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ABSTRACT
We construct the first asymptotically good relaxed locally cor-

rectable codes with polylogarithmic query complexity, bringing

the upper bound polynomially close to the lower bound of Gur

and Lachish (SICOMP 2021). Our result follows from showing that

a high-rate locally testable code can boost the block length of a

smaller relaxed locally correctable code, while preserving the cor-

recting radius and incurring only a modest additive cost in rate

and query complexity. We use the locally testable code’s tester to

check if the amount of corruption in the input is low; if so, we can

“zoom-in” to a suitable substring of the input and recurse on the

smaller code’s local corrector. Hence, iterating this operation with

a suitable family of locally testable codes due to Dinur, Evra, Livne,

Lubotzky, and Mozes (STOC 2022) yields asymptotically good codes

with relaxed local correctability, arbitrarily large block length, and

polylogarithmic query complexity.

Our codes asymptotically inherit the rate and distance of any

locally testable code used in the final invocation of the operation.

Therefore, our framework also yields nonexplicit relaxed locally

correctable codes with polylogarithmic query complexity that have

rate and distance approaching the Gilbert–Varshamov bound.

CCS CONCEPTS
• Theory of computation → Error-correcting codes; • Mathe-
matics of computing→ Coding theory.
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1 INTRODUCTION
Locally correctable codes (LCCs) and locally decodable codes (LDCs)

are error correcting codes that allow any bit of the original code-

word or message, respectively, to be recovered using very few

queries to a noisy codeword with bounded corruption. This is a

natural and useful property, but unfortunately little is known about
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the best possible parameter tradeoffs between the rate and query

complexity. In the asymptotically good (constant rate and distance)

regime, Katz and Trevisan [27] show that any LDC (and any linear

LCC) with block length 𝑛 must make Ω̃(log𝑛) queries. However,
the most query-efficient constant-rate LCCs and LDCs, constructed

by Kopparty, Meir, Ron-Zewi, and Saraf [29], require 2
𝑂̃ (

√
log𝑛)

.

Whether the true optimal query complexity is polylogarithmic or

not is a longstanding open problem. A Reed–Muller code with ap-

propriate parameters brings us tantalizingly close: such a code is

locally correctable with polylogarithmic query complexity, but with

block length slightly superlinear in the rate (e.g. [38, Section 2.3]).

Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [4] and Gur,

Ramnarayan, and Rothblum [23] introduced the notions of relaxed
locally decodable codes (RLDCs) and relaxed locally correctable

codes (RLCCs), respectively. These codes admit local decoders

or correctors that either decode/correct, or detect corruption in

the input by returning a rejection symbol ⊥. For asymptotically

good RLDCs and (linear) RLCCs, the gap between lower and up-

per bounds is smaller but still significant: the best lower bound is

Ω̃(
√︁
log𝑛) due to Gur and Lachish [22], while the best upper bound,

due to Cohen and Yankovitz [14], is (log𝑛)𝑂 (log log log𝑛)
. In this

work, we improve the upper bound by constructing asymptotically

good RLCCs with polylogarithmic query complexity.

Theorem (informal, see Corollary 4.1). For infinitely many
positive 𝑛 and any constant 𝑅 ∈ (0, 1), there exist explicit binary
linear RLCCs (and thus RLDCs) of block length 𝑛, rate 𝑅, constant
correcting (or decoding) radius, and query complexity 𝑂 (log69 𝑛).

We make no effort to optimize the exponent, instead striving for

a simpler exposition. The related and well-studied notion of locally

testable codes (LTCs), where errors can be detectedwith few queries,

proves to be key: we can build a relaxed local correctable code

from any family of high-rate linear locally testable codes. Then, by

leveraging the locally testable codes of Dinur, Evra, Livne, Lubotzky,

and Mozes [17], we construct explicit RLCCs with constant rate,

constant distance, and polylogarithmic query complexity. We also

get nonexplicit RLCCs with polylogarithmic query complexity that

approach the Gilbert–Varshamov bound, which is the best known

general tradeoff between rate and distance for which codes exist.

The last known RLCCs to approach the Gilbert–Varshamov bound

are LCCs by Gopi, Kopparty, Oliveira, Ron-Zewi, and Saraf [20]

which require polynomially many (i.e., 𝑛𝜀 ) queries.

1.1 Techniques
To construct an asymptotically good RLCC with an arbitrarily large

block length 𝑛, we start with a code with extremely small block

length (say, polylogarithmic in 𝑛). Such a code is trivially an RLCC

with polylogarithmic query complexity, because it has a corrector

which reads all polylog𝑛 symbols of the input. Then, we apply a
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transformation that uses this small RLCC to build an RLCC with

slightly larger block length. We can repeat this transformation,

building RLCCs with successively larger block length, until we

reach our target block length 𝑛. At each of these steps, we need

to maintain the distance and correcting radius of our code while

minimizing the gain in query complexity and loss in rate, so that

the final code will be asymptotically good. Indeed, such an ap-

proach has been used to construct asymptotically good LTCs and

LCCs [29, 32], and is the basis for both prior asymptotically good

RLCC constructions [14, 23].

1.1.1 Prior Constructions. Gur, Ramnarayan, and Rothblum [23]

use the tensor product in this framework to construct RLCCs. Start-

ing from a RLCC with tiny block length, they build successively

larger RLCCs by taking the tensor product of the code with itself. If

𝐶 ⊆ F𝑛 is a linear code, then the tensor product code𝐶 ⊗𝐶 ⊆ F𝑛×𝑛
can be viewed as the set of matrices where every row and every

column is a codeword of𝐶 . They show that if𝐶 is an RLCC,𝐶 ⊗𝐶 is

also an RLCC because it has a local corrector that calls the corrector

for 𝐶 as a subroutine on relevant rows and columns of the input;

the corrector for 𝐶 ⊗ 𝐶 recurses on the smaller code’s corrector

polylog𝑛 times. The tensor product step squares the block length

each time, so 𝑂 (log log𝑛) iterations are required to construct an

RLCC with block length 𝑛; each step incurs a polylog𝑛 factor in the

query complexity, so the total queries required is (log𝑛)𝑂 (log log𝑛)
.

