
Mobile Bug Report Reproduction via Global Search on the
App UI Model
ZHAOXU ZHANG, University of Southern California, USA
FAZLE MOHAMMED TAWSIF, University of Southern California, USA
KOMEI RYU, University of Southern California, USA
TINGTING YU, University of Connecticut, USA
WILLIAM G. J. HALFOND, University of Southern California, USA

Bug report reproduction is an important, but time-consuming task carried out during mobile app maintenance.
To accelerate this task, current research has proposed automated reproduction techniques that rely on a guided
dynamic exploration of the app to match bug report steps with UI events in a mobile app. However, these
techniques struggle to find the correct match when the bug reports have missing or inaccurately described
steps. To address these limitations, we propose a new bug report reproduction technique that uses an app’s UI
model to perform a global search across all possible matches between steps and UI actions and identify the
most likely match while accounting for the possibility of missing or inaccurate steps. To do this, our approach
redefines the bug report reproduction process as a Markov model and finds the best paths through the model
using a dynamic programming based technique. We conducted an empirical evaluation on 72 real-world bug
reports. Our approach achieved a 94% reproduction rate on the total bug reports and a 93% reproduction rate
on bug reports with missing steps, significantly outperforming the state-of-the-art approaches. Our approach
was also more effective in finding the matches from the steps to UI events than the state-of-the-art approaches.

CCS Concepts: • Software and its engineering→ Software maintenance tools.

Additional Key Words and Phrases: Bug Report Reproduction

ACM Reference Format:
Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond. 2024. Mobile
Bug Report Reproduction via Global Search on the App UI Model. Proc. ACM Softw. Eng. 1, FSE, Article 117
(July 2024), 21 pages. https://doi.org/10.1145/3660824

1 INTRODUCTION
Mobile applications have become extremely popular, with currently over 5 million apps in the
Google Play and Apple stores. To remain competitive in this thriving market and ensure a high-
quality user experience, app developers must swiftly address any issues reported by the users of
their apps. When users experience a problem, they typically submit a bug report to describe the
app failure and provide steps to reproduce the issue. After receiving such bug reports, developers
need to first reproduce the failure following the provided steps [15] so that they can debug their
app and fix the issue. However, the reproduction steps provided in these bug reports are often
unclear, incomplete, or inaccurate [16, 31]. This can make it challenging for developers to reproduce

Authors’ addresses: Zhaoxu Zhang, University of Southern California, Los Angeles, USA, zhaoxuzh@usc.edu; Fazle Mo-
hammed Tawsif, University of Southern California, Los Angeles, USA, tawsif@usc.edu; Komei Ryu, University of Southern
California, Los Angeles, USA, eryu@usc.edu; Tingting Yu, University of Connecticut, Storrs, USA, tingting.yu@uconn.edu;
William G. J. Halfond, University of Southern California, Los Angeles, USA, halfond@usc.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2994-970X/2024/7-ART117
https://doi.org/10.1145/3660824

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0003-1333-1637
HTTPS://ORCID.ORG/0000-0002-4757-4170
HTTPS://ORCID.ORG/0009-0005-0199-3424
HTTPS://ORCID.ORG/0000-0002-9461-4251
HTTPS://ORCID.ORG/0000-0003-4951-9367
https://doi.org/10.1145/3660824
https://orcid.org/0000-0003-1333-1637
https://orcid.org/0000-0002-4757-4170
https://orcid.org/0000-0002-4757-4170
https://orcid.org/0009-0005-0199-3424
https://orcid.org/0000-0002-9461-4251
https://orcid.org/0000-0003-4951-9367
https://doi.org/10.1145/3660824

117:2 Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond

the bug report manually. Even in cases where the provided steps are well-written, the process
can still be time-consuming since modern apps generally have complex user interfaces (UIs) and
support many similar sequences of UI events on different screens, each of which may or may not
lead to the reported failure. As a result, developers may need to exhaustively explore the app to
identify the correct events for reproduction. These challenges can make bug report reproduction
a time-consuming and error-prone task for developers, potentially causing a significant delay in
debugging the app.
To accelerate the reproduction process, the software engineering community has proposed

automated techniques for reproducing bug reports of mobile applications. Given the reproduction
steps in a bug report, these techniques dynamically explore the app and attempt to sequentially
match each step against a UI event in the app. However, the low quality of bug reports can cause
problems for automated reproduction. If a step is described inaccurately or vaguely, an automated
approach may incorrectly match it with the wrong UI event. This can cause unintended UIs to
appear and make it impossible to match subsequent steps. If the bug report has missing steps, a
similar problem may occur. In this situation, the approach prematurely tries to match a step against
the incorrect UI event, unaware that additional events are required to properly identify the event
that matches the step accurately. These situations can lead to automated approaches needing more
time to search for the correct reproducing events or cause them to fail completely if they are unable
to account for the shortcomings of the bug reports.
Existing state-of-the-art approaches for bug report reproduction, ReCDroid [52], Yakusu [24]

and ReproBot [50], attempt to address these challenges. However, these approaches have limitations
that limit their overall effectiveness. To find a sequence of UI events that match with the given
steps, ReCDroid and Yakusu employ a greedy search based strategy to navigate through an app’s
UIs. Inaccurate or missing steps can cause this strategy to incorrectly prioritize the exploration
of paths with initially high similarity between steps and UI events, but that ultimately do not
lead to an overall correct match. These approaches also incorporate heuristics in the search when
they are unable to find a correct matching path, but in the worst case, their search may reduce
to an exhaustive exploration of the app, which is very time-consuming. ReproBot improves this
search process by utilizing a reinforcement learning (RL) based algorithm to guide the search. This
allows the search to consider sequences of events that exhibit less similarity at the beginning but
eventually lead to overall better matches. Nonetheless, the RL based approach cannot guarantee
that it will find the best matching sequence since it is, by definition, non-deterministic. As we
show in Section 4, the sub-optimal search strategies employed by these techniques can reduce their
overall effectiveness in reproducing bug reports.
To address these limitations, we introduce a new approach for finding the UI events that best

match the steps of a bug report. At a high level, our approach utilizes a model of the app’s UIs to
search for the global best-matched UI events to reproduce the steps. Since the search space in the UI
model for this best match is large, our approach defines aMarkovmodel to describe the possible ways
to match steps with UI events and then uses a dynamic-programming based technique to efficiently
find the best matches. In addition, our approach further uses the UI model to effectively bridge the
possible missing steps in the bug report and discover the complete event paths for reproduction. We
implemented our approach in a prototype tool, Roam, and compared its performance against the
three aforementioned state-of-the-art approaches for bug report reproduction. The results of this
evaluation showed that our approach achieved 94% reproduction rate on the subject bug reports,
outperforming all three existing techniques. Our approach was particularly effective, as compared
to the other approaches, when trying to reproduce bug reports with missing steps. Overall, these
results were very positive and indicated that our approach to finding the best UI event matches for
a bug report can lead to overall better bug report reproduction.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

Mobile Bug Report Reproduction via Global Search on the App UI Model 117:3
“The app crashes after .”opening Import/Export settings

action - Click targetS2R Entities:

Edit a medicine. Click Add button.”

Step 1. Edit a medicine.
Step 2. Click Add button.

!. ={action: CLICK, target: Edit, ...}
!/ ={action: CLICK, target: Add button, ...}

!0: (Click the test medicine.)
!.: Edit a medicine.
!1: (Click Stock button.)
!/: Click Add button.

Missing Step

Missing Step

(a) Reproduction Steps

“The app crashes after .”opening Import/Export settings
action - Click targetS2R Entities:

Edit a medicine. Click Add button.”

Step 1. Edit a medicine.
Step 2. Click Add button.

!. ={action: CLICK, target: Edit, ...}
!/ ={action: CLICK, target: Add button, ...}

!0: (Click the test medicine.)
!.: Edit a medicine.
!1: (Click Stock button.)
!/: Click Add button.

Missing Step

Missing Step

Inaccurate Step
(b) Entities of Reproduction Steps

Fig. 1. Example Bug Report

e1

e2

e3
e4

e5

(Screen 1) (Screen 2) (Screen 3) (Screen 4)

Fig. 2. The Actual UI Interactions to Replay the Steps

In summary, our paper makes the following contributions:
(1) We formulated the bug report reproduction process as a Markov model by simulating all

possible matches between the steps and UI events.
(2) We designed a dynamic programming based algorithm to globally search for the most likely

UI events to reproduce the steps.
(3) Based on the above two contributions, we developed a novel reproduction technique and

implemented it into a research prototype.
(4) We conducted an empirical evaluation to assess the performance of our approach.
(5) Our implementation and evaluation dataset are available for future research [11].

2 MOTIVATION
In this section, we introduce an example that will be used throughout the paper to illustrate
our approach and highlight the limitations of existing approaches. This example describes a bug
that happened when a user attempted to increase the stock of medicine recorded in a personal
medication management app, Calendula 1. Figure 1a shows the four steps required to reproduce
this bug. However, in the original bug report, only two steps were included (𝑠1 and 𝑠2) while the
other two were omitted (𝑠𝑥 and 𝑠𝑦). Figure 2 displays the necessary UI events for reproducing the
steps in the app where each 𝑒𝑥 denotes a click event performed on the app’s UI. Specifically, to
reproduce the four steps, one needs to follow the event path 𝑒1 → 𝑒2 → 𝑒3 → 𝑒4 shown in Figure 2.

