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Abstract. In this paper, we propose an efficient exponential integrator finite element method for
solving a class of semilinear parabolic equations in rectangular domains. The proposed method first
performs the spatial discretization of the model equation using the finite element approximation with
continuous multilinear rectangular basis functions, and then takes the explicit exponential Runge-
Kutta approach for time integration of the resulting semi-discrete system to produce fully-discrete
numerical solution. Under certain regularity assumptions, error estimates measured in H1-norm are
successfully derived for the proposed schemes with one and two RK stages. More remarkably, the
mass and coefficient matrices of the proposed method can be simultaneously diagonalized with an
orthogonal matrix, which provides a fast solution process based on tensor product spectral decom-
position and fast Fourier transform. Various numerical experiments in two and three dimensions are
also carried out to validate the theoretical results and demonstrate the excellent performance of the
proposed method.
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1. Introduction. In this paper, we are devoted to studying numerical solution
of the semilinear parabolic equation taking the following form:

(1.1) ut = D∆u+ f(t, u), x ∈ Ω, t ≥ 0,

where Ω is an open rectangular domain in Rd, D > 0 is the constant diffusion coeffi-
cient, u(t,x) is the unknown function, and f(t, u) is the nonlinear reaction term of the
underlying system. It is well known that the equation (1.1) together with appropriate
initial value and boundary condition has been widely used in mathematical models for
various scientific and engineering applications, such as the Allen-Cahn equation and
some other phase field models [11] for describing the phase transition and separation
[1], the time-dependent advection diffusion equation and the Navier-Stokes equations
for fluid dynamics [39], and the Ginzburg-Landau equation [12] for superconductiv-
ity. Many related numerical methods, especially for its temporal discretization, have
been proposed and analyzed in the past few decades. Some typical ones include fully-
implicit scheme [17] implicit-explicit method [2, 44], integrating factor (IF) method
[28, 41], split step method [3, 36], sliders methods [10], exponential time differencing
(ETD) method [8, 32], invariant energy quadratization (IEQ) method [45], integrating
factor Runge-Kutta (IFRK) method [25, 29], scalar auxiliary variable (SAV) method
[38] and so on.

The IF, ETD and IFRK methods fall into the category of exponential integrator-
based methods and have received much attention in the past two decades due to their
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effectiveness and stability in handling stiff semilinear systems, such as the equation
(1.1) with very small D and highly nonlinear f . All the three methods can maintain
the exponential behavior of the system in some extent but also have significant dif-
ferences. The IF and ETD methods both start with the Duhamel formula, but they
differ on the way of evaluating the time integration of the terms resulting from mul-
tiplication of the exponential integrator and f . The IF method uses quadrature rules
directly to the whole integrand, while the ETD method first approximates the non-
linear part using polynomial interpolation and then performs exact integration on the
resulting integrands. Instead, the IFRK method first applies an exponential-type vari-
able transformation to eliminate the linear term from the equation and then use the
standard Runge-Kutta method for time integration of the transformed system. The
L2-stability and L∞-stability of ETD methods were established in [15] by means of
Fourier transformation (FFT) and maximum bound principle of the underlying equa-
tions. Some researches have been done to further enhance the stability of ETD method
[15, 27, 33] and improve their numerical advantages by exploring the stability factor
numerically [8]. Motivated by [34], a family of exponential Runge-Kutta methods
[20, 19, 21, 31, 46, 16] were systematically developed with corresponding consistency
and order conditions based on the theory of semigroup. Exponential integrator-based
methods have also been extended to various areas, such as solution of systems with
nondiagonal operators [27], Rosenbrock-type method [22], low-regularity integrators
[35], adaptive time stepping [43], and general order parabolic equations [23, 24].

A significant feature of the exponential integrator-based methods is that they
all require evaluations of the products of matrix exponentials and vectors. Such
operations generally are implemented with Krylov subspace method [14], which is
still time-consuming for large scale systems. To overcome this difficulty, some fast
FFT-based algorithms were proposed for efficient implementation of ETD methods in
rectangular domains, but they only work for the case of using finite difference method
for spatial discretization [26, 47, 13]. The key idea is to utilize tensor product repre-
sentation of discrete spatial operators and spectral decomposition in each dimension.
Moreover, convergence analysis of ETD methods to the equation (1.1) highly depends
on discrete maximum bound principles, which does not always hold for the classic
finite element or pseudo-spectral discretizations, see [14] and references cited therein.

In this paper, we propose an efficient exponential integrator finite element (EIFE)
method for solving the semilinear parabolic equation (1.1) in rectangular domains. In
the proposed method, we first carry out the spatial discretization by using continuous
multilinear rectangular finite elements to obtain a semi-discrete (in space) system,
then apply the explicit exponential Runge-Kutta approach for time integration of the
resulting system to achieve the fully-discrete scheme. Error estimates measured in
H1-norm are also successfully derived for the EIFE schemes with one and two RK
stages for the problem with Dirichlet boundary condition. Specifically, we first rewrite
the semi-discrete system as a finite dimensional spatial operator equation and then
error estimate of the semi-discrete solution is naturally obtained by using the varia-
tional formulation and the energy method. Next, the fully-discrete system is regarded
as a finite dimensional evolution equation, we then adapt and verify the arguments
from [19] to estimate the errors of the fully-discrete solutions. Furthermore, it is ob-
served that the resulting mass and coefficient matrices in the EIFE method can be
diagonalized simultaneously with an orthogonal matrix, whose multiplication with a
vector can be efficiently computed using FFT, which is held for both Dirichlet and
periodic boundary condition cases. Consequently, following [26], fast solution algo-
rithms are able to be constructed based on the tensor product spectral decomposition.
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To the best of our knowledge, the work presented in this paper is the first study on
fast numerical method with rigorous fully-discrete error estimates, which combines
exponential integrator in time and finite element discretization in space.

The rest of the paper is organized as follows. The EIFE method is first proposed
in Section 2, and then its fully-discrete error analysis is given in Section 3. The FFT-
based fast implementation of EIFE method is illustrated in Section 4. In Section 5,
various numerical experiments are carried out to validate the theoretical results and
demonstrate the excellent performance of the EIFE method. Finally, some concluding
remarks are drawn in Section 6.

2. An exponential integrator finite element method. In this section, we
will propose an exponential integrator finite element method for solving the model
equation (1.1). Let us start with some standard notations for later representations.
Given a bounded Lipschitz domain G ⊂ Rd and a non-negative integer s ≥ 0, denote
by Hs(G) the standard Sobolev spaces on G with the norm ‖·‖s,G and the semi-norm
| · |s,G, by (·, ·)G the L2-inner product on G, and by Hs

0(G) the closure of C∞0 (G) with
respect to the norm ‖ · ‖s,G. We also define ‖v‖k,∞,G = ess sup|α|≤k‖Dαv‖L∞(Ω) for
any function v such that the right-hand side term makes sense, where α = (α1, · · · , αd)
is a multi-index and |α| = α1 + · · ·+αd. We may omit the subscript for G = Ω when
there is no confusion caused. For any non-negative integer ` ≥ 0, P`(G) stands for
the set of all polynomials on G with the total degree at most `. Moreover, given
two quantities a and b, “a . b” abbreviates “a ≤ Cb”, where C is a generic positive
constant; “a h b” is equivalent to “a . b . a”.

Let us consider the semilinear parabolic equation (1.1) with homogeneous Dirich-
let boundary condition and an initial configuration u0 ∈ H2(Ω) ∩H1

0 (Ω), that is

(2.1)


ut = D∆u+ f(t, u), x ∈ Ω, 0 ≤ t ≤ T,
u(0,x) = u0(x), x ∈ Ω,

u(t,x) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T,

where T ≥ 0 is the terminal time.

2.1. Semi-discretization in space by finite element approximation. The
variational formulation of the above problem (2.1) is to find u ∈ L2(0, T ;H1

0 (Ω)) and
ut ∈ L2(0, T ;L2(Ω)) such that

(2.2)

{
(ut, v) + a(u, v) = (f(t, u), v), ∀ v ∈ H1

0 (Ω), 0 ≤ t ≤ T,
u(0) = u0,

where the bilinear operator a(·, ·) is symmetric and defined by

(2.3) a(w, v) =

∫
Ω

D∇w · ∇v dx, ∀w, v ∈ H1
0 (Ω).

We now define a finite element space Vh for approximation of H1
0 (Ω). Since Ω ∈ Rd

is a rectangular domain, let us assume Ω :=
∏d
i=1[ai, bi]. For each i = 1, · · · , d, we

make a uniform partition of [ai, bi] with the subinterval size hi = bi−ai
Ni

, to get the

nodes xji = ai + jhi, j = 0, · · · , Ni as ai = x0
i < x1

i < · · · < xNii = bi. With
this uniform partition, we obtain a one-dimensional continuous piecewise linear finite
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element space for [ai, bi] as

V ihi(ai, bi) :=

{
v ∈ C[ai, bi] : v|[

xj−1
i ,xji

] ∈ P1(
[
xj−1
i , xji

]
), 1 ≤ j ≤ Ni

}
∩H1

0 (ai, bi)

= span
{
φ1
i (xi), · · · , φ

Ni−1
i (xi)

}
,

where φji (xi) is the j-th nodal basis function of V ih(ai, bi). By using the tensor product
of all above finite element spaces, we can obtain a finite element space for Ω as follows:

Vh := V 1
h1

(a1, b1)⊗ · · · ⊗ V dhd(ad, bd)(2.4)

= span{φi11 (x1) · · ·φidd (xd) : 1 ≤ i1 ≤ N1 − 1, · · · , 1 ≤ id ≤ Nd − 1}.

