
Nested Gausslet Basis Sets

Steven R. White∗

Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 USA

Michael J. Lindsey
Department of Mathematics, University of California, Berkeley, CA 94720 USA

(Dated: September 20, 2023)

We introduce nested gausslet (NG) bases, an improvement on previous gausslet bases which can
treat systems containing atoms with much larger atomic number. We also introduce pure Gaussian
distorted gausslet bases, which allow the Hamiltonian integrals to be performed analytically, as
well as hybrid bases in which the gausslets are combined with standard Gaussian-type bases. All
these bases feature the diagonal approximation for the electron-electron interactions, so that the
Hamiltonian is completely defined by two Nb × Nb matrices, where Nb ≈ 104 is small enough to
permit fast calculations at the Hartree-Fock level. In constructing these bases we have gained new
mathematical insight into the construction of one-dimensional diagonal bases. In particular we have
proved an important theorem relating four key basis set properties: completeness, orthogonality,
zero-moment conditions, and diagonalization of the coordinate operator matrix. We test our basis
sets on small systems with a focus on high accuracy, obtaining, for example, an accuracy of 2×10−5

Ha for the total Hartree-Fock energy of the neon atom in the complete basis set limit.

I. INTRODUCTION

Electronic structure calculations for molecules and
solids are extremely important in science and technology,
taking up significant fractions of the world’s supercom-
puting resources. The vast majority of these calculations
start with some sort of discretization of space to make the
continuum problem finite-dimensional. Most commonly
the wavefunction is represented in terms of a basis set for
functions of a single space variable. A significant com-
plication of conventional basis sets for electronic struc-
ture, such as atom-centered Gaussian-type orbital bases
(GTOs) or plane waves, is the representation of the two-
electron Coulomb repulsion as a four-index tensor. Sim-
ply storing the full interaction tensor becomes challeng-
ing when the number of basis functions exceeds about
1000. Consequently, large-scale calculations use a vari-
ety of methods to reduce the N4

b computational scaling
in memory and time that is required merely to define the
discretized Hamiltonian, where Nb is the number of basis
functions. For example, in the density-fitting/resolution
of the identity approach [1], an auxiliary basis is con-
structed for the span of the pair products of basis func-
tions. This reduces the memory scaling for storing the
integrals to roughly N3

b , while the computational scaling
for downstream use in correlated calculations is highly
method-dependent. A more sophisticated compression
technique called tensor hypercontraction (THC) [2–4] re-
duces the memory scaling to roughly N2

b , albeit with a
larger preconstant than density fitting, and can be con-
structed as an interpolative decomposition of the set of
pair products of basis functions [5]. A factorization of
the interaction tensor into products of N3

b components
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plays a role in other approaches [6], and of course all
approaches based on tensor factorization must consider
the additional source of method error due to compres-
sion. The variety of methods developed to deal with the
poor scaling of the interaction tensor demonstrates the
practical importance of this issue.

Grid representations potentially yield an even greater
reduction in storage: grids naturally allow a diagonal N2

g

representation of the two-electron interaction, where Ng

is the number of grid points, but typically Ng k Nb,
largely canceling the improvement. Distorted grids at-
tempt to reduce Ng, but there are significant limitations
to the amount of distortion, as we shall discuss below [7].

Certain special basis sets can combine the advantages
of basis sets and grids. In particular, a basis set with
the diagonal property permits N2

b representation of the
electron-electron interactions. Moreover, the representa-
tion of the electron repulsion integrals is direct, i.e., not
presented in a factorized form such as that of density
fitting or THC, and the interaction term of the second-
quantized Hamiltonian in a diagonal basis only involves
density-density contributions. These special properties
can improve the scaling of downstream correlated cal-
culations, though scaling details depend on the method.
Meanwhile, diagonal basis set approaches enjoy an im-
portant advantage over pure finite-difference approaches
on grids: as they are basis set methods, it is easy
to include extra basis functions, notably atom-centered
GTOs, to represent the core electrons and sharp nuclear
cusp. The oldest basis sets with the diagonal property
are grids of sinc functions [8], but the nonlocality of these
functions is a serious limitation. More recently we have
developed gausslet bases with the diagonal property [9–
11]. Gausslets resemble sincs in that they are orthonor-
mal and smooth with a prominent central peak, but they
are much more localized in real space. The diagonal prop-
erty for gausslets has a clear origin: a gausslet acts like
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a delta function when integrated against a smooth func-
tion, and in this sense it acts like a grid point. Since
gausslets are localized, they can be transformed to match
their centers to a distorted grid that concentrates func-
tions near nuclei and reduces the Nb required to obtain
an accurate approximation.
However, existing methods for distorting grids have

significant weaknesses, such as a very limited range of
distortion, or the side effect of producing closely spaced
functions far from any nuclei. These limitations are
most severe for all-electron calculations with larger-Z
atoms but already manifest themselves in the first row
of the periodic table. By contrast, for systems of hydro-
gen chains, hybrid gausslet/GTO bases combined with
DMRG have provided some of the highest accuracy re-
sults available [10].
Here we introduce a Nested Gausslet (NG) approach

which allows arbitrarily large ranges of distortions with-
out artifacts such as closely spaced points far from nu-
clei. The NG approach is systematically improvable and
generates smaller bases than previous methods. This ap-
proach has a number of other advantages over previous
approaches; for example, one version allows for analytic
computation of nearly all integrals defining the Hamilto-
nian.
In the next section, we review previous distorted grids

and introduce nested grids. The orthogonality pattern of
nested grids is discussed in Section III. Nested grids re-
quire highly specific properties of the 1D functions used
to make them; these properties are explained in Section
IV. In Section V we introduce a modification of these
bases which allows all integrals to be performed analyti-
cally. In Section VI, we present example electronic struc-
ture calculations for various small atoms and molecules.
In Section VII, we summarize and conclude.

II. DISTORTED GRIDS

Coordinate transformations can be applied either to
finite difference grids (FDGs) or diagonal bases (DBs)
where each basis function is peaked at a grid point. How-
ever, there are also additional techniques for DBs that do
not directly apply to FDGs. In Fig. 1(a) we show a very
general type of distortion, where the grid is defined by a
3D mapping r⃗(u⃗). In u-space the grid is uniform, but in
r space it is distorted to put more points near nuclei. For
an FDG, the Hamiltonian is constructed using standard
differential approaches for curvilinear coordinates; for a
DB, a Jacobian factor accompanies the distorting map-
ping ensuring orthonormality while approximately main-
taining the moments giving the diagonal property. There
are several key limitations of this method: first, the dis-
tortion cannot be too large, or else the representation
performs poorly, corresponding to the highly distorted
squares in Fig. 1(a). Second, we are constrained to use
the same number of points along each parallel grid line,
so adding sufficiently many points near the nucleus may

FIG. 1. Four different approaches to variable resolution for
grid/local basis discretizations, in the vicinity of a nucleus at
the origin, shown here in 2D. Symbols represent the centers
of local basis functions. (a) 3D mapping: a cubic grid is
distorted by a 3D mapping function. (b) Products of 1D
mappings, where the 3d mapping is a product of mappings
for each coordinate direction. (c) Multislicing, where the x
direction has one 1D mapping, but then each x point has a
separate y mapping. (d) Nested gausslets, introduced here,
which can achieve arbitrary resolution at the nucleus while
maintaining appropriate spacings in all three directions in all
regions.

result in more points than necessary at the periphery of
the atom. These limitations result in rather large grid
dimensions, e.g. 96 × 72 × 72 for diatomics [7]. Third,
in the case DBs, the most accurate form of the interac-
tion matrix—the integral diagonal approximation [9]—
involves difficult six dimensional numerical integrals. To
our knowledge, the 3D distortions of Fig. 1(a) have only
been tested with finite-differences.