1https://play.google.com/store/apps/details?id=es.usc.citius.servando.calendula&pli=1

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

https://play.google.com/store/apps/details?id=es.usc.citius.servando.calendula&pli=1

117:4 Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond

Top-K Event Sequences

!"!#$%!: [!!, !", !#]
!"!#$%$: [!!, !$, !#]
!"!#$%%: [!$, !%, !&]

Reproducing Paths Path Replay

Reproducing
Events

Reproduction Model Global UI Events Search

!!, #!
!!, #"

!!, ##
...

!", #!

!", #"

!", ##
...

!$, #!
!$, #"

!$, ##
...

Step
Entities

UTG Reproducing Event Path Recovery

step1 step2 step3

(Section 3.2) (Section 3.3)

PRM

(Section 3.1)

Fig. 3. Workflow of Our Approach

This example seems straightforward to reproduce. However, it may cause significant challenges to
existing automated reproduction techniques.
To reproduce a given bug report, the existing approaches, ReCDroid [52], Yakusu [24], and

ReproBot [50], employ two stages. In the first stage, they extract the entities for each step from
the text using natural language processing (NLP) techniques. As illustrated in Figure 1b, these step
entities capture the essential information regarding the UI action expressed by a step. They include
the type of the UI action (𝑎𝑐𝑡𝑖𝑜𝑛), the description of the action’s target widget (𝑡𝑎𝑟𝑔𝑒𝑡) etc. Then, in
the second stage, these approaches dynamically explore the app and search for a path of UI events
that match the steps.

Assuming the existing approaches can perfectly parse the step entities, their search algorithms
still face limitations that hinder their reproduction performance. When searching for the UI events
that match the steps, ReCDroid and Yakusu employ a greedy strategy, meaning that they will
always prioritize to match a given step with the most similar UI event on the current UI screen.
However, such a greedy strategy could lead them to choose an incorrect UI event when the next step
is missing or inaccurately described. When reproducing the example bug report, both approaches
would face problems finding the first event 𝑒1 in Figure 2, as the corresponding step 𝑠𝑥 is not
included in the bug report. Consequently, both approaches need to exhaustively explore the UI
trying to find the matched UI event on the following pages. Even if they could correctly find event
𝑒1, they would face another challenge to correctly match step 𝑠2 with event 𝑒4. When reaching
screen three in Figure 2, both approaches prematurely match step 𝑠2 to an incorrect event 𝑒5 (i.e.,
click “Add a medicine” button) since they are unaware of the missing step 𝑠𝑦 . This eventually cause
their failure in reproducing this bug report. The same problems also happen to ReproBot. To find
the UI events matching the steps, ReproBot leverages a RL algorithm to guide the dynamic search
in the app. Specifically, during the search process, the RL algorithm guides ReproBot to randomly
evaluate matches between a step and a less-similar UI event, attempting to find a better-matched
event on the following UIs. ReproBot also leverages such a non-deterministic mechanism to
reveal the potential missing steps in the bug report. However, as one of the limitations discussed
in ReproBot’s paper [50], when reproducing the example bug report, ReproBot needs to try
different possible matches, which is time-consuming and cannot guarantee finding the correctly
matched UI events.

The limitations of existing works motivated us to design a better approach to improve the second
stage of the reproduction process, i.e., the search for the UI events to reproduce the steps. We
introduce the details of our approach in the next section.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

Mobile Bug Report Reproduction via Global Search on the App UI Model 117:5

$%: Edit a medicine
s&: Click Add button Entry

$%, '%

............

$%, '&
$%, ''
$%, '(

$&, '%
$&, '&
$&, ''
$&, '(

Fig. 4. The Probabilistic Reproduction Model for the Example in Figure 1a

3 APPROACH
The goal of our approach is to find a path of UI events in an app that will reproduce the steps
leading to the failure described in a bug report. As discussed in Section 2, existing approaches are
limited by their sub-optimal search strategies that may not find the best matching sequence when
bug reports have inaccurate or missing steps. Our first insight is that the quality of the sequence
matching can be improved by searching globally through the UI Transition Graph (UTG) of the
app, a model of all of the UIs and their transitions (i.e., UI events) [18, 33, 49], for the best possible
match of the bug report steps. This can avoid the limitations of existing approaches’ dynamic search
techniques, which can get trapped in local maxima best matches. However, such a global search
is computationally expensive since the scale of modern apps and their UIs can be very large. Our
second insight is that the problem of finding the best matching sequence of events can be solved
efficiently by (1) modeling the matches between UI events and bug report steps as a Markov model,
with the quality of the match represented by the model’s transition probability function, and then
(2) using dynamic programming techniques to solve for the best paths in the model, which would
correspond to the best-matching UI event sequences. However, such an approach can only match
UI events to steps that are not missing from the bug report. To address the problem of missing
steps, our third insight is that the UTG can again be employed to find sub-paths of UI events that
connect pairs of UI events that have been matched to bug report steps.

Our approach, which embodies these insights and mechanisms, is shown in Figure 3. The inputs
of our approach are the step entities of the bug report and the existing UTG of the target app. In the
first step, described in Section 3.1, our approach builds the Probabilistic Reproduction Model (PRM),
the Markov model based representation of the possible matches between UI events and bug report
steps. In the second step, described in Section 3.2, our approach performs a dynamic programming
based computation to identify the best top-k matching sequences of UI events in the PRM. In the
final step, described in Section 3.3, our approach traverses the UTG to bridge the potential missing
steps in each of the top-k event sequences and identify the full reproduction event paths.

3.1 Probabilistic Reproduction Model
In this section, we introduce the definition of the Probabilistic Reproduction Model (PRM). The
PRM is a Markov model that simulates all possible matches between the steps in a bug report and
the UI events retrieved from the UTG of the target app. In general, the Markov model describes
a stochastic process, in which the future states only depend on the current state [36]. Following
the standard definition of a Markov model [36], we formally define the PRM as ⟨𝑀,𝑇, 𝑃⟩ where𝑀
is the states, 𝑇 is the transitions between states, and 𝑃 is the transition probability function that
computes the likelihood of each transition. Section 3.1 gives an example of the PRM composed by

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

117:6 Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond

the steps in Figure 1a and the UI events of target app in Figure 2. In the following paragraphs, we
define each part of the PRM and use this example as an illustration.

The states 𝑴 is the node set of the PRM. Each state𝑚 is a step-event pair, formally denoted as
𝑚 = ⟨𝑠, 𝑒⟩ where 𝑠 is a step of the bug report and 𝑒 is a UI event in the UTG. We use𝑚0 = 𝐸𝑛𝑡𝑟𝑦

to represent the initial state, meaning the start of the reproduction process. For a state ⟨𝑠𝑖 , 𝑒 𝑗 ⟩, it
could be intuitively interpreted as the approach choosing the UI event 𝑒 𝑗 to reproduce the step
𝑠𝑖 during the reproduction. For example, in Section 3.1, the state ⟨𝑠1, 𝑒1⟩ means reproducing the
first step “Edit a medicine” by clicking the “test” medicine button. In the PRM, a state is formed
between a step and any UI event with the same type of UI action expressed by the step. For example,
in Section 3.1, the step 𝑠1 is paired with every possible click event 𝑒1, 𝑒2 etc. to form the possible
states.
The transitions 𝑻 is the set of directed edges in the PRM. We use 𝑡𝑚𝑠→𝑚𝑡

to represent the
transition from a source state𝑚𝑠 = ⟨𝑠𝑖 , 𝑒𝑥 ⟩ to a target state𝑚𝑡 = ⟨𝑠 𝑗 , 𝑒𝑦⟩. During the reproduction
process, such a transition can be intuitively interpreted as, after reproducing step 𝑠𝑖 using event
𝑒𝑥 , the approach can subsequently reproduce step 𝑠 𝑗 using event 𝑒𝑦 . For example, in Section 3.1,
the transition from ⟨𝑠1, 𝑒1⟩ to ⟨𝑠2, 𝑒2⟩ means that, after reproducing the first step, the approach can
reproduce the second step by clicking the “pencil” button. In the PRM, a transition between two
states ⟨𝑠𝑖 , 𝑒𝑥 ⟩ and ⟨𝑠 𝑗 , 𝑒𝑦⟩ exists if both of the following conditions hold:

C1. 𝒋 = 𝒊 + 1 This condition means that the state of step 𝑠𝑖 can only transit to the state of the
next step 𝑠𝑖+1. The intuition of this condition is that each step in the bug report should be
reproduced sequentially.

C2. 𝒓𝒆𝒂𝒄𝒉𝒂𝒃𝒍𝒆(𝒆𝒙 , 𝒆𝒚) This condition means that the event 𝑒𝑦 should be reachable from the
event 𝑒𝑥 through some path in the UTG. The intuition of this condition is that since 𝑒𝑥 and
𝑒𝑦 match two successive steps in the bug report (as defined above in C1), after executing 𝑒𝑥 ,
it must be possible to execute some sequence of UI events in the UTG that will allow the
approach to find and execute (i.e., reach) event 𝑒𝑦 .

