Relaxed Local Correctability from Local Testing

Vinayak M. Kumar
University of Texas at Austin
Austin, Texas, USA
vmkumar@cs.utexas.edu

ABSTRACT

We construct the first asymptotically good relaxed locally cor-
rectable codes with polylogarithmic query complexity, bringing
the upper bound polynomially close to the lower bound of Gur
and Lachish (SICOMP 2021). Our result follows from showing that
a high-rate locally testable code can boost the block length of a
smaller relaxed locally correctable code, while preserving the cor-
recting radius and incurring only a modest additive cost in rate
and query complexity. We use the locally testable code’s tester to
check if the amount of corruption in the input is low; if so, we can
“zoom-in” to a suitable substring of the input and recurse on the
smaller code’s local corrector. Hence, iterating this operation with
a suitable family of locally testable codes due to Dinur, Evra, Livne,
Lubotzky, and Mozes (STOC 2022) yields asymptotically good codes
with relaxed local correctability, arbitrarily large block length, and
polylogarithmic query complexity.

Our codes asymptotically inherit the rate and distance of any
locally testable code used in the final invocation of the operation.
Therefore, our framework also yields nonexplicit relaxed locally
correctable codes with polylogarithmic query complexity that have
rate and distance approaching the Gilbert-Varshamov bound.

CCS CONCEPTS

« Theory of computation — Error-correcting codes; - Mathe-
matics of computing — Coding theory.

KEYWORDS

relaxed locally correctable codes, relaxed locally decodable codes,
locally testable codes

ACM Reference Format:

Vinayak M. Kumar and Geoffrey Mon. 2024. Relaxed Local Correctability
from Local Testing. In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing (STOC °24), June 24-28, 2024, Vancouver, BC, Canada.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3618260.3649611

1 INTRODUCTION

Locally correctable codes (LCCs) and locally decodable codes (LDCs)
are error correcting codes that allow any bit of the original code-
word or message, respectively, to be recovered using very few
queries to a noisy codeword with bounded corruption. This is a
natural and useful property, but unfortunately little is known about

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

STOC °24, June 24-28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649611

Geoffrey Mon
University of Texas at Austin
Austin, Texas, USA
gmon@cs.utexas.edu

the best possible parameter tradeoffs between the rate and query
complexity. In the asymptotically good (constant rate and distance)
regime, Katz and Trevisan [27] show that any LDC (and any linear
LCC) with block length n must make Q(logn) queries. However,
the most query-efficient constant-rate LCCs and LDCs, constructed

by Kopparty, Meir, Ron-Zewi, and Saraf [29], require 20(Vlogn)
Whether the true optimal query complexity is polylogarithmic or
not is a longstanding open problem. A Reed—Muller code with ap-
propriate parameters brings us tantalizingly close: such a code is
locally correctable with polylogarithmic query complexity, but with
block length slightly superlinear in the rate (e.g. [38, Section 2.3]).

Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [4] and Gur,
Ramnarayan, and Rothblum [23] introduced the notions of relaxed
locally decodable codes (RLDCs) and relaxed locally correctable
codes (RLCCs), respectively. These codes admit local decoders
or correctors that either decode/correct, or detect corruption in
the input by returning a rejection symbol L. For asymptotically
good RLDCs and (linear) RLCCs, the gap between lower and up-
per bounds is smaller but still significant: the best lower bound is
Q(y/log n) due to Gur and Lachish [22], while the best upper bound,
due to Cohen and Yankovitz [14], is (log n)OUogloglogn) 1 thig
work, we improve the upper bound by constructing asymptotically
good RLCCs with polylogarithmic query complexity.

THEOREM (INFORMAL, SEE COROLLARY 4.1). For infinitely many
positive n and any constant R € (0, 1), there exist explicit binary
linear RLCCs (and thus RLDCs) of block length n, rate R, constant
correcting (or decoding) radius, and query complexity O(log®® n).

We make no effort to optimize the exponent, instead striving for
a simpler exposition. The related and well-studied notion of locally
testable codes (LTCs), where errors can be detected with few queries,
proves to be key: we can build a relaxed local correctable code
from any family of high-rate linear locally testable codes. Then, by
leveraging the locally testable codes of Dinur, Evra, Livne, Lubotzky,
and Mozes [17], we construct explicit RLCCs with constant rate,
constant distance, and polylogarithmic query complexity. We also
get nonexplicit RLCCs with polylogarithmic query complexity that
approach the Gilbert-Varshamov bound, which is the best known
general tradeoff between rate and distance for which codes exist.
The last known RLCCs to approach the Gilbert—Varshamov bound
are LCCs by Gopi, Kopparty, Oliveira, Ron-Zewi, and Saraf [20]
which require polynomially many (i.e., nf) queries.

1.1 Techniques

To construct an asymptotically good RLCC with an arbitrarily large
block length n, we start with a code with extremely small block
length (say, polylogarithmic in n). Such a code is trivially an RLCC
with polylogarithmic query complexity, because it has a corrector
which reads all polylog n symbols of the input. Then, we apply a

https://orcid.org/0009-0002-7309-5648
https://orcid.org/0000-0003-4414-1019
https://doi.org/10.1145/3618260.3649611
https://doi.org/10.1145/3618260.3649611

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

transformation that uses this small RLCC to build an RLCC with
slightly larger block length. We can repeat this transformation,
building RLCCs with successively larger block length, until we
reach our target block length n. At each of these steps, we need
to maintain the distance and correcting radius of our code while
minimizing the gain in query complexity and loss in rate, so that
the final code will be asymptotically good. Indeed, such an ap-
proach has been used to construct asymptotically good LTCs and
LCCs [29, 32], and is the basis for both prior asymptotically good
RLCC constructions [14, 23].

1.1.1 Prior Constructions. Gur, Ramnarayan, and Rothblum [23]
use the tensor product in this framework to construct RLCCs. Start-
ing from a RLCC with tiny block length, they build successively
larger RLCCs by taking the tensor product of the code with itself. If
C C F" is a linear code, then the tensor product code C® C € F™*"
can be viewed as the set of matrices where every row and every
column is a codeword of C. They show that if C is an RLCC, C®C is
also an RLCC because it has a local corrector that calls the corrector
for C as a subroutine on relevant rows and columns of the input;
the corrector for C ® C recurses on the smaller code’s corrector
polylog n times. The tensor product step squares the block length
each time, so O(loglog n) iterations are required to construct an
RLCC with block length n; each step incurs a polylog n factor in the
query complexity, so the total queries required is (log n)© (loglogn)

Each tensor product step incurs a polylog n factor in the query
complexity because of its rate deterioration. If C hasrate R=1—¢,
then C ® C has rate R? ~ 1 — 2¢; the loss in rate has doubled after
one iteration, so this loss will grow exponentially in the number
of iterations. Therefore, for the final RLCC to have constant rate
after O(loglogn) tensoring steps, the initial RLCC must have ex-
tremely high rate, at least 1 — 1/log n, which limits the distance
of the initial RLCC. This initial distance causes the polylog n mul-
tiplicative overhead in query complexity. To address this, Cohen
and Yankovitz [14] give an alternative to tensoring called row-
evasive partitioning, which incurs an additive loss in rate rather
than a multiplicative one. The starting code can now have lower
rate, like 1 — 1/loglogn, and thus higher distance, so the query
overhead of each step (which is still a multiplicative factor) is im-
proved to poly(loglog n). This yields a total query complexity of
(loglog n)O(loglog n) — (log n)O(logloglog n).