Fig. 1(b) shows a simplified mapping that allows for
easy numerical integration: the transformation is defined
by three 1D functions: x(ux), y(uy), and z(uz), applied
independently to each coordinate. This approach has
been tested on grids [7] and used for gausslet bases. As
long as the grid spacing does not change too rapidly,
the diagonal representation of the interactions still works
very well, but as mentioned above, the key drawback
is that the same number of grid points must be used
along all of the parallel grid lines in each direction. This
method can be used either with FDGs or DBs, but an
important advantage of DBs over FDGs is that standard
atom-centered Gaussians can be added to the basis, or-
thogonalizing them with respect to the DB functions, in
order to better represent the nuclei without extremely
fine grids. This approach has been used for micro-Hartree
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accuracy calculations of H2 and He, as well as for Hartree-
Fock calculations on H10.

Fig. 1(c) depicts multislicing [10], in which one coor-
dinate mapping is used for the x-axis but each line of
y-functions for fixed x uses a different (x-dependent) y-
mapping. In turn, each line of z functions for fixed x, y
(not shown) is built from an (x, y)-dependent z-mapping.
This method is appropriate only for DBs. In the 2D fig-
ure, functions on different vertical lines are orthogonal
because the x-functions are orthogonal; the different y-
distortions can be completely different without harming
the diagonal approximation. Multislicing eliminates the
unwanted close spacing of functions along some coordi-
nate directions (e.g. near (4,0) in Fig. 1(c)) but does not
fix the problem in other directions (near (0,4)). More-
over, any rotational symmetry in the system is destroyed
by multislicing. Nonetheless, it is more efficient than
coordinate-product mapping (Fig. 1(b)), and it has al-
lowed some of the most accurate fully interacting calcu-
lations on H10 when coupled with DMRG.

The Nested Gausslet (NG) approach introduced here
is illustrated in Fig. 1(d). This approach produces or-
thonormal basis functions organized in shells, shown by
the different colors in Fig. 1(d). The arrangement of
function centers does not show any of the artifacts along
coordinate directions of the earlier approaches, and it can
thus produce more compact basis sets. The shells are
still rectangular along the coordinate directions, which
in the case of a single atom is inferior to a spherical ar-
rangement. However, the NG shell arrangement can be
applied more generally than to a single atom, and the
basis functions are composed of coordinate products of
functions f(x)g(y)h(z), making numerical evaluation of
the integrals very fast. In principle, the basis can be ex-
tended to large atomic number Z without an excessive
number of functions. The detailed construction of the
bases is described below.

The NG approach allows us not only to zoom into
the nucleus efficiently, but also to extend the basis with
atom-centered Gaussians, as desired, yielding a hybrid
approach. The added Gaussians can reduce the number
of points in each shell without significantly harming the
diagonal approximation.

While multislicing can be performed without signifi-
cant constraints on the nature of the 1D distortions, the
NG approach requires one to construct matching sets of
1D bases with very special properties. At first glance,
the desiderata seem very hard to achieve with only a
small number of functions per shell. However, we have
found a simple approach to constructing these matching
1D bases. This method is developed in the next few sec-
tions.

FIG. 2. (a) Diagrammatic notation for the 1D basis func-
tions used: the distorted 1D basis set is indicated by the
array of blue bars. (b) Three orthonormal basis sets used for
this construction. The blue functions in the different sets are
identical; green and red functions, called side functions, are
orthogonal to the blue functions in the same set. The top set
is called the backbone. (c) The corresponding nested gausslet
layout in 2D. In this simple example the same basis sets are
used in both the x and y directions. Each cross is the product
of an x and y function, f(x)g(y), with the horizontal and ver-
tical bar indicating f and g, respectively. Each 2D function
has at least one (blue) backbone function. The 2D functions
on different shells (squares) are orthogonal because the back-
bone functions are orthogonal; on the same shell, they are
orthogonal because of the orthogonality of the side bases to
themselves and to the outer backbone functions.

III. ORTHOGONALITY PATTERN FOR
NESTED GAUSSLETS

We focus first on ensuring that the NG basis is orthog-
onal, deferring consideration of diagonality to the next
section. The layout that ensures orthogonality in shown
in Fig. 2. The first step in constructing the basis is to
create backbones for the x, y, and z directions. The back-
bones are distorted 1D gausslet bases which could, e.g.,
be used as the univariate bases in Fig. 1(b), resolving all
length scales that we desired to represent.
We let ns denote a shell size, i.e., the number of func-

tions along the side of a shell; in Fig. 2, ns = 4. We next
construct ns−2 orthonormal side functions for each shell
and each coordinate direction. Each set of side functions
replaces an interval of functions on the backbone with a
smaller set of functions, and these functions are required
to be orthogonal to all the outer backbone functions. As
long as these criteria are met, the whole basis will be or-
thogonal. The rest of the procedure for constructing the
side functions is described in the next section.
Regarding completeness: the nested construction is re-

lated to the coordinate-product mapping of Fig. 1(b):
one way to get the side bases is by contraction over the
inner sites of the backbone. Fig. 1(b) can be considered
as the limit of no contraction. Contractions which elim-
inate degrees of freedom should be possible because the
backbone must represent the core, but the outer sides are
far from the core where the wavefunctions are smoother.
Generalization to 3D is straightforward: the shells are
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FIG. 3. Basis function locations for a slice near z = 0 for Be2
with separation R = 4 and shell size ns = 5. The locations
of the nuclei are at (±2, 0). The thin gray lines represent the
basis function locations of the x and y backbones. The red
X’s represent basis function locations. Each red X lies on at
least one gray line. The blue lines represent outer shells. As
we progress inward, once the aspect ratio of an outer shell ex-
ceeds the number of atoms, the shell is replaced by individual
shells for each atom (green rectangles). To maintain reflec-
tion symmetry, a flat shell one point wide in the x-direction
is placed between the atoms (black line). Smaller shells zoom
in on each nucleus. As we move toward the nuclei, when the
number of gray lines intersecting the shell reaches ns, then the
innermost points form a grid based on the backbone functions
(dark green region).

cubes, and a basis function on a face but not on an edge
is the product of two side functions and one backbone
function. The inner side functions form an (ns − 2) ×
(ns − 2) grid. We call this construction singly-nested,
since only the shells are nested, but the faces are treated
with rectangular grids.

