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Abstract

The present study explored a set of plausible directed acyclic graphs (DAGs) of constructs involved in Situated Expectancy—
Value Theory (SEVT) using cross-sectional data. To do so, three datasets (n=1,540; 1,867; and 103) with expectancy, values,
and prior achievement constructs were used. First, networks showed a consistent magnitude of associations between SEVT
constructs across datasets. Expectancy was associated with achievement (r=.21; 0.29; 0.37) and intrinsic value (r=.35;
0.68; 0.60); intrinsic value was associated with attainment value (r=.31; 0.79; 0.61). We reason through a set of plausible
DAG:s, or hypothesized directional models. Across datasets, DAGs revealed that prior achievement relates to expectancy,
intrinsic value relates to expectancy, and utility relates to attainment value. This study highlights that DAGs can be used
as a step to help triangulate, in conjunction with experimental and longitudinal work, on the underlying processes shaping
relations between constructs.
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Although many theorists posit that the relation between
motivational constructs is bidirectional in the long run,
some of these constructs might be strongly related to oth-
ers in a given situation (Eccles & Wigfield, 2020; Marsh,
2023; Ryan & Deci, 2017). Understanding causal rela-
tions between various motivational constructs has been of
a long interest in the field, especially due to its important
implications for designing effective models of change for
interventions. To explore such casual relations, scholars
often chose to conduct experiments or longitudinal studies
(Harackiewicz et al., 2012; Weidinger et al., 2017). These
methods are certainly needed as manipulations, and time-
lags are particularly useful for making causal inferences
(Pearl, 2000). However, they can be time and resource
intensive as well as subject to fat-handedness and omit-
ted variable bias. Also, when only observational data can
be gathered, alternative approaches are needed to exam-
ine causal relations. Therefore, in the present study, we
aimed to triangulate plausible causal models in motivation
research within educational psychology using directed acy-
clic graphs (DAGs) to understand the causal relationships
among key constructs in Eccles and colleagues’ Situated
Expectancy—Value Theory (SEVT): expectancy for suc-
cess, various subjective task values, and prior achievement.

Theoretical framework

We frame our work under SEVT (Eccles & Wigfield,
2020) to examine causal relationships among motivational
constructs, as it is one of the most prominent theories
(Wigfield et al., 2021). SEVT includes two central moti-
vational beliefs for achievement-related choices and per-
formance: expectancy for success and subjective task val-
ues. Expectancy for success is defined as students’ beliefs
about how well they will do on a task, and subjective task
values is defined as students’ desire to do the task. There
are at least four facets of subjective task value: intrinsic
value (i.e., interest), attainment value (i.e., identity), util-
ity value (i.e., usefulness), and cost (i.e., what one has to
lose or give up).

Previous findings using causally informative
methodologies

To attempt to estimate the effects of SEVT constructs,
scholars have either typically conducted randomized con-
trolled trials (RCTs; Hulleman et al., 2010; Harackiewicz
et al., 2012) or estimated cross-lagged panel models (CLPM,;
Dicke et al., 2018; Viljaranta et al., 2014; Weidinger et al.,
2017) to infer causality. RCTs are a rigorous tool to inves-
tigate causal relations because observed and unobserved
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participant characteristics are balanced between treat-
ment and control groups on expectation, reducing bias and
attributing any differences in the outcome to the interven-
tion (Hariton & Locascio, 2018). However, RCTs are often
expensive and can be unethical as not all individuals receive
the intervention (Faraoni & Schaefer, 2016; Sanson-Fisher
et al., 2007). In the case of motivational interventions, the
effect of the intervention is well-identified. However, local-
izing the effect to a specific motivational construct relies on
the assumption that the intervention could not have affected
outcomes of interest via other pathways, an assumption that
may be violated in many psychological experiments. That
is, RCTs likely suffer from fat-handedness, where multiple
variables are changed at once, making it challenging to iden-
tify which variable caused the observed outcome (Eronen,
2020). For instance, interventions targeting utility value may
impact both utility value and expectancy, as students are
inquired to make connections between the learning content
and their own lives, which requires some level of compe-
tence (see Hulleman et al., 2017; Rosenzweig et al., 2020).
Thus, while such work has significant potential for practical
applications, its theoretical implications require additional
information for accurate interpretation.

Due to limited resources and other challenges described
above, scholars have frequently used CLPM analyses of
nonexperimental longitudinal data to examine causal rela-
tionships in longitudinal research (Campbell, 1963; Kenny
& Harackiewicz, 1979). CLPMs estimate relations between
two (or more) variables across time in which one variable
from the first time point is investigated with regard to a
second variable measured from the second time point and
vice versa (Selig & Little, 2012). Unfortunately, CLPMs
may suffer from omitted variable bias, resulting in biased
estimates of causal effects (e.g., Berry and Willoughby,
2017; Hamaker et al., 2015). For example, studies using
cross-lagged panel modeling have examined the co-devel-
opment of a limited number of expectancy and subjective
task value beliefs at once (e.g., Arens et al., 2019; Spi-
nath & Steinmayr, 2008; Weidinger et al., 2019). How-
ever, the choice of SEVTs and control measures varies
between studies, leading to incomplete empirical evidence
and potentially different conclusions about the relation-
ship between variables. For instance, a study controlling
for between-class differences using a multi-level approach
(Marsh et al., 2005) may produce different results than a
study controlling only for prior intrinsic values (Spinath &
Steinmayr, 2008). Further, in previous CLPMs in this area
that statistically control for prior achievement, authors tend
to find smaller cross-lagged paths than in studies that do
not, consistent with the possibility that omitted variable
bias may drive some of these associations (see Table S1 in
Supplemental materials for examples). Therefore, caution
should be taken when comparing results from models with
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different control measures to avoid incorrect interpretations
of path coefficients.