Each tensor product step incurs a polylog𝑛 factor in the query

complexity because of its rate deterioration. If 𝐶 has rate 𝑅 = 1 − 𝜀,

then 𝐶 ⊗ 𝐶 has rate 𝑅2 ≈ 1 − 2𝜀; the loss in rate has doubled after

one iteration, so this loss will grow exponentially in the number

of iterations. Therefore, for the final RLCC to have constant rate

after 𝑂 (log log𝑛) tensoring steps, the initial RLCC must have ex-

tremely high rate, at least 1 − 1/log𝑛, which limits the distance

of the initial RLCC. This initial distance causes the polylog𝑛 mul-

tiplicative overhead in query complexity. To address this, Cohen

and Yankovitz [14] give an alternative to tensoring called row-
evasive partitioning, which incurs an additive loss in rate rather

than a multiplicative one. The starting code can now have lower

rate, like 1 − 1/log log𝑛, and thus higher distance, so the query

overhead of each step (which is still a multiplicative factor) is im-

proved to poly(log log𝑛). This yields a total query complexity of

(log log𝑛)𝑂 (log log𝑛) = (log𝑛)𝑂 (log log log𝑛)
.

1.1.2 Our Construction. To achieve asymptotically good RLCCs

with polylog𝑛 query complexity, we develop a new operation for

boosting the block length of an RLCC. In contrast to tensoring and

row-evasive partitioning, our operation augments the block length

of an RLCC by a very modest polylog𝑛 factor, but incurs only an

additive cost in both rate and query complexity. Each step solely

requires polylog𝑛 additional queries, so although this operation

needs to be iterated more often than tensoring, i.e., up to 𝑚 =

𝑂 (log𝑛) times to reach block length 𝑛, the final query complexity

is𝑚 · polylog𝑛 = polylog𝑛.

Intuitively, tensoring and row-evasive partitioning are opera-

tions that work by intertwining the structure of many copies of a

smaller RLCC, so that the local corrector of the smaller RLCC can be

used to cross-check overlapping portions of the input against each

other. This necessitates multiple recursive calls to a smaller code’s

corrector at each step of the construction, which causes the final

query complexity to grow exponentially in the number of iterations.

Instead of cross-checking smaller RLCCs, our boosting operation

enlists the outside help of a locally testable code to add structure.

We will use the LTC’s self-contained testing algorithm to ensure

that it is safe to recurse on the smaller RLCC’s corrector exactly

once. This “tail recursion” is why our total query complexity grows

linearly in the number of iterations, rather than exponentially.

Our boosting step is called nesting. Say we have an RLCC𝐶 ⊆ Σ𝑛

with correcting radius 𝛿 and a locally testable code LTC ⊆ Σ𝑁

with distance 2𝛿 where (for simplicity) 𝑛 divides 𝑁 . Then, the code

formed by nesting 𝐶 in LTC is defined to be

LTC ⋒ 𝐶 ≔ LTC ∩𝐶𝑁 /𝑛,

and we claim that this code is an RLCC with correcting radius 𝛿 .

That is, this code has a local algorithm that, given any input𝑤 that

satisfies dist(𝑤, LTC⋒𝐶) ≤ 𝛿 , either corrects or detects corruption.

To see why, suppose the distance from 𝑤 ∈ Σ𝑁 to the nearest

codeword 𝑐 ∈ LTC ⋒𝐶 is very small, i.e., dist(𝑤, LTC ⋒𝐶) ≤ 𝛿𝑛/𝑁 .

Then we can hope to correct any index of 𝑤 by resorting to the

local corrector of 𝐶 . To correct𝑤𝑖 , we consider the unique interval

𝐼 := {𝑘𝑛 + 1, . . . , 𝑘𝑛 + 𝑛} containing 𝑖 . We know by construction

that 𝑐 |𝐼 is a codeword of 𝐶 . Furthermore, we know that 𝑤 differs

from 𝑐 in at most 𝛿𝑛 indices, so dist(𝑤 |𝐼 , 𝑐 |𝐼 ) ≤ 𝛿 which is within

the correcting radius of 𝐶 . Hence, we can “zoom-in” and use the

corrector for 𝐶 to correct any symbol of𝑤 |𝐼 , including𝑤𝑖 .

Otherwise, if 𝛿𝑛/𝑁 < dist(𝑤, LTC ⋒ 𝐶) ≤ 𝛿 , we can hope to

detect (rather than correct) corruption using the local tester of LTC.
A locally testable code, by definition, has a local testing algorithm𝑇

that rejects its input𝑤 with probability proportional to dist(𝑤, LTC).
Because LTC ⋒ 𝐶 ⊆ LTC and LTC has distance 2𝛿 , we know that

dist(𝑤, LTC) = dist(𝑤, LTC ⋒ 𝐶) > 𝛿𝑛/𝑁 , and so 𝑇 will reject 𝑤

with probability Ω(𝛿𝑛/𝑁 ). Thus,𝑂 (𝑁 /𝛿𝑛) repetitions (hiding some

minor factors) of the local tester suffice to detect corruption with

constant probability.

Therefore, by combining the corrector for 𝐶 and tester for LTC,
we can handle both cases. Run both the corrector and the tester; if

the tester finds corruption, we can return the reject symbol ⊥, and
otherwise we are likely in the small distance case and can return

the output of the corrector. This shows that LTC ⋒ 𝐶 is an RLCC

which inherits the larger block length of LTC while requiring only

roughly 𝑂 (𝑁 /𝛿𝑛) more queries than 𝐶 .