The transition probability function, denoted as 𝑃 (𝑡) → 𝑐 , shows the probability of a transition
𝑡 occurring. Intuitively, for a transition from state ⟨𝑠𝑖 , 𝑒𝑥 ⟩ to state ⟨𝑠 𝑗 , 𝑒𝑦⟩, its probability represents
the likelihood that the approach will choose UI event 𝑒𝑦 to reproduce step 𝑠 𝑗 , after reproducing
step 𝑠𝑖 with UI event 𝑒𝑥 . To reflect such a likelihood during the reproduction process, we define
this 𝑃 as the sum of two scores: Match Similarity Score and Transition Distance Score.

The match similarity score measures the transition probability from the perspective of step-event
similarity. The intuition is that a step is more likely to be reproduced by a UI event similar to
the step description. Hence, when the step-event pair exhibits a higher similarity, the transition
probability to such a state is higher. Our approach calculates the similarity between a step and a UI
event by comparing the textual description of the widget that the UI event acts upon and the target
entity of the step. To do this, our approach first extracts the textual description for the widget of the
UI event. Specifically, three attributes of the widget are extracted from the UI as the description:

(1) label: This attribute is the text displayed on the widget;
(2) content description (desc): This attribute is the text specified by developers to describe the

widget, which is used by accessibility services (e.g., ScreenReader [4]) to explain the widget;
(3) resource ID (res): This attribute is the file name of the linked source file of the icon.

The content of each of these attributes represents a meaningful explanation of the UI widget
provided by developers during the app’s development. Therefore, our approach uses them as the
textual representation of the widget. Given a transition to state ⟨𝑠𝑖 , 𝑒 𝑗 ⟩, the match similarity score

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

Mobile Bug Report Reproduction via Global Search on the App UI Model 117:7

is calculated as:

match similarity score =𝑚𝑎𝑥𝑤∈{𝑙𝑎𝑏𝑒𝑙,𝑑𝑒𝑠𝑐,𝑟𝑒𝑠 }{𝑠𝑖𝑚(𝑠𝑖 .𝑡𝑎𝑟𝑔𝑒𝑡,𝑤)} (1)

In Equation (1), the function sim computes the semantic similarity between two text spans i.e., the
target entity of the step (𝑠𝑖 .𝑡𝑎𝑟𝑔𝑒𝑡) and one of the three attributes (𝑤). Following the classic method,
given two text spans, our approach computes their semantic similarity as the cosine distance of
their word embeddings, the vector representation of a text, obtained from a pre-trained language
model [19, 37, 38]. Then, our approach takes the maximum of the three similarities as the final
similarity score. The rationale for choosing the maximum is that our approach cannot know which
of these three description sources would be used by the bug reporter, so this mechanism allows for
using the best or most informative fit.
The transition distance score measures the likelihood of a transition based on the distance of

the UI events. The intuition is that when reproducing the steps on the target app, after executing
the current step, the UI event to reproduce the next step is expected to be on a nearby screen. On
the UTG, this intuition implies the distance between the two matched UI events is likely to be
short. Based on this insight, for a transition between two states, ⟨𝑠𝑖 , 𝑒𝑥 ⟩ and ⟨𝑠 𝑗 , 𝑒𝑦⟩, the transition
distance score is computed as:

transition distance score =
1

𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒𝑥 , 𝑒𝑦)
(2)

In Equation (2), the function shortestPathDistance computes the length of the shortest path
between two events in the UTG.

3.2 Global UI Events Search
The goal of this stage of our approach is to search for the UI event sequences that globally best
match the steps in the bug report. To address this problem, our insight is that these event sequences
are most likely to be found in the top-k probable paths on the PRM. As explained in Section 3.1,
the likelihood of a UI event matching a step is captured in the probability of each PRM transition.
Therefore, by identifying the most probable paths from the PRM’s entry state to the state of the last
step, our approach can determine the sequences of events most likely to match the whole sequence
of steps. Additionally, searching the top-k best paths helps our approach more effectively handle
the potentially inaccurate steps and identify the correct event sequence.
Finding the top-k probable paths in the PRM can be formulated as a dynamic programming

problem. The core idea of the dynamic programming algorithm [13] is to find an optimal solution
to a complex problem by breaking it down into sub-problems and solving them recursively. In
our problem, if we define the cumulative probability of the most probable path from the entry
to the state𝑚𝑖 as 𝐵𝑒𝑠𝑡𝑃𝑟𝑜𝑏 (𝑚𝑖), the computation of it can be broken down into sub-problems of
computing the 𝐵𝑒𝑠𝑡𝑃𝑟𝑜𝑏 for the predecessor states of𝑚𝑖 . Mathematically, this is represented as:

𝐵𝑒𝑠𝑡𝑃𝑟𝑜𝑏 (𝑚𝑖) = max
𝑚 𝑗 ∈𝑝𝑟𝑒𝑑 (𝑚𝑖)

{𝐵𝑒𝑠𝑡𝑃𝑟𝑜𝑏 (𝑚 𝑗) + 𝑃 (𝑡𝑚 𝑗→𝑚𝑖
)} (3)

where 𝑃 is the transition probability function defined in Section 3.1 and function pred returns
the predecessors of a state in the PRM. With this formulation, we designed an efficient dynamic
programming algorithm to find the top-k most likely UI event sequences.
Algorithm 1 provides the details of our algorithm. The inputs of the algorithm are the PRM

(constructed in Section 3.1) and a number 𝑘 . At a high level, our approach first conducts a forward
computation pass (Lines 3 to 8) by traversing the PRM states from the state of the first reproduction
step to the state of the last reproduction step. During the forward pass, our approach determines
the best cumulative probabilities achieved by PRM paths reaching each state. Next, our approach

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

117:8 Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond

Algorithm 1: Top-K UI Event Sequences Computation
Input: PRM, 𝑘
Output: top-k event sequences 𝐸𝑘𝑒𝑦

1 𝑏𝑒𝑠𝑡 ← ∅ ; /* table storing the cumulative probability of the optimal path */

2 𝑏𝑎𝑐𝑘 ← ∅ ; /* table storing the back pointers */

/* Forward computation pass */

3 𝑏𝑒𝑠𝑡 [PRM.𝑒𝑛𝑡𝑟𝑦] ← 0;
4 for PRM state𝑚 from the first step to the last step do
5 𝑃𝑟𝑒𝑑𝑠 ← the predecessors of𝑚;
6 𝑏𝑒𝑠𝑡 [𝑚] ← max𝑚′∈𝑃𝑟𝑒𝑑𝑠 {𝑏𝑒𝑠𝑡 [𝑝] + PRM.𝑃 (𝑡𝑚′→𝑚)};
7 𝑏𝑎𝑐𝑘 [𝑚] ← argmaxK𝑚′∈𝑃𝑟𝑒𝑑𝑠 {𝑏𝑒𝑠𝑡 [𝑝] + PRM.𝑃 (𝑡𝑚′→𝑚)};
8 end
/* Backward decoding pass */

9 𝑒𝑣𝑒𝑛𝑡𝑆𝑒𝑞𝑠 ← ∅ ; /* list storing the top-k event sequences */

10 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← a max heap with size k;
11 for PRM state𝑚 of the last step do
12 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.insert([𝑚], key=𝑏𝑒𝑠𝑡 [𝑚]);
13 end
14 while 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑙𝑒𝑛𝑔𝑡ℎ > 0 do
15 𝑐 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.pop();
16 𝑚 ← 𝑐.𝑙𝑎𝑠𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ();
17 if 𝑚 == PRM.𝑒𝑛𝑡𝑟𝑦 then

/* Decoding reaches the entry state */

18 𝑒𝑣𝑒𝑛𝑡𝑆𝑒𝑞𝑠.append(𝑐.getMatchedEvents());
19 end
20 for predecessor state 𝑝 in 𝑏𝑎𝑐𝑘 [𝑚] do
21 𝑛𝑒𝑤_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑐.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝);
22 𝑛𝑒𝑤_𝑠𝑐𝑜𝑟𝑒 ← 𝑏𝑒𝑠𝑡 [𝑝] + cumlative_prob(𝑛𝑒𝑤_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
23 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.insert(𝑛𝑒𝑤_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, key=𝑛𝑒𝑤_𝑠𝑐𝑜𝑟𝑒);
24 end
25 end
26 return eventSeqs

conducts a backward decoding pass (Lines 9 to 25) to reveal the PRM paths with the top-k cumulative
probabilities.
In order to identify the top-k paths in the PRM, for each state, our approach keeps track of its

predecessors that are on the paths achieving the top-k cumulative probabilities during the forward
pass (Line 7). This information is later utilized in the backward decoding pass to expand the path
candidates. In the backward decoding pass, our approach uses a k-sized max heap to store the top-k
probable path candidates. The path candidates are initialized with the states that achieved the top-k
cumulative probabilities (Lines 10 to 13). In each round of decoding, our algorithm pops off the
candidate path with the highest score from the heap, expands it with its back pointers computed
from the forward pass, and reinserts the updated candidate into the heap with its new total score
(Lines 20 to 24). The new total score is computed as the sum of 𝑏𝑒𝑠𝑡 [𝑝] — the best cumulative

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

Mobile Bug Report Reproduction via Global Search on the App UI Model 117:9

probability that can be achieved at the expanded state, and 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑜𝑏 (𝑛𝑒𝑤_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) — the
current cumulative probability of the candidate path (Line 22). In this way, the new score represents
the highest potential cumulative probability that can be achieved by the new path candidate. By
doing this, the heap always keeps the overall top-k probable path candidates. The decoding of a
path finishes when it reaches the entry state of the PRM (Line 18).
The outputs of this stage of our approach are the UI event sequences that are mostly likely to

match the steps provided in the bug report. For the example in Section 3.1, our approach identifies
the event sequence [𝑒2, 𝑒4] as one of the output sequences that correctly matches the two given
steps. All such event sequences will be used in the next stage of our approach to determine the full
reproduction path.