Using psychometric networks and DAGs can bring sev-
eral unique strengths that complement the contributions of
RCTs and CLPMs. First, this method allows researchers to
use cross-sectional data to reason about causal associations
at a low cost. Although the hypothesized causal models need
further testing, we do not have to manually fit and test all
possible 59,049 structural equation models when using net-
works and DAGs with the Inferred-Causation Algorithm!'.
Second, unlike RCTs and CLPMs, which frequently focus
on one or two variables at a time, networks/DAGs can exam-
ine causal relationships for a group of variables at once.
For example, previous CLPM analyses among expectancy
for success, subjective task values, and prior achievement
tend to estimate causal relations among few—often just two
constructs at a time, which makes omitted variables bias a
likely threat to causal interpretations of estimates. However,
psychometric network analyses allow researchers to holisti-
cally view the causal relations among these SEVT constructs
(Tang et al., 2022). With the above-mentioned strengths, the
current study, therefore, aimed to apply this novel approach
to examine the causal relationships among expectancy for
success, subjective task values, and achievement.

The present study

In the present study, we developed possible causal models
based on SEVT constructs using networks/DAGs, compared
the findings to prior findings that used different methods,
and addressed the lack of formalized hypotheses using data
and theory. We apply this approach to three different data-
sets of ninth graders in the mathematics domain to gauge
the replicability of our findings due to concerns about the
non-replicability of network models.> We chose the school
subject of mathematics because it has been widely studied
(e.g., Li et al., 2021; OECD, 2021; Stevenson & Stigler,
1994), particularly within SEVT (e.g., Eccles, 1994; Simp-
kins et al., 2006). In addition, understanding how we can
improve our educational systems by leveraging the science
of academic motivation has important implications for stu-
dents’ subsequent STEM opportunities, particularly during
adolescence (Eccles, 1994; Simpkins et al., 2006).

Leveraging our three different datasets, we examined the
following research questions (RQs):

' This number was calculated by a combination of two out of five

variables with three scenarios of directional path or 310, which
equals 59,049 with no path or two directional paths. Note that some
of these models are not identified for estimation.

2 We chose ninth graders to create the final three DAGs for each

dataset because this grade was consistently measured across all data-
sets.

RQL1. Is the magnitude of associations between SEVT
constructs in the networks consistent across the three
datasets?

We hypothesized consistent magnitudes of associations
between SEVT constructs in the networks across datasets.
Based on prior correlational findings, we expected: expec-
tancy and intrinsic value to have the strongest association in
the SEVT network (Eccles et al., 1983; Gaspard et al., 2018;
Guo et al.,, 2016; Wigfield et al., 2009); expectancy to have
weaker associations with utility value compared to intrinsic
value and attainment value in the SEVT network (Gaspard
et al., 2015a, b; Grastén, 2016); and intrinsic value and
attainment value to have a stronger association than intrinsic
value and utility value in the SEVT network (Gaspard et al.,
2015a, b; Conley, 2012).

RQ2. (a) What do the hypothesized directional paths look
like between expectancy, subjective task values, and prior
achievement using networks to create DAGs?; and (b)
Are there consistent hypothesized directional paths in the
three DAGs across datasets?

(a) Based on prior CLPM findings, we expected:
achievement to predict expectancy (e.g., Vilja-
ranta et al., 2014), intrinsic value (e.g., Garon-
Carrier et al., 2016), utility value (e.g., Weidinger
et al., 2019), and cost (e.g., Marsh et al., 2016);
attainment value to predict achievement (e.g.,
Bonitto, 2020); intrinsic value to predict expec-
tancy (e.g., Xu, 2018); expectancy to predict
attainment value (e.g., Bonitto, 2020); and intrin-
sic to predict attainment value (e.g., Arens et al.,
2019). Other interrelations between constructs
were exploratory, as we did not have clear evi-
dence from the literature to make directionality
predictions.

(b) This research question was more exploratory.
Despite differences in sampling variation, sample
size, measures, and study design, we expected that
there would be some consistent patterns within the
DAG:s, given the intended level of generalizability
of SEVT.

Method
Datasets
Our main analyses used the California Achievement Motiva-

tion Project (CAMP) dataset (for more information, refer to
Supplemental materials; Safavian & Conley, 2016; Safavian,
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2019). The original study design surveyed students’ math-
ematics motivations using a cross-sequential design across
middle to high schools located in the U.S. within a predomi-
nantly urban low-income area where most of the residents
were foreign-born between 2004 and 2006. In addition, 39%
of the school district was from Latin and South America. The
study used one wave of students’ ninth grade survey data
(n=1,540) collected in May 2005.

Datasets for replicability check

Two other datasets were examined to check the replicability
of our findings across samples and measures (with replica-
bility being defined as finding similar results with similar
methods in a new dataset and a new context, such as a new
country; see Schloss, 2018; Whitaker, 2017). Both datasets
surveyed students’ mathematics expectancy, subjective task
values, and prior achievement in Germany. One of the data-
sets called the Motivation in Mathematics (MoMa) included
1,867 students in ninth grade (for more information, refer to
Supplemental materials; Gaspard et al., 2015a, b). The other
dataset called the Assessment of Students’ Task Values in
Secondary School (IF), included 103 students in ninth grade
(for more information, refer to Supplemental materials; Gas-
pard et al., 2017).