Furthermore, we can show that nesting does not destroy the

rate. If LTC and 𝐶 are linear, and if LTC has rate 1 − 𝜀LTC while 𝐶

has rate 1 − 𝜀, then by counting the number of linear constraints,

LTC ⋒ 𝐶 has rate at least 1 − 𝜀 − 𝜀LTC. If we hope to repeatedly

apply nesting with larger and larger LTCs (block length growing

by a small factor) to build an RLCC with arbitrarily large block

length 𝑛, then we will need to apply nesting𝑚 = 𝑂 (log𝑛) times.

Assuming that all of the LTCs have rate 1 − 𝜀LTC, the RLCC will

have rate of 1 −𝑂 (log𝑛) · 𝜀LTC which we need to be Ω(1) in order

to be asymptotically good. This forces us to use LTCs with rate at

least 1 −𝑂 (1/log𝑛).
Fortunately, we can use the construction of Dinur, Evra, Livne,

Lubotzky, and Mozes [17] to get the high-rate linear LTCs we need.

For any sufficiently large choice of 𝑛, there is an infinite sequence of

explicit LTCs with rate at least 1−𝑂 (1/log𝑛) and with appropriate
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local testing parameters so that the additive query overhead of each

nesting step is polylog𝑛 as desired. By iteratively nesting these

LTCs, we can build an RLCC of block length 𝑛 with constant rate

and polylogarithmic query complexity.

One may notice that since the LTCs have rate 1−𝑜 (1), they must

also have 𝑜 (1) distance, because of e.g. the Singleton bound. The

correcting radius of our RLCC thus will also be 𝑜 (1), and so our code
is not yet asymptotically good. This is remedied by nesting in one

last LTC with constant rate and distance. This boosts the correcting

radius to be constant, and the rate of this last LTC dominates the

rate of the final RLCC, which at last is asymptotically good.

1.2 Related Work
Prior constructions and lower bounds. The two main parameter

regimes for RLDCs and RLCCs are the constant query regime (opti-

mizing block length given the dimension 𝑘 and query complexity 𝑞)

and the asymptotically good regime (optimizing query complexity

when 𝑘/𝑛 = Θ(1) and 𝛿 = Θ(1)). In the constant-query regime, the

best known block length is𝑛 = 𝑂 (𝑘1+𝑂 (1/𝑞) ) [2], following a line of
work [4, 13, 23]. Interestingly, this matches (up to a constant factor

in 𝑞) the block length lower bound for full-fledged LDCs [27, 37].

Table 1 summarizes the historic state of the art query complexity

for asymptotically good RLCCs. This table does not include Gopi,

Kopparty, Oliveira, Ron-Zewi, and Saraf [20] who optimize rate

(approaching the Gilbert–Varshamov bound) instead of queries.

Gur and Lachish [22] establish lower bounds for RLDCs, includ-

ing a Ω̃(
√︁
log𝑛) query lower bound for asymptotically good RLDCs

with nonadaptivity. Dall’Agnol, Gur, and Lachish [16] extend the

lower bound to adaptive decoders, and Goldreich [19] provides

an alternative and simpler proof, which in some cases is stronger.

Block, Blocki, Cheng, Grigorescu, Li, Zheng, and Zhu [7] prove an

exponential block length lower bound for 2-query RLDCs, asymp-

totically matching the exponential block length lower bound for

2-query LDCs established by Kerenidis and de Wolf [28].

Alternative error models. LDCs, LCCs, and their relaxed coun-

terparts have been studied in other error models, distinct from

the Hamming worst-case error setting that we study in this work.

These codes have been studied in the insertion-deletion error model,

where a limited number of symbols can be added or removed (rather

than simply flipped) anywhere in the codeword [7, 8, 12, 34]. In

addition, both the Hamming and insertion-deletion models have

Table 1: Best known query complexity for asymptotically
good RLCCs with block length 𝑛.

Technique Query complexity Due to

low-degree polynomials 𝑛𝜀 [3, 36]

multiplicity codes 𝑛𝜀 [30]

lifted Reed–Solomon codes 𝑛𝜀 [21]

expander graphs 𝑛𝜀 [26]

distance amplification 2
𝑂̃ (

√
log𝑛)

[29]

repeated tensoring (log𝑛)𝑂 (log log𝑛)
[23]

row-evasive partitions (log𝑛)𝑂 (log log log𝑛)
[14]

nested LTCs log
𝑂 (1) 𝑛 this work

been studied in the computationally bounded setting, where the

adversary choosing the location of bit flips or insertions/deletions

has limited resources. Then, cryptographic assumptions can be used

to construct LDCs and LCCs [1, 5, 10, 24, 25, 33] as well as their

relaxed counterparts [6, 9].

In particular, the latter two works use these assumptions to

(among other results) construct asymptotically good RLDCs and

RLCCs in the computationally bounded Hamming model with poly-

logarithmic queries. We achieve this in the general setting.

Subsequent work. Soon after we posted the preprint for this work,
Cohen and Yankovitz [15] improved our technique and lowered

the query complexity for asymptotically good RLCCs from our

log
69 𝑛 to (log𝑛)2+𝑜 (1) . They observe that the nesting operation

can boost an RLCC using a code that is locally testable only on

inputs with bounded corruption, rather than a full-fledged locally

testable code which must work on all inputs. Thus, they can use a

family of expander codes, which satisfy this weaker property, to

simplify the RLCC construction and improve the query complexity.

2 PRELIMINARIES
2.1 General Notation
Let dist(𝑥,𝑦) denote the relative Hamming distance between two

strings with the same length and alphabet:

∀𝑥,𝑦 ∈ Σ𝑛 . dist(𝑥,𝑦) ≔ #{𝑖 ∈ [𝑛] : 𝑥𝑖 ≠ 𝑦𝑖 }
𝑛

.