A doubly nested version is also possible in 3D: each face
of a shell would look like Fig. 2(c), with its own nested
square shells. This generalization allows for a modest
reduction in the number of functions. In the tests below
we have used the simpler singly-nested approach.

For more than one atom, a number of generalized con-
structions are possible. For this paper, we restrict con-
sideration to the relatively simple case of diatomics and
linear chains, where we have developed a fairly simple
heuristic prescription. In Fig. 3 we show the arrange-
ments for a typical treatment of Be2 at a separation of
R = 4 a.u. The outer shells surround the whole molecule,
while the inner shells switch to being centered on indi-
vidual nuclei. The splitting of shells is important for

larger Z atoms, but depending on R and the desired core
resolution, the splitting may not occur. To maintain re-
flection symmetry of the basis in the x direction, a flat
shell is inserted at the splitting point x = 0. Additional
flat shells may be inserted at the edges of inner boxes to
try to keep the shells as isotropic (i.e., cubic) as possible,
as at x = ±4.
The construction of side functions for these generalized

scenarios is not much more complicated than for the sin-
gle atom case as outlined in the next section. The only
slight complication is that for the outer shells, we need
to use an effective ns for the x-direction which is larger
than the ns for the y and z directions on that shell. For
example, the smallest (blue) outer shell in Fig. 3 has 11
functions along the x direction. We choose this number
to make the spacing of functions nearly the same in the
x and y directions.

IV. DIAGONAL 1D BASES

We enumerate several properties that we require of a
1D basis {Si(x)} in order to construct a diagonal approx-
imation.
The first property is completeness (C). We say that

a basis of 1D functions satisfies property C if over the
range of interest all polynomials of degree at most p lie
in its span. For p sufficiently large, this property guaran-
tees that the basis is rich enough to represent the target
wavefunction.
Second is orthonormality (O):

∫

Si(x)Sj(x) dx = ¶ij , (1)

or more loosely, as shall be clear from context, orthogo-
nality.
Third is themoment property (M), which requires that

the basis functions behave like delta functions when in-
tegrated against low-order polynomials up to some order
q. Concretely, we require:

∫

Si(x) (x− xi)
m dx = wi ¶m0 (2)

for a function center xi and m = 0, . . . , q. Here wi :=
∫

Si(x) dx is called the weight of the basis function.
Since the zeroth-order moment property is always

guaranteed by proper definition of the weight wi, it is
equivalent to require

∫

Si(x) (x− xi)P (x) dx = 0 (3)

for all polynomials P of order at most q − 1.
Daubechies compact wavelet-scaling functions typi-

cally satisfy properties CO, but not M. (In our discus-
sion of ‘wavelets’ as candidates for basis functions with
the diagonal property, we actually mean the scaling func-
tion, not the wavelet itself.) One particular type of com-
pact wavelet, the coiflet, satisfies COM. Meanwhile, sinc
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functions satisfy CO, but higher order moments diverge
due to their algebraic (i.e., subexponential) decay. Many
non-compact wavelets (e.g., Meyer scaling functions) sat-
isfy COM. Some quantitative comparisons are offered in
Appendix C.
Finally, we highlight a fourth important property: X-

diagonalization (X). This property holds if the functions
diagonalize the x-coordinate operator, i.e., if

∫

Si(x)xSj(x) dx = x̃i ¶ij , (4)

where x̃i is a function center which may be different from
the moment center xi. X-diagonalization is important in
the construction of discrete variable representations [12],
which are related to our diagonal bases.
Coiflets satisfy COM but not X. However, the ternary

wavelets of Evenbly and White (EW) [13] satisfy COMX.
While the satisfaction of COM was essential to their con-
struction, the X property comes about from their even
symmetry. Indeed, since Si(x) is even about xi and Sj(x)
is even about xj , their product is even about the mid-
point (xi + xj)/2. Thus

∫

Si(x) (x − xm)Sj(x) dx = 0.
Since Si and Sj are orthogonal for i ̸= j, it follows that
∫

Si(x)xSj(x) dx = 0 when i ̸= j, and property X is
guaranteed. The non-evenness of coiflets interferes with
property X. This non-evenness is tied closely to their
compactness coupled with their usual binary construc-
tion. Thus the EW ternary wavelets are very unusual in
being COMX and compact.
Gausslets are based on EW ternary wavelets [9], yet

they satisfy some properties only inexactly up to high
precision. The lack of exactness comes from their sim-
ple analytic presentation as linear combinations of Gaus-
sians. Their completeness, for example, holds up to a
tolerance of roughly 10−8, so that when they are used
in a variational calculation one still can obtain energies
accurate to order 10−16, i.e., floating point double preci-
sion. Thus for practical purposes, gausslets are COMX.
They are also for practical purposes compact, since their

non-compact tails decay as e−γx2

where µ = 9
2 .

We now prove an important theorem relating C, O, M
and X.

Theorem 1. (COMX Theorem) Suppose that the collec-
tion of functions satisfies properties C, O, and X and in
particular satisfies C with polynomial completeness up to
order p. Then in fact the collection also satisfies property
M up to order q = p + 1 (where the function centers xi

are chosen to be the same as the function centers x̃i in
property X).

Before giving the proof, we pause to include some re-
marks on the interpretation.
It is instructive to think of properties C and M as prop-

erties of the subspace spanned by our basis of functions.
The reason is that, given such a subspace, diagonalizing
the X operator on this subspace always yields the unique
basis of functions that span this subspace and in addition

satisfy properties O and X. Therefore, O and X are guar-
anteed for free, and the orders p and q to which C and
M are respectively satisfied by this basis can be thought
of as intrinsic properties of the subspace.
From this point of view, the COMX Theorem then

indicates that to satisfy COMX, it actually suffices to
construct a subspace that is polynomially complete to
some desired order (C). The moment property M then
also comes for free via diagonalization of the X operator.
Note with caution, however, that COMX can be sat-

isfied by a basis of functions that are not very localized.
Indeed, from the subspace point of view, there exist sub-
spaces with excellent completeness properties that are
impossible to localize. For example, one could add a
very high frequency Fourier mode to a basis that is al-
ready localizable. The resulting basis is then impossible
to localize without altering the subspace, even though
diagonalization of the X operator on this subspace would
produce a basis satisfying COMX.

