward differentiation formula (BDF2)
scheme for the time discretization of the Allen-Cahn equation with a constant mobility in [41], in
which the MBP preservation and energy stability are established under certain mild constraints
on the time steps and the ratios of adjacent time step sizes. However, it uses fully implicit
treatment for the nonlinear term and thus leads to solving a nonlinear system at each time step.
There also have been a lot of research work [6, 10, 12, 20, 36, 37, 44, 55] on high-order BDF
schemes for gradient flows, which maintain certain discrete energy stability.

Another common feature of the Allen-Cahn equation (1.1) is that its evolution process often
takes quite long time before it settles at a steady state. Moreover, it usually undergoes both
fast and slow changing stages during the whole evolution process. Therefore, it is also highly
useful to develop high-order structure-preserving numerical schemes with variable time steps for
the Allen-Cahn equation, so that some existing time adaptive strategies can be easily applied. In
this paper, we will propose and analyze an efficient linear second-order numerical method with
nonuniform time steps for solving the Allen-Cahn equation with a general (constant or variable)
mobility, which is based on the nonuniform BDF2 approach [4, 9, 23, 41] and preserves the discrete
MBP under some mild constraints like [41].

The rest of the paper is organized as follows: In Section 2, we first review some preliminaries
on the temporal and spatial discretization, and then propose the linear second-order BDF scheme
for Allen-Cahn equation (1.1). Next we establish the discrete MBP of the proposed scheme using
the kernel recombination technique in Section 3. In Section 4, some results on error estimates in
the L>* and H! norms and energy stability are rigorously derived. Several examples are tested
in Section 5 to numerically validate the theoretical prediction and demonstrate the performance
of the proposed scheme. Finally, some concluding remarks are drawn in section 6.

2. THE LINEAR SECOND-ORDER BDF SCHEME WITH NONUNIFORM TIME STEPS

We first briefly review the BDF2 formula for approximating time derivative and the central
finite difference for discretizing the Laplacian, and then propose a linear second-order BDF scheme
for the Allen-Cahn equation with a general mobility (1.1). Without loss of generality, we focus on
the two-dimensional problem (d = 2) with the homogenous Neumann boundary condition, i.e.,



4 DIANMING HOU, LILI JU AND ZHONGHUA QIAO

g—z‘ an = 0 In what follows. It is easy to extend the corresponding results to the cases of higher
dimensional spaces and/or the periodic boundary condition.

2.1. The BDF2 formula with nonuniform time steps and its reformulation through
kernel recombination. Let {7, = t,, — t,—1 > O}fIV:l denote the time step sizes of a general
partition of the time interval [0, 7] such that ¢y = 0 and 27]1\[:1 Tn =T, and {y,4; = 2 > 0} !

Tn
denote the ratios of the corresponding two adjacent time step sizes. Define 7 = 1I<na<xN Ty, as the
<n<

maximum time step size of such time partition and ;. = max -, as the maximum adjacent
1<n<N

time-step ratio.
For any function ¢(t) defined on [0, T, denote II3,,¢(t) as its quadratic interpolation operator
using the three points (tn—1, ¢(tn—1)), (tn, ¢(ts)) and (tn4+1, ¢(tnt1)), and we then have

(t —tn)(t — tns1) (t = tn—1)(t — tnt1) (t —tn1)(t — tn)
) Tn(Tn ¥+ Tn—i—l) - gb(tn) TnTrtl + ¢(tn+1) (Tn + Tn+1)7_n+1

H2n¢(t) = ¢(tn—1

for any ¢ € [t,,—1,tn+1] and consequently

Ol ¢ 1 /14294 Vo
P (fy1) = ( tn1) — (1 tn) + — L t_>.
ot ( n+1) ot 1 +7n+1 (ZS( n-l—l) ( + 7n+1)¢( n) + 1 +’Yn+1 (ZS( n 1)
Thus the correspondingly derived second-order BDF approximation to ¢'(t) at t = t,,41 reads:
1 (1429 ot e
/(¢ ~ Fn+1 — ( n n+l 14+ no n+ n 1>
¢ (tns1) 5 ¢ i \T5n ¢ (14 Yng1)e 1 +%+1¢ 2.1)

= b6, £ 018, 0", n=12--,N—-1,

where §,;¢" ! = ¢"t1 — ¢ @™ is a certain approximation to ¢(t,), and the discrete convolution
kernels

142 2
bg:——i;ﬁii—>o,b?:———ﬁhﬂ———<a
Tat1 (1 + Yny1) Tntr1(1+ Ynt1)
For n = 0, if we set b = 1/7 and b = 0, then Fj¢ = 5;?1 degrades to the first-order BDF
approximation to ¢'(t) at t1, i.e., the well-know backward Euler approximation

/ ~ g+l 5T¢n+1 _
¢ (o) » FIH 9 ="2 pn=0,1,--- ,N—1.
Tn+1

A novel technique through variable-weights recombination of a new specially-created variable
was first proposed in [43] to achieve 3 — « order accuracy for the discrete form of a-th order
fractional Caputo derivative under the uniform time partition, in which the reformed convolu-
tion kernels are positive and monotone and play an important role in stability and convergence
analysis. Also see [40, 41] for some recent developments in this direction. Following this kernel
recombination technique, we define a new variable v as

Yt =gt =g, =01, N -1, (22)
with ¥° = ¢%, where 7 is a constant parameter to be determined such that the reformed discrete

convolution kernels are positive and monotone. Then we have for n =0,1,--- /N — 1,
n+1

n
¢n+1 — Z 7777,—}-1—7%#](:7 5T¢n+1 _ Z nn_kéﬂ'd}k—i_l + nn+1¢0.
k=0 k=0
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Combing (2.1) and the above identities, we can equivalently reform the BDF2 formula (2.1) as
follows

n
Fptle =Y "di 0" +dp 0, 1<n< N -1, (2.3)
k=0
where the reformed discrete convolution kernels are defined by

dy =0y, df=n""t(bgn+by), 1<k<n+1l (2.4)
Thus we have
b1 =ndi, 1<k<n. (2.5)
In order to make {dZ}Zié positive and decreasing, i.e., dy > di > --- > d;,; > 0, we need to
require 7 to satisfy that
72+1 by
0< —2 =~ <n<1
T+ 200 bg
foralln=1,2,--- ,N — 1. Since 0 < Yp41 < Ymaz and 112290 is increasing in (0,+00), we then
have
A2
max <n< 17 2.6

which also implies 0 < Yar < 1+ V2.