Measures

Expectancy for success®, subjective task values, and prior
achievement were measured in all datasets. For this study,
we focused on intrinsic, utility, and attainment value as sub-
components of subjective task value, but not cost, due to
the lack of comparable items for the distinct facets of cost
across datasets for our replicability check. Cost only had
two items consistently across waves for the CAMP dataset,
and the items did not match across different datasets, so they
were excluded. We selected items with the purpose of hav-
ing comparable items across datasets (see Table S2 to S4 for
details about the cross-validation datasets measures).

CAMP measures

Expectancy for success Math expectancy for success was
measured with three items (e.g., “How certain are you that
you can learn everything taught in math?”; Midgley et al.,
2000), each with a 5-point Likert scale ranging from 1 (not
at all X) to 5 (very X) as the response format. All items

3 Academic self-efficacy was operationally defined as an expectancy
for success measure, in order to stay consistent with terms used in
SEVT (e.g., Guo et al., 2016; Simpkins et al., 2012; Wang & Eccles,
2013).
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were validated and came from the Academic Efficacy Scale
(Midgley et al., 2000). The internal consistency of this scale
was good (a=0.83).

Subjective task values Math subjective task values were
measured using a 5-point Likert scale ranging from 1 (not
at all true of me) to 5 (very true for me). Intrinsic value
was measured by five items (e.g., “I enjoy the subject of
math?”; Eccles and Wigfield, 1995; Conley, 2012). Util-
ity value was measured by three items, tapping utility for
future life and utility for daily life facets (e.g., “Math helps
me in my daily life outside of school”; Eccles & Wigfield,
1995; Conley, 2012). Attainment value was measured by
two items (e.g., “Thinking mathematically is an important
part of who I am”; Eccles & Wigfield, 1995; Conley, 2012).
All subjective task value items were derived from Eccles
and Wigfields’ (1995) work and were validated by Conley’s
(2012) work. The internal consistency of these scales was
acceptable (a=0.93, 0.73, and 0.73, respectively).

Prior achievement Math prior achievement was opera-
tionalized using performance on the California Standards
Tests (CSTs; California Department of Education, n.d.)—a
statewide standardized math exam. CSTs scaled scores were
obtained from school district records and ranged from 150 to
600, where higher numbers reflect higher scores.

Data analysis

Based on Waldorp (2020), we created networks to DAGs
using the CAMP dataset with the following steps: (1)
conducting confirmatory factor analysis (CFA) to obtain
factor scores for expectancy for success, intrinsic, utility,
and attainment value construct; (2) estimating undirected
networks using the Gaussian Graphical Model (GGM;
Lauritzen, 1996; Epskamp et al., 2018b); and (3) creating
directed networks or DAGs using the Inferred-Causation
Algorithm (ICA; Pearl, 1988; Pearl & Verma, 1991; see
Table S5 in supplemental materials for a graphical overview
of the analytical strategy). For more details on each step,
refer to our Supplemental materials.

Obtaining factor scores To create a network for our DAGs,
we needed to determine how the variables (or nodes, using
network terminology) would be represented. Instead of
using individual items, we chose to simplify the network at
the construct level because different nodes representing the
same psychological construct can affect which node is the
most central or related to all other nodes in the network if
item-level network analysis is conducted (Fried & Cramer,
2017). So, we conducted a CFA to obtain factor scores for
each latent construct: expectancy for success, intrinsic value,
utility value, and attainment value (Fig. 1).
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Achievement

Attainment
Value

CAMP Wave 3

Fig. 1 Grade 9 factor model

Network estimation Using the factor scores along with
achievement, undirected networks were estimated using the
GGM (Lauritzen, 1996; Epskamp et al., 2018b). The con-
nections between SEVT variables are represented as partial
correlation coefficients. Positive and negative associations
were indicated by green and red lines, respectively, with
thicker lines representing stronger associations. To obtain
a clear visual graph, the graphical Least Absolute Shrink-
age and Selection Operator (LASSO) combined with the
Extended Bayesian Information Criterion (EBIC) were used
(Epskamp et al., 2018a, b).

Creating DAGs To create DAGs, a causal search algorithm
called Inferred-Causation Algorithm (ICA; Pearl, 1988;
Pearl and Verma, 1991) was conducted. This involved com-
paring zero-order correlation-based networks with partial
correlation-based networks to identify plausible causal
structures. In particular, causal inferences were made by
examining colliders and confounders (see Edwards, 2000;
Pearl, 2000; Rohrer, 2018 for more information).

Comparison of findings across datasets

To boost the credibility of our findings, different datasets
were used in this study. As networks can vary with sam-
ple variation, sample size, measures, and study design, we
wanted to ensure that at least some of our findings are repli-
cable across samples before encouraging others to conduct
further tests on them.

Comparing correlations and partial correlations Before cre-
ating possible DAG models, we investigated whether there
were some replicable patterns between different datasets. If
SEVT theory explains the process of achievement motiva-
tion observed, then the correlations and partial correlations

for both datasets should be similar (see Supplemental mate-
rials for further description). To statistically compare the
correlations and partial correlations outputs across datasets,
we calculated and graphed the difference between correla-
tions and partial correlations (i.e., correlation - partial cor-
relation) and the ratio between correlations and partial cor-
relations (i.e., partial correlation / correlation).