Proof of Theorem 1. Let {Si} satisfy C, O, and X, with
polynomial completeness (C) up to order p. We will show
that (3) holds with q = p + 1. As such let P be a poly-
nomial of order at most p.
Linearly combining equations (1) and (4), in which we

take xi = x̃i, we obtain

∫

Si(x) (x− xi)Sj(x) dx = 0 (5)

for all i, j.
Now fix i. Since the collection {Sj(x)} is polynomially

complete to order p, there exists a linear combination of
the Sj that matches the target polynomial P . Accord-
ingly, taking an appropriate linear combination of (5)
over the index j, we obtain the equality

∫

Si(x) (x− xi)P (x) dx = 0, (6)

as was to be shown.

Remark 1. Note that the argument in the proof assumes
that polynomial completeness (C) holds exactly up to or-
der p. In practice, C may hold only up to some small
numerical tolerance, and likewise the moment property
M will then hold only up to a small tolerance. It is dif-
ficult to formulate a clean notion of numerical tolerance
for C since polynomials grow without bound, so instead
we outline a small mutation of the proof that controls the
error in property M resulting from imperfect satisfaction
of property C.
For any fixed i and polynomial P (x) of order at most

p, let R(x) denote the remainder of some fit of P (x) with
a linear combination of the Sj(x). Then equation (2) for
property M holds with error

∣

∣

∣

∣

∫

Si(x) (x− xi)R(x) dx

∣

∣

∣

∣

f Ãi

√

∫

R(x)2 |Si(x)| dx,
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FIG. 4. Backbone and side basis with ns = 5. The back-
bone, shown in black (solid and dashed) is a distorted set
of gausslets using the sinh coordinate transformation with
a = s = 0.7. The side basis (colored lines) is constructed
as a contraction of the inner backbone (dashed lines). The
full side basis is composed of the solid black lines, together
with the colored lines. It is orthonormal and complete up to
quadratic polynomials, with moments up to cubic vanishing.
The corresponding shell in the nested gausslet construction
uses the inner ns = 5 functions of the full side basis.

where Ãi :=
√

∫

(x− xi)2 |Si(x)| dx and the inequality

holds by Cauchy-Schwarz. Hence to control the theoreti-
cal worst-case error in property M it makes sense to ob-
tain the fit in the weighted least squares sense with respect
to the weight function |Si(x)|. In practice, the violation
of M can simply be estimated numerically.

A first important practical consequence of the theorem
is that it makes it easy to construct the side functions.
Assume that the backbone {bi(x)} is COMX. The side
basis can be constructed by replacing an interval of func-
tions from the backbone with a smaller set of ns − 2
functions {Si(x)}. In particular, we can choose the Si as
linear combinations of the bi, i.e., Si =

∑

j Aijbj , where

AA¦ = I guarantees orthonormality. More specifically,
for optimal completeness, we project the monomials xj

onto the space spanned by the bi, yielding the functions
S̃j =

∑

k bkïbk|xjð for j = 0, . . . ns. Then we orthonor-

malize the S̃j and diagonalize the X operator projected
to this basis. The side functions Si are recovered as the
resulting eigenfunctions. An example of the resulting side
basis functions is shown in Fig. 4.
Since the bi are orthogonal to the outer backbone func-

tions, so are the si. Since the x matrix for the backbone
is diagonal, diagonalizing within the si space makes the
whole sequence X. The side basis is complete up to poly-
nomials of order ns − 3. Satisfying COX, the si also
satisfy M up to order ns − 2.

We comment that during this construction (specifi-

cally, within the expression for S̃j), it is not necessary

to compute the high-order polynomial overlaps ϕkj =
ïbk|xjð explicitly, and in fact a direct approach may be
subject to rounding errors.
Instead we adopt the following approach. To begin

we set some notation and assumptions. Let P and Q
project onto the backbone space within and outside the
interval, respectively, so in particular PQ = QP = 0.
In the following, for emphasis and clarity we will use
the notation [f(x)] to indicate the diagonal operator that
performs pointwise multiplication by f(x), and we will
use the notation (f(x)) to denote the function itself. In
particular, (1) denotes the constant function with value
1. Normally we would omit such special notation when
the meaning is clear. Because of the X property of the
backbone, the P and Q spaces block diagonalize [x], and
therefore P [x]Q = 0. We assume that the backbone space
is polynomially complete at least up to order j−1. Since
the projector onto the backbone space is P + Q, this
means that (P +Q)(xk) = (xk) for k = 0, . . . , j − 1.
Then observe that ϕkj = ïPbk|(xj)ð = ïbk|P (xj)ð.

Moreover, we can write (xj) = [x](xj−1), so ϕkj =
ïbk|P [x](xj−1)ð. But then we can substitute the identity
(xj−1) = (P +Q)(xj−1) and use the fact that P [x]Q = 0
to obtain ϕkj = ïbk|P [x]P (xj−1)ð. Continuing in this
fashion, we obtain ϕkj = ïbk|P [x]P [x] · · · [x]P (1)ð.
Now note that P =

∑

k |bkðïbk|, and let X = (Xkl) =
(ïbk|[x]|blð) denote the matrix of the [x] operator within
the bk basis. Then it follows that the j-th column ϕj of
(ϕkj) can be written as the matrix-vector product ϕj =
XjÀ, where À is the vector with entries Àm = ïbm|1ð.
Therefore the required polynomial functions are

spanned by the Krylov space of the matrix X acting on
the initial vector À. It follows that we can use the Lanc-
zos procedure to directly construct an orthogonal basis
for the side functions for an interval. Then a final diag-
onalization gives the COMX side basis.

V. PURE GAUSSIAN DISTORTED GAUSSLET
BASES

A uniform gausslet basis, since it is formed from con-
tractions over Gaussians, allows all standard integrals to
be computed analytically. Adding a coordinate trans-
formation eliminates this property. The smoothness of
gausslets and the transformations we use nevertheless
allows for effective numerical quadrature, and previous
use of gausslets have been based on numerical quadra-
ture, coupled with the decomposition of 1/r into a sum
of Gaussians as discussed in Appendix B. In this section
we introduce an approach which restores the analytic in-
tegration.
A 1D gausslet with standard unit spacing is defined

as a contraction over a uniform array of Gaussians with
width 1/3 and spacing 1/3, i.e.,

G(x) =
∑

i

cie
− 9

2
(x−i/3)2 , (7)
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where the sum runs over about 100 nonzero values of ci.
A coordinate transformation of the gausslet acts on the
underlying Gaussians, leaving the contraction the same.
Concretely, given a distortion u(x) with density Ä(x) and
inverse x(u) (see Appendix A) we can define the distorted
gausslet (DG) as

∑

i

cie
− 9

2
(u(x)−i/3)2

√

Ä(x). (8)