All of the necessary properties of a distance function are satisfied,

including the triangle inequality. For every subset 𝑆 ⊆ Σ𝑛 , let
dist(𝑥, 𝑆) ≔ min𝑦∈𝑆 dist(𝑥,𝑦).

We say that 𝑓 (𝑛) ≤ poly(𝑛) if there is a fixed polynomial 𝑝 such

that for large enough𝑛, 𝑓 (𝑛) ≤ 𝑝 (𝑛), and analogously for ≥. We say

𝑓 (𝑛) = poly(𝑛) if 𝑓 (𝑛) ≤ poly(𝑛) and 𝑓 (𝑛) ≥ poly(𝑛). Analogous
conventions are used for polylog𝑛, which denotes poly(log𝑛). The
polynomials implicitly defined by poly or polylog are fixed with

respect to all parameters involved.

Let N denote the set of positive integers, and F2 denote the finite
field of 2 elements. For every 𝑘 ∈ N, define [𝑘] ≔ {1, 2, . . . , 𝑘}.
For a string 𝑥 ∈ Σ𝑛 and an index set 𝐼 ⊆ [𝑛], let 𝑥 |𝐼 denote the
restriction of 𝑥 to the indices in 𝐼 . For a set of strings 𝑆 ⊆ Σ𝑛 , let
𝑆 |𝐼 denote the set {𝑥 |𝐼 : 𝑥 ∈ 𝑆}.

2.2 Error-Correcting Codes
An error-correcting code is a set of strings, called codewords, where
every two codewords are well-separated.

Definition 2.1. A code over an alphabet Σ with dimension 𝑘 ,

block length 𝑛, and distance 𝛿 is a subset𝐶 ⊆ Σ𝑛 of size |Σ𝑘 | where

∀𝑐 ∈ 𝐶. dist(𝑐,𝐶 \ 𝑐) ≥ 𝛿.

If Σ = {0, 1}, 𝐶 is called a binary code. In this work, we treat {0, 1}
and F2 as interchangeable.

The ratio 𝑘/𝑛 is called the rate of a code. In this work, we study

asymptotically good codes which have constant rate and distance.

Remark 2.2. If 𝐶 ⊆ Σ𝑛 is a code with distance 𝛿 , 𝑤 ∈ Σ𝑛 , and
𝑐 ∈ 𝐶 satisfies dist(𝑤, 𝑐) < 𝛿/2, then 𝑐 must be the unique closest
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codeword to𝑤 . This is because for any other codeword 𝑐′ ∈ 𝐶 ,

dist(𝑐′,𝑤) ≥ dist(𝑐′, 𝑐) − dist(𝑤, 𝑐) ≥ 𝛿 − 𝛿/2 > dist(𝑐,𝑤)

by the triangle inequality.

Definition 2.3. A code 𝐶 ⊆ Σ𝑛 is systematic if there is a bijective
map Enc : Σ𝑘 → 𝐶 where the message appears in the codeword:

∀𝑚 ∈ Σ𝑘 . Enc(𝑚) | [𝑘 ] =𝑚.

Definition 2.4. A linear code is a code 𝐶 ⊆ F𝑛 which is a linear

subspace over a finite field. Every linear code can be specified by a

generator matrix which gives a basis for the code and which also

serves as an encoding map, or by a parity-check matrix which gives

a set of linear constraints that every codeword must satisfy. We say

that a family of linear codes is explicit if each code’s parity-check

matrix can be computed uniformly in time polynomial to the size

of the matrix.

Remark 2.5. A linear code can always be made systematic, be-

cause we can take its generator matrix, apply Gaussian elimination,

and permute columns until it contains a 𝑘 × 𝑘 identity matrix in

the first 𝑘 columns.

2.3 Relaxed Locally Correctable Codes
LCCs and LDCs can recover any bit of the closest codeword or

message, respectively, using very few queries to a noisy codeword.

The study of LCCs and LDCs has roots in program checking [3, 11,

31, 36] and was first formalized by Katz and Trevisan [27]; we refer

the reader to Yekhanin’s comprehensive survey [38].

Relaxed locally decodable codes and relaxed locally correctable

codes have the option of detecting corruption instead of decod-

ing or correcting. The study of these codes is closely related to

probabilistically checkable proofs and originates with Ben-Sasson,

Goldreich, Harsha, Sudan, and Vadhan [4], who defined RLDCs and

gave the first constructions.

Definition 2.6 (RLDC). A code 𝐶 ⊆ Σ𝑛 is a relaxed locally decod-
able code with decoding radius 𝛿 and query complexity 𝑞 if it has

an encoding map Enc : Σ𝑘 → 𝐶 and a randomized corrector𝑀 that

makes 𝑞 queries such that

(1) (Completeness) For every𝑚 ∈ Σ𝑘 ,

∀𝑖 ∈ [𝑘] . Pr[𝑀Enc(𝑚) (𝑖) =𝑚𝑖 ] = 1.

(2) (Soundness) For every 𝑚 ∈ Σ𝑘 and every 𝑤 ∈ Σ𝑛 with

dist(𝑤, Enc(𝑚)) ≤ 𝛿 ,

∀𝑖 ∈ [𝑛] . Pr[𝑀𝑤 (𝑖) ∈ {𝑚𝑖 ,⊥}] ≥
2

3

.

The superscript denotes the input that𝑀 queries.

Gur, Ramnarayan, and Rothblum [23] later introduced the corre-

sponding notion of RLCCs along with constructions.