2.2. The central finite difference for the Laplacian. We firstly recall some notations and
results of the discrete function spaces and operators from [2, 3, 27, 38, 47, 51, 52, 54]. Let
Q= (0,L;) x (0,Ly), and we also assume L, = L, = L and the spatial grid spacing h = L/M
for simplicity. We first define the following two finite grid sets:
E={z, 1 =ih[i=01- M},  C={m=(i—gz)h|i=1- M}
and then we introduce the following discrete function spaces:
Ch:{U:CXC%R‘UiJ, 1§i,j§M},
eﬁ:{U:ExC—>]R{|Ui+%,j, 0<i<M,1<j< M},
e%:{U:CxE—>]R{|Ui7j+%, 1<i<M,0<j< M},
eon ={U €€} [ U1 = U 1 =0, 1 <i < M}
Under the homogeneous Neumann boundary condition, the discrete gradient operator V; =
(VE, Vi) :Chp — (€&, €p ) is defined by

(ViU)igp, =~ 0", 1<i<M -1, 1<j<M, (2.7)
(ViU)ijy =~ H =2, 1<i<M 1<j<M-1 (2.8)

for any U € Cp, and the discrete divergence operator V- : (e}, ej) — Cp, is represented by

v o—ur . UY. . —UY. o
z+1/2uh 125 4 w+1/2h LS <G i< M (2.9)

(Vi (U0 )i =
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for any (U”,UY)T € (ef,e¥). Then the discrete LapLacian Aj, : C, — Cp, by the central finite
difference is defined by

(ApU)ij = (Vi - (VaU))ij, 1<4,j <M.
The two average operators a, : ef — Cj and ay, : e% — Cy, are defined by

(@U)ig = 3+ Uiy ) 1S5 <M,

and

1 . .
(ayU)ij = §(Ui,j+% + Ui,jfé)ﬂ 1<i,j<M
for any U € e‘z. We define some related discrete inner-products as follows:

M
(UVYy=h>>" UiVij, YUV €EC,

i,j=1

0%, V7], = (as(U"V), 1), YU* V* € ef,
0¥, VY], = (a,(UYV¥),1),, YUY, VY e e,
(U=, Ut (ve, Vi)l = [U*, V], + [UY, VY],

Then we have the following result for the discrete analogue of integration by parts.

O?

Lemma 2.1 ([38, 51]). For any U,V € Cy, it holds
(AU, V), = ViU, ViV]a.

For any U € C,, we define the following discrete L?, H' and L° norms/semi-norms:

Ul = (U.U)g,
IVRU|2 = [ViaU, ViUl = [dyU, dyU)y + [dyU, dy U]y,
M
2 2 2
Uz = U1+ IVRU s 1Ulleo = Bax 1 Ui
]:

For convenience of description, we also define U € RM? as the vector representation of U € Cy,
in which the elements are arranged first along the x-direction then along the y-direction. Note
that we do not differ them in places there is no ambiguity.

2.3. The linear second-order BDF scheme for the Allen-Cahn equation. Denote by Il¢,
the operator pointwisely limiting a function onto Cp. Let us first recall the fully-discrete linear
first-order BDF scheme (called “BDF1”) proposed in [46, 50| for solving the Allen-Cahn equation
with a general mobility (1.1): given ®° = Il¢, ¢g, for n = 0,1,--- , N — 1, find ®"*! € C, such
that

FPe — 2 M(@™) AR + f(@") + S(@"T — ™) =0, (2.10)
where F'M1® = %;@” and f(¢) = M(¢)F'(¢) and S > 0 is a constant stabilizing parameter.

We will denote the scheme (2.10) as ®"*! = BDF1(®", 7,11). The above linear BDF1 scheme
(2.10) also be rewritten in the following vector form:

FIE — 2A" D, @™ 4 f(87) 4+ S(" — d") = 0, (2.11)
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where D, = I G+G®I € RM*XM? with T denoting the identity matrix (with the matched
dimensions) and

MxM

and f(P") = A”((@”) '3+<§”) is defined elementwise with the diagonal matrix A" = diag(M (®")).
Clearly, Dy, is the corresponding matrix representation of Ay,.

In analogous to the energy E(¢) defined in (1.2), we define the discrete energy Ej(®") as

2 M2 2
Ep(3") = —h2%(¢>”)TDh<I>" +12Y F(@)) = %[Vh(b”, Vid"o + (F(®"),1),.  (2.12)
i=1
Then the unconditional energy stability and the discrete maximum bound principle of the fully-

discrete BDF1 scheme (2.10) hold as stated in the following lemma, and we refer to Theorem 3.2
in [46] and Theorem 3 in [50] for details.

Lemma 2.2 ([46, 50]). Asssume that |8°]|o < 1 and the stabilizing parameter

Sz max (M'(p)F'(p) + M(p)F"(p)), (2.13)

then it unconditionally holds for the BDF1 scheme (2.10) that |®"*!||s < 1 forn =0,1,--- ,N—
1. Particularly, if the mobility function M (¢) = 1, then

Ep (@™ < Ep(0™) (2.14)

foralln=0,1,--- /N — 1, provided that S > 2.

Now we are ready to construct a fully-discrete linear second-order BDF scheme with nonuni-
form time steps (called “BDF2” hereafter) for the Allen-Cahn equation with a general mobil-
ity (1.1) under the homogenous Neumann boundary condition: given ®° = Il¢, ¢, compute
®! = BDF1(¢%,71) and for n =1,2--- | N — 1, find ®"*! € C;, such that

d*"+1 = BDF1(®", 7,,41), (2.15a)
Eytie — 2M (@ THAL®™ T 4 f(@0 ) 4 (@t — @ty = 0, (2.15b)
where Fytld = pp (@™t — &) + bp(d" — " !). We denote the scheme (2.15) as ¢"t! =

BDF2(¢", ", 711, 7n). The above linear BDF2 scheme (2.15) can be rewritten in the following
vector form:

"1 = BDF1(®", 7r11), (2.16a)
FPHE — 2N D, oL 4 f( ) 4 g(ntl — g*ntl) = o, (2.16h)

where A*" 1 = diag(M ($*"11)).
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3. THE DISCRETE MAXIMUM BOUND PRINCIPLE

In this section, we will prove the discrete maximum bound principle of the proposed BDF2
scheme (2.15) using the kernel recombination technique described in Section 2.1. Define g =
&" —n®"~1 and then we can combine (2.2) and (2.3) to obtain the following kernel recombination
form for (2.16b). forn=1,2,--- /N —1,

n
((d + S)T — A1 D,) B = g™ + 3 (@1 — o)+ SEH - f(F). (3.0)
k=0

n+1
Substituting ®"*+! = Zn”“ Rk into (3.1) yields
k=0
((dg + S)I . €2A*’n+1D \I,nJrl ZQ k\I_/’k + S(i;*,n—&-l _ f((f*,'nf‘l‘l)’ (3‘2)
where
QY = (df —dpy — Sy* I+ P2 A D, 0<k <n. (3.3)

The following result for the estimation of @} holds (we also refer to Lemma 4.1 in [41] which is
only for the specific case M(¢) = 1).