1.1.2 Our Construction. To achieve asymptotically good RLCCs
with polylog n query complexity, we develop a new operation for
boosting the block length of an RLCC. In contrast to tensoring and
row-evasive partitioning, our operation augments the block length
of an RLCC by a very modest polylog n factor, but incurs only an
additive cost in both rate and query complexity. Each step solely
requires polylog n additional queries, so although this operation
needs to be iterated more often than tensoring, i.e., up to m =
O(log n) times to reach block length n, the final query complexity
is m - polylog n = polylog n.

Intuitively, tensoring and row-evasive partitioning are opera-
tions that work by intertwining the structure of many copies of a
smaller RLCC, so that the local corrector of the smaller RLCC can be
used to cross-check overlapping portions of the input against each
other. This necessitates multiple recursive calls to a smaller code’s

Vinayak M. Kumar and Geoffrey Mon

corrector at each step of the construction, which causes the final
query complexity to grow exponentially in the number of iterations.
Instead of cross-checking smaller RLCCs, our boosting operation
enlists the outside help of a locally testable code to add structure.
We will use the LTC’s self-contained testing algorithm to ensure
that it is safe to recurse on the smaller RLCC’s corrector exactly
once. This “tail recursion” is why our total query complexity grows
linearly in the number of iterations, rather than exponentially.

Our boosting step is called nesting. Say we have an RLCC C C 3"
with correcting radius & and a locally testable code LTC < =N
with distance 25 where (for simplicity) n divides N. Then, the code
formed by nesting C in LTC is defined to be

LTC A C:= LTCn N/,

and we claim that this code is an RLCC with correcting radius 4.
That is, this code has a local algorithm that, given any input w that
satisfies dist(w, LTC @ C) < , either corrects or detects corruption.

To see why, suppose the distance from w € SN to the nearest
codeword ¢ € LTC m C is very small, i.e., dist(w, LTC A C) < én/N.
Then we can hope to correct any index of w by resorting to the
local corrector of C. To correct w;, we consider the unique interval
I:={kn+1,...,kn+ n} containing i. We know by construction
that c|j is a codeword of C. Furthermore, we know that w differs
from c in at most 8n indices, so dist(w]|r, ¢|;) < & which is within
the correcting radius of C. Hence, we can “zoom-in” and use the
corrector for C to correct any symbol of w|y, including w;.

Otherwise, if dn/N < dist(w,LTC m C) < &, we can hope to
detect (rather than correct) corruption using the local tester of LTC.
Alocally testable code, by definition, has a local testing algorithm T
that rejects its input w with probability proportional to dist(w, LTC).
Because LTC m C C LTC and LTC has distance 28, we know that
dist(w, LTC) = dist(w, LTC @ C) > én/N, and so T will reject w
with probability Q(dn/N). Thus, O(N/dn) repetitions (hiding some
minor factors) of the local tester suffice to detect corruption with
constant probability.

Therefore, by combining the corrector for C and tester for LTC,
we can handle both cases. Run both the corrector and the tester; if
the tester finds corruption, we can return the reject symbol L, and
otherwise we are likely in the small distance case and can return
the output of the corrector. This shows that LTC M C is an RLCC
which inherits the larger block length of LTC while requiring only
roughly O(N/dn) more queries than C.

Furthermore, we can show that nesting does not destroy the
rate. If LTC and C are linear, and if LTC has rate 1 — ¢ t¢c while C
has rate 1 — ¢, then by counting the number of linear constraints,
LTC @ C has rate at least 1 — ¢ — ¢ 1¢c. If we hope to repeatedly
apply nesting with larger and larger LTCs (block length growing
by a small factor) to build an RLCC with arbitrarily large block
length n, then we will need to apply nesting m = O(logn) times.
Assuming that all of the LTCs have rate 1 — ¢ ¢, the RLCC will
have rate of 1 — O(logn) - e.c which we need to be Q(1) in order
to be asymptotically good. This forces us to use LTCs with rate at
least 1 — O(1/logn).

Fortunately, we can use the construction of Dinur, Evra, Livne,
Lubotzky, and Mozes [17] to get the high-rate linear LTCs we need.
For any sufficiently large choice of n, there is an infinite sequence of
explicit LTCs with rate at least 1 — O(1/log n) and with appropriate

Relaxed Local Correctability from Local Testing

local testing parameters so that the additive query overhead of each
nesting step is polylogn as desired. By iteratively nesting these
LTCs, we can build an RLCC of block length n with constant rate
and polylogarithmic query complexity.

One may notice that since the LTCs have rate 1 —o0(1), they must
also have o(1) distance, because of e.g. the Singleton bound. The
correcting radius of our RLCC thus will also be 0(1), and so our code
is not yet asymptotically good. This is remedied by nesting in one
last LTC with constant rate and distance. This boosts the correcting
radius to be constant, and the rate of this last LTC dominates the
rate of the final RLCC, which at last is asymptotically good.

1.2 Related Work

Prior constructions and lower bounds. The two main parameter
regimes for RLDCs and RLCCs are the constant query regime (opti-
mizing block length given the dimension k and query complexity q)
and the asymptotically good regime (optimizing query complexity
when k/n = ©(1) and § = ©(1)). In the constant-query regime, the
best known block length is n = o(k+o/a)y 2], following a line of
work [4, 13, 23]. Interestingly, this matches (up to a constant factor
in gq) the block length lower bound for full-fledged LDCs [27, 37].

Table 1 summarizes the historic state of the art query complexity
for asymptotically good RLCCs. This table does not include Gopi,
Kopparty, Oliveira, Ron-Zewi, and Saraf [20] who optimize rate
(approaching the Gilbert-Varshamov bound) instead of queries.

Gur and Lachish [22] establish lower bounds for RLDCs, includ-
ing a Q(+4/log n) query lower bound for asymptotically good RLDCs
with nonadaptivity. Dall’Agnol, Gur, and Lachish [16] extend the
lower bound to adaptive decoders, and Goldreich [19] provides
an alternative and simpler proof, which in some cases is stronger.
Block, Blocki, Cheng, Grigorescu, Li, Zheng, and Zhu [7] prove an
exponential block length lower bound for 2-query RLDCs, asymp-
totically matching the exponential block length lower bound for
2-query LDCs established by Kerenidis and de Wolf [28].