Definition 2.7 (RLCC). A code 𝐶 ⊆ Σ𝑛 is a relaxed locally cor-
rectable code with correcting radius 𝛿 and query complexity 𝑞 if it

has a randomized corrector𝑀 that makes 𝑞 queries such that

(1) (Completeness) For every 𝑐 ∈ 𝐶 ,

∀𝑖 ∈ [𝑛] . Pr[𝑀𝑐 (𝑖) = 𝑐𝑖 ] = 1.

(2) (Soundness) For every 𝑐 ∈ 𝐶 and𝑤 ∈ Σ𝑛 with dist(𝑤, 𝑐) ≤ 𝛿 ,

∀𝑖 ∈ [𝑛] . Pr[𝑀𝑤 (𝑖) ∈ {𝑐𝑖 ,⊥}] ≥
2

3

.

The superscript denotes the input that𝑀 queries. We refer to𝑀 as

a 𝐶-corrector.

Here, we have given strong definitions of RLDCs and RLCCs

featuring perfect completeness. Goldberg [18] shows that for linear

RLDCs and RLCCs, the above definition is essentially equivalent

to allowing imperfect completeness (the corrector/decoder can

sometimes err on true codewords) and requiring nonadaptivity

(the corrector/decoder’s queries do not depend on the outcome of

prior queries). That said, all of the codes that we construct have

nonadaptive correctors.

A systematic RLCC implies an RLDC with the same radius and

query complexity, because we can use the local corrector on the

portion of the codeword which corresponds to message symbols.

In addition, an RLCC with correcting radius 𝛿 must have distance

at least 𝛿 in order for perfect completeness and soundness to simul-

taneously hold. Therefore, we say an RLCC is asymptotically good

if it has constant rate and constant correcting radius, which implies

constant distance.

2.4 Locally Testable Codes
Locally testable codes (LTCs) are codes with testing algorithms that

can gauge corruption with few queries to the input. We will make

use of the following (strong) definition of LTCs:

Definition 2.8 (LTC). A code 𝐶 ⊆ Σ𝑛 is a locally testable code
with distance 𝛿 , testability1 𝜅, and query complexity 𝑞 if it has a

randomized tester 𝑇 that makes 𝑞 queries and returns either ⊤
(accept) or ⊥ (reject), such that

(1) (Completeness) For every 𝑐 ∈ 𝐶 ,

Pr[𝑇𝑐 = ⊤] = 1.

(2) (Soundness) For every𝑤 ∈ Σ𝑛 ,

Pr[𝑇𝑤 = ⊥] ≥ 𝜅 · dist(𝑤,𝐶).

The superscript denotes the input that𝑇 queries. We refer to𝑇 as a

𝐶-tester.

Dinur, Evra, Livne, Lubotzky, and Mozes [17] and Panteleev

and Kalachev [35] constructed the first locally testable codes with

constant rate, distance, and query complexity (referred to as 𝑐3-

LTCs). In particular, the former are able to construct explicit families

of linear LTCs with rate arbitrarily close to 1:

Theorem 2.9 ([17, Theorem 1.1 and Remark 5.3]). For any
𝑅 = 1 − 𝜀 ∈ (0, 1), there is a prime power 𝑝 = Θ((1/𝜀)10) and values
𝛿 ≥ Ω(𝜀3), 𝜅 ≥ Ω(𝜀15), and 𝑞 ≤ 𝑂 ((1/𝜀)20), such that for all 𝑗 ∈ N,
there exists a binary linear LTC LTC𝑗 with rate at least 𝑅, minimum
distance at least 𝛿 , testability at least 𝜅, query complexity at most 𝑞,
and block length 𝑛 𝑗 ≔ (𝑞/8) · (𝑝3𝑗 − 𝑝 𝑗 ).

1
This parameter has also been referred to as the detection probability e.g. [17].
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3 CONSTRUCTION
3.1 Boosting RLCC Block Length
The building block of our construction is the nesting operation ⋒
which combines two codes.

Definition 3.1. Let 𝐶1 ⊆ Σ𝑁 and 𝐶2 ⊆ Σ𝑛 with 𝑛 ≤ 𝑁 . Define

𝐶1 ⋒ 𝐶2 ≔ 𝐶1 ∩ (𝐶 ⌊𝑁 /𝑛⌋
2

× Σ𝑁−⌊𝑁 /𝑛⌋ ·𝑛) ∩ (Σ𝑁−𝑛 ×𝐶2).

We say that 𝐶1 ⋒ 𝐶2 is the code formed by nesting 𝐶2 in 𝐶1.

That is, 𝐶1 ⋒ 𝐶2 is the subset of codewords 𝑐 in 𝐶1 such that

𝑐 |{1,...,𝑛} ∈ 𝐶2, 𝑐 |{𝑛+1,...,2𝑛} ∈ 𝐶2, and so on. If 𝑛 does not divide

𝑁 , then we also require 𝑐 |{𝑁−𝑛+1,...,𝑁 } ∈ 𝐶2. Because 𝐶1 ⋒ 𝐶2 is a

subset of 𝐶1, it must have distance at least that of 𝐶1. In addition,

when both codes are linear, we can bound the rate of 𝐶1 ⋒ 𝐶2.

Nesting 𝐶2 in 𝐶1 incurs an additive loss in rate:

Lemma 3.2. Let 𝑛 ≤ 𝑁 . Let 𝐶1 ⊆ Σ𝑁 be a linear code with rate
1 − 𝜀1 and distance 𝛿1, and let 𝐶2 ⊆ Σ𝑛 be a linear code with rate
1− 𝜀2. Then,𝐶1 ⋒𝐶2 ⊆ Σ𝑁 is a linear code with rate at least 1− 𝜀1 −
(𝑛/𝑁 · ⌈𝑁 /𝑛⌉)𝜀2.