The functions so defined form an orthogonal diagonal
basis.
Our goal is to replace the DG basis with a basis that

permits analytic integrations. Now because the coordi-
nate transformation we use is slowly varying compared
to the gausslet spacing, and because the Gaussians are
spaced three times as finely, the individual Gaussians
comprising the gausslet are mapped under this trans-
formation to functions which still resemble Gaussians.
However, the locations, widths, and amplitudes must be
appropriately transformed. The center of the i-th trans-
formed Gaussian is given by xi = x(i/3), its nominal
width is Wi = 1/[3Ä(xi)], and its amplitude is increased

by a factor of
√

Ä(xi).
In the pure Gaussian distorted gausslet (PGDG) ba-

sis, we replace the individual distorted Gaussians with
undistorted Gaussians defined using these transformed
parameters:

G̃(x) =
∑

i

ci
√

Ä(xi)e
− 1

2W2

i

(x−xi)
2

. (9)

This replacement destroys the exact orthonormality of
the basis, i.e., property O. Therefore, as discussed in the
previous section, we orthogonalize and X-diagonalize the
G̃ functions. This maneuver exactly restores properties
OX and approximately restores the CM properties. We
find that the new functions are very similar to the origi-
nals, as we illustrate in Fig. 5, which shows how similar
a distorted gausslet and its corresponding pure Gaus-
sian analog are for a typical distortion. Moreover, we
find that the subspace spanned by the G̃ appears to be
very similar to that of the distorted gausslet basis. This
point is illustrated in Fig. 6, which demonstrates the
fitting of Gaussian type functions using both DG and
PGDG bases. The results are almost identical to a sur-
prising degree. Note that the distortion itself makes the
CM properties only approximate for distorted gausslets;
the replacement with undistorted Gaussians might be ex-
pected to make the CM errors bigger, but in practice any
such effect appears to be insignificant.
Note that since the side functions are linear combina-

tions of the backbone functions (for each direction x, y,
or z), knowing all integrals involving the backbone func-
tions allows us to produce all 1D integrals via matrix
multiplications. The gausslets comprising the backbone
in a particular direction share the same Gaussians, so it
suffices to obtain all integrals for this one set of Gaus-
sians of size Ng (for each direction). Typically Ng ∼ 200.

FIG. 5. For a typical coordinate mapping for a nucleus at
the origin, the black line shows a standard distorted gausslet.
The red dashed curve shows the function with the underly-
ing distorted Gaussians replaced by undistorted Gaussians.
The green dashed curve shows the function after the new set
of functions is orthogonalized and X-diagonalized. The func-
tions are all very similar.

FIG. 6. The upper two curves show fits to a normalized
Gaussian with the specified width w, exp(− 1

2
x2/w2), for a

pure distorted gausslet basis and the corresponding PGDG
basis. The fit is defined as |Pg|, where g is the Gaussian,
P is a projector into the basis, and an L2 norm is taken. A
perfect fit would give 1. The lower two curves show similar
fits for x-Gaussians, x exp(− 1

2
x2/w2). The close similarity of

the curves shows that the span of the DG and PGDG bases
are nearly identical, justifying the use of the PGDG bases,
which have analytic integrals.

The number of 1D integrals behaves as N2
g for the ki-

netic energy and N2
gM for the Coulombic cases, where

M ∼ 100 is the number of Gaussians used to decompose
1/r (see Appendix B). This modest number (∼ 107) of
analytic 1D integrals can be computed very quickly, and
their 1D linear transformations to represent backbone
and side functions reduce to fast matrix-matrix multipli-
cations.

Our basis consiting of a total of Nb 3D functions can
be formed from products of 1D functions of the form
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FIG. 7. Comparison of results for H2 positive ion at separa-
tion R = 2 a.u. for the non-hybrid method, i.e., without any
additional 3D Gaussians from a standard GTO basis. In each
case, the error in the energy relative to the precise value of
-0.60263462 [14] is shown as a function of the inverse of the
number of basis functions. The curve labeled Uniform repre-
sents an equal spaced array of gausslets. The curve labeled
Product is based on the product coordinate transformation of
Fig. 1(b). The other three curves are based on nested PGDG
bases with the given side dimension ns. One moves to the
left along these curves as the discretization of the backbone
is refined.

f(x)g(y)h(z) . Since we use the diagonal approximation
for the electron-interaction, not only are the nuclear po-
tential and kinetic energy represented by Nb ×Nb matri-
ces, but the electron-electron interaction is as well. The
final construction of the two Coulombic matrices scales
as N2

bM , which allows us to treat Nb ∼ 10,000 on a
desktop. Note that this is better scaling than the N3

b re-
quired to simply diagonalize the one electron part of the
Hamiltonian.

As a first measure of the effectiveness of the PGDG
nested gausslet approach, we compare calculations for
the hydrogen molecular ion in Fig. 7. The nested ap-
proach gives nearly an order of magnitude improvement
in the energy error over the product coordinate transfor-
mation for a fixed number of basis functions. Meanwhile
it yields a couple of orders of magnitude improvement
over a naive uniform basis, which is in turn expected
to perform similarly to a plane wave basis of the same
size. Note that each curve for fixed ns has a minimum,
beyond which increasing the radial accuracy (i.e., more
shells) with fixed angular accuracy (i.e., fixed ns) is coun-
terproductive. Note that all of these bases can serve as
part of a hybrid Gaussian/gausslet basis, discussed in the
next section. Adding some Gaussians improves all the
approaches and obscures the difference between them, so
for Fig. 7 we omit Gaussians, but in general, we always
prefer the hybrid bases.

VI. HYBRID NESTED GAUSSLET/GAUSSIAN
BASES

Atom-centered basis sets, such as the standard Gaus-
sian type orbital bases (GTOs) used throughout quan-
tum chemistry, have impressive completeness for their
size which is hard to duplicate directly with NGs. How-
ever, we can incorporate all or part of a GTO basis into
an NG basis. The point of doing this, rather than sim-
ply using a GTO basis, is to retain the diagonal form
of the interactions. Moreover, compared to GTOs, the
NG basis is easier to systematically improve away from
the atom centers. How one combines gausslet and GTOs
while maintaining diagonal interactions is described in
Ref. [11] for product coordinate transformations, and no
significant changes are needed for nested gausslets. Per-
forming the integrals needed for the hybrid PGDG/GTO
approach is particularly convenient: all the integrals in
both bases are analytic.

The most important purpose of the GTOs is to re-
solve the nuclear cusp efficiently, reducing the number of
shells needed. They also help supplement the complete-
ness of the NG basis, by, for example, helping restore
spherical symmetry near the atom centers. These bene-
fits are largely derived from the low angular momentum
functions, and little benefit is seen from adding functions
beyond S and P. In most cases we add just the S and P
functions.