Comparing networks To test our hypotheses about finding
replicability or consistency using networks, we compared
the undirected networks between datasets by examining the
visual graphs and edge strength outputs. We ensured that
the nodes were graphically placed in similar positions in the
network for visual comparison.

Comparing DAGs We compared DAGs across datasets by
examining the visual directionality graphs created using the
ICA.

Statistical software

All analyses were performed utilizing R (version 3.5.2; R
Core Team, 2018). R-packages included: ggraph for network
visualization and analysis (version 1.6.3; Epskamp et al.,
2012) and SIN (version 0.6; Drton, 2013) as well as mgm
(version 1.2-9; Haslbeck, 2020) for DAG analyses. For more
details on these R-packages, see Supplemental materials.
Results

CAMP SEVT network estimation

Correlations and partial correlations among SEVT con-
structs are numerically presented in Table 1. Consistent
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Table 1 Grade 9 correlations for factor scores psychometric network

Variable H 2) 3) “) )
CAMP
1. Expectancies - 0.35 0.34 -0.13 0.21
2. Intrinsic Value 0.72 - 0.31 0.04 0.05
3. Attainment Value 0.71 0.77 - 0.76 0.00
4. Utility Value 0.56 0.67 0.88 - -0.05
5. Achievement 0.33 0.26 0.20 0.13 -
IF
1. Expectancies - 0.68 -0.24 0.39 0.29
2. Intrinsic Value 0.93 - 0.79 -0.59 -0.02
3. Attainment Value 0.86 0.94 - 0.77 -0.02
4. Utility Value 0.73 0.66 0.84 - 0.00
5. Achievement 0.58 0.50 0.46 0.40 -
MoMa
1. Expectancies - 0.60 0.00 -0.12 0.37
2. Intrinsic Value 0.85 - 0.61 0.00 -0.02
3. Attainment Value 0.69 0.87 - 0.50 -0.01
4. Utility Value 0.39 0.56 0.71 - 0.00

5. Achievement 0.57 0.44 0.37 0.22 -

Note. Correlations are represented below the diagonal; partial correla-
tions are represented above the diagonal

with our hypothesis, in ninth grade for CAMP, we found
that expectancy for success had the strongest tie with intrin-
sic value in the SEVT network (r=.35). We also found that
expectancy for success had the weakest tie with utility value
(r=—.13) compared to intrinsic value (r=.35) and attain-
ment value (r=.34) in CAMP. Additionally, we found sup-
port for our third hypothesis where intrinsic value and attain-
ment value (r=.31) had a stronger tie than intrinsic value
and utility value (r=.04) in CAMP. The pattern of partial
correlations is depicted as a network in Fig. 2. In the net-
work, the thickness of the line indicates the strength between
two nodes, while the color of the line indicates directionality
(i.e., red =negative association vs. green =positive associa-
tion). The line that connects two nodes (also known as an
edge) represents partial correlations, which are numerically
shown in Table 1 above the diagonal. Interestingly, there
were also negative associations in our network, perhaps due
to omitted variables or colliders, as all hypothesized effects
are positive. We discuss this further in the “Discussion”
section.

CAMP SEVT DAGs

First, using the SIN algorithm, the edges below the p-value
of 0.10 were considered significant and important (Drton &
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Perlman, 2004, 2008; refer to Fig. 3).* Thus, the following
seven edges® were considered to be significant: expectancy
for success and intrinsic value, expectancy for success and
attainment value, expectancy for success and utility value,
expectancy for success and prior achievement, intrinsic
value and attainment value, intrinsic value and prior achieve-
ment, and attainment value and utility value.

Next, we used the ICA (Pearl, 1988; Pearl & Verma,
1991) to reason from an undirected graph (i.e., a graph with
no directionality) to a directed graph (i.e., a graph with
directionality). We started looking at the relations between
all five variables from our psychometric network because we
wanted to find the set of nodes, S,, that explains away the
correlation between a and b. Namely, we wanted to find if
any of the edges could be “empty” or “gone” after control-
ling for all other variables in the network—also known as the
skeleton. Similar to the SIN algorithm results, we found the
same edges present except for the association between utility
value and prior achievement (refer to Fig. 4). We decided
to work with the skeleton graph from the ICA because we
aimed for a simple causal model.

To start drawing directionality for the DAG, we compared
the correlation network to the partial correlation network
(refer to Fig. 5). We looked to see which edges either “disap-
peared” or “appeared” between the two networks, referring
to whether or not there is a zero-order correlation. Results
found the following changes between the correlation and
partial correlation network: (1) the connection between
intrinsic value and utility value was gone in the partial cor-
relation network; and (2) the connection between intrinsic
value and prior achievement was gone in the partial correla-
tion network.