Proof. Using the rank-nullity theorem, the total number of

linear constraints defining 𝐶1 ⋒ 𝐶2 is

≤ 𝜀1𝑁 + 𝜀2𝑛 ·
⌈
𝑁

𝑛

⌉
=

(
𝜀1 +

𝑛

𝑁
·
⌈
𝑁

𝑛

⌉
· 𝜀2

)
· 𝑁

which then implies that the rate of 𝐶1 ⋒ 𝐶2 is

≥ 1 − 𝜀1 −
𝑛

𝑁
·
⌈
𝑁

𝑛

⌉
· 𝜀2 . □

Remark 3.3. If 𝑛 divides 𝑁 , then𝐶1 ⋒𝐶2 = 𝐶1 ∩𝐶
𝑁 /𝑛
2

, with rate

at least 1 − 𝜀1 − 𝜀2. When 𝑛 does not divide 𝑁 , the rate of 𝐶1 ⋒ 𝐶2

is at least 1 − 𝜀1 − (1 + 𝑛/𝑁 )𝜀2.

Next, we prove that nesting preserves relaxed local correctability

when performed with an LTC.We can lift a smaller RLCC to a larger

block length by nesting it inside an LTC.

Lemma 3.4. Let LTC ⊆ Σ𝑛LTC be an LTC with query complexity
𝑞LTC, distance 𝛿LTC, and testability 𝜅. Let 𝐶 ⊆ Σ𝑛 be an RLCC with
query complexity 𝑞 and correcting radius 𝛿 where 𝑛 ≤ 𝑛LTC. Then,
LTC ⋒ 𝐶 ⊆ Σ𝑛LTC is an RLCC with correcting radius 𝛿LTC/2 and
query complexity 𝑞 +𝑂 (𝑞LTC𝑛LTC/𝛿𝜅𝑛).

Proof. Given the LTC-tester 𝑇 and the 𝐶-corrector𝑀𝐶 , we can

give a corrector𝑀𝑤 (𝑖) for LTC ⋒ 𝐶:
(1) Let 𝐼 be an interval of [𝑛LTC] of size 𝑛, defined as follows:

𝐼 ≔

{
{⌈𝑖/𝑛⌉ · 𝑛 − (𝑛 − 1), . . . , ⌈𝑖/𝑛⌉ · 𝑛} if 𝑖 < 𝑛LTC − 𝑛

{𝑛LTC − (𝑛 − 1), . . . , 𝑛LTC} if 𝑖 ≥ 𝑛LTC − 𝑛

This is chosen so that that 𝑖 ∈ 𝐼 and ∀𝑐 ∈ LTC ⋒ 𝐶. 𝑐 |𝐼 ∈ 𝐶 .

(2) Run𝑀
𝑤 |𝐼
𝐶

(𝑖∗), where 𝑖∗ ≔ 𝑖 + 1 −min 𝐼 . We choose 𝑖∗ such
that (𝑤 |𝐼 )𝑖∗ = 𝑤𝑖 .

(3) For 𝑡 ≔ 𝑂 (𝑛LTC/𝛿𝜅𝑛) iterations, run 𝑇𝑤
.

(4) Output ⊥ if any run of the LTC-tester in step 3 returns ⊥;
otherwise output the result of step 2.

The query complexity of step 2 is 𝑞, while the query complexity of

step 3 is 𝑞LTC ·𝑂 (𝑛LTC/𝛿𝜅𝑛). In addition,𝑀 is nonadaptive as long

as 𝑇 and𝑀𝐶 are nonadaptive.

Next, we can show that 𝑀 satisfies the perfect completeness

condition of the RLCC definition. Since 𝑤 ∈ LTC ⋒ 𝐶 ⊆ LTC,
every repetition of the LTC-tester in step 3 will return ⊤ (accept),

so for all 𝑖 ,𝑀𝑤 (𝑖) will return the result of step 2. By definition, if

𝑤 ∈ LTC⋒𝐶 , then𝑤 |𝐼 ∈ 𝐶 . Therefore, the𝐶-corrector in step 2 will

return (𝑤 |𝐼 )𝑖∗ = 𝑤𝑖 with certainty, and so will𝑀𝑤 (𝑖), as needed.
Finally, we show soundness. Let 0 < dist(𝑤, LTC ⋒𝐶) < 𝛿LTC/2,

and let 𝑐 ∈ LTC⋒𝐶 be the unique closest codeword to𝑤 . Note that

𝑐 ∈ LTC and 𝑐 |𝐼 ∈ 𝐶 . Then, for all 𝑖 , we need to show Pr[𝑀𝑤 (𝑖) ∈
{𝑐𝑖 ,⊥}] ≥ 2/3.

• First, assume dist(𝑤, 𝑐) = dist(𝑤, LTC ⋒𝐶) ≥ 𝛿𝑛/2𝑛LTC. Be-
cause dist(𝑤, 𝑐) < 𝛿LTC/2, 𝑐 is the unique codeword in LTC
which is closest to𝑤 by Remark 2.2. Hence, one run of 𝑇𝑤

will return ⊥ with probability at least 𝜅𝛿𝑛/𝑛LTC. Therefore,
step 3 returns ⊥ with probability

≥ 1 −
(
1 − 𝛿𝜅𝑛

2𝑛LTC

)𝑡
≥ 1 − exp

(
− 𝑡𝛿𝜅𝑛

2𝑛LTC

)
≥ 2/3,

for a suitable constant in 𝑡 . Thus, ∀𝑖 . Pr[𝑀𝑤 (𝑖) = ⊥] ≥ 2/3
which satisfies soundness.

• Now assume dist(𝑤, 𝑐) < 𝛿𝑛/2𝑛LTC. Fromherewe can bound

the distance between the substrings𝑤 |𝐼 and 𝑐 |𝐼 ; the distance
of the substrings is maximized if all of the symbols that

differ between 𝑤 and 𝑐 lie in the interval 𝐼 . Consequently,

dist(𝑤 |𝐼 , 𝑐 |𝐼 ) < 𝛿/2, and 𝑐 |𝐼 is the unique codeword in 𝐶

closest to𝑤 |𝐼 (see Remark 2.2).