Alternative error models. LDCs, LCCs, and their relaxed coun-
terparts have been studied in other error models, distinct from
the Hamming worst-case error setting that we study in this work.
These codes have been studied in the insertion-deletion error model,
where a limited number of symbols can be added or removed (rather
than simply flipped) anywhere in the codeword [7, 8, 12, 34]. In
addition, both the Hamming and insertion-deletion models have

Table 1: Best known query complexity for asymptotically
good RLCCs with block length n.

Technique Query complexity Due to

low-degree polynomials n® [3,36]
multiplicity codes n® [30]
lifted Reed—-Solomon codes n¢ [21]
expander graphs n® [26]
distance amplification 20(‘/@) [29]
repeated tensoring (log n)O(oglogn) [23]
row-evasive partitions (log n)© (logloglog n) [14]

nested LTCs logo(l) n this work

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

been studied in the computationally bounded setting, where the
adversary choosing the location of bit flips or insertions/deletions
has limited resources. Then, cryptographic assumptions can be used
to construct LDCs and LCCs [1, 5, 10, 24, 25, 33] as well as their
relaxed counterparts [6, 9].

In particular, the latter two works use these assumptions to
(among other results) construct asymptotically good RLDCs and
RLCCs in the computationally bounded Hamming model with poly-
logarithmic queries. We achieve this in the general setting.

Subsequent work. Soon after we posted the preprint for this work,
Cohen and Yankovitz [15] improved our technique and lowered
the query complexity for asymptotically good RLCCs from our
log® n to (log n)2*°(1) They observe that the nesting operation
can boost an RLCC using a code that is locally testable only on
inputs with bounded corruption, rather than a full-fledged locally
testable code which must work on all inputs. Thus, they can use a
family of expander codes, which satisfy this weaker property, to
simplify the RLCC construction and improve the query complexity.

2 PRELIMINARIES

2.1 General Notation

Let dist(x, y) denote the relative Hamming distance between two
strings with the same length and alphabet:
#{i € [n] : x; # yi}

Vx,y € 3" dist(x,y) = ——————=—.
n

All of the necessary properties of a distance function are satisfied,
including the triangle inequality. For every subset S C X", let
dist(x,S) := minyes dist(x, y).

We say that f(n) < poly(n) if there is a fixed polynomial p such
that for large enough n, f(n) < p(n), and analogously for >. We say
f(n) = poly(n) if f(n) < poly(n) and f(n) > poly(n). Analogous
conventions are used for polylog n, which denotes poly(log n). The
polynomials implicitly defined by poly or polylog are fixed with
respect to all parameters involved.

Let N denote the set of positive integers, and Fy denote the finite
field of 2 elements. For every k € N, define [k] = {1,2,...,k}.
For a string x € X" and an index set I C [n], let x|; denote the
restriction of x to the indices in I. For a set of strings S € 2", let
S|; denote the set {x|; : x € S}.

2.2 Error-Correcting Codes

An error-correcting code is a set of strings, called codewords, where
every two codewords are well-separated.

Definition 2.1. A code over an alphabet > with dimension k,
block length n, and distance ¢ is a subset C C 3" of size |=k| where

Ve € C. dist(c,C\ ¢) > 6.

If 3 = {0, 1}, C is called a binary code. In this work, we treat {0, 1}
and F as interchangeable.

The ratio k/n is called the rate of a code. In this work, we study
asymptotically good codes which have constant rate and distance.

Remark 2.2. If C C 3" is a code with distance §, w € 2", and
¢ € C satisfies dist(w, ¢) < §/2, then ¢ must be the unique closest

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

codeword to w. This is because for any other codeword ¢’ € C,
dist(c’, w) > dist(c’, ¢) — dist(w,c) > § — §/2 > dist(c, w)
by the triangle inequality.

Definition 2.3. A code C C 3" is systematic if there is a bijective
map Enc: 3k — C where the message appears in the codeword:

Vm e 3K Enc(m)|[x] = m.

Definition 2.4. A linear code is a code C C F" which is a linear
subspace over a finite field. Every linear code can be specified by a
generator matrix which gives a basis for the code and which also
serves as an encoding map, or by a parity-check matrix which gives
a set of linear constraints that every codeword must satisfy. We say
that a family of linear codes is explicit if each code’s parity-check
matrix can be computed uniformly in time polynomial to the size
of the matrix.

Remark 2.5. A linear code can always be made systematic, be-
cause we can take its generator matrix, apply Gaussian elimination,
and permute columns until it contains a k X k identity matrix in
the first k columns.

2.3 Relaxed Locally Correctable Codes

LCCs and LDCs can recover any bit of the closest codeword or
message, respectively, using very few queries to a noisy codeword.
The study of LCCs and LDCs has roots in program checking [3, 11,
31, 36] and was first formalized by Katz and Trevisan [27]; we refer
the reader to Yekhanin’s comprehensive survey [38].

Relaxed locally decodable codes and relaxed locally correctable
codes have the option of detecting corruption instead of decod-
ing or correcting. The study of these codes is closely related to
probabilistically checkable proofs and originates with Ben-Sasson,
Goldreich, Harsha, Sudan, and Vadhan [4], who defined RLDCs and
gave the first constructions.

Definition 2.6 (RLDC). A code C C X" is a relaxed locally decod-
able code with decoding radius § and query complexity g if it has
an encoding map Enc: $k — C and a randomized corrector M that
makes g queries such that

(1) (Completeness) For every m € sk,
Vi € [k]. Pr[MEe(m) (j) = m;] = 1.

(2) (Soundness) For every m € sk and every w € X" with
dist(w, Enc(m)) < 6,

Vi € [n]. Pr[M™(i) € {m;, L}] =

W o

The superscript denotes the input that M queries.

Gur, Ramnarayan, and Rothblum [23] later introduced the corre-
sponding notion of RLCCs along with constructions.

Definition 2.7 (RLCC). A code C C 3" is a relaxed locally cor-
rectable code with correcting radius § and query complexity q if it
has a randomized corrector M that makes q queries such that

(1) (Completeness) For every c € C,
Vi € [n]. Pr[M®(i) = ¢;] = 1.

Vinayak M. Kumar and Geoffrey Mon

(2) (Soundness) For every ¢ € C and w € 3" with dist(w, ¢) < 6,
2
Vi€ [n]. Pr[M"(i) € {ci, L}] = 3

The superscript denotes the input that M queries. We refer to M as
a C-corrector.