It is evident that Vh ⊂ H1
0 (Ω). Define h = max1≤i≤d hi as the mesh size of the

corresponding uniformly rectangular partition Th for generating Vh. For the forth-
coming error analysis, we assume the partition Th is quasi-uniform, i.e., h h hi for
all 1 ≤ i ≤ d. The finite element approximation in space for (2.2) is then to find
uh ∈ L2(0, T ;Vh) such that

(2.5)

{
(uh,t, vh) + a(uh, vh) = (f(t, uh), vh), ∀ vh ∈ Vh, 0 ≤ t ≤ T,
uh(0) = Phu0,

where Ph : L2(Ω) → Vh is the L2 orthogonal projection operator. Since Th is quasi-
uniform, it is easy to show, using the similar arguments in [4], that Ph is stable with
respect to L2-norm or H1-norm, i.e., ‖Phu‖0 . ‖u‖0 and ‖Phu‖1 . ‖u‖1 for any
u ∈ H1

0 (Ω). Applying the inverse inequality for finite elements [5, 7] we know

(2.6) a(wh, vh) . |wh|1|vh|1 . h−2‖wh‖0‖vh‖0, ∀wh, vh ∈ Vh.

where the hidden constants are independent of h, which means a(·, ·) is a bounded
bilinear form over Vh with respect to L2-norm. Therefore, by the Riesz representation
theorem, there exists a bounded linear operator Lh : Vh → Vh such that

(2.7) a(wh, vh) = (Lhwh, vh), ∀wh, vh ∈ Vh.

Making use of the projection operator Ph, we can finally reformulate the problem
(2.5) as the following equivalent semi-discrete (in space) system:

(2.8)

{
uh,t + Lhuh = Phf(t, uh), x ∈ Ω, 0 ≤ t ≤ T,
uh(0) = Phu0, x ∈ Ω.

2.2. Explicit exponential integrator in time. Let us divide the time interval
[0, T ] into NT > 0 subintervals [tn, tn+1], n = 0, 1, · · · , NT−1, with τn = tn+1−tn > 0
being the time step size at tn. Let {e−tLh}t≥0 denote the semigroup on Vh with the
infinitesimal generator (−Lh). For simplicity of presentation, we define u(t) := u(t, ·)
and uh(t) := uh(t, ·). By the Duhamel principle, the semi-discrete solution uh to the
problem (2.8) can be equivalently expressed as

(2.9) uh(tn+1) = e−τnLhuh(tn) +

∫ τn

0

e−(τn−σ)LhPhf(tn + σ, uh(tn + σ)) dσ.

Denote by unh the fully-discrete numerical solution at the time step tn after temporal
discretization of (2.9). We then apply the classic explicit exponential Runge-Kutta
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approach [21] (see Table 1) to (2.9) and obtain a fully-discrete numerical method for
solving the semilinear parobolic problem (2.1) as follows: for n = 0, 1, · · · , NT − 1,

(2.10)


un+1
h = χ(−τnLh)unh + τn

s∑
i=1

bi(−τnLh)Gni,

Uni = χi(−τnLh)unh + τn
i−1∑
j=1

aij(−τnLh)Gnj , i = 1, · · · , s,

Gni = Phf(tn + ciτn, Uni), i = 1, · · · , s,

where the integer s > 0 denotes the number of stages for exponential Runge-Kutta
method.

Table 1
Explicit exponential Runge-Kutta tableau for (2.9) with s denoting the number of stages.

c1 χ1(−τnLh)
c2 a21(−τnLh) χ2(−τnLh)
...

...
. . .

...
cs as1(−τnLh) · · · as,s−1(−τnLh) χs(−τnLh)

b1(−τnLh) · · · bs−1(−τnLh) bs(−τnLh) χ(−τnLh)

Here the interpolation nodes c1, · · · , cs are s distinct nodes selected in [0, 1], and
the weights are given by

bi(−τnLh) =

∫ 1

0

e−τn(1−θ)Lh li(θ) dθ, i = 1, · · · , s,

aij(−τnLh) =
1

τn

∫ ciτn

0

e−(ciτn−τ)Lh lj(τ) dτ, i = 1, · · · , s, j = 1, · · · , i− 1,

with {li(θ)}si=1 being the classic Lagrange interpolation polynomials

li(θ) :=

s∏
m=1,m 6=i

θ − cm
ci − cm

, i = 1, · · · s.

The coefficients χ, χi are constructed from exponential functions or approximations
of such functions evaluated at the operator (−τnLh). Let us define

ϕk(z) =

∫ 1

0

e(1−θ)z θk−1

(k − 1)!
dθ, k ≥ 1.

It is easy to check that ϕ0(z) = ez and ϕk+1(z) = ϕk(z)−ϕk(0)
z for k > 0. Then,

ϕk(−τnLh) =
1

τkn

∫ τn

0

e−(τn−τ)Lh
τk−1

(k − 1)!
dτ, k ≥ 1.

To ensure the consistency of the explicit exponential Runge-Kutta method, it is
always assumed that the following conditions hold [21]:
(2.11)

χ(−τnLh) = e−τnLh ,

χ1(−τnLh) = 1, χi(−τnLh) = e−ciτnLh , 1 ≤ i ≤ s,
s∑
j=1

bj(−τnLh) = ϕ1(−τnLh),
i−1∑
j=1

aij(−τnLh) = ciϕ1(−ciτnLh), 1 ≤ i ≤ s.
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With the help of the above consistency condition (2.11), we can find c1 = 0 and
obtain the explicit forms of the functions χ and χi in (2.10). Finally, the proposed
fully-discrete scheme (2.10) can be rewritten as

(2.12)


un+1
h = e−τnLhunh + τn

s∑
i=1

bi(−τnLh)Gni,

Uni = e−ciτnLhunh + τn
i−1∑
j=1

aij(−τnLh)Gnj , i = 1, · · · , s,

Gni = Phf(tn + ciτn, Uni), i = 1, · · · , s.

We refer to the above fully-discrete scheme (2.12) as the exponential integrator
finite element (EIFE) method. In particular, if the number of RK stages s = 1, then
the so-called first-order Euler exponential scheme is obtained for time stepping, and
(2.12) can correspondingly be expressed as

(2.13) un+1
h = e−τnLhunh + τnϕ1(−τnLh)Phf(tn, u

n
h),

which is called EIFE1. If the number of RK stages s = 2, then the two interpolation
nodes are taken as c1 = 0 and c2 ∈ (0, 1] and the two-stage second-order exponential
Runge-Kutta scheme is obatined for time stepping, and (2.12) correspondingly reads

un+1
h = e−τnLhunh + τn

(
(ϕ1(−τnLh)− 1

c2
ϕ2(−τnLh))Phf(tn, u

n
h)

+
1

c2
ϕ2(−τnLh)Phf(tn + c2τn, e

−c2τnLhunh + c2τnϕ1(−c2τnLh)Phf(tn, u
n
h))
)
,

(2.14)

which is denoted as EIFE2.
Fully-discrete error analysis of (2.13) and (2.14) will be carefully studied in Section

3. For even higher order (≥ 3) explicit exponential Runge-Kutta schemes, more
complicated order conditions are needed and we can refer to [21] for details. It is
worth noting that the proposed EIFE method is so far described in an abstract setting
for the convenience of further theoretical analysis. If we express the finite element
numerical solution in terms of nodal basis functions of Vh, we can further reformulate
the equations (2.5) and (2.8) in the matrix form. More remarkably, the resulting
mass and coefficient matrices can be diagonalized simultaneously with an orthogonal
matrix and the product of the e−τnLh with any vector consequently can be realized
efficiently using tensor product spectral decomposition and FFT, which render a fast
implementation for the EIFE method (2.12) as described in Section 4.

3. Error analysis of the EIFE method. In this section, we focus on error
estimates of fully-discrete solutions produced by the EIFE method (2.12) for solv-
ing the semilinear parabolic problem (2.1) (i.e., the case with homogeneous Dirichlet
boundary condition). Note that the analysis also work for the problem with nonho-
mogeneous Dirichlet boundary condition after minor modifications. From now on, we
always assume the dimension of the problem d ≤ 3.

3.1. Some preliminary lemmas. We first present some results related to the
semigroup {e−tLh}t≥0 and some terms used in the exponential Runge-Kutta schemes,
which are important to the forthcoming analysis of the proposed EIFE method.