Applying the soundness condition of the 𝐶-corrector,

Pr[𝑀𝑤 |𝐼
𝐶

(𝑖∗) ∈ {(𝑐 |𝐼 )𝑖∗︸︷︷︸
𝑐𝑖

,⊥}] ≥ 2/3.

𝑀𝑤 (𝑖) will return either the output of𝑀𝑤 |𝐼
𝐶

(𝑖∗), or⊥ if some

iteration of step 3 rejects. Hence,

Pr[𝑀𝑤 (𝑖) ∈ {𝑐𝑖 ,⊥}] ≥ Pr[𝑀𝑤 |𝐼
𝐶

(𝑖∗) ∈ {𝑐𝑖 ,⊥}] ≥ 2/3.
This shows that the soundness condition is satisfied in all cases. □

In summary, nesting an RLCC in an LTC yields a code which

inherits the best properties of both: the resulting code inherits

distance and block length from the larger LTC, as well as the relaxed

local correctability of the smaller RLCC. Therefore, we can build

an RLCC with arbitrarily large block length by iteratively nesting

the code in a series of LTCs with larger and larger block length.

Proposition 3.5. Let LTC1, . . . , LTC𝑚 be a sequence of linear
LTCs over a finite field alphabet F with block lengths 𝑛1, . . . , 𝑛𝑚 ,
which satisfy the following properties:

• 𝑛 𝑗 ≤ 𝑛 𝑗+1 for all 𝑗 ,
• every LTC𝑗 has rate at least 1 − 𝜀LTC and distance at least
𝛿LTC, and

• every LTC𝑗 has a local tester with query complexity at most
𝑞LTC and testability at least 𝜅LTC.

Then, 𝐶 ≔ LTC𝑚 ⋒ (LTC𝑚−1 ⋒ · · · (LTC2 ⋒ LTC1) . . . ) is a linear
RLCC which satisfies the following properties:

• alphabet F and block length 𝑛𝑚 ,
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• rate at least

1 − 𝜀LTC
©­«1 +

𝑚∑︁
𝑗=2

𝑗∏
𝑗 ′=2

𝑛 𝑗 ′−1
𝑛 𝑗 ′

⌈
𝑛 𝑗 ′

𝑛 𝑗 ′−1

⌉ª®¬,
• correcting radius at least 𝛿LTC/2, and
• query complexity at most

𝑛1 +
𝑚∑︁
𝑗=2

𝑂

(
𝑞LTC𝑛 𝑗

𝛿LTC𝜅LTC𝑛 𝑗−1

)
.

Remark 3.6. If 𝑛 𝑗 divides 𝑛 𝑗+1 for all 𝑗 , then the rate lower bound

simplifies to 1 −𝑚𝜀LTC. Even when 𝑛 𝑗 does not divide 𝑛 𝑗+1, with
appropriate parameter choices we can still simplify the rate to

1−𝑂 (𝑚𝜀LTC). Therefore, we can view each nesting step as reducing

the rate of𝐶 by𝑂 (𝜀LTC), so that each step incurs an additive (rather

than multiplicative) cost in both rate and query complexity.

Proof. The alphabet and block length of 𝐶 follows from the

definition of nesting. Next, we show the rate. Let LTC𝑗 ⋒ · · · (LTC2⋒
LTC1) have rate 1 − 𝜀 𝑗 . We know 𝜀1 ≤ 𝜀LTC by definition, and

Lemma 3.2 tells us that for 𝑗 ≥ 2,

𝜀 𝑗 ≤ 𝜀LTC +
𝑛 𝑗−1
𝑛 𝑗

⌈
𝑛 𝑗

𝑛 𝑗−1

⌉
· 𝜀 𝑗−1 .

Hence by induction, 𝜀𝑚 is upper bounded by the series

𝜀𝑚 ≤ 𝜀LTC · ©­«1 +
𝑚∑︁
𝑗=2

𝑗∏
𝑗 ′=2

𝑛 𝑗 ′−1
𝑛 𝑗 ′

⌈
𝑛 𝑗 ′

𝑛 𝑗 ′−1

⌉ª®¬,
which gives the desired lower bound on the rate of 𝐶 .

Finally, we show that 𝐶 is an RLCC. LTC1 can be viewed as an

RLCC with correcting radius 𝛿LTC because it has a trivial correcting

algorithm that reads the entire input and checks whether it is in

LTC1. This corrector has query complexity 𝑛1. Then by applying

Lemma 3.4, LTC2 ⋒ LTC1 has a corrector with correcting radius

𝛿LTC/2 and query complexity

≤ 𝑛1 +𝑂
(

𝑞LTC𝑛2

𝛿LTC𝜅LTC𝑛1

)
.