* To determine statistical significance, a p-value of 0.05 is typi-

cally the adopted rule of thumb. In this study, we followed the Sig-
nificance, Intermediate, and Non-significance (SIN) approach
(Drton & Perlman, 2004, 2008), which proposes to use 0.10 as the
threshold for the significance. There are several reasons for using
this p-value as a criterion. First, the p-values reported in this study
have been corrected for multiple comparisons. The p-value adjust-
ments will increase the size of p-values, making it harder to reach
the 0.05 threshold. Second, 0.05 is known as an arbitrary threshold
to define statistical significance (see commentaries by Amrhein et al.,
2019; Wasserstein et al., 2019). The threshold defining statistical sig-
nificance should be chosen on the basis of subjective and contextual
conditions (Drton & Perlman, 2004). In the context of psychometric
network analyses, 0.10 is a more realistic threshold to determine the
significance of the edges because many variables have been examined
simultaneously, p-value adjustments have been applied, and because
some paths in the network analysis are likely downwardly biased,
because colliders or mediators are controlled. Please note that we
only choose this threshold to find meaningful DAGs, all our signifi-
cant DAG results are below 0.05 (see Fig. 3, S2, and S7).

5 Exp=expectancy for success; Int=intrinsic interest value;

AtV =attainment value; UtV =utility value; and Ach=prior achievement.
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Fig.2 CAMP Grade 9 psycho-
metric network models

CAMP: Wave 3, Cohort C, Grade 9, Factor Scores

Exp: Expectancies
InV: Intrinsic Value
AtV: Attainment Value
UtV: Utility Value
Ach: Achievement

Note. Psychometric networks are constructed using partial correlation coefficients where the
association between two nodes controls for all other information. In the network, the thickness
of the line indicates the strength between two nodes, while the color of the line indicates
directionality (i.e., red = negative association vs. green = positive association). Networks used
Extended Bayesian Information Criterion (EBIC) LASSO regularization to limit the number of

spurious edges

Fig.3 CAMP Grade 9 signifi-
cant partial correlations

P-value
0.2

Key
1 = Expectancy for Success
2 = Intrinsic Value
. 3 = Attainment Value
4 = Utility Value
5 = Prior Achievement

. . . . L] .

r T T T T T T T T 1
N Y b § 't @ i e b § ' '
- -~ - b N N o~ o« @ <

edge

Note. Significant, Intermediate, Non-significant (SIN) algorithm tested each partial
correlation against zero. The x-axis indicates all possible connections; the y-axis indicates
p-values. All below 0.1 are significant

Before testing these relationships, we pointed prior
achievement to expectancy for success because of temporal
relations, and prior achievement has been found to influ-
ence expectancy (Eccles, 2009; Viljaranta et al., 2014).
Moreover, prior achievement was added to both the network
and DAG because prior achievement is a major potential
confounder that could influence relations among SEVT

constructs, although it is not always included in previous
studies of dynamics among SEVT constructs (Liu, 2016;
Pinxten et al., 2014).

Then we selected three variables at a time. To draw the
directionality for the relationship between intrinsic value
and utility value, we chose various possible combinations of
variables. For example, we examined the relations between

@ Springer
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Fig.4 CAMP Grade 9 inferred
causation algorithm all five
variables

Key

1 = Expectancy for Success
2 = Intrinsic Value

3 = Attainment Value

4 =Utility Value

5 = Prior Achievement

Note. Network examines the relationship between all five SEVT variables

using the Inferred Causation Algorithm. This network displays which variables
are connected to each other. The presence of an edge (i.e., line) means that there
is a connection between two variables, while the absence of an edge means that
there is no connection between two variables

(1) intrinsic value, utility value, and expectancy for success
(2Int-4UtV-1Exp®), (2) intrinsic value, utility value, and
attainment value (2Int-4UtV-3AtV), and (3) intrinsic value,
utility value, and prior achievement (2Int-4UtV-5Ach; refer
to Fig. 7). We found that the connection between intrinsic
value and utility value (as shown in the partial correlation
network) disappeared when attainment value was present.
Therefore, we inferred that there could be a collider effect
where both intrinsic value and utility value pointed to attain-
ment value (2Int — 3AtV « 4UtV). There was no need
to examine the relations between four variables (e.g., 2Int-
4UtV-1Exp-3AtV or 2Int-4UtV-1Exp-5Ach or 2Int-4UtV-
3AtV-5Ach) because we already directed the lines.

To draw the directionality for the relationship between
intrinsic value and prior achievement, we again chose vari-
ous possible combinations of variables. For example, we
examined the relations between (1) intrinsic value, prior
achievement, and expectancy for success (2Int-5Ach-
1Exp), (2) intrinsic value, prior achievement, and attain-
ment value (2Int-5Ach-3AtV), and (3) intrinsic value, prior
achievement, and utility value (2Int-5Ach-4UtV; refer to
Fig. 6). We found that the link between intrinsic value
and prior achievement (as shown in the partial correla-
tion network) disappeared when expectancy for success
was present. Therefore, we inferred that there could be a
collider effect where both intrinsic value and prior achieve-
ment pointed to expectancy for success (2Int — 1Exp «

% The numbers in front of the SEVT construct abbreviations are

used to match the same numbers used in the key from prior figures, in
order to stay consistent.
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5Ach). There was no need to examine the relations between
four variables (e.g., 2Int-5Ach-1Exp-3AtV or 2Int-5Ach-
1Exp-4UtV or 2Int-5Ach-3AtV-4UtV) because we already
directed the lines.

Now that the directionality of effects between interest
value and prior achievement was depicted, we examined the
partial correlation network to seek further possible directed
lines. We found that the association between expectancy for
success and utility value as well as expectancy for success
and attainment value was still missing (or non-directed) in
our DAG. So, we started with the association between expec-
tancy for success and utility value. We first tried pointing
utility value to expectancy for success. However, this option
was not possible because there should have been a zero-
order correlation between utility value and prior achieve-
ment due to a common effect. So, the only other option was
to point expectancy for success to utility value.