Lemma 3.1. (i) For any given parameter γ ≥ 0, it holds

(3.1) ‖e−τLh‖0 + ‖τγLγhe
−τLh‖0 . 1, ∀ τ > 0, ∀h > 0.
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(ii) For any given parameter 0 ≤ γ ≤ 1, it holds

(3.2)
∥∥∥τLγh n−1∑

j=1

e−jτLh
∥∥∥

0
. 1, ∀ τ > 0, ∀h > 0.

(iii) For any given parameter 0 ≤ γ ≤ 1, it holds

(3.3) ‖φ(−τLh)‖0 + ‖τγLγhφ(−τLh)‖0 . 1, ∀ τ > 0, ∀h > 0,

where φ(−τLh) = bi(−τLh) or φ(−τLh) = aij(−τLh), i, j = 1, · · · , s.
Proof. (i) Since a(·, ·) is a symmetric bilinear operator, we easily know Lh is a

linear symmetric operator on Vh. On the other hand, by the Poincaré inequality, there
exists a constant α > 0 such that

α‖vh‖20 ≤ a(vh, vh), ∀ vh ∈ Vh.

This combined with (2.6) gives 0 ≤ α ≤ λ . h−2 for all λ ∈ λ(Lh) by means of
Rayleigh representation theorem, where λ(Lh) denotes the set of all eigenvalues of
Lh. Therefore, we obtain

(3.4) ‖e−τLh‖0 ≤ e−ατ < 1.

On the other hand, Lh is a symmetric operator on Vh, so is τγLγhe
−τLh . Thus it holds

(3.5) ‖τγLγhe
−τLh‖0 = maxλ∈λ(Lh) |(τλ)γe−τλ|.

Let us consider an auxiliary function g(x) = xγe−x for x ≥ 0. The derivative with
respect to x is g′(x) = xγ−1e−x(γ − x), so the maximum of g(x) is taken at x = γ,
which implies

(3.6) g(x) ≤ γγe−γ , ∀x ≥ 0.

Combination of (3.6) with (3.5) immediately gives us ‖τγLγhe−τLh‖0 ≤ γγe−γ , which
together with (3.4) then directly deduces (3.1).

(ii) Follow the similar arguments for deriving (3.5),∥∥∥τLγh n−1∑
j=1

e−jτLh
∥∥∥

0
= max
λ∈λ(Lh)

∣∣∣τλγ n−1∑
j=1

e−jτλ
∣∣∣ ≤ max

λ∈λ(Lh)
λγ−1

∣∣∣ τλ
eτλ−1

∣∣∣.
Since the auxiliary function g(x) =

∣∣∣ x
ex−1

∣∣∣ ≤ 1 for any x > 0, 0 ≤ γ ≤ 1, we have

(3.7)
∥∥∥τLγh n−1∑

j=1

e−jτLh
∥∥∥

0
. 1.

(iii) If φ(x) = bi(x) for 1 ≤ i ≤ s, then

‖φ(−τLh)‖0 =
∥∥∥ ∫ 1

0

e−τ(1−θ)Lh li(θ) dθ
∥∥∥

0
≤
∫ 1

0

‖e−τ(1−θ)Lh‖0|li(θ)| dθ . 1,

since the interpolation nodes c1, · · · , cs are fixed. For all γ ∈ [0, 1], follow the similar
arguments, we have

‖τγLγhφ(−τLh)‖0 = max
λ∈λ(Lh)

∣∣∣τγλγ ∫ 1

0
e−τ(1−θ)λli(θ) dθ

∣∣∣
. max
λ∈λ(Lh)

∣∣∣τγλγ ∫ 1

0
e−τ(1−θ)λ dθ

∣∣∣ = max
λ∈λ(Lh)

(τλ)γ−1(1− e−τλ).

(3.8)
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Let us consider the auxiliary function g(x) = xγ−1(1−e−x) for x > 0 where 0 ≤ γ ≤ 1.
Since lim

x→0+
f(x) = 0 and lim

x→+∞
f(x) = 0, the function f(x) must take its maximum

at a point x0 ∈ (0,+∞), and f ′(x0) = 0 by the Fermat lemma. Note that

f ′(x) = xγ−2e−x((γ − 1)(ex − 1) + x),

which implies that (γ−1)(ex0−1)+x0 = 0, and x0 depends only on γ. Hence, f(x) is
bounded by a constant C(γ) > 0. This combined with the above estimate (3.8) gives

(3.9) ‖τγLγhφ(−τLh)‖0 . 1.

Similarly,the above results are also held for φ(x) = aij(x), i, j = 1, · · · , s.
In addition, recalling the definitions (2.3) and (2.7) and noting that Lh is a

symmetric positive definite operator, we have the following important property:

(3.10) ‖v‖1 h ‖L
1
2

h v‖0, ∀ v ∈ Vh,

which establishes an important relation between the H1 and L2 norms over Vh, and
will be frequently used later on. Next let us introduce the mild growth condition for
the function f as given in [40] and some regularity conditions required for the exact
solution u(t) in order to carry out convergence and error analysis of EIFE method.

Assumption 3.1. The function f(t, ζ) grows mildly with respect to ζ, i.e., there
exists a number p > 0 for d = 1, 2 or p ∈ (0, 2] for d = 3 such that

(3.11)
∣∣∣∂f
∂ζ

(t, ζ)
∣∣∣ . 1 + |ζ|p, ∀ t, ζ ∈ R.

Assumption 3.2. The function f(t, ζ) is sufficiently smooth with respect to t and
ζ, i.e., for any given constant K > 0, it holds

(3.12)
∑
|α|≤2

∣∣∣Dαf(t, ζ)
∣∣∣ . 1, ∀ t ∈ [0, T ], ζ ∈ [−K,K].

Assumption 3.3. The exact solution u(t) satisfies some of the following regular-
ity conditions:

sup
0≤t≤T

‖u(t)‖2,Ω . 1,(3.13a)

sup
0≤t≤T

‖ut(t)‖0,∞,Ω . 1,(3.13b)

sup
0≤t≤T

‖utt(t)‖0,∞,Ω . 1,(3.13c)

where the hidden constants may depend on T .

We then have the following result on the locally-Lipschitz continuity of f .

Lemma 3.2. Suppose that the function f satisfies Assumption 3.1, and the exact
solution u(t) fulfills (3.13a) in Assumptions 3.3. Then f is locally-Lipschitz continu-
ous in a strip along the exact solution u(t), i.e., for any fixed constant R > 0,

(3.14) ‖f(t, v)− f(t, w)‖0 . ‖v − w‖1,

for any t ∈ [0, T ] and v, w ∈ Vh satisfying

max{‖v − u(t)‖1, ‖w − u(t)‖1} ≤ R,

where the hidden constant in (3.14) may depend on R.
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Proof. It follows from (3.13a) and (3.2) that

(3.15) max{‖v‖1, ‖w‖1} ≤ R+ ‖u(t)‖1 . 1 +R.

On the other hand, by the Lagrange mean value theorem and (3.11),

‖f(t, v)− f(t, w)‖20 =
∥∥∥∂f
∂u

(t, ξ)(v − w)
∥∥∥2

0
≤
∫

Ω

(1 + |ξ|p)2|v − w|2 dx

≤
∫

Ω

(1 + |v|p)2|v − w|2 dx+

∫
Ω

(1 + |w|p)2|v − w|2 dx,

(3.16)

where ξ(x) = θ(x)v(x) + (1− θ(x))w(x) for some θ(x) ∈ [0, 1]. It is clear that
(3.17)∫

Ω

(1 + |v|p)2|v−w|2 dx =

∫
Ω

|v|2p|v−w|2 dx+ 2

∫
Ω

|v|p|v−w|2 dx+

∫
Ω

|v−w|2 dx.

It suffices to show below the bound of the first term in the right-hand side of
(3.17) since the other two terms can be treated similarly.

Case I: d = 1 or 2. In this case, 0 < p <∞. We choose q1, q2 satisfying

1

q1
+

1

q2
= 1, 1 ≤ q1 <∞, 1 ≤ q2 <∞, 2pq1 ≥ 1.

Then by using Holder’s inequality, Sobolev embedding theorem and (3.15),∫
Ω

|v|2p|v − w|2 dx ≤
(∫

Ω

|v|2pq1 dx
) 1
q1
(∫

Ω

|v − w|2q2 dx
) 1
q2

= ‖v‖2p
L2pq1

‖v − w‖2L2q2 . ‖v‖
2p
1 ‖v − w‖21 . ‖v − w‖21.

(3.18)

Case II: d = 3. In this case, 0 < p ≤ 2. In view of the Sobolev embedding
theorem, H1(Ω) ↪→ Lq(Ω), where 1 ≤ q ≤ 6. We select appropriate q1, q2 satisfying

1

q1
+

1

q2
= 1, 1 ≤ q1 <∞, 1 ≤ q2 ≤ 3, 1 ≤ 2pq1 ≤ 6.