Here, we have given strong definitions of RLDCs and RLCCs
featuring perfect completeness. Goldberg [18] shows that for linear
RLDCs and RLCCs, the above definition is essentially equivalent
to allowing imperfect completeness (the corrector/decoder can
sometimes err on true codewords) and requiring nonadaptivity
(the corrector/decoder’s queries do not depend on the outcome of
prior queries). That said, all of the codes that we construct have
nonadaptive correctors.

A systematic RLCC implies an RLDC with the same radius and
query complexity, because we can use the local corrector on the
portion of the codeword which corresponds to message symbols.
In addition, an RLCC with correcting radius § must have distance
at least ¢ in order for perfect completeness and soundness to simul-
taneously hold. Therefore, we say an RLCC is asymptotically good
if it has constant rate and constant correcting radius, which implies
constant distance.

2.4 Locally Testable Codes

Locally testable codes (LTCs) are codes with testing algorithms that
can gauge corruption with few queries to the input. We will make
use of the following (strong) definition of LTCs:

Definition 2.8 (LTC). A code C C X" is a locally testable code
with distance 8, testability! x, and query complexity g if it has a
randomized tester T that makes g queries and returns either T
(accept) or L (reject), such that

(1) (Completeness) For every ¢ € C,

(2) (Soundness) For every w € 3™,
Pr[TY = 1] > k - dist(w, C).

The superscript denotes the input that T queries. We refer to T as a
C-tester.

Dinur, Evra, Livne, Lubotzky, and Mozes [17] and Panteleev
and Kalachev [35] constructed the first locally testable codes with
constant rate, distance, and query complexity (referred to as ¢3-
LTCs). In particular, the former are able to construct explicit families

of linear LTCs with rate arbitrarily close to 1:

THEOREM 2.9 ([17, THEOREM 1.1 AND REMARK 5.3]). For any
R=1-¢€ (0,1), there is a prime power p = O((1/¢)1°) and values
82 Q(e3), k = Q(e19), and g < O((1/€)?°), such that for all j € N,
there exists a binary linear LTC LTC; with rate at least R, minimum
distance at least J, testability at least k, query complexity at most q,

and block lengthn;j := (q/8) - (P3j - Pj)~

This parameter has also been referred to as the detection probability e.g. [17].

Relaxed Local Correctability from Local Testing

3 CONSTRUCTION
3.1 Boosting RLCC Block Length

The building block of our construction is the nesting operation A
which combines two codes.

Definition 3.1. Let C; C >N and C; € 3" with n < N. Define
Ci A Cy = Cr 0 (LN s sN=INInLmy o (sN=7 5 ¢y,
We say that C; @ Cy is the code formed by nesting Co in Cy.

That is, C; m Cy is the subset of codewords ¢ in C; such that
cl{1,...n} € C2, cl{ns1,...2n} € C2, and so on. If n does not divide
N, then we also require ¢|{N_pt1,. N} € C2. Because C1 @ Czisa
subset of Cq, it must have distance at least that of C;. In addition,
when both codes are linear, we can bound the rate of C; m Cs.
Nesting Cy in C1 incurs an additive loss in rate:

LEMMA 3.2. Letn < N. Let C; C 3V be a linear code with rate
1 — &1 and distance 61, and let Cy C X" be a linear code with rate
1—¢5. Then,C1 MmCy C >N is a linear code with rate at least 1 — & —
(n/N - [N/n])es.

Proor. Using the rank-nullity theorem, the total number of
linear constraints defining C; @ Cy is

N n |N
S€1N+£2nw—}:(gl+_w_}.gz).N
n N |n

which then implies that the rate of C; @ Cy is

n |N
Zl—é‘l—ﬁ'—-é‘z. O
n

Remark 3.3. If n divides N, thenC; A C2 = C1 N Cév/”, with rate
at least 1 — £; — £2. When n does not divide N, the rate of C; m Cp
isatleast 1 —& — (1+n/N)ep.

Next, we prove that nesting preserves relaxed local correctability
when performed with an LTC. We can lift a smaller RLCC to a larger
block length by nesting it inside an LTC.

LEMMA 3.4. Let LTC C Z™7C pe an LTC with query complexity
qLtC, distance S tc, and testability k. Let C € 3" be an RLCC with
query complexity q and correcting radius 6 wheren < nitc. Then,
LTC m C € I™TC js an RLCC with correcting radius S.tc/2 and
query complexity q + O(qLtcnrtc/Skn).

Proor. Given the LTC-tester T and the C-corrector M, we can
give a corrector M™ (i) for LTC m C:

(1) Let I be an interval of [n 1c] of size n, defined as follows:

L {{[i/n] n—(n—1),....[i/n] -n} ifi<nc—n

{nirc = (n=1),...,n7c} ifi >nrc—n

This is chosen so that that i € I and Vc € LTC A C.c|f € C.

(2) Run Mgll(i*), where i* := i + 1 — min I. We choose i* such
that (w|p); = w;.

(3) For t := O(n 1c/dkn) iterations, run T".

(4) Output L if any run of the LTC-tester in step 3 returns L;
otherwise output the result of step 2.

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

The query complexity of step 2 is ¢, while the query complexity of
step 3 is g 1c - O(nLtc/dxn). In addition, M is nonadaptive as long
as T and M are nonadaptive.

Next, we can show that M satisfies the perfect completeness
condition of the RLCC definition. Since w € LTC m C C LTC,
every repetition of the LTC-tester in step 3 will return T (accept),
so for all i, M (i) will return the result of step 2. By definition, if
w € LTCAC, then w|; € C. Therefore, the C-corrector in step 2 will
return (wl|r);+ = w; with certainty, and so will M" (i), as needed.

Finally, we show soundness. Let 0 < dist(w, LTC A C) < d.1¢c/2,
and let ¢ € LTC A C be the unique closest codeword to w. Note that
¢ € LTC and ¢|; € C. Then, for all i, we need to show Pr[M™ (i) €
{ci, L}] = 2/3.

e First, assume dist(w, ¢) = dist(w, LTC m C) > dn/2n 1. Be-
cause dist(w, ¢) < d.1c/2, ¢ is the unique codeword in LTC
which is closest to w by Remark 2.2. Hence, one run of T"
will return L with probability at least kdn/n 1c. Therefore,
step 3 returns L with probability

Sxn \! tékn
>1-exp|- > 2/3,
2ni1C 2n1tC

for a suitable constant in ¢t. Thus, Vi.Pr[M" (i) = L] > 2/3
which satisfies soundness.

Now assume dist(w, ¢) < dn/2n 1c.From here we can bound
the distance between the substrings w|j and c|r; the distance
of the substrings is maximized if all of the symbols that
differ between w and c lie in the interval I. Consequently,
dist(wl|r, c|f) < &/2, and c|; is the unique codeword in C
closest to w|; (see Remark 2.2).

Applying the soundness condition of the C-corrector,

PrIMI () € {(clp)ir, L] = 2/3.