Next, we examined the association between expectancy
for success and attainment value. We first tried pointing
attainment value to expectancy for success. But this was
not a possible option for the DAG because then there was a
cyclical relationship among attainment value, expectancy for
success, and utility value (i.e., 3AtV — 1Exp — 4UtV —
3AtV), which meant the graph was not acyclic anymore. So,
the only other option was to point expectancy for success to
attainment value. As a result, we ended up with Fig. 7 using
the CAMP dataset. The following lines were directed: both
prior achievement and intrinsic value pointed to expectancy
for success, both intrinsic value and utility value pointed to
attainment value, and expectancy for success both pointed
to utility value and attainment value.
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Correlation Network

Fig.5 CAMP Grade 9 cor-
relation and partial correlation
network

Partial Correlation Network

Exp: Expectancies
InV: Intrinsic Value
AtV: Attainment Value
UtV: Utility Value
Ach: Achievement

Note. Models are in the following order: correlation network and partial correlation
network. The thickness of the lines is not represented here because we are just comparing
the presence or absence of an edge between the correlation and partial correlation network

Replicability

We found mostly consistent results across different samples
and both countries (refer to Figs. S1 to S12 in Supplemental
materials).

Comparing correlations and partial correlations

We found similar correlation and partial correlation patterns
across different datasets and countries. Results showed that
the associations of SEVT constructs between datasets are
not spurious when examining the correlation and partial cor-
relation difference and ratio graph (see Fig. S13 in Supple-
mental materials). In the correlation and partial correlation
difference graph, we found points on the left side of the axis,
meaning there was no large difference between the correla-
tions in various datasets. In the correlation and partial cor-
relation ratio graph, we found points on the right side of the
axis, meaning there was no large difference between the cor-
relations in various datasets. Additionally, we found that the
partial correlations decrease and go in the opposite direction,
as predicted by theory when compared to the correlations.

Comparing networks

Across the three datasets, only expectancy is correlated with
the achievement after partialling out all other variables (r=.21;

0.29; and 0.37), indicating that previous achievement is likely
closer to the expectancy (see Table 1). Further, expectancy
is highly associated with intrinsic value after partialling out
common variances (r=.35; 0.68; 0.60), and intrinsic value is
positively associated with only attainment value in the partial
correlation matrix across three samples (r=.31; 0.79; 0.61;
see Table 1). Finally, the associations of variables with utility
value vary the most across datasets and countries, indicating
that the role of utility value would be expected to vary across
context and culture. For example, we found that utility value
had the weakest tie with expectancy for success in CAMP and
MoMa, but not IF (see Table 1). For a visual representation of
the networks, see Fig. S13 in Supplemental materials.

Comparing directed acyclic graph models

Three DAGs were formulated based on the various data-
sets using the data from ninth grade (see Fig. 8). We found
similar DAG models when comparing the CAMP and MoMa
data. For example, prior achievement pointed to expectancy
for success, intrinsic value pointed to expectancy for suc-
cess, and utility value pointed to attainment value. However,
we see a different structure for IF, possibly due to the small
sample size. In this case, both utility value and attainment
value pointed to expectancy for success, and utility value
pointed to intrinsic value. We expand upon the difference
between the DAGs in the discussion.
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Fig.6 CAMP Grade 9 inferred
causation algorithm three vari-

Intrinsic Value and Utility Value

Intrinsic Value and Prior Achievement

ables - ,_
(/Zln(\ l'/2|m \j
*
(&) W) (e S
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( mlt) ( 2nt)
S~ — ~
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~ N
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Note. Examining the relationship between three variables that include intrinsic value and
utility value as well as intrinsic value and prior achievement using the Inferred Causation
Algorithm. Exp = Expectancy for success; Int = Intrinsic value; AtV = Attainment value;
UtV = Utility value; and Ach = Achievement. The numbers in front of the SEVT construct
abbreviations are used to match the same numbers used in the key from prior figures,

in order to stay consistent. There was no need to examine the relationship between four
variables (e.g., 2Int-4UtV-1Exp-3AtV or 2Int-4UtV-1Exp-5Ach or 2Int-4UtV-3
AtV-5Ach) because we already directed the lines

Discussion

In the present study, we used psychometric network analy-
sis and DAGs to generate testable hypotheses about the
effects among SEVT constructs. We have formulated the
hypotheses itself the focus of this study so that the hypoth-
eses are the result rather than the starting point of this
study. Starting only with the assumption that expectancy
does not point to prior achievement, but prior achieve-
ment influences expectancy due to temporal relations, we

@ Springer

identify some consistent patterns of similarities and differ-
ences in the associations and hypothesized relations across
three different datasets.