In fact, these conditions hold if (q1, q2) satisfies the conditions

max
{

3
2 ,

1
2p

}
≤ q1 ≤ 3

p , 1 ≤ q2 ≤ 3.

Noting 0 < p ≤ 2, we can find the existence of such a pair (q1, q2) in terms of the
above conditions. Follow the similar arguments for deriving (3.18), we have∫

Ω

|v|2p|v − w|2 dx ≤
(∫

Ω

|v − w|2q2 dx
) 1
q2
(∫

Ω

|v|2pq1 dx
) 1
q1

= ‖v − w‖2L2q2 ‖v‖
2p
L2pq1

. ‖v − w‖21‖v‖
2p
1 . ‖v − w‖21.

(3.19)

Based on (3.18), (3.19) and (3.17), we obtain that

(3.20)

∫
Ω

(1 + |v|p)2|v − w|2 dx . ‖v − w‖21,

and similarly

(3.21)

∫
Ω

(1 + |w|p)2|v − w|2 dx . ‖v − w‖21,

Finally, the combination of (3.16), (3.20) and (3.21) leads to (3.14).
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3.2. Fully-discrete error estimates. In the rest of this section, for simplicity
we will assume the time partition is uniform, i.e., ∆t = τ0 = · · · = τNT−1 and
tn = n∆t. Let uh(t) be the solution of the semi-discrete (in space) problem (2.8)
(or (2.9)), and {unh} the fully-discrete solution produced by the EIFE method (2.12).
For the error between the exact solution u(t) and the fully-discrete solution {unh}
measured in the H1-norm, we have by the triangle inequality

(3.22) ‖u(tn)− unh‖1 ≤ ‖u(tn)− uh(tn)‖1 + ‖uh(tn)− unh‖1.

Thus we will estimate ‖u(tn)− uh(tn)‖1 and ‖uh(tn)− unh‖1 respectively.
First of all, the following result readily comes from Theorem 14.2 in [40].

Lemma 3.3. Suppose that the function f satisfies Assumptions 3.1 and 3.2, and
the exact solution u(t) fulfills (3.13a) in Assumptions 3.3. There exists a constant
h0 > 0 such that if the spatial mesh size h ≤ h0, then

(3.23) ‖uh(t)− u(t)‖1 . h, ∀ t ∈ [0, T ],

where the hidden constant is independent of h.

A direct consequence of Lemma 3.3 is

(3.24) ‖u(tn)− uh(tn)‖1 . h, ∀n = 0, · · · , NT ,

where the hidden constant is independent of h. Then the remaining part for us is
to bound ‖uh(tn) − unh‖1. Note that the semi-discrete solution uh(t) obtained from
(2.8) itself depends on the spatial mesh size h, on the other hand we need remove the
dependence of the hidden constants on h in estimating ‖uh(tn) − unh‖1. In order to
achieve this goal, we convert the semi-discrete solution uh(tn+1) (n = 0, 1, · · · , NT−1)
into the sum of the following two parts for further analysis:

uh(tn+1) = e−∆tLhuh(tn) +

∫ ∆t

0

e−(∆t−σ)LhPhf(tn + σ, uh(tn + σ)) dσ

= e−∆tLhuh(tn) +

∫ ∆t

0

e−(∆t−σ)LhPhf(tn + σ, u(tn + σ)) dσ

+

∫ ∆t

0

e−(∆t−σ)Lh
(
Phf(tn + σ, uh(tn + σ))− Phf(tn + σ, u(tn + σ))

)
dσ.

(3.25)

Define the following functions:

(3.26)


ψi(−∆tLh) = ϕi(−∆tLh)−

s∑
k=1

bk(−∆tLh)
ci−1
k

(i−1)! , i = 1, · · · , s,

ψj,i(−∆tLh) = ϕj(−ci∆tLh)cji −
i−1∑
k=1

aik(−∆tLh)
cj−1
k

(j−1)! , i, j = 1, · · · , s.

We also denote f (k)(t, u(t)) = dk

dtk
f(t, u(t)) as the k-th full differentiation of f with

respect to t. By comparing (3.25) with the fully-discrete scheme (2.12), we then obtain

uh(tn + ci∆t) = e−ci∆tLhuh(tn) + ∆t
i−1∑
j=1

aij(−∆tLh)

Phf(tn + cj∆t, u(tn + cj∆t)) + δni,(3.27)

uh(tn+1) = e−∆tLhuh(tn) + ∆t
s∑
i=1

bi(−∆tLh)

Phf(tn + ci∆t, u(tn + ci∆t)) + δn+1,(3.28)
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where the defect terms {δni}si=1 and δn+1 are respectively given by

δni =
r∑
j=1

∆tjψj,i(−∆tLh)Phf
(j−1)(tn, u(tn)) + δ

[r]
ni ,

δn+1 =
r∑
i=1

∆tiψi(−∆tLh)Phf
(i−1)(tn, u(tn)) + δ

[r]
n+1,

with the remainders δ
[r]
ni and δ

[r]
n+1 defined respectively by

δ
[r]
ni =

∫ ci∆t

0

e−(ci∆t−τ)Lh

∫ τ

0

(τ − σ)r−1

(r − 1)!
Phf

(r)(tn + σ, u(tn + σ)) dσ dτ

−∆t
i−1∑
k=1

aik(−∆tLh)

∫ ck∆t

0

(ck∆t− σ)r−1

(r − 1)!
Phf

(r)(tn + σ, u(tn + σ)) dσ

+

∫ ci∆t

0

e−(ci∆t−σ)Lh
(
Phf(tn + σ, uh(tn + σ))− Phf(tn + σ, u(tn + σ))

)
dσ,

δ
[r]
n+1 =

∫ ∆t

0

e−(∆t−τ)Lh

∫ τ

0

(τ − σ)r−1

(r − 1)!
Phf

(r)(tn + σ, u(tn + σ)) dσ dτ

−∆t
s∑
i=1

bi(−∆tLh)

∫ ci∆t

0

(ci∆t− σ)r−1

(r − 1)!
Phf

(r)(tn + σ, u(tn + σ)) dσ

+

∫ ∆t

0

e−(∆t−σ)Lh
(
Phf(tn + σ, uh(tn + σ))− Phf(tn + σ, u(tn + σ))

)
dσ.

Here r can be any nonnegative integers such that f (r)(t, u(t)) exists and is continuous.
In what follows, we will adopt the arguments proposed in [19] to bound ‖unh −

uh(tn)‖1. For brevity, let us define en = unh − uh(tn) and Eni = Uni − uh(tn + ci∆t)
for i = 1, · · · , s. Then we arrive at the following recurrence relations:

Eni = e−ci∆tLhen + ∆t
i−1∑
j=1

aij(−∆tLh)
(
Phf(tn + cj∆t, Unj)

−Phf(tn + cj∆t, u(tn + cj∆t))
)
− δni.(3.29)

en+1 = e−∆tLhen + ∆t
s∑
i=1

bi(−∆tLh)
(
Phf(tn + ci∆t, Uni)

−Phf(tn + ci∆t, u(tn + ci∆t))
)
− δn+1,(3.30)

We first have the following result on the defect terms in (3.27) and (3.28).

Lemma 3.4. Given an integer r = 1 or 2. Suppose that the function f satisfies
Assumptions 3.1 and 3.2, and the exact solution u(t) fulfills (3.13a) and (3.13b) in
Assumptions 3.3. Suppose that u(t) additionally fulfills (3.13c) if r = 2. Then for
n = 0, · · · , NT , i = 1, · · · , s, it holds that

‖δ[r]
ni ‖1 . (∆t)r+1 sup

0≤η≤1
‖f (r)(tn + η∆t, u(tn + η∆t))‖1 + h,(3.31a) ∥∥∥ n−1∑

j=0

e−j∆tLhδ
[r]
n−j

∥∥∥
1
. (∆t)r sup

0≤t≤T
‖f (r)(t, u(t))‖1 + h.(3.31b)

Note that the above hidden constants are independent of h and ∆t.
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Proof. Recalling (3.1) in Lemma 3.1 and the relation (3.10), we have after some
direct manipulations

∥∥∥ ∫ ci∆t

0

e−(ci∆t−τ)Lh

∫ τ

0

(τ − σ)r−1

(r − 1)!
Phf

(r)(tn + σ, u(tn + σ)) dσ dτ
∥∥∥

1

.
∥∥∥ ∫ ci∆t

0

e−(ci∆t−τ)Lh

∫ τ

0

(τ − σ)r−1

(r − 1)!
L

1
2

hPhf
(r)(tn + σ, u(tn + σ)) dσ dτ

∥∥∥
0

. (∆t)r+1 sup
0≤τ≤ci∆t

‖e−(ci∆t−τ)Lh‖0 sup
0≤η≤1

‖L
1
2

hPhf
(r)(tn + η∆t, u(tn + η∆t))‖0

. (∆t)r+1 sup
0≤η≤1

‖Phf (r)(tn + η∆t, u(tn + η∆t))‖1

. (∆t)r+1 sup
0≤η≤1

‖f (r)(tn + η∆t, u(tn + η∆t))‖1,

(3.32)

where the last inequality is due to that Ph is H1-stable. Similarly, we also have∥∥∥ ∫ ∆t

0

e−(∆t−σ)Lh
(
Phf(tn + σ, uh(tn + σ))− Phf(tn + σ, u(tn + σ))

)
dσ
∥∥∥

1

.
∥∥∥ ∫ ∆t

0

L
1
2

h e
−(∆t−σ)Lh dσ

∥∥∥
0

sup
0≤η≤1

‖Phf(tn + η∆t, uh(tn + η∆t))

− Phf(tn + η∆t, u(tn + η∆t))
∥∥∥

0
.