3.3 Reproduction Event Path Recovery
The goal of this stage of our approach is to identify the UI events that reproduce the steps missing
from the bug report, thereby finding the complete reproduction event path. As discussed in related
work [31, 48], bug reporters often omit or overlook certain reproduction steps when writing a bug
report. These missing steps could happen (1) before the first provided step; (2) in between any
two provided steps; or (3) after the last provided step in a bug report. When any of these three
situations occur, the UI events identified in Section 3.2, which only match the provided steps, will
be insufficient to reproduce the bug. To handle these types of missing steps and discover the full
reproduction path, our insight is that the set of paths originating from the initial UI state and
leading up to the first matched event, connecting two consecutive events, or extending from the
final matched event could be the ones omitted by bug reporters.

Given a sequence of events identified in the prior stage (Section 3.2), our approach first explores
the UTG to handle the first two types of missing steps defined above. To handle the first type
of missing steps, our approach locates the event paths from the beginning state of the UTG (i.e.,
the initial UI of the target app) to the UI states containing the first identified event (i.e., the one
reproduces the first given step). Then, our approach follows a similar idea to handle the second type
of missing steps. Specifically, for each adjacent pair of identified UI events, our approach searches
for the paths that connect their corresponding UI states on the UTG. For both cases, our approach
identifies the shortest paths [21] between two UI states, which helps our approach to find the most
efficient way of reproduction and avoid redundant events [25]. At the end, for each UI event in the
sequence, our approach obtains a set of paths that connect it either from the beginning UI state or
the previous event. These paths will be joined together to get a set of full paths.

Next, our approach extends each identified path in the UTG to handle the third type of missing
steps, i.e., steps omitted after the last provided step. Given a path identified previously, our approach
computes a set of paths using a fixed-depth exploration starting from the last UI event of the
matched path. Since the number of missing steps after the last provided step tends to be small [31],
a fixed-depth exploration is a sufficient and efficient method to address this problem. Note that this
procedure may create extra events for reproduction when the bug report does not have the second
type of missing steps. In this case, our approach will eliminate the extra ones after triggering the
failure when executing the event path in the target app.

4 EVALUATION
In this section, we evaluated our approach by answering the following research questions:

RQ1. How effectively can our approach identify the UI events matching the reproduction steps?
RQ2. How effectively can our approach reproduce the bug reports?
RQ3. What is the running time of our approach?

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

117:10 Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond

Table 1. Bug Report Step Information

Average Median Minimum Maximum

Provided Steps 2.9 3 1 7
Total Steps 4.3 3 1 27
Missing Steps 2.4 1 1 21

RQ4. How effectively can our approach reproduce bug reports with missing steps?
RQ5. How much does each sub-score in the transition probability function help the reproduction?

4.1 Implementation
For evaluation purposes, we implemented our approach into a research prototype, Roam (ReprO-
duction using App Model). Roam is implemented using Python. In its implementation, we used
Neo4J [8] to store and access the UTG, UIAutomator [10] to interact with the Android device,
and Spacy [9] to compute the semantic similarity of texts. Our experiments were performed on
Android emulators on a physical x86 Ubuntu 20.04 machine with a 3.6GHz 8-core CPU and 32GB
of memory. We set the default value for 𝑘 to be 100, meaning that during the reproduction, our
approach computes the top one hundred UI event sequences that match the steps in a bug report.
We set two as the default depth for the fixed-depth exploration (as explained in Section 3.3). To
facilitate future research, our implementation is available on the website [11].

4.2 Dataset Collection
We used a dataset of 72 real-world Android bug reports for our experiments. The subjects came
from the artifacts of five open-source datasets: (1) the evaluation dataset of ReproBot [50]; (2) the
evaluation dataset of ReCDroid [51, 52]; (3) the evaluation dataset of Yakusu [24]; (4) an empir-
ical study on Android bug report reproduction [31]; and (5) an Android bug report dataset [48].
Altogether, the open-source datasets provided an initial set of 399 bug reports. For each bug report
in these open-source datasets, we attempted to manually reproduce it to make sure the steps were
reproducible and duplicates were removed. During this process, we found many bug reports were
no longer reproducible due to the following factors: (1) The bug report link had expired; (2) The
corresponding APK file of the app was no longer available; and (3) Necessary setup information
such as an account or a specific environmental configuration was not provided. We ended up with
a dataset of 72 bug reports, 46 (64%) of which had missing steps. Table 1 displays the statistics of
the reproduction steps for the bug reports in our dataset. The "Provided Steps" row indicates the
number of steps written in the bug report. The "Total Steps" row shows the total number of steps
actually required to reproduce the bug report. The "Missing Steps" row shows the number of steps
missing from the bug reports for the subset of reports that have missing steps.
For each bug report, we constructed the inputs for the approach: step entities and UTG. We

followed the established protocol used by ReproBot to construct the step entities from the orig-
inal bug reports. For subjects that already have the step entities created (i.e., the subjects from
ReproBot’s evaluation dataset), we directly reused them. To build the UTG of each target app,
we followed the standard practice of running a dynamic app crawler to explore the target app
and constructed the UTG using the crawling results [25]. We leveraged an open-source crawler,
AppCrawler [1] for this purpose.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

Mobile Bug Report Reproduction via Global Search on the App UI Model 117:11

Table 2. The Match Accuracy Results on Bug Reports (Shown as a Percent)

Match Accuracy Perfect Cases Zero Cases

PRM-Enumeration 61 56 33
ReproBot 69 47 10
Euler 72 56 14
Roam 93 85 0

4.3 RQ1. Identifying UI Events Matching the Reproduction Steps
4.3.1 Protocol. The goal of this RQ is to assess how accurately our global search mechanism (as
defined in Section 3.2) can identify the matching between the steps and UI events.
For this RQ, we compared the performance of Roam with three baselines: (1) ReproBot [50]:

It is a state-of-the-art mobile bug report reproduction technique. ReproBot uses a Q-learning
algorithm to dynamically search for the UI events matching the given bug report steps on the target
app; (2) Euler [16]: It is a state-of-the-art approach for assessing the quality of mobile bug report
steps. Euler proposed an 𝑛-step look-ahead algorithm on the UTG to find the UI event matching a
given reproduction step. At a high level, Euler matches a given step to the most similar UI event
on the current UI or UIs within 𝑛 steps on the UTG. Though Euler is not designed to reproduce
the bug report, its algorithm is effective in finding the corresponding UI event of the steps on the
UTG. Therefore, we included Euler for comparison in this RQ. In our experiment, we adopted
the value 𝑛 = 6 based on Euler’s evaluation, which determined it as the best value for finding
matching events; and (3) PRM-Enumeration: It is a baseline approach we implemented to show
the impact of the dynamic programming algorithm (described in Section 3.2). Specifically, to find
the top-K event sequences on the PRM, instead of using the dynamic programming based approach,
this baseline enumerates all possible paths on the PRM and ranks them based on the cumulative
probability of the path. Note that we did not include Yakusu [24] and ReCDroid [52] in this RQ
because they do not provide a one-to-one mapping from steps to UI events, which is necessary to
measure their performance for this RQ.
To conduct the experiments, we ran all approaches on the dataset with one hour as the time

limit per run. To mitigate the impact of the non-determinism of the Q-learning algorithm [50], we
ran ReproBot ten times on each subject. We manually checked the correctness of the UI events
found by each approach. For a given bug report, we computed the match accuracy as the ratio of
correctly identified UI events to the total number of identified UI events.

4.3.2 Presentation of Results. The results of RQ1 are shown in Table 2. For each approach, the
“Match Accuracy” column represents its average match accuracy on the dataset. The “Perfect Cases”
column represents the percentage of bug reports where the approach’s match accuracy is one
hundred, indicating that the approach found the correct UI events matching all steps in the bug
report. The “Zero Cases” column represents the percentage of bug reports where the approach’s
match accuracy is zero, indicating that the approach failed to find the correct UI event matching
any step in the bug report. The detailed match accuracy of each subject for each tool is included in
the replication package [11].