Lemma 3.1. Let n be any fized integer such that 1 < n < N — 1 and suppose ||®*" || < 1
Assume that 0 < v,11 < 14+ /2, the parameter ) satisfies (2.6), and

9(Ynt1,M)
] < e 3.4
Tl =g AL 2 (34)

where L = max M(p) and

pe[—1,1]
(1—2)((1+2s)z — s?) 72
) = ’ )y Imax] &7 1)
9(s2) 22(1+s) s € (0. Ymaa], = € [1—!—2%%95
Then it holds
Qoo < dft — dityy — SH*, VO <k <n. (3.5)

Proof. From the definition of Q} in (3.3) and (2.4), it follows
Qi = ("1 (bhm + 1) = n* (b + 07) = ST 4+t He2Am D,
= (0721 = )G + B7) — S) I + A%+ D,, )

- nk“((ig(%*l’n) - S)I n sQA*v”“Dh), 1<k<n,
Tn+1

which means that all the entries of )7 are nonnegative based on the definition of Dy, the fact of
|A*" | < L, and (3.4). Thus we deduce that

by using the fact Zj]\/fl (A*’”“Dh)ij =0 for any 1 < i < M?2.
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For the case of k = 0, using (2.4) and (3.4), we get
n=(dy —di — Sn)I +ne* A" Dy,
= (bf — byn — bY — Sn) I + ne*A*"H1D,
= n((n72(bgn + b — bin* — bin) —n~2b} — S)I +*A™"Dy)
> (721 =) (0 + bY) — S)I + 2A*" 1 Dy,),

which means that all the entries of Qfj are also nonnegative and consequently we obtain ||Qf|lec <

dy — di — Sn by similar arguments as above. (|

This lemma plays an important role in deriving the MBP property of the BDF2 scheme (2.15).
We also remark that the inequality (3.4) doesn’t explicitly give a principle for determining the
range of feasible time step size 7,41 in practice, since v,41 in the righthand side of (3.4) depends
on T,+1. Next we drive a uniform upper bound for the time step size 7,41 independent on v,41
such that the estimate (3.5) for the matrix @} holds. In the numerical simulations, one can always
set a pre-determined maximum adjacent time-step ratio 7y, such that v,4+1 < 4 for all n > 1.
Since it is required that 0 < v,41 < 14+ /2 (see Section 2.1), we choose 7, from [1,1 + v/2).
Noting that

dg (1 — z)(—82 — 25+ z) ’yf
o = e )* b E 71 )
0s (s, Z) z2(1 + 5)2 8 (O’ ] & {1 + 27, )

and combining with /T + 2z —1 < v/2—1 < 1 < 7, it can be verified that for any fixed z, g(s, 2)

is increasing in (0,1/1 + z — 1) and decreasing in (/1 + z — 1, 7,) with respect to s. Furthermore,
(1—2)(3z—1)

5.2 1) , we have

since g(0,2) = 122 > =9g(1,2) > g(yx, 2) for z € [

9%, 2) < g(Ynt1, 2)
for all y,4+1 € (0,74) and z € [1323% , 1). Thus, it follows from Lemma 3.1 that the estimate (3.5)
for the matrix QF holds for 0 < 4,11 < 7% < 1 + /2, and

2
*

Trtl S sf(ZZ;Z)/m’ 3 32%’1)' (3.6)
Taking the fact
9y 292 — (1+7:)%n
N R
together with 1:237* < (pﬁi)g < 1, we see that g(7y«,7) is increasing in (1;’57*,%) and
decreasing in (%, 1) with respect to 1. Thus, the optimal value of 7 for (3.6) is
27
N = m (3.7)

Summarizing the above discussions, we obtain the following result.

Lemma 3.2. Let n be any fized integer such that 1 <n < N — 1 and suppose H@*’”HHOO <1.
Assume that 0 < Y1 < vs < 1+v/2,0 =14, and the time step size 7,11 satisfies

G(7s)

< —— .
= 54+ 4Le2/h? (38)

Tn+1
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with

(14 27, —42)?
4921+ 1)

G0n) = 9 (e ) =

Then it holds
Qoo < dft — dityy — SnET', VO <k<n. (3.9)

Remark 3.1. Note that G(v.) is decreasing with respect to v, € (1,1 + /2). Especially, we
have G(1) = % for the case of uniform time steps (v« = 1), and G(2) = % for the case of v« = 2.

In what follows, by default we always set n = 1, which is defined in (3.7). We next state the
following useful lemmas.

Lemma 3.3 ([26, 41, 50]). Suppose B = (b; ;) is a real P x P matriz satisfying
bii <0, [bi| > max, s il
Let A =al — B where a > 0 is a constant, then
1A oo > a|| T oo, VT € RP
Lemma 3.4 ([50]). If the stabilizing parameter S satisfies (2.13), then
|Sp—flp)| <8, Vpe[-1,1]. (3.10)
Proof. Let h(p) = Sp — f(p). From (2.13), we have
W(p)=S—[M(p)F'(p)+ M(p)F"(p)] =0, Vpe[-11].
Together with h(—1) = —S and h(1) = S, we obtain (3.10). O
Now, we are ready to show the MBP of the BDF2 scheme (2.15).

Theorem 3.1. Assume that the stabilizing parameter S satisfies (2.13) and 0 < Y41 < 7% <
1++2 forall1 <n < N —1. In addition, assume that

< 1=
i
U= (S + 4Le2/h2)

and 7,11 satisfies (3.8) forn =1,2,--- N —1. If |8°||oc < 1, then it holds for the BDF2 scheme
(2.15) that ||®" | <1 forn=0,1,--- ,N — 1.