The main idea underlying the hybrid basis construc-
tion is to view the gausslets as the main functions and
orthogonalize the GTOs to the gausslets, forming Resid-
ual Gaussians (RGs). The RGs have quite low occu-
pancy; they serve as corrections to nuclear cusps and are
generally highly oscillatory. While they are important
for high-accuracy single-particle properties, namely the
kinetic and nuclear potential energies, they are less im-
portant for the electron-electron interactions. Therefore
simplistic approximations for their interaction terms are
good enough. The simplest approximation, called Gaus-
sian–gausslet transfer (GGT), replaces each RG by the
gausslet closest to the center of the RG and simply uses
the gausslet-gausslet integrals, which one must compute
anyway. Although some other approximations are some-
what better than GGT, the error discrepancies are small
compared to other errors, such as the overall diagonal
approximation error incurred just by the gausslets.

Here we introduce and utilize an alternative to GGT
which is about as simple, but which has smaller errors.
A collection of GTOs G is orthogonalized to the gaus-
slets and symmetrically orthonormalized to yield corre-
sponding RGs Ĝ. Now Ĝ and G are nonzero in the same
general area, although Ĝ is largely high-momentum and
somewhat more extended than G. However, G2 and Ĝ2

are more similar to each other, in that both have low-
momentum components which contribute strongly to the
interactions. These low-momentum components can be
represented by the gausslets {g}. In the density trans-
fer approximation (DTA) we approximate the low mo-
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mentum components of Ĝ2 by NG

∑

g g
2ïg|Gð2, where

NG = 1/
∑

gïg|Gð2 is a normalization factor which lends
the sum an interpretation as a weighted average. In this
expression we have approximated a double sum over g
and g′ as a diagonal sum over g, since the off-diagonal
products gg′ have no zero momentum components due
to orthogonality. If our diagonal two-electron gausslet-
gausslet interaction is described by a matrix Vgg′ , then
DTA corresponds to using VgĜ = NG

∑

g′ Vgg′ïg′|Gð2
and VĜĜ′ = NGNG′

∑

g′g′′ Vg′g′′ïg′|Gð2ïg′′|G′ð2.
Comparing DTA to GGT, we find that DTA is better.

For example, one check on the interaction matrix for an
atom is to evaluate the repulsion for two electrons in a
hydrogenic 1S orbital versus atomic number Z: it should
evaluate to 5/8Z. To test this result, we obtain the 1S
orbital (within the basis) as the ground state of the one-
electron Hamiltonian. For a typical case, a He atom with
ns = 5 and a minimal spacing of the gausslet basis at the
origin of 0.3, with the S and P functions of the cc-pV6Z
basis[15] added to make the hybrid basis, we find 1.25020
for DTA and 1.25037 for GGT, versus 1.25 exact. We
have not compared DTA with the other more complicated
approximations in [11].
A variety of corrections were explored in [11], to make

the hybrid bases more accurate. Most of these are less
important for nested gausslets because of the better core
resolution, so we do not include them in our results. The
exception is the double-occupancy electron-electron cusp
correction, which is relevant for full-CI calculations. This
is a correction to the energy added at the end of a calcu-
lation, given by

∆E = e0
∑

i

dαi , (10)

where di = ïni↑ni³ð is the double occupancy of gausslet
i. The parameters were fitted to a number of gausslet
two-electron systems and found to be fairly universal,
with

e0 = −0.005078 (11)

and

³ = 0.79. (12)

In previous high-accuracy calculations, the cusp correc-
tion could reduce errors by about an order of magnitude.
We utilize these parameters in our full-CI tests.

VII. RESULTS

In this section we show results from hybrid gaus-
slet/GTO bases, where the gausslet is a PGDG.
In Table I, we show results for the energy of the hydro-

gen atom. The table compares pure GTO results with
results for hybrid NG/GTO bases of similar accuracy,
where the number of gausslets primarily affects the two

Basis ns d Rb E V Nb

DZ G -0.49928 5

DZ 5 0.4 4 -0.49947 0.6265 326

DZ 5 0.4 6 -0.49953 0.62470 424

TZ G -0.49981 14

QZ G -0.499946 30

QZ 7 0.2 6 -0.499968 0.624988 1446

QZ 7 0.2 8 -0.499969 0.624960 1664

5Z G -0.4999945 55

5Z 9 0.1 6 -0.4999968 0.625032 3834

5Z 9 0.1 8 -0.4999972 0.6249989 4220

6Z G -0.49999924 91

6Z 9 0.1 8 -0.49999950 0.6250011 4224

TABLE I. Energies from a hybrid PGDG-gausslet/GTO basis
for a single hydrogen atom. Also shown are the total energies
for a pure Gaussian basis (with the label G in the ns column).
Here the GTO bases are from the cc-pVXZ family[16], d is
the minimum gausslet spacing, and Rb denotes the size of the
box containing the gausslets (2Rb × 2Rb × 2Rb). Nb is the
total basis size. The exact total energy E is -1/2, and the
exact interaction energy V between two electrons placed in
the exact 1S orbital is -0.625.

particle (V) term through the diagonal approximation.
Of course, in this case the GTO basis is vastly more ef-
ficient, but this very simple example gives an indication
of the accuracy of the diagonal approximation which is
similar in more complicated systems. Note that the mea-
sured interaction energy V is not a true property of a hy-
drogen atom: it assumes that two electrons exist in the
noninteracting single-particle 1S orbital. The diagonal
approximation is not variational, and V may be above
or below the exact result, but its error decreases very
rapidly with ns. In this case we see that chemical accu-
racy in V is easily obtained with only ns = 5, and µH
accuracy is obtained with ns = 9. This high accuracy
is obtained from the diagonal approximation despite the
singular nature of the Coulomb interaction at short dis-
tances.
The size of the gausslet basis is controlled through ns,

the minimum spacing d, and the box size Rb. Note that
despite the small size of the pure Gaussian bases, the
approximate storage for the Hamiltonian is comparable
to that of the hybrid bases, since storage varies as N4

b
in the Gaussian case, versus N2

b for gausslets (assuming
factorized forms are not used). For molecules, the Gaus-
sian basis size grows linearly with the number of atoms,
but for gausslets, the growth in basis size is significantly
slower, since overlapping regions of atoms share the same
gausslets. However, the most important consideration
for systems beyond the hydrogen atom is the slow con-
vergence of the correlation energy with the size of the
basis. Indeed, roughly speaking, the basis error in the
correlation energy varies as 1/Nb for both Gaussians and
gausslets, in the high accuracy limit where the electron-
electron cusps are being resolved. The larger number of
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FIG. 8. Hartree-Fock results for a helium atom in a hy-
brid PGDG-gausslet/GTO basis, versus the minimum gaus-
slet spacing d (in a.u.), for box size Rb = 7 bohr. The ba-
sis used is the hydrogenic AHGBS-9 basis which only has S
Gaussians and is highly accurate for the nuclear cusp. The
energies are measured relative to the highly accurate result
of Cinal [17], -2.8616799956122.... The points enclosed in the
two blue circles have negative energy errors, which is possi-
ble because the diagonal approximation for the interactions is
not variational. The number near the minimum of each curve
indicates the number of basis functions at that minimum.

gausslets required to make the diagonal approximation
accurate helps to converge the correlation energy more
quickly.