(3.33)

In view of the similar arguments for proving Lemma 3.1, we have∥∥∥ ∫ ∆t

0

L
1
2

h e
−(∆t−σ)Lh dσ

∥∥∥
0

= max
λ∈λ(Lh)

∣∣∣ ∫∆t

0
λ

1
2 e−(∆t−σ)λ dσ

∣∣∣
≤ max
λ∈λ(Lh)

|λ− 1
2 | . 1.

(3.34)

Since Ph is L2-stable and the function f is locally-Lipschitz continuous (Lemma 3.2),
we further obtain from (3.33)-(3.34) and Lemma 3.3 that∥∥∥ ∫ ∆t

0

e−(∆t−σ)Lh
(
Phf(tn + σ, uh(tn + σ))− Phf(tn + σ, u(tn + σ))

)
dσ
∥∥∥

1

. sup
0≤η≤1

‖Phf(tn + η∆t, uh(tn + η∆t))− Phf(tn + η∆t, u(tn + η∆t))‖0

. sup
0≤η≤1

‖uh(tn + η∆t)− u(tn + η∆t)‖1 . h.

(3.35)

According to (3.3) in Lemma 3.1 and the similar arguments for deriving (3.32),∥∥∥∆t
i−1∑
k=1

aik(−∆tLh)

∫ ck∆t

0

(ck∆t− σ)r−1

(r − 1)!
Phf

(r)(tn + σ, u(tn + σ)) dσ
∥∥∥

1

.
∥∥∥∆t

i−1∑
k=1

aik(−∆tLh)

∫ ck∆t

0

(ck∆t− σ)r−1

(r − 1)!
L

1
2

h

· Phf (r)(tn + σ, u(tn + σ)) dσ
∥∥∥

0

≤ (∆t)r+1
i−1∑
k=1

‖aik(−∆tLh)‖0 sup
0≤η≤1

‖Phf (r)(tn + η∆t, u(tn + η∆t))‖1

. (∆t)r+1 sup
0≤η≤1

‖f (r)(tn + η∆t, u(tn + η∆t))‖1.

(3.36)
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Now, using the triangle inequality, the regularity assumptions for u(t) and f , and
the estimates (3.32), (3.35) and (3.36), we get

(3.37) ‖δ[r]
ni ‖1 . (∆t)r+1‖f (r)(tn + η∆t, u(tn + η∆t))‖1 + h, ∀ i = 1, · · · , s,

which leads to (3.31a). Also (3.31b) can be derived in the similar manner.

For the EIFE1 scheme (2.13) (i.e., s = 1), the following error equation holds:

(3.38) en+1 = e−∆tLhen + ∆tϕ1(−∆tLh)
(
Phf(tn, u

n
h)− Phf(tn, u(tn))

)
− δn+1.

Theorem 3.5 (Error estimate for the EIFE1 scheme). Suppose the function
f satisfies Assumptions 3.1 and 3.2, and the exact solution u(t) fulfills (3.13a) and
(3.13b). There exists a constant h0 > 0 such that if the spatial mesh size h ≤ h0, then
the numerical solution {unh} produced by the EIFE1 scheme (2.13) satisfies

(3.39) ‖u(tn)− unh‖1 . ∆t+ h, ∀n = 1, · · · , NT ,

where the hidden constant is independent of h and ∆t.

Proof. By repeatedly applying (3.38), we get

en = ∆t
n−1∑
j=1

e−(n−j−1)∆tLhϕ1(−∆tLh)
(
Phf(tj , u

j
h)− Phf(tj , u(tj))

)
−
n−1∑
j=0

e−j∆tLhδn−j .

(3.40)

Since s = 1, based on the definition of ψi(−∆tLh) in (3.26) and Lagrangian

interpolation theorem, we can derive that ψ1(−∆tLh) = 0, which implies δj = δ
[1]
j

for j = 1, · · · , n. Recalling (3.31b) in Lemma 3.4 (with r = 1), we can immediately
obtain the H1-norm estimation of the second term in (3.40) as∥∥∥ n−1∑

j=0

e−j∆tLhδn−j

∥∥∥
1

=
∥∥∥ n−1∑
j=0

e−j∆tLhδ
[1]
n−j

∥∥∥
1
. ∆t sup

0≤t≤T
‖f (1)(t, u(t))‖1 + h.(3.41)

As for the H1-norm evaluation of the first term in (3.40), it follows from (3.10) and
the triangle inequality that∥∥∥∆t

n−1∑
j=1

e−(n−j−1)∆tLhϕ1(−∆tLh)
(
Phf(tj , u

j
h)− Phf(tj , u(tj))

)∥∥∥
1

. ‖∆tL
1
2

hϕ1(−∆tLh)‖0‖Phf(tn−1, u
n−1
h )− Phf(tn−1, u(tn−1))‖0

+
∥∥∥ n−2∑
j=0

∆tL
1
2

h e
−(n−j−1)∆tLhϕ1(−∆tLh)

(
Phf(tj , u

j
h)− Phf(tj , u(tj))

)∥∥∥
=: I1 + I2.

(3.42)

By applying (3.1) in Lemma 3.1, we get

I1 =
∥∥∥L 1

2

h

∫ ∆t

0

e−(∆t−σ)Lh dσ
∥∥∥

0
‖Phf(tn−1, u

n−1
h )− Phf(tn−1, u(tn−1))‖0

.∆t sup
0≤σ≤∆t

‖L
1
2

h e
−(∆t−σ)Lh‖0‖Phf(tn−1, u

n−1
h )− Phf(tn−1, u(tn−1))‖0

. (∆t)
1
2 ‖un−1

h − u(tn−1)‖1.

(3.43)
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For the second term in (3.42), it follows from (3.1) in Lemma 3.1 that

‖ϕ1(−∆tLh)‖0 =
∥∥∥ 1

∆t

∫ ∆t

0

e−(∆t−τ)Lh dτ
∥∥∥

0
≤ sup

0≤τ≤∆t
‖e−(∆t−τ)‖0 . 1.

By (3.1) and (3.2) in Lemma 3.1 and similar arguments for deriving (3.35), we have

I2 .
∥∥∥∆tL

1
2

h

n−2∑
j=0

e−(n−1−j)∆tLh
∥∥∥

0
sup

0≤t≤T
‖Phf(t, uh(t))− Phf(t, u(t))‖0

+ ∆t
n−2∑
j=0

‖L
1
2

h e
−(n−1−j)∆tLh‖0‖Phf(tj , u

j
h)− Phf(tj , uh(tj))‖0

. sup
0≤t≤T

‖Phf(t, uh(t))− Phf(t, u(t))‖0 + ∆t
n−2∑
j=0

t
− 1

2
n−j−1‖Phf(tj , u

j
h)

− Phf(tj , uh(tj))‖0

.∆t
n−2∑
j=0

t
− 1

2
n−j−1‖ej‖1 + h.

(3.44)

In terms of (3.40) and the estimates (3.41)-(3.44), we arrive at

‖en‖1 . (∆t)
1
2 ‖en−1‖1 + ∆t

n−2∑
j=0

t
− 1

2
n−j−1‖ej‖1 + ∆t+ h

. ∆t
n−1∑
j=1

t
− 1

2
n−j‖ej‖1 + ∆t+ h.

Then we have by the discrete Gronwall inequality (Theorem 6.1 with α = 1
2 in [9])

(3.45) ‖uh(tn)− unh‖1 . ∆t+ h.

The combination of (3.22), (3.24) and (3.45) immediately leads to (3.39).

Lemma 3.6. Suppose the function f satisfies Assumptions 3.1 and 3.2, and the
exact solution u(t) fulfills (3.13a)-(3.13b). If s ≥ 2, then it holds for any 0 ≤ n < NT ,

(3.46) ‖Eni‖1 . ‖en‖1+(∆t)2 sup
0≤η≤1

‖f ′(tn+η∆t, u(tn+η∆t))‖1+h, ∀ i = 1, · · · , s,

where the hidden constant is independent of h and ∆t.

Proof. According to the definition of ψj,i in (3.26), we have by some manipula-
tions that ψ1,j = 0, j = 1, · · · , s when the consistency conditions (2.11) is fulfilled.