(3.11)

Proof. For the first step, i.e., Pl = BDFI(@O, 71) when n = 0, it follows directly from Lemma 2.2
that ||®!]|o < 1. Substituting &' = ¥ + 7,8 into (2.10) gives

((:1 £8)1 200D, ) 8 = (221 - 8) 149 2A0D,) B0+ 50— f(3). (312)

1
Noting the constraint (3.11) together with the definition of D and a similar analysis used in
Lemma 3.1, we derive that

1_
(( "*—n*s)1+n*52A0Dh) >0, 1<i,j<M?,

T1 %,J

and consequently
1 —n
1

1- *
H( ! _W*S>I+77*52AODhH < — 1. (3.13)

1



A LINEAR MBP-PRESERVING BDF2 SCHEME FOR THE ALLEN-CAHN EQUATION 11

From (3.12), (3.13) and Lemma 3.3, it follows that
(1)1 (3 +5)r—am )]
<||((552 - n8) 1+ meaDy) 8[|+ |58 - 1@,
< (2 -ns)+s
= (Tll + S)(l — 1),

where we have used Lemma 3.4. Thus we have ||¥!]|o < 1 —17,.

Next, for any 1 < n < N — 1, we assume ||| < 1 and [|[U¥]|oe < 1 —1n, for 1 < k < n.
Using ®*"*1 = BDF1(®", 7,,11), ||®"||co < 1, and Lemma 2.2, we obtain ||®*"*!||,, < 1. Thus,
together with (3.1), (2.5) and Lemmas 3.3 and 3.4, we have

(dg + )18 oo < [1((df + ) — 2A"" 1 Dy) 3"+ o

< e[| oo + Y (g — dp g )DITP oo + [SE5H — (B
k=0

n
< mudy + Z(dZ—k —dy 1) =) + (dy —dpia) + 5
k=1
= nudg + (dg — dp) (L —ne) + (1 —nu)dy + 5
=dj+ 9,

which gives [|[®"1||,, < 1. Using (3.2) together with (2.5), Lemmas 3.2, 3.3 and 3.4, we get

(@5 + S)[E" oo < | ((d + S)T — A1 D) 574 o

n
Tk T * %
< D@kl oo + 1SS — F(E57H)||oc
k=0

n

< (1= ) D (diy — iy — SR (= diyy — S+ S
k=1
= (dg + 8)(1 = n.).

which gives |[U" 1]/ < 1 —7,. The proof is completed. O

4. ERROR ANALYSIS AND ENERGY STABILITY

In this section, we investigate the error estimate and energy stability of the proposed BDF2
scheme (2.15). Let ®(t) = Il¢, ¢(t) where ¢ denotes the exact solution of (1.1). We also use C
and C;’s to denote some needed generic positive constants independent of A and 7.

4.1. Discrete H! error estimate and energy stability for the constant mobility case.
In this subsection, we study the discrete H! error estimate and energy stability of the BDF2
scheme (2.15) for the Allen-Cahn equation with constant mobility, i.e., M(¢) = C > 0. Without
loss of generality, we assume M (¢) = 1 and thus (2.13) becomes S > 2. Firstly, we recall a useful
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inequality (see [22-24, 39, 42]) presented below, which will play an important role in our error

analysis and energy stability: for any {v, > 0},
3/2 - - 3/2 - oo
T R I T S | e i M e
’ 8= 1\1 + Ynt2 2Tn+1 1+ Tn+1 27, (41)
|8t — &7
+G(7n+177n+2)2— n:1727"' 7N_17
Tn+1

where G(s,z) = % - % Note that vy is not used in the BDF2 scheme. It is easy to
verify that for any fixed z € (0,400), G(s,2) is increasing in (0,1) and decreasing in (1,+00)

with respect to s. Then it follows from G(0, z) = G(4, z) that for any 0 < 5,2 < v, < 1+ /2,
G(s,z) > min{G(0,7), G(7x, %)} > G(0,7.) > G(0,1+v2) > 0.

Define the errors e = " — &(t,,) and e*™ = " — B(t,,). With a reasonable requirement on
the exact solution ¢ of the problem (1.1), we are able to establish a discrete H' error estimate
for the BDF2 scheme (2.15).

Theorem 4.1. Assume that 0 < Y41 < 7 < 1+ V2 foralll <n < N-—-1,8>2, and the
time step sizes satisfy (3.8) and (3.11). Let yn11 be any number in (0,7). In addition, assume
that 7 < Cy73 and ¢ € W3(0,T; L>®(Q)) N L>°(0, T; W4>(2)). Then it holds for the BDF2
scheme (2.15) in the constant mobility case that

3/2

Ytz lle 2 n+1)2 n+12
+e7||Vpe + S|le
[ — IVre" I + Slle™ I (4.2)

< Cexp(T) (T4H¢H%4/3,oo(o,T;Loo(Q)) + h4H¢H%OO(O,T;W4»°°(Q)))>

n+1 _enHi

forall0 <n < N —1.

Proof. Tt follows from ||®]|e < 1,[|®"||lsc < 1 (by the discrete MBP stated in Theorem 3.1), and
f() € CYR) that

max{[| f(®)lloc, [1/ (®)lloos [f(2™)[[oos [1f (2")[loc} < Co (4.3)

for all n = 0,1,--- , N. Comparing (1.1) and (2.15) gives the error equations of e*"*! and e"*1:

e*,n—l—l —en - -
— 2 Ape®" T L et = S — S(D(tpy1) — (tn))
Tn+1
+ [(@@tn41)) — f(") + 17" + T3, (4.4a)
Fitle — 2Apemtt 4 Sentt = St 4 (B (t,01)) — F(BFY) 4 TH + T3 (4.4b)
forn=1,2,--- N — 1, where the truncation errors 7}*,7 = 1,2, 3 are given by

Tln = £t<tn+1) - w, T27L = €2A(i;(tn+1) - €2Ah(ﬁ(tn+1),

Tn+1

Ti? = (I;t(tn+1) - 6t(H2,n(§)(tn+1)-
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Taking the discrete L? inner products of (4.4a) and (4.4b) with 27, 1€ and 2(e" ™! — en),
respectively, we obtain by Lemma 2.1 that

e 1R = lle™i + 2m1 e Vae™ IR + 2701 Sl

= 2741(Se" = S(D(tns1) = Bltn)) + f(D(tnt1)) — F(B") + T + T3, "), (4.5a)
2(Fgt e, e — e + (Ve R = IVae7) + Sl 7 = lle™17)

< 2(Se*™ ™+ f(D(tng1)) — F@ T + T3 + T3, e —e™),. (4.5b)

For (4.5b), using the inequality (4.1), Cauchy-Schwarz inequality and Young’s inequality, we have