We now consider results for the Hartree-Fock approx-
imation, since this tests both the diagonal approxima-
tion and the completeness of the hybrid basis. Moreover,
computations at the Hartree-Fock level allows us to test
larger-Z atoms without too much additional method de-
velopment compared to many-electron correlated calcu-
lations. The previous hybrid gausslet study stopped at
Z = 2, and we have found that going beyond Z = 4 with
a coordinate-product coordinate transformation is diffi-
cult. Here we show results up to Ne, with all calculations
performed on a desktop, and going beyond Ne would not
be particularly difficult.

In Fig. 8 we show Hartree-Fock results for the helium
atom in a hybrid basis. The basis was chosen for its
highly accurate nuclear cusp treatment, but it also has
excellent completeness for any S function, including the
HF orbital. The key approximation in these calculations
is the diagonal representation of the interactions, which
becomes extremely accurate for larger values of ns; sub-
micro-Hartree errors are easily reached with ns = 9.

In Fig. 9 we show unrestricted Hartree-Fock results
for the carbon atom in a hybrid basis. In this case we
used two different Gaussian bases to try to assess any
errors due to inadequate treatment of the nuclear cusp
by the Gaussian basis, but the differences in the results
were only slightly noticeable, and only at ns = 7. Our

FIG. 9. Unrestricted Hartree-Fock results for a carbon atom
in a hybrid PGDG-gausslet/GTO basis versus the minimum
gausslet spacing d (in a.u.) for box size Rb = 16 a.u. The
open symbols use the S and P functions of a cc-pV6Z basis[18],
while the corresponding small closed symbols use a AHGBS-
9 basis[19], which only has S and P functions. The green
dot-dashed line (Ref. a) shows previous results from [20],
and the black dot-dashed line is a numerically exact result
from MRchem [21]: −37.6937404 Ha. Our final total energy
for ns = 11 of −37.69374(1) Ha is consistent with the exact
result. The number of basis functions for ns = 7, d = 0.05
was 2623; for ns = 9, d = 0.04, 4688; for ns = 11, d = 0.03,
8650.

final energy is accurate to about 10−5 Hartree.

In Fig. 10 we show Hartree-Fock results for a neon
atom, far beyond what would have been possible with
previous gausslet bases. In this case we compare with
the highly accurate numerical results of Cinal [17]. Here,
one needs ns = 9 at least to reach sub-milli-Hartree total
energies. At ns = 11, we find an energy of −128.54708(1)
Ha for d ∼ 0.007 − 0.01. This is off by about 2 × 10−5

Ha from Cinal’s result of −128.54709810938.

The question of whether the beryllium dimer has a
bound state was a long-standing challenge for quantum
chemistry. Results from DMRG with transcorrelated
basis sets have given convincing results that there is a
bound state [22], in disagreement with HF results ex-
hibiting a purely repulsive potential [23]. For the Be
atom, Ivanov found a lower-symmetry lower-energy UHF
state [24], with energy E = −14.57336 Ha, versus the
RHF result of E = −14.57302 Ha. Our tests on the Be
atom verify these results: for both ns = 9 and ns = 11
we find E = −14.573351 Ha for the UHF energy, with
a hybrid PGDG-gausslet/cc-pV6Z basis[25], using S and
P GTOs. For our UHF calculations we specify that the
number of ³ and ´ electrons are identical (Sz = 0); oth-
erwise, the orbitals are unconstrained, and the system
does not have to have a definite state of total spin S. In
testing our NG bases on Be2, we discovered that there is
a UHF solution that is substantially lower than the RHF
solution, which provides for a bound state of the dimer.
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FIG. 10. Restricted Hartree-Fock total energies for a Neon
atom with a hybrid PGDG-gausslet/GTO basis versus the
minimum gausslet spacing d (in a.u.) for box size Rb = 15
a.u. The GTO utilizes the S functions of a cc-pV6Z basis[18]
The dashed line shows the numerical results of Cinal [17]. The
number of basis functions for ns = 7, d = 0.03 was 2748; for
ns = 9, d = 0.02, 5754; for ns = 11, d = 0.03, 12776.

For example, at separation R = 4, we find a binding en-
ergy of 0.01070 Ha for ns = 9, d = 0.05, and 0.01073
Ha for ns = 7, d = 0.075, using UHF energies for both
the molecule and atom. This lower energy UHF solution
was subsequently verified through a stability analysis us-
ing the PYSCF package [26] and a large traditional GTO
basis [27]. In Fig. 11 we show the results for the potential
energy of the system as a function of R, for both RHF
and UHF. (In the RHF calculations, we used the atomic
RHF result.) The resulting potential energy curve seems
to be qualitatively similar to the exact binding curve, but
the exact binding energy has a minimum near R = 4.75
a.u. instead of R = 4.25 a.u., and its minimum is only
about 4.3 mH[22] versus 12.2 mH from UHF.

Turning now to fully correlated calculations, in Fig. 12
we show full-CI complete basis results for the hydrogen
molecule as a function of nuclear separation. Even at
ns = 5, the errors are well below chemical accuracy. At
large separation, errors are near the µH level. Here the
two electrons are usually on different atoms so the basis
set errors associated with the electron-electron cusp are
less important. The errors are larger at the shortest dis-
tances, but still of order 10−5Ha at R = 1 for ns = 9.
We also show energies corrected by the double occupancy
electron-electron cusp correction. Here, the cusp correc-
tion is not as effective as it was for the non-nested hybrid
gausslet bases of [11], although the cusp correction does
always decrease the errors. It is possible that the effec-
tiveness of the correction is reduced because the fitting
of the coefficients for small molecules is sensitive to the
difference between non-nested and nested gausslets.

FIG. 11. Potential energy for RHF and UHF for the beryl-
lium dimer within NG bases at separation R. The NG basis
was a hybrid PGDG-gausslet/GTO basis utilizing the S and
P functions of a cc-pV6Z basis[25], with ns = 7 and d = 0.075.

�

FIG. 12. Exact diagonalization within NG bases for the
H2 molecule at separation R, relative to the exact results of
Ref. [28]. The NG basis was a hybrid PGDG-gausslet/GTO
basis utilizing the S and P functions of a cc-pV6Z basis[16] For
ns = 5, 7, and 9, we used d = 0.4, 0.2, and 0.1, respectively.
The solid lines are colored according to ns as in the legend;
the dashed lines of the same color are the results corrected by
the double-occupancy cusp correction.