4.3.3 Discussion of Results. According to the results, Roam achieved an average match accuracy
of 93%, which is 21% higher than Euler, 24% higher than ReproBot, and 32% higher than PRM-
Enumeration. Notably, on 85% of bug reports, Roam was able to correctly find reproducing UI
events for all steps. This ratio is 29% higher than PRM-Enumeration and Euler, and 38% higher than

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

117:12 Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond

ReproBot. Furthermore, Roam was able to identify the correct UI events for reproducing at least
one step in all bug reports. In contrast, other methods were unsuccessful in identifying UI events
for reproducing any step in 10% to 33% of the bug reports. Taken together, Roam outperformed the
other baseline approaches in identifying the UI events matching the reproduction steps.
We manually investigated the results of all approaches and found that Roam outperformed

the other approaches primarily for two reasons. First, by searching for the UI events based on
their overall matchability with the steps, Roam avoided being misled by the inaccuracies from
a single step. As explained in Section 3.2, Roam searches for the overall best-matched UI events
on the PRM. This helped it to accurately find the events that match the whole sequence of steps
even if some were inaccurate. On the contrary, Euler was less effective in handling inaccurate
steps. This was because it relied solely on each step to search for the corresponding UI event.
In situations where the step description was inaccurate, resulting in a higher similarity with an
incorrect UI event, Euler was misled into selecting the wrong event on the UTG. The same thing
happened to ReproBot. These inaccuracies in the steps led to ReproBot’s dynamic search being
misled, preventing it from finding the correct events. Second, when searching for UI events on the
PRM, the dynamic programming algorithm used by Roam was more effective than the enumeration.
We noticed that, due to the vast number of event sequences to be enumerated, PRM-Enumeration
failed to complete the search within the time limit for 32% of the bug reports.
Even though Roam had better average match accuracy than the baselines, it still couldn’t find

the right match for some bug report steps. We investigated these cases manually and identified two
main causes. First, in some cases, Roam failed to compute the similarity score between a given step
and a UI event, resulting in finding an incorrect UI event. As explained in Section 3.1, Roam requires
some textual information from the widget in the UI in order to compute the match similarity score.
However, we observed instances where app developers did not provide this information in the UI.
Consequently, Roam could not calculate a reasonable similarity score, leading to the failure to find
the correct UI event. Second, Roam failed to find the correct UI event matching amalgamated steps,
i.e., when reporters combine multiple UI interactions into a single step. For instance, to reproduce
the step “uncheck all checkboxes” in bug report collect#2958 [3], it is required to click on each
checkbox in a list individually. Since Roam was designed to identify a one-to-one mapping from
steps to UI events, it could not correctly identify such a one-to-many relation.

4.4 RQ2. Reproducing Bug Reports
4.4.1 Protocol. The goal of this RQ is to evaluate how effective our approach is in reproducing
the bug reports. In this RQ, we compared the performance of Roam with three state-of-the-art
reproduction techniques: ReproBot [50], ReCDroid [52], and Yakusu [24]. Note that all three
approaches can compute the step entities directly from the bug report text. However, to ensure a
fair comparison in this experiment, we provided the same step entities collected in Section 4.2 to all
three approaches and Roam. To conduct the experiment, we ran all approaches to reproduce the bug
reports in our dataset, with one hour as the time limit for each bug report. We ran ReproBot ten
times to mitigate the impact of its non-determinism on the reproduction results. For each successful
reproduction reported by a tool, we manually replayed the generated reproduction path to ensure
it followed the same sequence described as the bug report steps. We found three false successful
reproductions for ReCDroid, four false reproductions on average for ReproBot, and none for the
other approaches. We used the reproduction rate as the metric, which was computed as the number
of successful reproduction divided by the total number of reproduction an approach had run.

4.4.2 Presentation & Discussion of Results. Table 3 displays the average reproduction rate of each
approach on the whole dataset (“All Reports”), the subset of bug reports that do not have missing

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

Mobile Bug Report Reproduction via Global Search on the App UI Model 117:13

Table 3. Reproduction Rate of Each Approach (Shown as a Percent)

All Reports Reports w/o Missing Steps Reports w/ Missing Steps

ReproBot 70 83 63
ReCDroid 29 27 30
Yakusu 8 15 4
Roam 94 96 93

steps (“Reports w/o Missing Step”), and the subset of bug reports that have missing steps (“Reports
w/ Missing Steps”). The detailed reproduction results of each subject for each tool are included
in the replication package [11]. As shown in the results, Roam achieved the highest reproduction
rate on the whole dataset, also on the subset of bug reports that have or do not have missing steps.
Roam outperformed all state-of-the-art approaches on reproducing bug reports.
We further analyzed the bug reports that Roam was unable to reproduce and found two main

reasons for the failure. The first reason was that Roam inaccurately computed the UI events
matching the provided steps (as discussed in RQ1). As explained in Section 3.3, Roam recovers the
final reproducing path based on the identified UI events. Therefore, if the events were incorrect,
Roam produced an incorrect path and failed to reproduce the bug report. The second reason was
that Roam failed to discover the missing steps in certain cases. For example, in the bug report
phimpme-android#1858 [5], the reproduction steps are “click on the edit option then abort the edit
operation”. To reproduce this bug report, it required the approach to first click the “edit” button,
change some configurations in the Edit page, and then click the “abort” button. However, Roam,
without modifying any configurations, clicked the "abort" button immediately after clicking the
"edit" button, resulting in a reproduction failure. As explained in Section 3.3, Roam determines
whether there is any missing step between two given steps by checking if their corresponding
UI events are discontinuous on the UTG. For this bug report, this caused Roam to mistakenly
determine that there was no missing step between these two steps. We found that the missing steps
in this bug report were not easily noticeable even for humans. When manually reproducing this
bug report, the authors initially identified the same events as Roam and it took several tries to
eventually find the missing steps.

We observed that in some cases, ReproBot successfully reproduced the bug report but failed to
identify the correct matching relation between the steps and UI events, which caused ReproBot to
achieve a high reproduction rate but a comparatively lower score on Perfect Cases in RQ1. After
further exploration, we found this was because of the random mechanism employed by ReproBot
to handle inaccurate or missing steps (as discussed in Section 2). In some cases, this mechanism
allowed ReproBot to trigger the bug successfully without identifying the correct match for all
steps. For instance, when reproducing NewsBlur#1053 [2], ReproBot inserted a random UI event
before matching the final step, “Click register”. The purpose of this random event was to account
for any potential missing steps. However, the random event was to click the “Register” button (i.e.,
the one to reproduce the final step), which caused ReproBot to trigger the bug directly without
actually matching the final step. As a result, ReproBot successfully reproduced the bug but failed
to find the correct matching for the last provided step in this bug report.

4.5 RQ3: Reproduction Running Time
4.5.1 Protocol. The goal of this RQ is to assess the running time of our approach on reproduction.
To answer it, we measured the running time of each approach spent on each reproduction. In the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

117:14 Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond

Table 4. The Running Time Results of Each Approach (Shown in Seconds)

Roam ReproBot ReCDroid Yakusu
PRM Event Search Path Recv & Exec Total

Avg. 19 16 470 505 1,128 2,674 3,354
Mdn. 1 1 111 150 229 3,600 3,600

case where the approach failed to reproduce a bug report, its running time was recorded as the
time limit for a reproduction, i.e., one hour.

4.5.2 Presentation & Discussion of Results. The results for all of the tools’ running times are dis-
played in Table 4, with each cell representing the average (“Avg.”) and median (“Mdn.”) running time
per run. For Roam, we also provide the running time for each stage of our approach. Specifically, the
column “PRM” represents the running time for constructing the PRM (as explained in Section 3.1);
the column “Event Search” represents the running time for identifying the top-k event sequences
on PRM (as explained in Section 3.2); and the column “Path Recv & Exec” represents the running
time spent on identifying the complete reproduction event paths and executing them in the app (as
explained in Section 3.3). The detailed running time of each subject for each tool is included in the
replication package [11]. Based on the results, Roam had the shortest running time compared to
other tools, with an average of 505 seconds and a median of 150 seconds.
We further evaluated the running time when considering the time for constructing the UTG.

After adding the UTG construction time, the average running time of Roam becomes 2,655s, ranking
the second best among all baseline approaches. However, it is worth noting that building the UTG
is a one-time effort and can be conducted in advance, after which all the bug reports of the same app
can reuse the model. This means that the time spent on building the UTG can be distributed across
all bug reports for an application. An example of this situation is the subject app phimpme-android,
which has seven bug reports in our dataset. When amortizing the UTG construction cost, the
average running time of Roam is 1,645s versus 2,418s for ReproBot. ReCDroid and Yakusu were
unable to reproduce it, resulting in a time of 3,600s.

4.6 RQ4: Reproducing Bug Reports with Missing Steps
4.6.1 Protocol. The goal of this RQ is to assess the reproduction performance of our approach on
bug reports that have missing steps. To answer this RQ, we ran Roam and the three state-of-the-art
reproduction techniques: ReproBot [50], ReCDroid [53] and Yakusu [24] on the 46 bug reports
that contain missing steps following the same protocol as in RQ2. We used the reproduction rate
introduced in RQ2 as the metric for this experiment.