3/2 3 _
iy et el i et = et MR et — et
1+ Tn+2 Tn+1 1+ Yn+1 Tn ’ Tn+1
+e2 (IVae™ 5 = [IVhe™ 1) + S(le™ |7 — lle™17)
< Cymrt (Il THIE + £ (@ (tagr)) — L@+ 1T3I7 + IIT517) (4.6)
en+1 —en 2
+G(a, ) ” I
Tn+1
2 *n+1)2 n 2 n| 2 H‘an —enHi
< Czmax{1, (C2)*}rna ("5 + 175 M7 + T3 117) + G (e, 1s) ————,

Tn+1

where we have used the fact

1 (S(tns1) = F@" T < (Co)lle™"
derived from (4.3). Thus we deduce that

3/2 ntl _ nj2 3/2
Y, e —e v, e
n+2 ” Hh n+1 ” 52(then+1H%L _ then”%)

1+ Yn+2 Tn+1 a 1+ Tn+1 Tn (47)
+S (™7 = lle™17) < Camax{1, (Co)*}rnsr (7 + 17317 + 1 T3117)-

n _en—IH%

In a similar way, we can obtain the following estimate from (4.5a)
€™ — eI + 271 Ve ™R 4 27 Sl
< Curpia (€17 + 19 (tnr1) = () 17 + 1/ (B(tns1)) = F@M)]7
HITTG + 1T37) + sle 17
< Csropr (lemlf + +1H¢tHL°° o.75z0 () T 117" 7+ 1T301%) + 3lle=™ %,

where we have used the fact

(4.8)

£ (@(tns1)) = F@Z <IF(@(tnsr) = F@E7 + (D)) — £(@M)]]7
<(Co)* (|18 (tnr1) = B(ta) I + l€™7)
<(Co)* (Tar1lldel T oo 0.7, 100 ) + 1€ [17)-

Then it follows from (4.8) that

e M < 2le™ 7 + 205 (1€ 1h + asalléelioe o i oy + ITTHIR + IT3R)- (4.9)
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Combining with (4.7) and (4.9), gives

3/2 3/2 _
,Yn+2 ”€n+1 - enH%L - fyn-i-l Hen —e" 1”% + 52(then+1||% . thenH}Ql)
1+ Yn+2 Tn+1 1+ Yn+1 Tn
4.10
Sl — ") (4.10)

< Comnst ([le"[17 + TralloelEoe o sz ) + Tt 1T I + I T3 1 + 1 T5117)-
For the truncation errors T}, = 1,2, 3, we have the following estimates (see [38, 41]):

17712 < Crr2s 0l zmozzmqays I1TBIR < Coh 182 o ey

n||2 4 2 (411)
1737 < ColTn + Tit1) H¢HW3v°°(O,T;L°°(Q))'
Thus, summing up the inequality (4.10) from 1 to n gives
3/2 n+1 n|(|2
Tuge " =€l 2 n41)2 n+1)2
+ e7||Vye + S|le
[P — I 7+ Sle™ ln
3
bl 192
< llellly (4.12)

n
< +2(IVrel |17 + Sle'll7 + Cro > rralle®|l7
147 P

+CO1 (T8 1ys 0 (0,520 () + 7 161700 0,800 ()
For the case of n = 0, the corresponding error equation (by BDF1) reads as

1
= —2Ape! + Se! = (B(t)) — F(8) + 19 + 15
1

Similar to the arguments for the case n > 1, the following estimate can be derived under the
assumption 7 < 017'4/ 3.

112
HeTHh +2|Vel |7 + Slle' |17 < Crami (71 + h*) < Cromax{1, (C1)*}(v* + h*). (4.13)
1

Combining (4.12) and (4.13) and using the discrete Gronwall’s lemma, we then obtain the desired
estimate (4.2). O

Remark 4.1. It often imposes a further restriction on the time step size when using the
Gronwall’s inequality for the error analysis. However, in the above proof of Theorem 4.1, we
note that the term G (7., 7V«) Henz;enui on the right-hand side of the error inequality (4.6) can be
eliminated by a term from the left-hand side of the equation. Consquently, we are able to obtain
the error inequality (4.12), which only contains the norm terms of €™ with positive coefficients
on the left-hand side. Thus, there is no further time step restriction from the use of the Gronwall’s

inequality in our error analysis.

With the help of the MBP property (Theorem 3.1) and the discrete H' error estimate (Theorem
4.1), we are able to achieve the energy stability property of the BDF2 scheme (2.15).

Theorem 4.2. Under the assumption of Theorem /.1, the BDF2 scheme (2.15) in the constant
mobility case is energy stable in the sense that

Bt — B < C(h* + 77 (4.14)
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for all 0 <n < N — 1, where the modified discrete energy Ej is defined by

3/2 z Fn—112
- o — o7

E}?’lL — Eh((I)n) + - 1n;/—1+1 H o Hh
n n

Proof. Taking the discrete L2-inner product of (2.15) with ntl 5", we get that

<F2n+1(f), (f)n+1 - (f)n>Q + 82<Vh(i5n+l, vh(q_)'n+1 _ (I_)'n)>Q + <f((f)n+1)7 (;Bn+1 - (I_)’n>Q
_ <f((i)’n+1) _ f(5*7n+1), (i)’n—I—l _ (i)’n>Q _ S<(i)’n+1 _ (I)’*,n—i-l’ (i)’n-‘rl _ 5H>Q
2., q2 . . . (4.15)
(COLE gt — ot 4 — b

< max {%((02)2 +5%),1, ||¢tHL°°(0,T;L°°(Q))}(HenH% + [le"tH|Z 4+ fle ™12 + 7204),

IN

where we have used the following inequalities
B+t — SR = (|3 — B(tn41) + Btngr) — O
< [le™ g + e+,
[+ — B2 = (|87 — B(tns1) + Bltns1) — B(tn) + B(tn) — 3"[I7
< [le™ 7 + 7 +1||¢t||L°° (o,1:0()) + " 7

Noting that
1
ala —b) = 5(aQ —b* 4 (a— b)2), a,beR,
. . . . . 1 - .
(F(O™H) = F(®"), 1) < (F(O"), " = &™), 4 S[|&" — @7|[f,
and using (4.1) and (4.15), we can derive

EPtt — B < max {3((C2)2 + 5%), 3, 3||ée]| poo 0,750 (00)) }

(4.16)
(™7 + lle™ 17 + lle™ R + 724).

Combining with (4.2), (4.9), and (4.16), we then obtain (4.14). O

Remark 4.2. For the quasi-uniform temporal mesh, there exits a finite constant 8 such that

< < 5 . . . _
 ax, Tn/ lglllilN Tn < B and thus T When 7 is sufficient small and h = O(\/T), we can

obtain
Ep(®") < E} <E} +C<E(®)+C, ViI<n<N
for the BDF2 scheme (2.15) in the constant mobility case.