Therefore, the estimation of ‖δni‖1 can be converted to that of ‖δ[1]
ni ‖1. Using the

similar arguments for deriving the estimate (3.35) and (3.3) in Lemma 3.1, we have∥∥∥∆t
i−1∑
j=1

aij(−∆tLh)
(
Phf(tn + cj∆t, Unj)− Phf(tn + cj∆t, u(tn + cj∆t))

)∥∥∥
1

.
i−1∑
j=1

(∆t)
1
2 ‖∆t 1

2L
1
2

h aij(−∆tLh)‖0

· max
2≤j≤i−1

‖Phf(tn + cj∆t, Unj)− Phf(tn + cj∆t, u(tn + cj∆t))‖0

. (∆t)
1
2 max

2≤j≤i−1
‖Phf(tn + cj∆t, Unj)− Phf(tn + cj∆t, u(tn + cj∆t))‖0

. (∆t)
1
2 max

2≤j≤i−1
‖Enj‖1 + h.
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Note that ‖δ[1]
ni ‖1 is uniformly bounded for i = 1, · · · , s (see (3.31a) in Lemma 3.4

with r = 1). Recalling the relation (3.29), we have by the triangle inequality that

‖Eni‖1
. ‖e−ci∆tLhen‖1 + (∆t)2 sup

0≤η≤1
‖Phf ′(tn + η∆t, u(tn + η∆t))‖1 + h

+
∥∥∥∆t

i−1∑
j=1

aij(−∆tLh)
(
Phf(tn + cj∆t, Unj)− Phf(tn + cj∆t, u(tn + cj∆t))

)∥∥∥
1

. ‖en‖1 + (∆t)2 sup
0≤η≤1

‖Phf ′(tn + η∆t, u(tn + η∆t))‖1 + h+ (∆t)
1
2 max

2≤j≤i−1
‖Enj‖0

. ‖en‖1 + (∆t)2 sup
0≤η≤1

‖f ′(tn + η∆t, u(tn + η∆t))‖1 + h+ (∆t)
1
2 max

2≤j≤i−1
‖Enj‖1.

Finally (3.46) is obtained by recursively using the above inequality.

Theorem 3.7 (Error estimate for the EIFE2 scheme). Suppose that the function
f satisfies Assumptions 3.1 and 3.2, and the exact solution u(t) fulfills (3.13a)-(3.13c)
in Assumptions 3.3. There exists a constant h0 > 0 such that if the spatial mesh size
h ≤ h0, then the numerical solution {unh} produced by EIFE2 scheme (2.14) satisfies

(3.47) ‖u(tn)− unh‖1 . (∆t)2 + h, ∀n = 1, · · · , NT ,

where the hidden constant is independent of h and ∆t.

Proof. Recalling the definition of ψi in (3.26), we can check that ψ1(−∆tLh) =

ψ2(−∆tLh) = 0, which implies that δn+1 = δ
[2]
n+1 by Lagrangian interpolation theorem

for s = 2. By (3.3) in Lemma 3.1, we have∥∥∥∆t
n−1∑
j=0

e−(n−1−j)∆tLh
s∑
i=1

bi(−∆tLh)
(
Phf(tj + ci∆t, Uji)

− Phf(tj + ci∆t, u(tj + ci∆t))
)∥∥∥

1

.
∥∥∥∆t

s∑
i=1

bi(−∆tLh)
(
Phf(tn−1 + ci∆t, Un−1,i)

− Phf(tn−1 + ci∆t, u(tn−1 + ci∆t)
)∥∥∥

1

+
∥∥∥∆t

n−2∑
j=0

e−(n−1−j)∆tLh
s∑
i=1

(
Phf(tj + ci∆t, Uji)

− Phf(tj + ci∆t, u(tj + ci∆t))
)∥∥∥

1

=: II1 + II2.

(3.48)

Using the similar arguments for deriving (3.35) and (3.2) and (3.3) in Lemma 3.1, we
can obtain

II1 .
s∑
i=1

(∆t)
1
2 ‖(∆t) 1

2L
1
2

h bi(−∆tLh)‖0 max
1≤i≤s

‖Phf(tn−1 + ci∆t, Un−1,i)

− Phf(tn−1 + ci∆t, u(tn−1 + ci∆t))‖0
. (∆t)

1
2 max

1≤i≤s
‖Phf(tn−1 + ci∆t, Un−1,i)− Phf(tn−1 + ci∆t, u(tn−1 + ci∆t))‖0

. (∆t)
1
2 max

1≤i≤s
‖En−1,i‖1 + h,

(3.49)
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and

II2 .
∥∥∥∆tL

1
2

h

n−2∑
j=0

e−(n−1−j)∆tLh
∥∥∥

0
sup

0≤t≤T
‖Phf(t, u(t))− Phf(t, uh(t))‖0

+
n−2∑
j=0

∆t‖L
1
2

h e
−(n−j−1)∆tLh‖0 max

1≤i≤s
‖Phf(tj + ci∆t, Uji)

− Phf(tj + ci∆t, uh(tj + ci∆t))‖0

.∆t
n−2∑
j=0

t
− 1

2
n−j−1 max

1≤i≤s
‖Phf(tj + ci∆t, Uji)

− Phf(tj + ci∆t, uh(tj + ci∆t))‖0 + h

.∆t
n−2∑
j=0

t
− 1

2
n−j−1 max

1≤i≤s
‖Eji‖1 + h.

(3.50)

With the help of the estimates (3.48), (3.49) and (3.50), it follows from the relation
(3.30) and (3.31b) in Lemma 3.4 (with r = 2) that

‖en‖1 ≤
∥∥∥∆t

n−1∑
j=0

e−(n−1−j)∆tLh
s∑
i=1

bi(−∆tLh)
(
Phf(tj + ci∆t, Uji)

− Phf(tj + ci∆t, u(tj + ci∆t))
)∥∥∥

1
+
∥∥∥ n−1∑
j=0

e−j∆tLhδ
[2]
n−j

∥∥∥
1

. (∆t)
1
2 max

1≤i≤s
‖En−1,i‖1 + ∆t

n−2∑
j=0

t
− 1

2
n−j−1 max

1≤i≤s
‖Eji‖1

+ ∆t2 sup
0≤t≤T

‖f (2)(t, u(t))‖1 + h

.∆t
n−1∑
j=0

t
− 1

2
n−j−1 max

1≤i≤s
‖Eji‖1 + (∆t)2 + h.

This combined with the estimation of ‖Eji‖1 in Lemma 3.6 and the discrete Gronwall
inequality leads to

(3.51) ‖unh − uh(tn)‖1 . (∆t)2 + h.

Finally, the combination of (3.22), (3.24) and (3.51) immediately gives (3.47).

Remark 3.8. It is worth noting that no restriction on the time step size ∆t is
imposed in Theorems 3.5 and 3.7, which implies that the proposed EIFE method is
stable with large time stepping.

Remark 3.9. When s ≥ 3, the order conditions for the explicit exponential Runge-
Kutta method do not hold automatically like the case of s = 1 or 2, and convergence
analysis of the proposed EIFE method (2.12) becomes much more complicated since
the estimates of ‖en‖1 and ‖Eni‖1 will be coupled together. We refer the reader to
[19] for some details along this line, and rigorous error estimates of higher-order EIFE
schemes would be an interesting open question.

Remark 3.10. We note that the above error analysis results for the proposed EIFE
method also can be adapted without much difficulty to the model problem (1.1) with
periodic boundary condition. In that case, one could first define v(t, x) = e−αtu(t, x)
with a constant α > 0, then convert the original equation into a new one associated
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with the unknown v, which satisfies the periodic boundary conditions and leads to
a coercive bilinear form. In addition, the spatial mesh also can be relaxed to quasi-
uniform ones while similar theoretical analysis still remains valid.

4. FFT-based fast solution of the EIFE method. We now present fast
solution of the EIFE method (2.12) for solving the semilinear parabolic equation
(1.1). The main idea is to take the advantage of simultaneously diagonalizing the
mass and coefficient matrices of the finite element system (2.5) with an orthogonal
matrix whose multiplication with a vector can be efficiently implemented by FFT and
tensor product spectral decomposition. We note that such technique has also been
used in spectral method [37, 42].

We first focus on the case of homogeneous Dirichlet boundary condition (2.1), and
the extension to that of nonhomogeneous Dirichlet boundary condition is straightfor-
ward by incorporating the given values of the exact solution on the boundary nodes
into the discrete method as part of f . Let us take the three dimensional problem
for illustration, which also naturally works in any other d dimensions. Suppose that
Ω :=

∏3
i=1[ai, bi] is divided into Nx, Ny, Nz parts uniformly along the x, y, z direc-

tions with the meshsizes hx, hy, hz, respectively. Thus, as given in Section 2, the
finite element space Vh is spanned by {φi(x)φj(y)φk(z)} where i = 1, · · · , Nx− 1, j =
1, · · · , Ny − 1, k = 1, · · · , Nz − 1. Therefore, the finite element solution uh(t) of the
semi-discrete (in space) problem (2.5) can be expressed as

uh(t, x, y, z) =
Nx−1∑
i=1

Ny−1∑
j=1

Nz−1∑
k=1

ui,j,k(t)φi(x)φj(y)φk(z).