4.6.2 Presentation of Results. Figure 5 presents the reproduction performance of each approach
on the bug reports with missing steps. Each line in the chart shows the reproduction rate for an
approach with respect to the minimum number of missing steps in a bug report. For example, when
the value of the x-axis equals one, the value of the y-axis represents the reproduction rate of each
approach on the bug reports with at least one missing step.

4.6.3 Discussion of Results. As shown in Figure 5, Roam achieved a 93% reproduction rate on bug
reports with at least one missing step. This number is 30% higher than ReproBot’s, 63% higher
than ReCDroid’s, and 89% higher than Yakusu’s. In addition, despite the increasing number of
missing steps in a bug report, Roam consistently outperformed the state-of-the-art approaches.
In particular, on bug reports with at least three missing steps, Roam’s reproduction rate was 80%,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

Mobile Bug Report Reproduction via Global Search on the App UI Model 117:15

Minimum Number of Missing Steps in a Bug Report

R
ep

ro
du

ct
io

n
R

at
e

(%
)

0

25

50

75

100

0 1 2 3 4 5

Roam

ReproBot

ReCDroid

Yakusu

Fig. 5. Reproduction Rate of Each Approach on Bug Reports with Missing Steps

only decreasing by 15% compared to its performance on all bug reports. In contrast, the other
approaches experienced much larger drops in their reproduction rates, with ReproBot dropping by
73%, ReCDroid dropping by 66%, and Yakusu dropping by 100%, compared to their performance
on the entire dataset. In addition, for bug reports with five or more missing steps, none of the
state-of-the-art reproduction techniques was able to reproduce them while Roam still had a 50%
reproduction rate.

We investigated why Roam outperformed other approaches in handling missing steps and found
two reasons. First, the PRM assisted Roam in accurately identifying the UI events matching the
provided steps even if there were missing steps among them. As explained in Section 3.1, the
PRM considers all matches between the given steps and UI events on the app, accounting for the
possibility of missing steps. Therefore, with the PRM, Roam was able to accurately locate the UI
events to reproduce the provided steps even if they were incomplete. This provided an accurate
foundation for Roam to further discover the reproduction path. Second, the UTG helped Roam
bridge the missing steps more effectively. As explained in Section 3.3, after identifying the UI events
matching the provided steps, Roam used the UTG of the target app to discover potential gaps
caused by missing steps. In this process, the UTG provided a clear guidance on what UI events
could connect two provided steps, helping Roam to discover the missing steps more effectively. In
comparison, existing approaches relied on random exploration or exhaustive search to uncover the
missing steps while dynamically exploring the app. These techniques were less efficient and less
effective compared with Roam’s.

4.7 RQ5: Contribution of Sub-Scores in the Transition Probability Function
4.7.1 Protocol. The goal of this RQ is to evaluate the contribution of each sub-score defined in the
transition probability function of the PRM (as introduced in Section 3.1) to the overall performance
of our approach. To answer this RQ, we created two variants of Roam: Roam-Sim and Roam-Dist.
Roam-Sim only used the match similarity score as the transition probability when building the PRM
while Roam-Dist only used the transition distance score. We ran both variants and Roam on the
whole dataset and measured the match accuracy (as introduced in RQ1) and the reproduction rate
(as introduced in RQ2).

4.7.2 Presentation & Discussion of Results. Table 5 presents the average match accuracy and
reproduction rate for each approach. The detailed results for two variants on each subject are
included in the replication package [11]. As shown in Table 5, both variants performed worse than
the original Roam in identifying the UI events and reproducing the bug reports. Compared with
Roam, Roam-Sim’s average match accuracy was 5% lower, and Roam-Dist’s was 16% lower. In
addition, Roam-Sim’s reproduction rate was 29% lower, and Roam-Dist’s was 56% lower than Roam.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

117:16 Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond

Table 5. The Match Accuracy and Reproduction Rate for RQ5

Avg. Match Accuracy (%) Reproduction Rate (%)

Roam-Sim 88 65
Roam-Dist 77 38
Roam 93 94

The performance difference between Roam and the two variants demonstrated the contribution of
both sub-scores to the overall performance of Roam.
We further analyzed the causes behind the performance decline for both variants. For Roam-

Sim, we found it less effective in finding the correct UI event sequence when there were multiple
UI events similar to the same step. Roam-Sim searched for the UI events purely based on their
similarity with the steps. Therefore, if there were multiple UI events similar to the same step,
Roam-Sim considered all of them possible to reproduce the step. As a result, the correct event
sequence was ranked lower. Ultimately, Roam-Sim either failed to find the correct events because
of the low ranking or did not have enough time to execute them, causing a failure of reproduction.
For Roam-Dist, without considering the similarity with the reproduction steps, its reproduction
process was reduced to an exhaustive search through all event paths in the app. In most cases, such
an exploration was extremely time-consuming and unable to reproduce the bug within the time
limit.

4.8 Threats to Validity
4.8.1 External Validity. A potential threat to the external validity of our results is the represen-
tativeness of the selected bug reports. We have attempted to overcome this threat by searching
for subjects from the artifacts of five open-source datasets. It is worth noting that all the subjects
are real-world Android bug reports either from GitHub Issues [6] or Google Code [7]. Another
potential threat is the representativeness of the UTG used in our experiments. In the evaluation, we
tried our best to create the UTG as completely as possible using a dynamic crawler. However, there
could be a potential threat that these UTG may not be representative of the UTG used by real-world
developers in terms of completeness. With a more complete UTG, there might be additional event
paths that introduce noise into the search and prevent our approach from finding the correct event
path to reproduce the bug report. To better understand the potential implications of this threat,
we conducted a small-scale robustness study on the UTG. Specifically, we randomly selected ten
subjects that our approach successfully reproduced and manually enriched their UTGs to make
them as complete as possible. Then, we reran our approach using the new UTGs and found that
the reproduction results remained consistent with the original results.

4.8.2 Internal Validity. A potential threat to internal validity is the biases that could be introduced
when identifying the step entities. To mitigate this threat, the first two authors independently
conducted the same step entity identification process following the established practice from
the existing study [50]. Then, they compared their results and resolved the discrepancies via
discussion. Another threat is the potential biases that could influence the manual validation of the
UI events in Section 4.3. To address this threat, in the manual validation process, we referred to
the reproduction UI events information in the original dataset if provided. This information was
collected by the authors of the original dataset, which could help reduce bias.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

Mobile Bug Report Reproduction via Global Search on the App UI Model 117:17

5 RELATEDWORK
In this section, we review the related works from three topics: Mobile Bug Report Reproduction,
Mobile Bug Reporting and Management, and UI Transition Graph for Mobile App Analysis.

Mobile Bug Report Reproduction There have been several works focusing on textual mobile
bug report reproduction. ReCDroid [52] and Yakusu [24] are the first two works in this direction.
Both approaches employ a dynamic and greedy search on the app to find the UI events to reproduce
the steps. Recently, Zhang et al. proposed ReproBot [50], which employs a reinforcement learning
algorithm to guide the dynamic search for the UI events. Different from these existing works, our
approach leverages the UTG of the target app to globally search for the UI event path to reproduce
the bug report steps. Our approach first constructs a Markov Model to represent all possible matches
between the steps and UI events in the UTG, then uses a dynamic programming algorithm to find
the top-k most likely event sequences for reproducing the steps. Our approach further leverages
the UTG to discover the potential missing steps in the bug report and identify the full reproduction
event paths. After a comprehensive comparison with these existing works, our evaluation results
show that our approach performs better in finding the correctly matched events and reproducing
the bug report than the existing techniques.

Many research works focused on improving a specific part of the automatic reproduction process.
Liu et al. developed a machine learning model Maca [34] to classify the UI action type of a
reproduction step. Huang et al. introduced a multi-modal neural network ScopeDroid [30] to
compute the similarity between a UI event and a reproduction step. Different from both works, our
approach focuses on improving the search of the reproducing UI events during the reproduction
process. Both two works are complementary to our approach and provide future directions for
better reproduction techniques.
There are also research efforts on replaying video mobile bug reports. Feng et al. introduced

GIFdroid [25], an automatic tool to replay screen video recordings on Android apps. GIFdroid uses
image-processing techniques to identify keyframes from the video and map them to the actual
app’s UI. Bernal-Cárdenas et al. introduced V2S, another method to replay app video recordings.
V2S employs a deep neural network to identify the UI actions from the videos and replay them on
apps. Unlike these two works, our approach focuses on reproducing textual steps from Android
bug reports.