Remark 4.3. The inequality (4.1) plays an important role in the above error and energy
stability analysis. Unfortunately, we have not been able to prove a similar result as (4.1) for the
estimate of <(A*’"+1)_1F§+1<I_5, Pl — 5">Q in the case of variable mobility. Thus the results in
Theorems 4.1 and 4.2 could not be applied to the variable mobility case, and deeper analysis for
this issue certainly needs more efforts.
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4.2. Error estimate in the L norm for the general mobility case. In this subsection,
we study the discrete L error estimate of the BDF2 scheme (2.15) for the Allen-Cahn equation
with a general mobility M (¢). Let us define

F2§(tn+1) = bg(é(tn+l) - q_;(tn)) + b?(é(tn) - <I_5(tn,1))
for 1 <n < N —1and A(D(t,)) = diag(M(®(t,))) for 0 <n < N — 1.

Lemma 4.1. Assume that {gk}i\/:fol and {w*}_ are two non-negative sequences and there
exist some constants ¢ >0 and X\ € (0,1) such that

n+1 n
> dn 10wt <Y NTROF gt VO<n <N -1, (4.17)
k=1 k=0
where the discrete kernels {d}!}}!_, are defined in (2.4). Then it holds
nok
n+1 Clny1 0 g
w §exp(1_)\><w +k20b10€>. (4.18)

The proof of this lemma is similar to that of Lemma 5.1 in [41] and Theorem 3.1 in [40] by
using the technique of the discrete complementary convolution kernels of {d}'}}_,. We omit it
here and leave it for the interested readers. Comparing with Lemma 5.1 in [41] and Theorem 3.1
in [40], there is no term w™*! on the right-hand side of the condition (4.17). Then the time step
restriction required in [41] and [40] for the result (4.18) can be removed.

Theorem 4.3. Assume that 0 < v, <7 < 1++V2 forall1 <n < N —1, M(-) € CY(R), the
stabilizing parameter satisfies (2.13), and the time step sizes satisfy (3.8) and (3.11). Let yn41 be
any number in (0,7.). In addition, assume ¢ € W3>°(0,T; L>(Q)) N L>=(0,T; WH>(Q)). Then
it holds for the BDF2 scheme (2.15) in the general mobility case that

e+ oo < T
forall0 <n < N —1.

City, Coty,
2 oxp ( 12_ ;1> (T2 llws.oo (0,710 () + BBl oo (0,74 (02)) ) (4.19)

Proof. From (1.1), we deduce that the exact solution ® satisfies the following equation: for any
1<n<N-1,

Fy®(tng1) + M@ (tnr1)) (= Drd®(tns1) + F'(B(tntn)) + T3 + T3 = 0, (4.20)
where
T3 = M@ty ) (—2A8(tns) + 2 DuB(tasn))s T3 = Biltasn) — (Tl ®) (bus1):
It is easy to verify that
175 oo < C3B? (|8l oo, rwacc (9)s 1 T3 oo < Ca(Tn + Tog1) 2@ lwrsce 0,7 100 (02))-
Subtracting (2.16b) from (4.20), we derive the error equation of e"*! as
Fytle 4 Gentl — G2Asn Tl Dy ent!
= Serntl AL (EN(@m ) P B(t,44))) — (AT — A(B(t41))) (4.21)
(= Dp®(tnr1) + F'(B(tns) + T3 + T3 =: I™.
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Since F(p) = (1—p*)?/4, we have max,c_1 1) F'(p) =
we can get

3\[ and max,¢c|_1 1] F"'(p) = 2. Therefore,

HA*,n—‘rl _ A(é(tn+1))“m S H[lalxl] ‘M’ ‘He 7n+1HOO7
pe

and thus

17100 < Slle™™ oo + 2Ll ™ oo + (21l oe 7200 + 555 )
A = A@(tnr1)lloo + 175 lloo + 175" e (4.22)

< Cylle™™ Moo 4 Cs[T2(|pllwrsoo (0.1:200(02)) + B2 NIBl oo (0,7 w400 () ]

where L is defined in Lemma 3.1,

' 2 2 ) —
Ci=8+2L+ max [M'(p \(a 18]l oo 0 1w () + 3¢3> S+ 2L+ Cs, (4.23)

and we have used the fact

12 D@ (tns1)lloo = €2 AD(tn41) + T3 oo < €210l oo 0,1, w20 () + 175" oo (4.24)
Following the similar process of deriving (4.21), we can easily obtain the error equation of e*"*!
from (1.1) and (2.16a) as

*n+1 n

+ et — 2\ Dy et
Tn+1
= Se" = S(B(tns1) — B(tn)) — A"[F/(B") = F'(B(tni1))] (4.25)
—[A" = A(@(tns1))] [~ 2DpB(tns) + F'(B(tns))] + T + T3,

e — €

= B(tng1)—B(tn .
where 7" = ®4(tp41) — % satisfies

1T"loo < CrTnt1l|dll w20 0,750 (02))-
Noting that
IF(@") = F'(@(tnr1)) oo = [F'(3") + F'(B(tn))lloo + I (@(tn)) = F'((tn+1)) oo
< 2[||6nHoo + H¢”W1’°°(O,T;L°°(Q))Tn+1]a
A" = A@(tns1) | o < A" =A@ ()| + [[AB(En)) = AB(tnr1))]|

< nax |M(p)| [ll€" lso + Tnt1l@llwrcc 0.7:100 ()] -

Multiplying (4.25) with 7,41, and combining it with (4.23) and (4.24), we derive that
(14 Stpp1)[le"™ oo < |le*™ ! + Sryppqe ™t — 827n+1AnDh€*’"HHOO
< (1+ Tn41(S+2L + Co)) €00
+ Cs (21l llwce oL () + Tt R0l Lo (0 7200 (02))) -
Therefore, we obtain
le*™ oo < Colle™]loo + Cho (ﬂ%+1”¢”w2,m (0,1;L () t Tn+lh2||¢||L°°(O,T;W4v°°(9)))7 (4.26)

where Cg = 1+ (2L + Cg)Tpn41 = HTnﬁ(g;iLjCG)
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Define et = et — e for 0 <n < N — 1 with €® = € = 0. Then we have

n+1
P=el, et = "prtiheh 1<n< N -1, (4.27)

ol

and it is easy to check that

€' loe = lle* oo < Cr1 (Tl llw2ce o1 Lo () + T1h2 || Loo (0. 7w 20 (02)))

with the BDF1 scheme as the starting step. Using the similar process to derive (3.2) from (2.16b),
we can obtain the following equation for e**! from (4.21):