21—(1—

M™ (i) will return either the output ofMg‘I (i*), or L if some
iteration of step 3 rejects. Hence,

Pr[M™(i) € {ci, L}] > Pr[M2 (i*) € {er, L}] > 2/3.
This shows that the soundness condition is satisfied in all cases. O

In summary, nesting an RLCC in an LTC yields a code which
inherits the best properties of both: the resulting code inherits
distance and block length from the larger LTC, as well as the relaxed
local correctability of the smaller RLCC. Therefore, we can build
an RLCC with arbitrarily large block length by iteratively nesting
the code in a series of LTCs with larger and larger block length.

PropPosITION 3.5. Let LTCy,...,LTC,, be a sequence of linear
LTCs over a finite field alphabet F with block lengths ny, ..., nny,
which satisfy the following properties:

e nj < nj4 forall j,
e every LTC; has rate at least 1 — e 7c and distance at least
dLtc, and
e every LTC; has a local tester with query complexity at most
qLTc and testability at least x| Tc.
Then, C := LTCp; @ (LTCpp—1 M - -+ (LTC2 @ LTCy)...) is a linear
RLCC which satisfies the following properties:

o alphabetF and block length ny,,

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

e rate at least

e correcting radius at least 8| 1c /2, and
o query complexity at most

_quenj
ni+ Z
— 5LTC’<LTC”] 1

Remark 3.6. If n; divides nj41 for all j, then the rate lower bound
simplifies to 1 — me| 1c. Even when n; does not divide nj41, with
appropriate parameter choices we can still simplify the rate to
1—O(meL1c). Therefore, we can view each nesting step as reducing
the rate of C by O(¢L1¢), so that each step incurs an additive (rather
than multiplicative) cost in both rate and query complexity.

Proor. The alphabet and block length of C follows from the
definition of nesting. Next, we show the rate. Let LTC ;@ - - (LTC2 M
LTC1) have rate 1 — ¢;. We know &; < e 1c by definition, and
Lemma 3.2 tells us that for j > 2,

nj_1| nj
J. "'_J“.gjil.
n] n]_l

Hence by induction, ¢, is upper bounded by the series

& < eTc+

m J
155
— ., nj/ nj/ -1 I

j=2 j'=2

Em < ELTC - 1+2

which gives the desired lower bound on the rate of C.

Finally, we show that C is an RLCC. LTC; can be viewed as an
RLCC with correcting radius §) tc because it has a trivial correcting
algorithm that reads the entire input and checks whether it is in
LTC;. This corrector has query complexity ny. Then by applying
Lemma 3.4, LTC2 m LTC; has a corrector with correcting radius
dL1c/2 and query complexity

< n1+O(M)

Sirckitent)

By applying this lemma m — 2 more times with LTCs, ..., LTC,
we can conclude that there is a C-corrector with correcting radius
dLTc/2 and total query complexity

<n +Z (qLtcn;)
1
OLTCKLTCj-1

3.2 Instantiating the Nesting Framework

We now have all of the tools we need to construct asymptotically
good RLCCs, as long as we pick a suitable sequence of LTCs. If the
block length of each successive LTC grows by at least a constant
factor, then m < O(logn). Thus, using Remark 3.6 as guidance, we
need a family of explicit LTCs with rate at least 1 — O(1/logn) in
order for Proposition 3.5 to yield an RLCC with constant rate. This
means these LTCs will have subconstant distance, due to the Single-
ton bound. We will use the following instantiation of Theorem 2.9:

CoROLLARY 3.7 ([17], sEE APPENDIX A). For every sufficiently
large N € N, there exists an integer n € [Q(N/log®® N),N] and a
family of LTCs {LTCy,...,LTC,} such that

Vinayak M. Kumar and Geoffrey Mon

e Each LTC; is binary, linear, and explicit.
e Each LTC;j has:
—rateR=1-¢71c >1-0(1/logN),
— distance S.1c > Q(1/log® N),
— testability k 1c = Q(1/log!® N), and
~ query complexity qitc < O(log?® N).
e Each LTC; has block length nj, such that ny < O(logSO N),
nm =n, andVj.njy1/nj = E')(log30 N).
o The number of codes is m = O(log N/loglog N).

Remark 3.8. In this concrete family of LTCs, the block length of
each successive LTC increases by a polylogarithmic factor, instead
of the constant factor we previously imagined using. Thus, m =
O(logn/loglogn) = o(logn). The nj/nj—1 = polylogn factor also
appears in the query complexity, which is acceptable. One could
choose the LTC rate to be 1 — O(loglog n/log n) instead in order
to marginally improve parameters such as d 1c, kL7c, and qL7c
which appear in the query complexity, while worsening the rate.

With this family of LTCs, we can construct high rate RLCCs
with polylogarithmic query complexity, albeit with subconstant
correcting radius.

THEOREM 3.9. For sufficiently large N € N, there is an explicit
binary linear RLCC with block length n € [Q(N/log®® N), N], rate
1 - 0(1/loglog N), correcting radius Q(1/log® N), and query com-
plexity O(log®® N/loglog N).

Proor. We can use the parameter N with Corollary 3.7 to get
a family of LTCs to plug into Proposition 3.5. Then, our code is
C=LTC; M (LTCpp—1 M ... (LTC2 MLTCy)...), with parameters
as defined in Corollary 3.7. We find that our code C has block length
n € [Q(N/log®® N), N] and rate at least

R

Jj=2j'=2

1-e1c 1+Zn(L _1)

Jj=2j'=2

v

1-¢1C Z(l + 0(1/10g30 N))j71

7=

m
1-¢ m-exp|O| ——
LTC p((10g30 N))

=1-(1+0(1))meLtc

v

v

1
-0 ———|.
(log log N)
In addition, C is an RLCC with radius 8 t¢/2 = Q(1/log® N) and
query complexity

<n1+z (Grten

< 0(log® N) + Z 0 (logzo+30+3+15 N)
i=2

qLTchi)
OLTCKLTCRI-1

log®® N
loglog N |’

Relaxed Local Correctability from Local Testing

C is an RLCC with the desired rate and query complexity, but it is
not yet asymptotically good since its correcting radius is determined
by the distance of the LTC family from Corollary 3.7. This distance
is subconstant since all of the LTCs must have rate 1 — O(1/m).
Thankfully, we can boost the correcting radius of our RLCC with
one final nesting step using an LTC with constant distance and rate.
The increase in query complexity is negligible, and the rate of the
last LTC dominates the rate of the resulting RLCC.

CoROLLARY 3.10. Let LTC be a binary linear LTC with sufficiently
large block length N, and with rate R, distance S| 1c, testability x, and
query complexity q. Then, there exists a binary linear RLCC C with
block length N, rate R — O(1/loglog N), correcting radius S 1c /2,
and query complexity

log®’ N
0% 10BN+ 2B 2|
K loglog N
C is explicit if and only if LTC is explicit.