Mobile Bug Reporting andManagement A great body of work has been dedicated to assisting
with bug reporting. Fusion, developed by Moran et al. [40], leverages dynamic analysis to obtain
UI events of the app under test (AUT) and help create more actionable events in bug reports
during the testing stage. Fazzini et al. proposed EBUG [23] to assist reporters in writing more
accurate reproduction steps by using information from static and dynamic analysis of the AUT to
predict the next step. Demibud [17] introduced by Chaparro et al. uses manually built discourse
patterns to check whether a bug report misses descriptions for observed behavior, expected behavior,
or steps to reproduce. To help users report these elements, Yang et al. proposed an interactive
bug reporting system, BURT [44] to provide instant feedback of problems with the elements and
graphical suggestions of the said elements. Euler developed by Chaparro [16] assesses the quality
of documented reproduction steps by mapping them onto the UTG of the app. There are also many
works that empirically study the bug-reporting process [22, 42, 43, 54, 55] and detect duplicate bug
reports [20, 28, 29, 32, 41, 46, 47]. Different from these works, our work focuses on reproducing the
steps documented in the bug reports.
UI Transition Graph for Mobile App Analysis The UTG has been widely used in research

works on mobile app review [18], UI testing [12, 26, 27, 35, 45] and bug reporting [14, 23, 25, 39].
StoryDroid developed by Chen et al. [18] utilizes the UTG of apps in the market to measure their

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

117:18 Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond

UI similarity. This helps developers to easily review similar apps in the market and avoid conflicts of
functionalities in their app design. Stoat proposed by Su et al. [45] uses the UTG to automatically
generate UI test cases for mobile app in order to achieve a higher code coverage and UI coverage.
NaviDroid developed by Liu et al. [35] leverages the UTG of an app to guide human testers more
effectively explore the app by providing hint moves on the UI. The UTG helps it to effectively plan
the exploration paths to previously unvisited UI pages. Different from these works, our work uses
the UTG to globally search for the UI events on the app to reproduce the bug report steps.

6 CONCLUSION
In this work, we propose a new approach to effectively reproduce mobile bug reports by globally
searching the UI events in the target app’s UI Transition Graph. Our approach leverages a Markov
model to simulate all possible ways to reproduce the steps using all UI events supported by the
app. From this model, our approach employs a dynamic programming algorithm to compute
the top-k most likely event sequences to reproduce the given steps. Then it further combines
the path information from the UTG to identify the plausible missing steps in order to find the
full reproducing paths. We conducted an empirical evaluation of our approach and compared its
performance with the state-of-the-art approaches. As shown by the results, our approach is more
effective in reproducing the bug reports and handling the missing steps in a bug report than the
state-of-the-art techniques. It can also more accurately identify the UI events that match with the
bug report steps.

7 DATA-AVAILABILITY STATEMENT
In a replication package [11], we provide the source code and documentation of Roam, the dataset
we used for the evaluation, and the detailed evaluation results.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under Grant No. 2211454.

REFERENCES
[1] 2015. App Crawler. https://github.com/Eaway/AppCrawler.
[2] 2017. IllegalArgumentException: unexpected url. https://github.com/samuelclay/NewsBlur/issues/1053.
[3] 2019. Accessing General settings form Admin settings does not display disabled submenus. https://github.com/getodk/

collect/issues/2958.
[4] 2023. Android Accessibility. https://support.google.com/accessibility/android/answer/7158690?hl=en.
[5] 2023. Favourite photos edit option issue. https://github.com/fossasia/phimpme-android/issues/1858.
[6] 2023. Github Issue Tracker. https://github.com/issues.
[7] 2023. Google Code Issue Tracker. https://code.google.com/archive/.
[8] 2023. Neo4j Graph Database and Analytics. https://neo4j.com/.
[9] 2023. Spacy: Industrial-Strength Natural Language Processing. https://spacy.io/models.
[10] 2023. UI Automator. https://developer.android.com/training/testing/ui-automator.
[11] 2024. Replication Package. https://doi.org/10.5281/ZENODO.11068809
[12] Young-Min Baek and Doo-Hwan Bae. 2016. Automated model-based Android GUI testing using multi-level GUI

comparison criteria. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE 2016). Association for Computing Machinery, New York, NY, USA, 238–249. https://doi.org/10.1145/2970276.
2970313

[13] Richard Bellman. 2010. Dynamic Programming. Princeton University Press, USA.
[14] Carlos Bernal-Cárdenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, Andrian Marcus, and Denys Poshyvanyk.

2020. Translating video recordings of mobile app usages into replayable scenarios. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. ACM, Seoul South Korea, 309–321. https://doi.org/10.1145/
3377811.3380328

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

https://github.com/Eaway/AppCrawler
https://github.com/samuelclay/NewsBlur/issues/1053
https://github.com/getodk/collect/issues/2958
https://github.com/getodk/collect/issues/2958
https://support.google.com/accessibility/android/answer/7158690?hl=en
https://github.com/fossasia/phimpme-android/issues/1858
https://github.com/issues
https://code.google.com/archive/
https://neo4j.com/
https://spacy.io/models
https://developer.android.com/training/testing/ui-automator
https://doi.org/10.5281/ZENODO.11068809
https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1145/3377811.3380328
https://doi.org/10.1145/3377811.3380328

Mobile Bug Report Reproduction via Global Search on the App UI Model 117:19

[15] Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan Koduru. 2013. An Empirical Analysis of Bug
Reports and Bug Fixing in Open Source Android Apps. In 2013 17th European Conference on Software Maintenance and
Reengineering. 133–143. https://doi.org/10.1109/CSMR.2013.23 ISSN: 1534-5351.

[16] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, Andrian Marcus, Massimiliano Di Penta, Denys
Poshyvanyk, and Vincent Ng. 2019. Assessing the quality of the steps to reproduce in bug reports. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM, Tallinn Estonia, 86–96. https://doi.org/10.1145/3338906.3338947

[17] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta, Andrian Marcus, Gabriele Bavota,
and Vincent Ng. 2017. Detecting missing information in bug descriptions. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, Paderborn Germany, 396–407. https://doi.org/10.1145/3106237.3106285

[18] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua Xu. 2019. StoryDroid: Automated
Generation of Storyboard for Android Apps. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, Montreal, QC, Canada, 596–607. https://doi.org/10.1109/ICSE.2019.00070

[19] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, Doha, Qatar, 1724–1734. https://doi.org/10.3115/v1/D14-1179

[20] Nathan Cooper, Carlos Bernal-Cardenas, Oscar Chaparro, Kevin Moran, and Denys Poshyvanyk. 2021. It Takes
Two to Tango: Combining Visual and Textual Information for Detecting Duplicate Video-Based Bug Reports. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, Madrid, ES, 957–969. https:
//doi.org/10.1109/ICSE43902.2021.00091

[21] E. W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1, 1 (dec 1959), 269–271.
https://doi.org/10.1007/BF01386390

[22] Mona Erfani Joorabchi, Mehdi Mirzaaghaei, and Ali Mesbah. 2014. Works for me! characterizing non-reproducible
bug reports. In Proceedings of the 11th Working Conference on Mining Software Repositories - MSR 2014. ACM Press,
Hyderabad, India, 62–71. https://doi.org/10.1145/2597073.2597098

[23] Mattia Fazzini, Kevin PatrickMoran, Carlos Bernal-Cardenas, TylerWendland, AlessandroOrso, andDenys Poshyvanyk.
2022. Enhancing Mobile App Bug Reporting via Real-time Understanding of Reproduction Steps. IEEE Transactions on
Software Engineering (2022), 1–1. https://doi.org/10.1109/TSE.2022.3174028

[24] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018. Automatically translating bug reports
into test cases for mobile apps. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, Amsterdam Netherlands, 141–152. https://doi.org/10.1145/3213846.3213869

[25] Sidong Feng and Chunyang Chen. 2022. GIFdroid: automated replay of visual bug reports for Android apps. In
Proceedings of the 44th International Conference on Software Engineering. ACM, Pittsburgh Pennsylvania, 1045–1057.
https://doi.org/10.1145/3510003.3510048

[26] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao, Qirun Zhang, Jian Lu, and Zhendong Su.
2019. Practical GUI Testing of Android Applications Via Model Abstraction and Refinement. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, Montreal, QC, Canada, 269–280. https://doi.org/10.
1109/ICSE.2019.00042

[27] William G.J. Halfond. 2008. Web Application Modeling for Testing and Analysis. In Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE), Doctoral Symposium.

[28] Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei. 2020. Duplicate Bug Report Detection Using Dual-Channel
Convolutional Neural Networks. In Proceedings of the 28th International Conference on Program Comprehension. ACM,
Seoul Republic of Korea, 117–127. https://doi.org/10.1145/3387904.3389263

[29] Abram Hindle, Anahita Alipour, and Eleni Stroulia. 2016. A contextual approach towards more accurate duplicate bug
report detection and ranking. Empirical Software Engineering 21, 2 (April 2016), 368–410. https://doi.org/10.1007/s10664-
015-9387-3

[30] Yuchao Huang, Junjie Wang, Liu Zhe, SongWang, Chunyang Chen, Mingyang Li, and QingWang. 2023. Context-aware
Bug Reproduction for Mobile Apps. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, Melbourne, Australia.