Define U(t) = [ui,j,k(t)](Nx−1)×(Ny−1)×(Nz−1) and let F (t, U) be the tensor with en-
tries (f(t, ui,j,k(t)), φi(x)φj(y)φk(z)). As in [26], we introduce some tensor operations
for later uses. Given three matrices Mx ∈ R(Nx−1)×(Nx−1), My ∈ R(Ny−1)×(Ny−1),
Mz ∈ R(Nz−1)×(Nz−1), let us define the following operations with U :

(
Mx x○U

)
ijk

:=

Nx−1∑
r=1

(Mx)irUrjk,
(
My y○U

)
ijk

:=
Ny−1∑
r=1

(My)jrUirk,
(
Mz z○U

)
ijk

:=
Nz−1∑
r=1

(Mz)krUijr.

With the help of the above operations, we have by some direct manipulations
that the variational scheme (2.5) can be reformulated to the following form

(4.1)


Ax x○Ay y○Az z○

dU

dt
+D(Bx x○Ay y○Az z○U

+Ax x○By y○Az z○U +Ax x○Ay y○Bz z○U) = F (t, U),

U(0) = {Phu0},

where A♦ = h♦

6 RN♦−1 and B♦ = 1
h♦
GDN♦−1 for ♦ = x, y, z, and

Rp =


4 1

1 4
. . .

. . .
. . . 1
1 4


p×p

, GDp =


2 −1

−1 2
. . .

. . .
. . . −1
−1 2


p×p

.

An important observation is that Ax and Bx can be diagonalized simultaneously
by an orthogonal matrix ([23]), and so do the other two pairs Ay and By, Az and Bz.
Specifically, we have the following decompositions:

A♦ = P♦ΛA♦P
T
♦ , B♦ = P♦ΛB♦P

T
♦ , for ♦ = x, y, z
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with

(P♦)i,j = sin
(
ijπ
N♦

)
, i, j = 1, · · · , N♦ − 1,

ΛA♦ = diag(λ
A♦

1 , · · · , λA♦

N♦−1), λ
A♦

i = h♦

6

(
6− 4 sin

(
iπ

2N♦

))
, i = 1, · · · , N♦ − 1,

ΛB♦ = diag(λ
B♦

1 , · · · , λB♦

N♦−1), λ
B♦

i = 4
h♦

(
sin2

(
iπ

2N♦

))
, i = 1, · · · , N♦ − 1.

Let us define Ũ = PTx x○PTy y○PTz z○U (i.e., U = Px x○Py y○Pz z○Ũ). Then the
equation (4.1) can be transformed to

ΛAx x○ΛAy y○ΛAz z○
dŨ

dt
+D

(
ΛBx x○ΛAy y○ΛAz z○ + ΛAx x○ΛBy y○ΛAz z○

+ ΛAx x○ΛAy y○ΛBz z○
)
Ũ = PTx x○PTy y○PTz z○F (t, Px x○Py y○Pz z○Ũ).

(4.2)

Similar to [47], we define the tensor H = (hijk)(Nx−1)×(Ny−1)×(Nz−1) with

hijk = D
(

(ΛBx )ii
(ΛAx )ii

+
(ΛBy )jj
(ΛAy )jj

+
(ΛBz )kk
(ΛAz )kk

)
and another tensor Ĥ = (ĥijk)(Nx−1)×(Ny−1)×(Nz−1) with

ĥijk = 1
(ΛAx )ii(ΛAy )jj(ΛAz )kk

.

Define the operator (e∗) as taking the exponential of each entry of a tensor as
((e∗)H)ijk = ehijk , and another operator � for element by element multiplication
between two arrays of same sizes as (A�B)ijk = AijkBijk. Thus we can rewrite the
system (4.2) to the following ODE system:

(4.3)
dŨ

dt
+H � Ũ = Ĥ �

(
PTx x○PTy y○PTz z○F (t, Px x○Py y○Pz z○Ũ)

)
.

Hence, by the Duhamel principle, we can get the following expression

Ũ(tn+1) = (e∗)−H∆t � Ũ(tn) +

∫ tn+1

tn

(e∗)−H(tn+1−τ) � Ĥ

�
(
PTx x○PTy y○PTz z○F (τ, Px x○Py y○Pz z○Ũ)

)
dτ,

(4.4)

which is equivalently the tensor representation of (2.9).
We remark that all the tensor product operations can be realized by the FFT.

More precisely, the above transformation from U to Ũ (resp. from Ũ to U) can be
implemented by applying a Discrete Sine Transform (DST) (resp. an inverse DST,
abbreviated as iDST) in each dimension separately. That means, for a d-dimensional

problem, the computational cost of the EIFE method (2.12) is of O(log2(N)
∏d
i=1Ni)

per time step, where N = max{N1, · · · , Nd}.
Next, we also would like to briefly discuss the equation (1.1) with periodic bound-

ary condition (although not theoretically analyzed in this paper). In this case, the
finite element space Vh is spanned by {φi(x)φj(y)φk(z)} where i = 1, · · · , Nx, j =
1, · · · , Ny, k = 1, · · · , Nz by periodic extension. The same EIFE method and efficient
implementation algorithm can be directly applied with slight modifications. In fact,
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the unknowns in this case is a three-order tensor given by U(t) = [ui,j,k(t)]Nx×Ny×Nz ,
and the corresponding mass and coefficient matrices become respectively

A♦ = h♦

6 RN♦ , B♦ = 1
h♦
GPN♦

, for ♦ = x, y, z,

where

GPp =


2 −1 −1

−1 2
. . .

. . .
. . . −1

−1 −1 2


p×p

.

Then we have

A♦ = P♦ΛA♦P
T
♦ , B♦ = P♦ΛB♦P

T
♦ , ♦ = x, y, z

with
(P♦)i,j = sin

(
ijπ
N♦

)
, i, j = 1, · · · , N♦,

ΛA♦ = diag(λ
A♦

1 , · · · , λA♦

N♦
), λ

A♦

i = h♦

6

(
6− 4 sin

(
(i−1)π
2N♦

))
, i = 1, · · · , N♦,

ΛB♦ = diag(λ
B♦

1 , · · · , λB♦

N♦
), λ

B♦

i = 4
h♦

(
sin2

(
(i−1)π
2N♦

))
, i = 1, · · · , N♦.

The other steps of implementation are similar to the ones as in the Dirichlet case,
but note that the transformation from U to Ũ (resp. from Ũ to U) in the case can
be implemented by applying a Discrete Fourier Transform (DFT) (resp. an inverse
DFT, abbreviated as iDFT) in each dimension separately.

Remark 4.1. The proposed fast solution approach for the EIFE method doesn’t
work in the case of nonuniform spatial meshes since the mass and coefficient matrices
couldn’t be simultaneously diagonalized anymore. For such case, the products of
matrix exponentials with vectors are usually computed by using the Krylov subspace
algorithms or some other methods (see [14]).

5. Numerical experiments. In this section we will present some numerical
experiments to verify the error estimates obtained in Section 3 and demonstrate the
performance of the EIFE method. All tests are done using Matlab on a Laptop with
Intel i5-8250U, 1.80GHz CPU and 8GB memory. Specifically, we choose the EIFE1
scheme (2.13) and the EIFE2 scheme (2.14) with c2 = 1

2 .

5.1. Convergence tests. We verify the error estimates obtained in Theorem
3.5 for EIFE1 scheme and Theorem 3.7 for EIFE2 scheme, and numerical errors
‖u(tn)− unh‖0 and ‖u(tn)− unh‖1 are all evaluated at the terminal time T .

Example 5.1. In this example, we consider the following two-dimensional linear
reaction-diffusion problem with homogeneous Dirichlet boundary condition:ut =

1

2
∆u− 1

2
π2u+

1

2
π2e−π

2t sin(πx) sin(πy), (x, y) ∈ Ω, 0 ≤ t ≤ T

u(0, x, y) = (sin(πx)− 1) sin(πy), (x, y) ∈ Ω,

where Ω = ( 1
2 ,

5
2 )× (0, 1) and the terminal time T = 1. The exact solution is given by

u(t, x, y, z) = e−π
2t(sin(πx)− 1) sin(πy).
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For the spatial accuracy tests, we run the EIFE2 scheme with fixed NT = 1024
(i.e., ∆t = T/NT = 1/1024) and uniformly refined spatial meshes with Nx × Ny =
64×32, 128×64, 256×128 and 512×256, respectively, so that the spatial mesh sizes
are much coarser compared to the time step size. For the temporal accuracy tests, we
run the EIFE1 and EIFE2 schemes with fixed Nx × Ny = 2048 × 1024 and uniform
time step with NT = 32, 64, 128, 256 for EIFE1 method and NT = 16, 32, 64, 128 for
EIFE2 method, respectively. Also, the overall cost per time step of EIFE method is
tested with fixed NT = 50 and uniform spatial meshes with Nx × Ny = 512 × 256,
1024 × 512, 2048 × 1024 and 4096 × 2048. Since the analysis of computing cost of
EIFE1 scheme is same as EIFE2 scheme, we only test the running time with EIFE2
scheme. All numerical results are reported in Table 2, including the solution errors
measured in the L2 and H1 norms and corresponding convergence rates. We observe
the roughly second-order spatial convergence with respect to the L2 norm and the
first-order convergence with respect to the H1 norm as expected.