((dg—i—S)I 2A*n+1D n+1 ZQ kék—l—fn, (4.28)

where @} is defined in (3.3) with 7 = 7.. Consequently, we can use Lemma 3.2 and (4.28) to get
dgHén—H”oo < H((dg + S)I QA* n+1D ) n+1H
< Dk—oldy_y, —dy_ k+1 S EF oo + 1™ |oo
< Yhmoldy_p = dp e DIEFlloo + 117 |oo-

n+1
Rewriting the above inequality gives Zdﬁ,kH&THékHw < |[I"||so. Combining it with (4.22),
k=1
(4.26) and (4.27), we obtain
n+1
dy 197 ][ ]loo < Calle®]|oo + Crz (7?19 +h% 4] )
n—k+10711€ lloo = L2]|€" [[oo 12\T W3:%2(0,T;L°(€2)) Lo (0,T;W420(Q))
k=1 (4.29)

< Oy Yoy M@ (oo + Cra (T2 8llws.co (0,300 ()
+ W2 ||l oo om0 02)))

with Cy = C4Cys. Next, it follows from Lemma 4.1 that
_ntl Cotnt1\, o 2 noo1
[€" " oo < Crexp 11—, 1 (7' H¢HW3,°°(0,T;L°°(Q)) +h H@Z)HLOO(O,T;W“’OQ(Q))) Zk:o%
%

Coty,
< Citpg1exp (12_7;1> (7'2H¢HW3700(0,T;L°°(Q)) + h2”¢”L°°(07T;W4v°°(Q)))a

_ e
142741

where we have used the fact that 0 =N and Tetr1 < Tpy1 for 1 < k < n. Finally,
0

we obtain

n+1

n+1|| Znn—I—l kHekH

Cltn 1 C2 n+1
< L exp ( - ; )(72H¢||W3m(o,T;Loo(Q)) + B2l oo (0. m W () )

which completes the proof. O
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Remark 4.4. Similar to the derivation of linear BDF2 scheme (2.15), one can also construct
a linear second order in time scheme with variable time step sizes based on the Crank-Nicolson
formulation as follows: given ®° = Tl¢, o, and forn =1,2--- N — 1, find ®"*1 € C;, such that

"2 = BDFL(®", 7,41/2), (4.30a)

(I)n-‘,-l — P (I)’fH-l o (pn+1 P

— 521\4(@‘9’”%)%#+ +F(@T2) + S(% - @”*é) —0, (4.30b)
n+1

The above theoretical analysis for the BDF2 scheme (2.15) can be applied to the Crank-Nicolson
scheme (4.30) to derive similar results obtained for the BDF2 scheme (2.15), including the con-
ditional MBP preserving and corresponding error estimates.

5. NUMERICAL RESULTS

In this section we perform various experiments on the Allen-Cahn equation (1.1) to numerically
validate the theoretical results of the proposed BDF2 scheme (2.15) in terms of accuracy and
preservation of the MBP. The homogenous Neumann boundary condition is always imposed.

5.1. Test of temporal convergence. We consider two types of mobility functions: one is the
constant mobility M(¢) = 1 and the other is the nonlinear degenerate mobility M (¢) = 1 — ¢
We choose 2 = (0,1)2, £ = 0.1, the initial value

¢o(z,y) = 0.1(cos 3z cos 2y + cos bz cos by),

and the terminal time 7" = 1. The stabilizing parameter is set to be S = 2 to satisfy the
requirement (2.13) for both mobility functions.

The central finite difference method is used for the spatial discretization with the fixed small
mesh size h = 1/1024. Since there is no analytical solution available for this example to exactly
evaluate the numerical solution errors, we instead compute their approximations in the discrete
L> and H'! norms, respectively:

el = BV — BN, el = BN — B2V,

where Y and ®2V denote the numerical solution at the terminal time 7' = 1 with N and 2N
subintervals for the time domain [0, 1], respectively. To validate the theoretical temporal accuracy,
we firstly investigate the error behaviors of the BDF2 scheme (2.15) with the uniform time steps
by repeatedly refining the time step size 7 from 1/10 to 1/640 (i.e., N changes from 10 to 640).
The solution errors vs. the time step sizes are plotted in Fig. 1 in the log-log scale for both
mobility functions. It is observed that the BDF2 scheme (2.15) achieves the expected second-
order temporal accuracy for all test cases. Next, we numerically study the error behaviors of the
BDF?2 scheme (2.15) with nonuniform time steps. The nonuniform time step sizes {t, }N_, used
here is produced by 25% perturbation of the uniform ones {t,, = n/N}»_,. As reported in Table
1, the second-order temporal accuracy is still achieved by the BDF2 scheme for all cases.

5.2. Test of MBP preservation. We demonstrate the MBP preservation of the proposed BDF2
scheme (2.15) through two well-known benchmark examples governed by the Allen-Cahn equa-
tions. One is the shrinking bubble problem [5] and the other is the grain coarsening problem.
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TABLE 1. Numerical solution errors and convergence rates of the BDF2 scheme
(2.15) with nonuniform time steps.

Time steps M) =1 M(g)=1—¢?
N T max{y,} el Order el Order el Order el Order
h h.
10 1.393e-1 2.282 1.669e-2 - 1.375e-1 - 1.886e-3 - 1.005e-2 -

20 7.033e-2 2.358 5.834e-3 1.54 | 4.941e-2 1.50 | 6.399e-4 1.58 | 3.371le-3 1.60
40  3.408e-2 2.218 1.897e-3 1.79 | 1.376e-2 1.77 | 1.782e-4 1.76 | 9.391e-4 1.76
80 1.785e-2 2.656 3.728e-4  2.25 | 3.262e-3  2.23 | 4.255e-5  2.21 | 2.23%e-4 2.22
160 9.061e-3 2.712 9.872e-5 1.96 | 8.648e-4 1.96 | 1.136e-5 1.95 |6.002e-5 1.94
320 4.638e-3 2.832 2.511e-5  2.05 | 2.20le-4 2.04 | 2.904e-6 2.04 | 1.537e-5 2.03
640 2.289e-3 2.717 6.293e-6 1.96 | 5.527e-5 1.96 | 7.160e-7 1.98 | 3.84%-6 1.96

The shrinking bubble problem. We consider the Allen-Cahn equation (1.1) with M(¢) =1
and ¢ = 0.01 in a rectangular domain (—0.5,0.5)2. The initial bubble is given by

1, |x[*><0.2?
Po(x) = ) )
—-1, |x[?>0.2%

As discussed in [5, 15, 21, 32], this model describes the evolution in time of a shrinking bubble
with the initial radius Ry = 0.2, and the velocity of this circular moving interface approximately

R(t) =/ R3 — 2¢2t, (5.1)

if € is sufficiently small. Here, R(t) is the radius of the circle at time t.