Proor. We pick sufficiently large N such that we can use Theo-
rem 3.9 to craft RLCC C’ with block length n € [Q(N/log® N), N],
rate 1 — O(1/loglog N), correcting radius § = Q(1/log® N), and
query complexity O(log® N/loglog N). We now construct

C=LTCnaC.

By construction, C is explicit and has block length N. By Lemma 3.2
(in particular, Remark 3.3) on LTC and C’, the overall rate of C
is at least R — (1 + n/N) - O(1/loglog N) = R — O(1/loglogN).
Applying Lemma 3.4 to LTC and C”, the correcting radius of C is at
least 8 7c /2 and the query complexity of C is

N 1 69 1 69
o[) +0[-2) <ofd 10gBN+ 2 ")
dkn loglogn K loglogn

This corollary states that for any binary linear LTC, there is a
binary linear RLCC with nearly the same rate and distance, and
with the same (up to polylogarithmic factors) query complexity.

4 FINAL CONSTRUCTION

The main results of this paper follow from choosing an appropriate
LTC for Corollary 3.10.

CoROLLARY 4.1 (ExpriciT RLCCs). ForanyrateR=1—¢ € (0,1)
and for infinitely many n, there is an explicit RLCC with block lengthn,
rate R—O(1/log log n), correcting radius Q (&%), and query complexity

log®’ n

loglogn)

ol (1/e)* log® n +

PrROOF. We can instantiate Corollary 3.10 using the LTCs of
Theorem 2.9. O

COROLLARY 4.2 (GILBERT-VARSHAMOV BOUND RLCCs). Let H(-)
be the binary entropy function. For any R, 8, ¢ € (0,1) such that
R+H(5)=1-¢
and for infinitely many n, there exists a nonexplicit RLCC with block

length n, rate R — O(1/loglogn), and distance at least 8, with cor-
recting radius §/2 and query complexity

log® n)

ly(1/¢) - log™?
poly(1/e) - log n+o(loglogn

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Proor. Dinur, Evra, Livne, Lubotzky, and Mozes [17] construct
explicit LTCs with rate arbitrarily close to 1, which implies the
existence of infinitely many nonexplicit LTCs that approach the
Gilbert—Varshamov bound (see [17, Corollary 1.2]). These LTCs
can have any rate R and distance § such that R+ H() =1 — ¢, in
which case the testability is k > poly(¢) and the query complexity is
qLTc < poly(1/¢). We can plug these parameters into Corollary 3.10
to yield RLCCs. Because the rate of the RLCC approaches the rate
of the LTC, and the distance of the RLCC is at least the distance of
the LTC, we can say that the RLCC also approaches the Gilbert—
Varshamov bound. O

ACKNOWLEDGMENTS

We would like to thank Dana Moshkovitz for valuable discussions
and for feedback on a draft of this manuscript. We would also like to
thank Siddhartha Jain for valuable advice towards the presentation
of this work, Jeffrey Champion for proofreading, and Joshua Cook
and Justin Oh for helpful conversations. Finally, we are grateful to
anonymous reviewers for their input.

VMK is supported by NSF Grants CCF-2008076 and CCF-2312573,
and a Simons Investigator Award (#409864, David Zuckerman). GM
is supported by NSF Grant CCF-2200956, an NSF Graduate Research
Fellowship (DGE-2137420), and a UT Austin Dean’s Prestigious
Fellowship Supplement.

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program under
Grant No. DGE-2137420. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

A CONCRETE PARAMETERS FOR LOCALLY
TESTABLE CODES

We instantiate the LTC construction from Theorem 2.9 with suitable
parameters. In particular, for any ¢ € (0,1), Dinur, Evra, Livne,
Lubotzky, and Mozes [17] give an explicit construction for a family
of LTCs with rate at least 1 — ¢ and distance, testability, and query
complexity within a polynomial (or inverse polynomial) of ¢, such
that consecutive codes in the family differ in block size by a factor
which is a polynomial of 1/e. Setting ¢ = ©(1/log N) yields the
following family of LTCs:

THEOREM A.1 ([17, THEOREM 1.1, LEMMA 5.1, AND REMARK 5.3]).
For sufficiently large N € N, there exists an explicit odd prime power
p = 0(log'® N) such that there is an infinite family of explicit binary
linear locally testable codes {LTCy, LTCs, ...} where every LTC; has
block lengthnj = ©((p> - p/) - log?® N),
rate1 —1/(1001log N),
distance Q(1/log® N),
testability Q(1/log'® N), and
query complexity O(log?° N).

CoROLLARY (COROLLARY 3.7 RESTATED). For every sufficiently
large N € N, there exists an integern € [Q(N/log®® N),N] and a
family of LTCs {LTCy,...,LTC,,} such that

e Each LTC; is binary, linear, and explicit.
e EachLTC; has:

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

ProOF. Let p and {LTCy,LTCy,..

rateR=1-¢1c = 1-0(1/logN),

- distance S.1c = Q(1/log® N),

testability k| 1c = Q(1/log® N), and
— query complexity q.1c < O(log?° N).

e Each LTC; has block length nj, such that ny < O(log®® N),
Nm =n, andVj.njy1/nj = O(log® N).

o The number of codes is m = O(log N /loglog N).

. } be instantiated using Theo-

rem A.1 with parameter N. Let m be the smallest integer such that

nm < N, and define n = n;,,. Then, {LTCy,..

.,LTC;;,} have the

desired rate, distance, testability, and query complexity. In addition,
ny < O(p31log? N) = 0(log® N). Next, for all j > 1,

. 3(j+1) _ ,j+1
B ol P | = e(p*) = 0(log” N).
n;j pl—p/
Hence, n < N < O(p®n), so n > N/p>. Finally,
m < log N _ (log N) a
O(log(log®® N)) loglog N

REFERENCES

[1] Mohammad Hassan Ameri, Alexander R. Block, and Jeremiah Blocki. 2022.