[31] Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia Rubin, and Mattia Fazzini. 2022. An Empirical
Investigation into the Reproduction of Bug Reports for Android Apps. In 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, Honolulu, HI, USA, 321–322. https://doi.org/10.1109/
SANER53432.2022.00048

[32] Alina Lazar, Sarah Ritchey, and Bonita Sharif. 2014. Generating duplicate bug datasets. In Proceedings of the 11th
Working Conference on Mining Software Repositories - MSR 2014. ACM Press, Hyderabad, India, 392–395. https:
//doi.org/10.1145/2597073.2597128

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

https://doi.org/10.1109/CSMR.2013.23
https://doi.org/10.1145/3338906.3338947
https://doi.org/10.1145/3106237.3106285
https://doi.org/10.1109/ICSE.2019.00070
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109/ICSE43902.2021.00091
https://doi.org/10.1109/ICSE43902.2021.00091
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/2597073.2597098
https://doi.org/10.1109/TSE.2022.3174028
https://doi.org/10.1145/3213846.3213869
https://doi.org/10.1145/3510003.3510048
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1145/3387904.3389263
https://doi.org/10.1007/s10664-015-9387-3
https://doi.org/10.1007/s10664-015-9387-3
https://doi.org/10.1109/SANER53432.2022.00048
https://doi.org/10.1109/SANER53432.2022.00048
https://doi.org/10.1145/2597073.2597128
https://doi.org/10.1145/2597073.2597128

117:20 Zhaoxu Zhang, Fazle Mohammed Tawsif, Komei Ryu, Tingting Yu, and William G. J. Halfond

[33] Changlin Liu, Hanlin Wang, Tianming Liu, Diandian Gu, Yun Ma, Haoyu Wang, and Xusheng Xiao. 2022. ProMal:
precise window transition graphs for android via synergy of program analysis and machine learning. In Proceedings
of the 44th International Conference on Software Engineering. ACM, Pittsburgh Pennsylvania, 1755–1767. https:
//doi.org/10.1145/3510003.3510037

[34] Hui Liu, Mingzhu Shen, Jiahao Jin, and Yanjie Jiang. 2020. Automated classification of actions in bug reports of mobile
apps. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, Virtual
Event USA, 128–140. https://doi.org/10.1145/3395363.3397355

[35] Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun Hu, and Qing Wang. 2022. Guided Bug Crush: Assist
Manual GUI Testing of Android Apps via Hint Moves. In CHI Conference on Human Factors in Computing Systems.
ACM, New Orleans LA USA, 1–14. https://doi.org/10.1145/3491102.3501903

[36] S.P. Meyn and R.L. Tweedie. 1993. Markov Chains and Stochastic Stability. Springer-Verlag, London.
[37] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in

Vector Space. https://doi.org/10.48550/arXiv.1301.3781 arXiv:1301.3781 [cs].
[38] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed Representations of Words

and Phrases and their Compositionality. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2. Curran Associates Inc., Red Hook, NY, USA, 9.

[39] Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas, Christopher Vendome, and Denys Poshyvanyk. 2017.
CrashScope: A Practical Tool for Automated Testing of Android Applications. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE, Buenos Aires, 15–18. https://doi.org/10.1109/ICSE-
C.2017.16

[40] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, and Denys Poshyvanyk. 2015. Auto-completing bug
reports for Android applications. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, Bergamo Italy, 673–686. https://doi.org/10.1145/2786805.2786857

[41] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. 2007. Detection of Duplicate Defect Reports Using Natural
Language Processing. In 29th International Conference on Software Engineering (ICSE’07). IEEE, Minneapolis, MN, USA,
499–510. https://doi.org/10.1109/ICSE.2007.32 ISSN: 0270-5257.

[42] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. 2010. An empirical study of reported bugs in server software
with implications for automated bug diagnosis. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - ICSE ’10, Vol. 1. ACM Press, Cape Town, South Africa, 485. https://doi.org/10.1145/1806799.1806870

[43] Tommaso Dal Sasso, Andrea Mocci, and Michele Lanza. 2016. What Makes a Satisficing Bug Report?. In 2016
IEEE International Conference on Software Quality, Reliability and Security (QRS). IEEE, Vienna, Austria, 164–174.
https://doi.org/10.1109/QRS.2016.28

[44] Yang Song, Junayed Mahmud, Ying Zhou, Oscar Chaparro, Kevin Moran, Andrian Marcus, and Denys Poshyvanyk.
2022. Toward Interactive Bug Reporting for (Android App) End-Users. In In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22). ACM,
Singapore, Singapore, 13. https://doi.org/10.1145/3540250.3549131

[45] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong Su.
2017. Guided, stochastic model-based GUI testing of Android apps. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, Paderborn Germany, 245–256. https://doi.org/10.1145/3106237.3106298

[46] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. 2010. A discriminative model approach
for accurate duplicate bug report retrieval. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - ICSE ’10, Vol. 1. ACM Press, Cape Town, South Africa, 45. https://doi.org/10.1145/1806799.1806811

[47] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An approach to detecting duplicate bug reports
using natural language and execution information. In Proceedings of the 13th international conference on Software
engineering - ICSE ’08. ACM Press, Leipzig, Germany, 461. https://doi.org/10.1145/1368088.1368151

[48] Tyler Wendland, Jingyang Sun, Junayed Mahmud, S. M. Hasan Mansur, Steven Huang, Kevin Moran, Julia Rubin,
and Mattia Fazzini. 2021. Andror2: A Dataset of Manually-Reproduced Bug Reports for Android apps. In 2021
IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). IEEE, Madrid, Spain, 600–604. https:
//doi.org/10.1109/MSR52588.2021.00082

[49] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A Grey-Box Approach for Automated GUI-Model Generation of
Mobile Applications. In Fundamental Approaches to Software Engineering (Lecture Notes in Computer Science), Vittorio
Cortellessa and Dániel Varró (Eds.). Springer, Berlin, Heidelberg, 250–265. https://doi.org/10.1007/978-3-642-37057-
1_19

[50] Zhaoxu Zhang, RobertWinn, Yu Zhao, Tingting Yu, andWilliamG.J Halfond. 2023. Automatically Reproducing Android
Bug Reports Using Natural Language Processing and Reinforcement Learning. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 2023).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

https://doi.org/10.1145/3510003.3510037
https://doi.org/10.1145/3510003.3510037
https://doi.org/10.1145/3395363.3397355
https://doi.org/10.1145/3491102.3501903
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1109/ICSE-C.2017.16
https://doi.org/10.1109/ICSE-C.2017.16
https://doi.org/10.1145/2786805.2786857
https://doi.org/10.1109/ICSE.2007.32
https://doi.org/10.1145/1806799.1806870
https://doi.org/10.1109/QRS.2016.28
https://doi.org/10. 1145/3540250.3549131
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/1806799.1806811
https://doi.org/10.1145/1368088.1368151
https://doi.org/10.1109/MSR52588.2021.00082
https://doi.org/10.1109/MSR52588.2021.00082
https://doi.org/10.1007/978-3-642-37057-1_19
https://doi.org/10.1007/978-3-642-37057-1_19

Mobile Bug Report Reproduction via Global Search on the App UI Model 117:21

[51] Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru, William G. J. Halfond, and Tingting Yu.
2022. ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports for Android Apps. ACM Transactions
on Software Engineering and Methodology 31, 3 (July 2022), 1–33. https://doi.org/10.1145/3488244

[52] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William G.J. Halfond. 2019. ReCDroid:
Automatically Reproducing Android Application Crashes from Bug Reports. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, Montreal, QC, Canada, 128–139. https://doi.org/10.1109/ICSE.2019.
00030

[53] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William G.J. Halfond. 2019. ReCDroid: Auto-
matically Reproducing Android Application Crashes from Bug Reports. In Proceedings of the ACM/IEEE International
Conference on Software Engineering (ICSE).

[54] Hao Zhong. 2022. Enriching Compiler Testing with Real Program from Bug Report. In 37th IEEE/ACM International
Conference on Automated Software Engineering. ACM, Rochester MI USA, 1–12. https://doi.org/10.1145/3551349.3556894

[55] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian Schroter, and Cathrin Weiss. 2010.
What Makes a Good Bug Report? IEEE Transactions on Software Engineering 36, 5 (Sept. 2010), 618–643. https:
//doi.org/10.1109/TSE.2010.63

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 117. Publication date: July 2024.

https://doi.org/10.1145/3488244
https://doi.org/10.1109/ICSE.2019.00030
https://doi.org/10.1109/ICSE.2019.00030
https://doi.org/10.1145/3551349.3556894
https://doi.org/10.1109/TSE.2010.63
https://doi.org/10.1109/TSE.2010.63

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Probabilistic Reproduction Model
	3.2 Global ui Events Search
	3.3 Reproduction Event Path Recovery

	4 Evaluation
	4.1 Implementation
	4.2 Dataset Collection
	4.3 RQ1. Identifying ui Events Matching the Reproduction Steps
	4.4 RQ2. Reproducing Bug Reports
	4.5 RQ3: Reproduction Running Time
	4.6 RQ4: Reproducing Bug Reports with Missing Steps
	4.7 RQ5: Contribution of Sub-Scores in the Transition Probability Function
	4.8 Threats to Validity

	5 Related Work
	6 Conclusion
	7 Data-Availability Statement
	References