It is also easy to find the first-order temporal convergence for the EIFE1 scheme
and the second-order temporal convergence for the EIFE2 scheme in both the L2 and
H1 norms, which coincide very well with the error estimates derived in Theorems 3.5
and 3.7.

Table 3 reports the average CPU time costs (seconds) per step for the EIFE2
scheme and corresponding growth factors along the refinement of the spatial mesh.
The results clearly show that the computational cost grows almost linearly along
with the number of mesh nodes, which matches well with the property of FFT and
demonstrates the high efficiency of our EIFE method.

Table 2
Numerical results on the solution errors measured in the L2 and H1 norms and corresponding

convergence rates for the EIFE1 and EIFE2 schemes in Example 5.1.

NT Nx ×Ny ‖un
h − u(tn)‖0 CR ‖un

h − u(tn)‖1 CR

Spatial accuracy tests for EIFE2

1024 64× 32 5.2210e-07 - 4.5560e-06 -
1024 128× 64 1.3030e-07 2.00 2.1471e-06 1.09
1024 256× 128 3.2505e-08 2.00 1.0566e-06 1.02
1024 512× 256 7.2463e-09 2.17 5.2604e-07 1.01

Temporal accuracy tests for EIFE1

32 2048× 1024 1.6807e-05 - 6.1655e-05 -
64 2048× 1024 9.2841e-06 0.86 3.4016e-05 0.93
128 2048× 1024 4.8688e-06 0.93 1.7831e-05 0.93
256 2048× 1024 2.4920e-06 0.97 9.1250e-06 0.97

Temporal accuracy tests for EIFE2

16 2048× 1024 8.5333e-06 - 3.1262e-05 -
32 2048× 1024 1.6087e-06 2.41 5.8940e-06 2.41
64 2048× 1024 3.5949e-07 2.16 1.3234e-06 2.15
128 2048× 1024 8.4932e-08 2.08 3.3799e-07 1.97

Example 5.2. In this example, we consider the traveling wave problem governed
by the following 3D Allen-Cahn equation with double-well potential function:

ut = ∆u− 1

ε2
(u3 − u), (x, y, z) ∈ Ω, 0 ≤ t ≤ T,

u(0, x, y, z) =
1

2
(1− tanh(

x

2
√

2ε
)), (x, y, z) ∈ Ω,
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Table 3
The average CPU time costs (seconds) per step under different spatial meshes and corresponding

growth factors with respect to the number of mesh nodes for the EIFE2 scheme in Example 5.1.

Nx ×Ny Average CPU time Growth
cost per step factor

512× 256 1.121 -
1024× 512 4.444 0.99
2048× 1024 17.516 0.99
4096× 2048 75.944 1.06

where Ω = (0,
√

2)× (0, 1
8 )× (0, 1

8 ). The exact solution is given by u(t, x, y, z) = 1
2 (1−

tanh( x−st
2
√

2ε
)), where s = 3√

2ε
, and the Dirichlet boundary condition is correspondingly

imposed, which is clearly nonhomogeneous. The terminal time is taken to be T = 3
√

2ε
5 .

We set the interface thickness parameter ε = 0.05. For the spatial accuracy tests,
we run the EIFE2 scheme with fixed NT = 1024 and uniformly refined spatial meshes
with Nx × Ny × Nz = 64 × 4 × 4, 128 × 8 × 8, 256 × 16 × 16 and 512 × 32 × 32,
respectively, so that the spatial mesh sizes are much coarser compared to the time
step size. For the temporal accuracy tests, we run the EIFE1 and EIFE2 schemes
with fixed Nx × Ny = 1024 × 64 × 64 and uniformly refined time step sizes with
NT = 16, 32, 64 and 128. All numerical results are reported in Table 4, including
the errors measured in the L2 and H1 norms and corresponding convergence rates.
We still observe the roughly second-order spatial convergence in the L2 norm but
the convergence rate drops to between 1.11 to 1.28 (but still higher than one) in the
H1 norm. It is also seen that the temporal convergence is just slightly higher than
one for the EIFE1 scheme and two for the EIFE2 scheme, which basically match the
theoretical results.

Table 4
Numerical results on the solution errors measured in the L2 and H1 norms and corresponding

convergence rates for the EIFE1 and EIFE2 schemes in Example 5.2.

NT Nx ×Ny ×Nz ‖un
h − u(tn)‖0 CR ‖un

h − u(tn)‖1 CR

Spatial accuracy tests for EIFE2

1024 64× 4× 4 3.3846e-06 - 2.2638e-04 -
1024 128× 8× 8 1.2304e-06 1.46 1.0746e-04 1.07
1024 256× 16× 16 3.6958e-07 1.74 4.5672e-05 1.23
1024 512× 32× 32 1.0756e-07 1.78 1.9751e-05 1.20

Temporal accuracy tests for EIFE1

16 1024× 64× 64 2.4126e-04 - 6.7800e-02 -
32 1024× 64× 64 7.3576e-05 1.71 2.1500e-02 1.66
64 1024× 64× 64 2.9275e-05 1.33 8.6000e-03 1.32
128 1024× 64× 64 1.2500e-05 1.23 3.8000e-03 1.18

Temporal accuracy tests for EIFE2

16 1024× 64× 64 9.5405e-04 - 4.6100e-02 -
32 1024× 64× 64 3.0619e-05 4.95 4.7000e-03 3.29
64 1024× 64× 64 4.5661e-06 2.75 9.3473e-04 2.33
128 1024× 64× 64 9.4147e-07 2.28 2.1521e-04 2.12

5.2. 3D Grain coarsening simulations. We now illustrate the performance of
the proposed EIFE method through numerical simulation of the 3D grain coarsening
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process. In particular, the EIFE2 scheme is used for its higher-order accuracy in time.

Example 5.3. We consider the grain coarsening process governed by the following
3D Allen-Cahn equation with Flory-Huggins potential function:

ut = ε2∆u+
θ

2
ln

1− u
1 + u

+ θcu, (x, y, z) ∈ Ω, 0 ≤ t ≤ T,

where Ω = (0, 1)3. The initial data is generated by random numbers on each mesh
point ranging from −0.9 to 0.9, and the periodic boundary condition is imposed. This
equation can be regarded as the L2 gradient flow of the following energy functional

E(u) =

∫
Ω

θ

2

(
(1 + u) ln(1 + u) + (1− u) ln(1− u)

)
− θc

2
u2 +

ε2

2
|∇u|2 dx,

and thus the energy monotonically decays along the time.

We set the interface thickness parameter ε = 0.01 and the Flory-Huggins potential
parameters θc = 1.6, θ = 0.8. This problem satisfies the maximum bound principle
with the maximum bound value γ ≈ 0.9575, i.e., |u(t,x)| ≤ γ for all x ∈ Ω and t ≥ 0
[29, 6]. The terminal time is set to be T = 20 for our simulation. We take the spatial
mesh with Nx = Ny = Nz = 128 which means the mesh size h = 1/128, and the total
time step size NT = 2048 (i.e., ∆t = T/NT = 5/512). Evolutions of the supremum
norm and the energy of the numerical solutions produced by the EIFE2 scheme are
plotted in Fig. 1. We observe that the maximum bound principle is well preserved
and the energy also decays monotonically along the time. Fig. 2 presents simulated
phase structures of the numerical solutions at times t = 0, 2.5, 5, 10, 15, and 20, and
from which we can clearly observe the coarsening process of the 3D grains.

Fig. 1. The evolutions of supremum norm (left) and energy (right) of the numerical solution
produced by the EIFE2 scheme for Example 5.3.

6. Conclusions. In this paper, we develop an efficient EIFE method for solving
a class of semilinear parabolic equations taking the form (1.1) in rectangular domains,
in which the fully-discrete solution is obtained by using first the finite element method
for spatial discretization and then explicit exponential Runge-Kutta approximation
for temporal integration. The proposed EIFE method allows for fast implementation
based on FFT and tensor product spectral decomposition when the Dirichlet or the
periodic boundary conditions are imposed. We also successfully derive optimal error
estimates in the H1 norm for the EIFE method with one and two RK stages. Some
numerical examples are also presented to demonstrate the accuracy and high efficiency
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Fig. 2. Simulated 3D phase structures at t = 0, 2.5, 5, 10, 15, 20 (from left to right and top to
bottom) produced by the EIFE2 scheme for Example 5.3.

of the proposed method. The numerical method and corresponding error analysis
framework developed in this paper also naturally enable us to further investigate the
localized ETD methods [30, 18] with solid theoretical support.
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