[2

8

[9

=

=

Memory-Hard Puzzles in the Standard Model with Applications to Memory-Hard
Functions and Resource-Bounded Locally Decodable Codes. In Security and Cryp-
tography for Networks, Clemente Galdi and Stanislaw Jarecki (Eds.). Springer Inter-
national Publishing, Cham, 45-68. https://doi.org/10.1007/978-3-031-14791-3_3
Vahid R. Asadi and Igor Shinkar. 2021. Relaxed Locally Correctable Codes with
Improved Parameters. In 48th International Colloquium on Automata, Languages,
and Programming (ICALP 2021) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 198), Nikhil Bansal, Emanuela Merelli, and James Worrell (Eds.).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 18:1-
18:12. https://doi.org/10.4230/LIPIcs.ICALP.2021.18

Laszl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. 1991. Checking
Computations in Polylogarithmic Time. In Proceedings of the Twenty-Third Annual
ACM Symposium on Theory of Computing (New Orleans, Louisiana, USA) (STOC
’91). Association for Computing Machinery, New York, NY, USA, 21-32. https:
//doi.org/10.1145/103418.103428

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil
Vadhan. 2006. Robust PCPs of Proximity, Shorter PCPs, and Applications to
Coding. SIAM j. Comput. 36, 4 (Jan. 2006), 889-974. https://doi.org/10.1137/
50097539705446810 Publisher: Society for Industrial and Applied Mathematics.
Alexander R. Block and Jeremiah Blocki. 2021. Private and Resource-Bounded
Locally Decodable Codes for Insertions and Deletions. In 2021 IEEE International
Symposium on Information Theory (ISIT). 1841-1846. https://doi.org/10.1109/
1SIT45174.2021.9518249

Alexander R. Block and Jeremiah Blocki. 2023. Computationally Relaxed Locally
Decodable Codes, Revisited. In 2023 IEEE International Symposium on Information
Theory (ISIT). 2714-2719. https://doi.org/10.1109/ISIT54713.2023.10206655
Alexander R. Block, Jeremiah Blocki, Kuan Cheng, Elena Grigorescu, Xin Li, Yu
Zheng, and Minshen Zhu. 2023. On Relaxed Locally Decodable Codes for Ham-
ming and Insertion-Deletion Errors. In 38th Computational Complexity Conference
(CCC 2023) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 264), Am-
non Ta-Shma (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl,
Germany, 14:1-14:25. https://doi.org/10.4230/LIPIcs.CCC.2023.14

Alexander R. Block, Jeremiah Blocki, Elena Grigorescu, Shubhang Kulkarni,
and Minshen Zhu. 2020. Locally Decodable/Correctable Codes for Insertions
and Deletions. In 40th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2020) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 182), Nitin Saxena and Sunil Simon (Eds.).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 16:1-
16:17. https://doi.org/10.4230/LIPIcs. FSTTCS.2020.16

Jeremiah Blocki, Venkata Gandikota, Elena Grigorescu, and Samson Zhou. 2021.
Relaxed Locally Correctable Codes in Computationally Bounded Channels. IEEE
Transactions on Information Theory 67, 7 (2021), 4338-4360. https://doi.org/10.
1109/TIT.2021.3076396

[10] Jeremiah Blocki, Shubhang Kulkarni, and Samson Zhou. 2020. On Locally De-

codable Codes in Resource Bounded Channels. In 1st Conference on Information-
Theoretic Cryptography (ITC 2020) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 163), Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs (Eds.).

[11

[12

[13

[17

[18

=
)

[20

[21

[22]

[24

[25

[26]

[27

[28

[29

[30

Vinayak M. Kumar and Geoffrey Mon

Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 16:1—-
16:23. https://doi.org/10.4230/LIPIcs.ITC.2020.16

Manuel Blum and Sampath Kannan. 1995. Designing programs that check their
work. 7. ACM 42, 1 (jan 1995), 269-291. https://doi.org/10.1145/200836.200880

Kuan Cheng, Xin Li, and Yu Zheng. 2020. Locally Decodable Codes with Ran-
domized Encoding. arXiv:2001.03692 [cs.IT]

Alessandro Chiesa, Tom Gur, and Igor Shinkar. 2022. Relaxed Locally Correctable
Codes with Nearly-Linear Block Length and Constant Query Complexity. SIAM
J. Comput. 51, 6 (2022), 1839-1865. https://doi.org/10.1137/20M135515X

Gil Cohen and Tal Yankovitz. 2022. Relaxed Locally Decodable and Correctable
Codes: Beyond Tensoring. In 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS). 24-35. https://doi.org/10.1109/FOCS54457.2022.00010
Gil Cohen and Tal Yankovitz. 2023. Asymptotically-Good RLCCs with
(log n)?*°) Queries. Technical Report TR23-110. Electronic Colloquium on
Computational Complexity (ECCC). https://eccc.weizmann.ac.il/report/2023/
110/

Marcel Dall’Agnol, Tom Gur, and Oded Lachish. 2021. A Structural Theorem
for Local Algorithms with Applications to Coding, Testing, and Privacy. In Pro-
ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10-13, 2021, Daniel Marx (Ed.). SIAM, 1651-1665.
https://doi.org/10.1137/1.9781611976465.100

Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. 2022.
Locally Testable Codes with Constant Rate, Distance, and Locality. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing (Rome,
Italy) (STOC 2022). Association for Computing Machinery, New York, NY, USA,
357-374. https://doi.org/10.1145/3519935.3520024

Guy Goldberg. 2023. Linear Relaxed Locally Decodable and Correctable Codes Do
Not Need Adaptivity and Two-Sided Error. Technical Report TR23-067. Electronic
Colloquium on Computational Complexity (ECCC). https://eccc.weizmann.ac.il/
report/2023/067/

Oded Goldreich. 2023. On the Lower Bound on the Length of Relaxed Locally Decod-
able Codes. Technical Report TR23-064. Electronic Colloquium on Computational
Complexity (ECCC). https://eccc.weizmann.ac.il/report/2023/064/

Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and Shub-
hangi Saraf. 2018. Locally Testable and Locally Correctable Codes approaching
the Gilbert-Varshamov Bound. IEEE Transactions on Information Theory 64, 8
(2018), 5813-5831. https://doi.org/10.1109/TIT.2018.2809788

Alan Guo, Swastik Kopparty, and Madhu Sudan. 2013. New Affine-Invariant
Codes from Lifting. In Proceedings of the 4th Conference on Innovations in Theo-
retical Computer Science (Berkeley, California, USA) (ITCS ’13). Association for
Computing Machinery, New York, NY, USA, 529-540. https://doi.org/10.1145/
2422436.2422494

Tom Gur and Oded Lachish. 2021. On the Power of Relaxed Local Decoding
Algorithms. SIAM j. Comput. 50, 2 (2021), 788-813. https://doi.org/10.1137/
19M1307834

Tom Gur, Govind Ramnarayan, and Ron Rothblum. 2020. Relaxed Locally Cor-
rectable Codes. Theory of Computing 16, 18 (2020), 1-68. https://doi.org/10.4086/
t0c.2020.v016a018

Brett Hemenway and Rafail Ostrovsky. 2008. Public-Key Locally-Decodable
Codes. In Advances in Cryptology — CRYPTO 2008, David Wagner (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 126-143. https://doi.org/10.1007/978-3-
540-85174-5_8

Brett Hemenway, Rafail Ostrovsky, Martin J. Strauss, and Mary Wootters. 2011.
Public Key Locally Decodable Codes with Short Keys. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, Leslie Ann
Goldberg, Klaus Jansen, R. Ravi, and José D. P. Rolim (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 605-615. https://doi.org/10.1007/978-3-642-22935-0_51

Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. 2015. Local correctability
of expander codes. Information and Computation 243 (2015), 178-190. https:
//doi.org/10.1016/j.ic.2014.12.013 40th International Colloquium on Automata,
Languages and Programming (ICALP 2013).