The simulation is performed by the BDF2 scheme (2.15) with A = 1/512. The uniform time
steps are used here with the time step size 7 = G(1)/[S + 4¢%/h?], which is the maximum
value satisfying the requirement (3.8). Snapshots of the simulated bubble at the times ¢ =
0,20, 80,120, 180, 200 are displayed in Fig. 2, which shows that the bubble disappears at ¢ = 200

satisfies the following relation
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FIGURE 2. Snapshots of the simulated phase structures at the times ¢t = 0, 20, 80,
120, 180, and 200 produced by the BDF2 scheme (2.15) for the shrinking bubble
problem.

as expected. Moreover, we plot the evolution in time of the radius of the simulated bubble in
Fig. 3-(a), which matches the prediction (5.1) very well. Several cross-section views with y = 0
for the simulated solution are presented in Fig. 3-(b) and the evolution of its supremum norm
along with the time is displayed in Fig. 3-(c), which demonstrate the MBP preservation of the
proposed BDF2 scheme (2.15) during the whole simulation. Furthermore, it is also observed that
the energy of the simulated solution is monotonically decreasing in time as shown in Fig. 3-(d).

The grain coarsening dynamics with a time adaptive strategy. Finally, we investigate the
efficiency and the MBP preservation of the proposed BDF2 scheme (2.15) with a time adaptive
strategy for the simulation of the grain coarsening. The coarsening dynamic process usually goes
through several different stages within a long period: changes quickly at the beginning and then
rather slowly until it reaches a steady state. In particular, we consider the coarsening dynamics
governed by the Allen-Cahn equation (1.1) with the nonlinear degenerate mobility M (¢) = 1 — ¢?
and € = 0.01. Particularly, it is of great importance to preserve the numerical solution ¢ € [—1,1]
in the numerical algorithm for such a nonlinear mobility function. Otherwise, the numerical
solutions may blow up during the time simulation.

The domain is set to be Q = (—0.5,0.5)%, and the initial value configuration is given by a
randomly sampled data ranging from —0.9 to 0.9. There already exist several efficient time
adaptive strategies [19, 41, 45, 46, 49] available to be used together with numerical schemes with
variable time steps. In this simulation, we will adopt the following robust time adaptive strategy
based on the energy variation proposed in [45]:

) &
et = i (a5 (T, — ). e ). (5.2)
where Tiin, Tmaz denote the predetermined minimum and maximum time step sizes, Vmaz €
(0,1 4 v/2) is the predetermined maximum time step ratio, and o > 0 is a constant parameter.
Such time adaptive strategy will automatically select large time steps when energy decays rapidly
and small ones otherwise. We numerically solve the coarsening dynamics problem using the BDF2
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FiGURE 3. The evolutions in time of the radius, the cross section of y = 0, the
supremum norm, and the energy of the simulated solution produced by the BDF2
scheme (2.15) with uniform time steps for the shrinking bubble problem.

scheme with four different types of temporal meshes, including the uniform time stepping with
a large step size 7 = 0.1, two different ones from the time adaptive strategy (5.2), and the
uniform time stepping with a small step size 7 = 0.01. For the time adaptive strategy (5.2),
we always set Ymezr = 1.5, @ = 10° and Ty = 107°. Also the predetermined maximum time
step sizes are set to be Ty = G(1.5)/[S + 4Le?/h?) = 0.0159 satisfying the requirement (3.8)
and a large one T4, = 0.1 for the two tested adaptive temporal meshes, respectively. A visual
comparison on the numerical solution evolution between these four types of temporal meshes is
presented in Figs. 4 and 5. It is observed that there is no obvious difference at about ¢ = 10
for the four tested temporal meshes as shown in the first line of Fig. 4, in which the snapshot
of the simulated phase structure with the uniform large time step size 7 = 0.1 only differs from
other three temporal grids in a few small details. As shown in Figs. 4 and 5-(b), these minor
phase-structure differences at ¢ = 10 gradually lead to inaccurate solution evolution and energy
evolution for the case of the uniform large time step size 7 = 0.1, while the tested two adaptive
time strategies still produce correct coarsening pattern which is consistent with the numerical
results computed by the small time step case 7 = 0.01. In Fig. 5-(a), we successfully verify
the MBP-preserving property of the BDF2 scheme by displaying the evolution of the supremum
norm of the numerical solution. We also note that although both the uniform large time step
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case 7 = 0.1 and the adaptive time strategy case with 7,4, = 0.1 don’t satisfy the condition
(3.8), they still maintain the MBP-preserving property. It suggests that the constraint (3.8) on
the time step size may not be optimal for the proposed BDF2 scheme (2.15) in term of preserving
the discrete MBP property. Furthermore, the evolutions of the energy and the adaptive time step
sizes, plotted in Fig. 5-(b)&(c), demonstrate the monotonic energy dissipation and the efficiency
of the BDF2 scheme with the time adaptive strategy.

6. CONCLUDING REMARKS

In this paper we propose a second-order BDF scheme with nonuniform time steps for the
Allen-Cahn equation with a general mobility. The MBP preservation of the proposed scheme is
successfully established with mild restrictions on the time step sizes and the ratio of adjacent
time step sizes. Moreover, the discrete H! error estimate and energy stability are rigorously
derived for the constant mobility case and so does the L™ error estimate for the general mobility
case. Finally, various numerical experiments are carried out to validate the theoretical results and
demonstrate the performance of the proposed scheme adopted with a time adaptive strategy. It
remains interest to further theoretically explore the discrete H' error analysis and energy stability
for the general mobility case, and study the Allen-Cahn equation with the logarithmic potential,
instead of the double-well potential studied in this paper. Moreover, we also would like extend the
present work to the time-fractional Allen-Cahn equation, in which it is urgently desired to make
use of variable-step structure-preserving high-order time stepping schemes to overcome the initial
singularity from fractional derivatives. In addition, there are two non-constant coefficient Poisson-
type equations to be solved at each time step for the model with non-constant mobility in the
proposed linear BDF2 scheme. Consequently, it may not be computationally cheaper and more
accurate than a comparable second-order nonlinear scheme with the use of nonlinear multigrid
method [8, 53]. Thus, it is also an interesting future work to study nonlinear MBP-preserving
numerical schemes for the Allen-Cahn equation with variable mobility.
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