VIII. CONCLUSIONS

In this paper we have described nested gausslet
(NG) bases, including pure Gaussian distorted gausslet
(PGDG) bases, as well as hybrid versions of these bases
with ordinary Gaussians. All gausslet bases are local-
ized and orthonormal from the start. Previous gausslet
bases were not able to effectively treat atoms with atomic
number Z greater than 3 or 4; NG bases are able to treat
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much larger Z. NG bases are in general more efficient
than previous gausslet bases, since there are no regions
away from nuclei where the spacing between functions is
inappropriately small.
The PGDG basis allows for analytic computation of

all the integrals needed to construct the Hamiltonian,
once one has decomposed the Coulomb interaction into
a modest sum of Gaussians. The computation time to
construct the Hamiltonian matrices is quite modest, and
the diagonal approximation allows bases with at least
10,000 functions to be used on a desktop.
In constructing these bases we have developed new in-

sight into one-dimensional diagonal basis sets. We have
proved an important theorem relating completeness, or-
thogonality, zero-moment properties of the functions, and
diagonalization of the coordinate operator (x) matrix.
This mathematical development greatly eases the con-
struction of NG bases.
We have demonstrated NG bases with tests on small

systems with a focus on very high accuracy, allowing for
clear-cut benchmarking. One can rather easily achieve
very small basis set errors at the Hartree-Fock level, typ-
ically around 10−5 Ha. At the fully correlated level,

we expect electron-electron cusp errors to be somewhat
larger, but in H2 these errors are still around 10−5 Ha or
less. However, the reduction in correlation errors from a
recently developed electron-electron cusp correction are
not as impressive as in previous work.

A motivation for this work has been to improve scaling
for DMRG calculations in quantum chemistry. The diag-
onal form of the electron-electron interaction translates
immediately to better scaling in DMRG calculations, and
the locality of the basis is also expected to reduce en-
tanglement, but we leave tests using DMRG (and other
correlated methods beyond two electrons) for later work.
We also leave lower-accuracy but larger-system tests for
later work.
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APPENDIX A: COORDINATE MAPPINGS

With a coordinate transformation, a gausslet G(x) is

replaced by
√

u′(x)G(u(x)). The density of basis func-
tions is given by Ä(x) ≡ u′(x); the spacing between basis
functions is approximately 1/Ä(x). Here we give coordi-
nate mappings for the simple case of one atom centered
at x0.
The sinh mapping is defined by a core size a and scale

parameter s, and is given by

Ä(x) =
(

s
√

(x− x0)2 + a2
)−1

u(x) = sinh−1[(x− x0)/a]/s (13)

x(u) = x0 + a sinh(su).

The function spacing at the origin is as. Typical param-
eters are s = 0.7 and a = s/Z, where Z is the atomic
number. For this mapping, the basis function spacing
increases without bound away from the origin. This fact
is usually inconvenient for numerical integration, so typ-
ically a constant shift 1/w is added to Ä, yielding an
asymptotic spacing of w. Our standard choice is w = 10.

Another useful mapping, which we call the erf/x map-
ping, is given by

Ä(x) =
n
(

erf
(

x
c

)

− erf
(

x
d

))

2x ln
(

d
c

) . (14)

This mapping is similar to the sinh mapping, with a core
size controlled by c, falling roughly as ∼ 1/x for c <
x < d, but dropping off to zero quickly for |x| > d. The
total integral of Ä(x) is n, so this density contributes n
functions when added to another density.

APPENDIX B: COULOMB INTEGRALS

We use a long-known trick for performing all three di-
mensional Coulomb integrals, representing 1/r as a sum
of Gaussians via discretization of the integral

1

r
=

1√
Ã

∫ ∞

−∞
dt e−r2t2 . (15)

Then the 3D integrals separate into products of x, y, and

z integrals because e−ζr2 = e−ζx2

e−ζy2

e−ζz2

.

We can use the sinh mapping of Appendix A to con-
struct a suitable discretization of this integral. (Alter-
native approaches can be found in [29, 30].) Let u(t) be
a sinh mapping with x0 = 0; we find that the param-
eters s = 0.3, a = 0.03 are close to ideal for moderate
accuracy calculations. Then change variables t → u, and
discretize uniformly in u, using a symmetric grid with the
origin at the midpoint of two grid points. The integral
is even, so only need to take into account the positive
grid points, with contribution adjusted by a factor of 2.
Concretely, we take ui = (i− 1/2) for i = 1 . . .M , where
M = 45, and then define ti = t(ui). This choice yields
the approximation

1

r
≈

∑

i

cie
−ζir

2

(16)

with

·i = t2i

ci =
2∆√
ÃÄ(ti)

. (17)

For r ranging from 10−3 to 10, this approximation is
accurate to 7 or 8 digits.
If greater accuracy or range is desired, then the param-

eters s = 0.16, c = 0.01, and M = 115 yield a relative
error of about 10−13 for r ranging from 10−5 to 100.
Indeed, we have used the latter high-accuracy choice of
parameters for the calculations in this paper.

APPENDIX C: ADDITIONAL MEASURES OF
OPTIMALITY FOR POTENTIAL DIAGONAL

BASES

Properties not guaranteed by COMX are locality and
a self-integral that is not nearly zero wi (see Eq. (2)); in
fact, COMX allows for wi = 0, in which case the function
does not act like a ¶-function at all.
One scale-invariant measure tied to the size of wi is

the positivity

P =

∫

x
S(x)

∫

x
|S(x)| , (18)

which one would like to maximize. Completeness and or-
thogonality limit the positivity to well below 1; gausslets
with 8th and 10th order completeness have P = 0.693
and P = 0.675, respectively, which seem to be nearly op-
timal values for these level of completeness. In contrast,
the sinc function has P = 0 due to the fact that it is
not absolutely integrable. Meanwhile, the Meyer scaling
function [31] defines another orthogonal diagonal basis.

It is defined in terms of its Fourier transform Ŝ as

Ŝ(É) =















1√
2π

, |É| f 2Ã/3

0, |É| g 4Ã/3
1√
2π

cos
(

π
2 ¿

(

3|ω|
2π − 1

))

, otherwise,

(19)
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where ¿ continuosly interpolates ¿(0) = 0 to ¿(1) = 1.
The most common choice for ¿ producing well-localized S
is a seventh-order polynomial which achieves the deriva-
tive conditions ¿(k)(0) = ¿(k)(1) = 0 for k = 1, 2, 3. This
choice yields a value of P = 0.585.

Another scale-invariant quantification of the quality of
a basis function is based on the usual ∆p∆x measure of

uncertainty in a wavepacket. The uncertainty is

U = 4

[
∫

x

S′(x)2
]

×
[
∫

x

S(x)2(x− x̄)2
]

(20)

where x̄ =
∫

x
S(x)2. The factor of 4 ensures that a Gaus-

sian, the minimum-uncertainty wavepacket, has U = 1.
In general, smaller U is better. Gausslets of order 8 and
10 have U = 2.11 and 2.30, respectively. Meanwhile,
sincs have infinite uncertainty, and Meyer scaling func-
tions have U = 4.09.
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