Jonathan Katz and Luca Trevisan. 2000. On the Efficiency of Local Decoding
Procedures for Error-Correcting Codes. In Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing (Portland, Oregon, USA) (STOC ’00).
Association for Computing Machinery, New York, NY, USA, 80-86. https://doi.
org/10.1145/335305.335315

Tordanis Kerenidis and Ronald de Wolf. 2003. Exponential Lower Bound for
2-Query Locally Decodable Codes via a Quantum Argument. In Proceedings of
the Thirty-Fifth Annual ACM Symposium on Theory of Computing (San Diego, CA,
USA) (STOC 03). Association for Computing Machinery, New York, NY, USA,
106-115. https://doi.org/10.1145/780542.780560

Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. 2017. High-
Rate Locally Correctable and Locally Testable Codes with Sub-Polynomial Query
Complexity. Journal of the ACM 64, 2 (2017), 11:1-11:42. https://doi.org/10.1145/
3051093

Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. 2014. High-Rate Codes
with Sublinear-Time Decoding. J. ACM 61, 5, Article 28 (Sept. 2014), 20 pages.

https://doi.org/10.1007/978-3-031-14791-3_3
https://doi.org/10.4230/LIPIcs.ICALP.2021.18
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/103418.103428
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1109/ISIT45174.2021.9518249
https://doi.org/10.1109/ISIT45174.2021.9518249
https://doi.org/10.1109/ISIT54713.2023.10206655
https://doi.org/10.4230/LIPIcs.CCC.2023.14
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.16
https://doi.org/10.1109/TIT.2021.3076396
https://doi.org/10.1109/TIT.2021.3076396
https://doi.org/10.4230/LIPIcs.ITC.2020.16
https://doi.org/10.1145/200836.200880
https://arxiv.org/abs/2001.03692
https://doi.org/10.1137/20M135515X
https://doi.org/10.1109/FOCS54457.2022.00010
https://eccc.weizmann.ac.il/report/2023/110/
https://eccc.weizmann.ac.il/report/2023/110/
https://doi.org/10.1137/1.9781611976465.100
https://doi.org/10.1145/3519935.3520024
https://eccc.weizmann.ac.il/report/2023/067/
https://eccc.weizmann.ac.il/report/2023/067/
https://eccc.weizmann.ac.il/report/2023/064/
https://doi.org/10.1109/TIT.2018.2809788
https://doi.org/10.1145/2422436.2422494
https://doi.org/10.1145/2422436.2422494
https://doi.org/10.1137/19M1307834
https://doi.org/10.1137/19M1307834
https://doi.org/10.4086/toc.2020.v016a018
https://doi.org/10.4086/toc.2020.v016a018
https://doi.org/10.1007/978-3-540-85174-5_8
https://doi.org/10.1007/978-3-540-85174-5_8
https://doi.org/10.1007/978-3-642-22935-0_51
https://doi.org/10.1016/j.ic.2014.12.013
https://doi.org/10.1016/j.ic.2014.12.013
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/780542.780560
https://doi.org/10.1145/3051093
https://doi.org/10.1145/3051093

Relaxed Local Correctability from Local Testing

https://doi.org/10.1145/2629416

Richard J. Lipton. 1990. Efficient Checking of Computations. In Proceedings of
the 7th Annual Symposium on Theoretical Aspects of Computer Science (STACS
’90). Springer-Verlag, Berlin, Heidelberg, 207-215. https://doi.org/10.1007/3-540-
52282-4_44

Or Meir. 2008. Combinatorial Construction of Locally Testable Codes. In Proceed-
ings of the Fortieth Annual ACM Symposium on Theory of Computing (Victoria,
British Columbia, Canada) (STOC "08). Association for Computing Machinery,
New York, NY, USA, 285-294. https://doi.org/10.1145/1374376.1374419

Rafail Ostrovsky, Omkant Pandey, and Amit Sahai. 2007. Private Locally De-
codable Codes. In Automata, Languages and Programming, Lars Arge, Christian
Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 387-398. https://doi.org/10.1007/978-3-540-73420-8_35
Rafail Ostrovsky and Anat Paskin-Cherniavsky. 2015. Locally Decodable Codes
for Edit Distance. In Information Theoretic Security, Anja Lehmann and Stefan
Wolf (Eds.). Springer International Publishing, Cham, 236-249. https://doi.org/

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

10.1007/978-3-319-17470-9_14

Pavel Panteleev and Gleb Kalachev. 2022. Asymptotically Good Quantum
and Locally Testable Classical LDPC Codes. In Proceedings of the 54th An-
nual ACM SIGACT Symposium on Theory of Computing (Rome, Italy) (STOC
2022). Association for Computing Machinery, New York, NY, USA, 375-388.
https://doi.org/10.1145/3519935.3520017

Ronitt Rubinfeld and Madhu Sudan. 1996. Robust Characterizations of Polynomi-
als with Applications to Program Testing. SIAM J. Comput. 25, 2 (1996), 252-271.
https://doi.org/10.1137/S0097539793255151

David Woodruff. 2007. New Lower Bounds for General Locally Decodable Codes.
Technical Report TR07-006. Electronic Colloquium on Computational Complexity
(ECCC). https://eccc.weizmann.ac.il/report/2007/006

Sergey Yekhanin. 2012. Locally Decodable Codes. Foundations and Trends in Theo-
retical Computer Science 6, 3 (2012), 139-255. https://doi.org/10.1561/0400000030

Received 23-OCT-2023; accepted 2024-02-11

https://doi.org/10.1145/2629416
https://doi.org/10.1007/3-540-52282-4_44
https://doi.org/10.1007/3-540-52282-4_44
https://doi.org/10.1145/1374376.1374419
https://doi.org/10.1007/978-3-540-73420-8_35
https://doi.org/10.1007/978-3-319-17470-9_14
https://doi.org/10.1007/978-3-319-17470-9_14
https://doi.org/10.1145/3519935.3520017
https://doi.org/10.1137/S0097539793255151
https://eccc.weizmann.ac.il/report/2007/006
https://doi.org/10.1561/0400000030

	Abstract
	1 Introduction
	1.1 Techniques
	1.2 Related Work

	2 Preliminaries
	2.1 General Notation
	2.2 Error-Correcting Codes
	2.3 Relaxed Locally Correctable Codes
	2.4 Locally Testable Codes

	3 Construction
	3.1 Boosting RLCC Block Length
	3.2 Instantiating the Nesting Framework

	4 Final Construction
	Acknowledgments
	A Concrete Parameters for Locally Testable Codes
	References