RQ1. Psychometric networks of students’
expectancy, subjective Task values, and prior
achievement

Several findings further our understanding of the interplay
of adolescents’ expectancy and subjective task values in
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CAMP Data-Based DAG Model Correlation Network Partial Correlation Network

Exp: Expectancies
InV: Intrinsic Value
AtV: Attainment Value
UtV: Utility Value
Ach: Achievement

Note. Models are in the following order: directed acyclic graph, correlation network, and partial correlation network

Fig.7 CAMP Grade 9 directed acyclic graph model

mathematics. As hypothesized, we found consistent simi-
larities in the strengths of the relations among the constructs
across the three datasets and two countries. First, students’
expectancy for success had the strongest tie with intrinsic

value in all the datasets. This finding supports previous
research highlighting the connection between competence
and interest, particularly in contexts with high standards of
excellence (e.g., engaging students in activities that provide

MoMa Data-Based DAG Model

CAMP Data-Based DAG Model

IF Data-Based DAG Model

Fig. 8 Directed acyclic graph model across datasets. Note. Orange lines reflect paths that differ between the directed acyclic graphs
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feedback; Bandura, 1986; Eccles, 2005; Wigfield, 1994).
The second most consistent finding was the weakest edge
between expectancy for success and utility value (particu-
larly in the two largest data sets) compared to the other sub-
jective task values in the SEVT network. In retrospect, the
unexpectedly weaker linkages of expectancy to utility value
perhaps can be explained in terms of broader perceptions of
mathematics’ usefulness. Many students likely know that
mathematics is useful in many ways, yet still do not expect
they can do well in it, thus reducing the edges between the
two constructs. Third, we found that students’ intrinsic and
attainment values were more strongly correlated with each
other, compared to intrinsic value and utility value, which
aligned with our hypothesis. These findings are consistent
with previous work on the relations of these components of
task value in different studies, some of which used the same
datasets as we did (Eccles & Wigfield, 1995; Gaspard et al.,
2018; Guo et al., 2016; Trautwein et al., 2012). Eccles, Wig-
field, and their colleagues have discussed how both intrinsic
and attainment value reflect intrinsic/internal characteristics
of the individual and how the activity relates to those per-
ceptions, as compared to utility value which focuses more on
what is considered to be extrinsic aspects for doing the task
(e.g., “I need to take this math course in order to become a
doctor”; Eccles, 2005; Eccles & Wigfield, 2020).

RQ2a. Hypothesized DAGs of students’ expectancy,
subjective Task values, and prior achievement

The most novel contribution of the results was the hypoth-
esized directional models we developed with the help of
DAGs. First, we found that intrinsic value was hypothesized
to point to expectancy for success across datasets. This find-
ing suggested that the more an individual enjoys a task, the
more one believes they can do well. Perhaps, intrinsic value
promotes engagement and involvement, which then pro-
motes expectancy for success. The different DAGs showed
that expectancy for success was a “collider” of prior achieve-
ment and intrinsic value — indicating that both prior achieve-
ment and intrinsic value cause expectancy for success, or
vice versa. This result regarding the hypothesized direction-
ality of the intrinsic value-expectancy for success relation-
ship aligns with previous empirical research (Denner et al.,
2019; Nuutila et al., 2018; Pinxten et al., 2014; Yoon, 1996).

Additionally, results showed that utility value was hypoth-
esized to point to attainment value across datasets. Although
SEVT does not predict the direction of the order, this finding
is consistent with the developmental sequence implicit in
the motivational orientation of Self-Determination Theory
(SDT). Within SDT, Deci and Ryan’s (1985) Organismic
Integration Theory posits that external regulation precedes
identified or integrated regulation. A potential interpretation
for this finding consistent with SDT is that a more external
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self-belief like utility value causes one to eventually internal-
ize a self-belief like attainment value.

RQ2b. Replicability of the Findings across datasets

There was much overlap across the datasets, but also some
notable differences. For example, in the dataset used for
main analyses, both intrinsic value and utility value were
hypothesized to point to attainment value, yielding attain-
ment value as a collider variable. In contrast, in the other
two datasets used for replication purposes, utility value was
hypothesized to point to attainment value which then points
to intrinsic value, yielding a chain structure. One broad
explanation for these discrepant findings is that students
from the two datasets used for replication purposes come
from more similar backgrounds. The main analyses pre-
sented in this paper come from a U.S. sample, whereas the
other two datasets used for replication come from a German
sample. The U.S. sample represents students from an urban,
predominantly low-income immigrant background. Half of
the students in this sample perform below average in the
mathematics state standards assessments and are enrolled
in remediation courses such as pre-algebra (Safavian, 2019).
In contrast, the German sample represents students in aca-
demically tracked schools where mathematics is compul-
sory—mnot differentiated by level—so all the students in
these schools learn algebra, geometry, and calculus in one
comprehensive course (Gaspard et al., 2015a). It is theoreti-
cally plausible that the opportunity to develop an interest
in mathematics for students in the U.S. comes from self-
discovery (i.e., time reflecting on the emotional experiences
of enjoyment) as they are not afforded the experiences that
prompt them to think about their identity as a mathemat-
ics person. Whereas students in Germany may have been
exposed to socialization experiences that prompt them to
think about identity early on, in terms of being a mathemat-
ics person or mathematics being important to their sense of
who they are. Yet, we interpret differences in hypothesized
directionality across datasets with caution as our analysis is
unable to differentiate contextual moderation from sampling
variability. Therefore, in this study, we focused on examin-
ing the replication of our findings across different datasets
instead of investigating cross-country differences because
clear consistencies across different populations suggest that
our approach can detect replicable patterns in correlation
and partial correlation matrices within the SEVT literature.

We, however, encourage researchers to probe the poten-
tial influence of specific contextual differences more sys-
tematically across different countries in the future, espe-
cially because Eccles and Wigfield (2020) emphasize
the “situated” nature of SEVT. For example, researchers
should closely study how students across various countries
develop expectancy and subjective task values as the kinds
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of mathematics curricula, classroom structure, teacher-stu-
dent relations, school funding, and socioeconomic status can
impact them differently. Understanding how contextual dif-
ferences can shape students’ expectancy and subjective task
values has important implications for intervention design,
considering that a one-size-fits-all intervention will be less
likely to help such different populations.

Methodological implications

With this study, we hoped to pave a path for more causal
thinking and formalized, testable hypotheses that should
guide future research and serve as bridges of insight between
the findings from decades of previous cross-sectional
research and future studies hoping to test directed causal
hypotheses. This undertaking is inspired by ongoing debates
about the so-called theory crisis, in the context of which
researchers have pointed out the lack of formalized theo-
ries and specific testable hypotheses (Eronen & Bringmann,
2021; Eronen & Romeijn, 2020; Oberauer & Lewandowsky,
2019). We hope to have contributed to the generation of such
testable hypotheses. This study reacts to recent arguments
addressing the lacking quality of research hypotheses and
the lack of testable hypotheses (Borsboom et al., 2021). An
avenue for further study is a longitudinal extension allow-
ing for SEVT constructs to serve as both cause and effect
of another in a dynamical system (causal cycle). While we
believe in the potential usefulness of network models for
an improved understanding of the relations among SEVT
facets with another, future work should extend this method
to longitudinal data, as Moeller et al. (2021) suggested. The
network methods used in our study (DAG and ICA) are
not suited to study such reciprocal causal feedback loops
(causal cycles; Ryan et al., 2019). To avoid confusion among
these different approaches of using networks to understand
aspects of causality among SEVT facets, future studies need
to distinguish between different aspects of causality and the
appropriate network methods.

Limitations

There are limitations to the present research. First, all data
were cross-sectional, and therefore no certain conclusions
about causal directionality can be drawn. Our conclusions
are rather possible causal directional path models that can be
triangulated with current empirical research. In other words,
our SEVT models present a simplified depiction of hypoth-
esized causal relations among SEVT constructs. With the
method employed (the ICA using psychometric networks
and DAGs), we hoped to create hypotheses for plausible
causal paths, but importantly, these hypotheses were for-
mulated a posteriori after exploring the covariance structure
and consequently need to be tested further in more deductive

approaches with data allowing for such directed interpre-
tations (e.g., experimental and/or longitudinal). Moreover,
the differences in the DAGs across datasets could be due
to sampling error as well as moderation by contextual and
time factors. Since psychometric networks are sensitive
to sample size, we worry that rather than contextual mod-
eration, differences in the DAGs may be due to the small
sample size, especially since one of the replication datasets
with the smallest sample size yielded the most discrepant
results (Epskamp et al., 2018a, b) and especially since this
small dataset was smaller than the 250 participants that are
required to obtain stable, trustworthy correlation effect sizes
(Schonbrodt & Perugini, 2013). In addition, the causal influ-
ence of unobserved variables cannot be directly measured
in our work, yet these omitted variables may have biased
our estimates, such as yielding negative estimates. These
limitations can be alleviated to the extent that future studies
depend upon the kinds of variables measured and included
in the analyses. Future analyses can make use of longitudinal
data to test the robustness of results to various assumptions
about the structure of unobserved confounding over time
(e.g., Zyphur et al., 2020).

Future research directions

Our work is the first step to delineating the questions that
future work can answer using a combination of longitudinal
data and exogenous variation, such as a randomly assigned
manipulation. Work testing the emergent DAGs within this
study in different contexts would provide needed information
about whether similar patterns arise among the SEVT con-
structs. Once (or if) DAGs are robust across similar samples
and contexts, then differences in DAGs from different sam-
ples and contexts can be hypothesized and experimentally
tested. The ability to explain these differences is important
because individuals will always be different in many ways.
These individual differences are especially important to
understand as there is a prominent issue of “whiteness” in
motivation research (DeCuir-Gunby & Schutz, 2017; Usher,
2018). Motivation is not a one-size-fits-all because our atti-
tudes about “Can I do it?”” and “Do I want to do it?”” comes
from reflections of what we internalized over time as a func-
tion of our experiences and the experiences of those around
us. If we are to truly design effective interventions, we must
know how these constructs work for the specific popula-
tion we plan to conduct the intervention. We hope this work
provides an additional tool that can serve the need to study
motivation in racially and ethnically diverse populations to
serve them better. We also suggest that researchers use net-
work analyses to investigate the interplay of the three value
components studied here along with perceived cost, given
the recent interest in the cost construct in the field (see Bar-
ron & Hulleman, 2015; Eccles & Wigfield, 2020; Wigfield
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& Eccles, 2020). Unfortunately, we could not include cost in
all our networks because of the inconsistent use of cost items
across datasets. Ultimately, examining how the interplay of
individuals’ expectancy and values influences performance
and choice will be a key step forward and perhaps provide
information that researchers developing new SEVT-based
interventions will find particularly relevant or useful.

Conclusion

We have contributed to the assessment and further develop-
ment of the SEVT model by assessing specific DAGs that
can be viewed as the hypothesized processes that underlie
the relation between motivation constructs and achieve-
ment. The specificity of the paths represented in the DAGs
form provides specific testable predictions about the inter-
play between SEVT constructs. In sum, we found that prior
achievement relates to expectancy, intrinsic value relates to
expectancy, and utility relates to attainment value, which can
be used to triangulate experimental and longitudinal work.

Supplementary information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12144-023-04871-z.
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