By applying this lemma𝑚 − 2 more times with LTC3, . . . , LTC𝑚 ,

we can conclude that there is a 𝐶-corrector with correcting radius

𝛿LTC/2 and total query complexity

≤ 𝑛1 +
𝑚∑︁
𝑗=2

𝑂

(
𝑞LTC𝑛 𝑗

𝛿LTC𝜅LTC𝑛 𝑗−1

)
. □

3.2 Instantiating the Nesting Framework
We now have all of the tools we need to construct asymptotically

good RLCCs, as long as we pick a suitable sequence of LTCs. If the

block length of each successive LTC grows by at least a constant

factor, then𝑚 ≤ 𝑂 (log𝑛). Thus, using Remark 3.6 as guidance, we

need a family of explicit LTCs with rate at least 1 −𝑂 (1/log𝑛) in
order for Proposition 3.5 to yield an RLCC with constant rate. This

means these LTCs will have subconstant distance, due to the Single-

ton bound. We will use the following instantiation of Theorem 2.9:

Corollary 3.7 ([17], see Appendix A). For every sufficiently
large 𝑁 ∈ N, there exists an integer 𝑛 ∈ [Ω(𝑁 /log30 𝑁 ), 𝑁 ] and a
family of LTCs {LTC1, . . . , LTC𝑚} such that

• Each LTC𝑗 is binary, linear, and explicit.
• Each LTC𝑗 has:
– rate 𝑅 = 1 − 𝜀LTC ≥ 1 −𝑂 (1/log𝑁 ),
– distance 𝛿LTC ≥ Ω(1/log3 𝑁 ),
– testability 𝜅LTC ≥ Ω(1/log15 𝑁 ), and
– query complexity 𝑞LTC ≤ 𝑂 (log20 𝑁 ).

• Each LTC𝑗 has block length 𝑛 𝑗 , such that 𝑛1 ≤ 𝑂 (log50 𝑁 ),
𝑛𝑚 = 𝑛, and ∀𝑗 . 𝑛 𝑗+1/𝑛 𝑗 = Θ(log30 𝑁 ).

• The number of codes is𝑚 = 𝑂 (log𝑁 /log log𝑁 ).

Remark 3.8. In this concrete family of LTCs, the block length of

each successive LTC increases by a polylogarithmic factor, instead

of the constant factor we previously imagined using. Thus,𝑚 =

𝑂 (log𝑛/log log𝑛) = 𝑜 (log𝑛). The 𝑛 𝑗/𝑛 𝑗−1 = polylog𝑛 factor also

appears in the query complexity, which is acceptable. One could

choose the LTC rate to be 1 −𝑂 (log log𝑛/log𝑛) instead in order

to marginally improve parameters such as 𝛿LTC, 𝜅LTC, and 𝑞LTC
which appear in the query complexity, while worsening the rate.

With this family of LTCs, we can construct high rate RLCCs

with polylogarithmic query complexity, albeit with subconstant

correcting radius.

Theorem 3.9. For sufficiently large 𝑁 ∈ N, there is an explicit
binary linear RLCC with block length 𝑛 ∈ [Ω(𝑁 /log30 𝑁 ), 𝑁 ], rate
1 −𝑂 (1/log log𝑁 ), correcting radius Ω(1/log3 𝑁 ), and query com-
plexity 𝑂 (log69 𝑁 /log log𝑁 ).

Proof. We can use the parameter 𝑁 with Corollary 3.7 to get

a family of LTCs to plug into Proposition 3.5. Then, our code is

𝐶 ≔ LTC𝑚 ⋒ (LTC𝑚−1 ⋒ . . . (LTC2 ⋒ LTC1) . . . ), with parameters

as defined in Corollary 3.7. We find that our code𝐶 has block length

𝑛 ∈ [Ω(𝑁 /log30 𝑁 ), 𝑁 ] and rate at least

≥ 1 − 𝜀LTC
©­«1 +

𝑚∑︁
𝑗=2

𝑗∏
𝑗 ′=2

(
𝑛 𝑗 ′−1
𝑛 𝑗 ′

⌈
𝑛 𝑗 ′

𝑛 𝑗 ′−1

⌉)ª®¬
≥ 1 − 𝜀LTC

©­«1 +
𝑚∑︁
𝑗=2

𝑗∏
𝑗 ′=2

(
1 +

𝑛 𝑗 ′−1
𝑛 𝑗 ′

)ª®¬
≥ 1 − 𝜀LTC

𝑚∑︁
𝑗=1

(
1 +𝑂 (1/log30 𝑁 )

) 𝑗−1
≥ 1 − 𝜀LTC𝑚 · exp

(
𝑂

(
𝑚

log
30 𝑁

))
= 1 − (1 + 𝑜 (1))𝑚𝜀LTC

= 1 −𝑂

(
1

log log𝑁

)
.

In addition, 𝐶 is an RLCC with radius 𝛿LTC/2 = Ω(1/log3 𝑁 ) and
query complexity

≤ 𝑛1 +
𝑚∑︁
𝑖=2

𝑂

(
𝑞LTC𝑛𝑖

𝛿LTC𝜅LTC𝑛𝑖−1

)
≤ 𝑂 (log50 𝑁 ) +

𝑚∑︁
𝑖=2

𝑂

(
log

20+30+3+15 𝑁
)

≤ 𝑂

(
log

69 𝑁

log log𝑁

)
. □
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𝐶 is an RLCCwith the desired rate and query complexity, but it is

not yet asymptotically good since its correcting radius is determined

by the distance of the LTC family from Corollary 3.7. This distance

is subconstant since all of the LTCs must have rate 1 − 𝑂 (1/𝑚).
Thankfully, we can boost the correcting radius of our RLCC with

one final nesting step using an LTC with constant distance and rate.

The increase in query complexity is negligible, and the rate of the

last LTC dominates the rate of the resulting RLCC.

Corollary 3.10. Let LTC be a binary linear LTC with sufficiently
large block length 𝑁 , and with rate 𝑅, distance 𝛿LTC, testability 𝜅 , and
query complexity 𝑞. Then, there exists a binary linear RLCC 𝐶 with
block length 𝑁 , rate 𝑅 − 𝑂 (1/log log𝑁 ), correcting radius 𝛿LTC/2,
and query complexity

𝑂

(
𝑞

𝜅
· log33 𝑁 + log

69 𝑁

log log𝑁

)
.

𝐶 is explicit if and only if LTC is explicit.

Proof. We pick sufficiently large 𝑁 such that we can use Theo-

rem 3.9 to craft RLCC𝐶′
with block length 𝑛 ∈ [Ω(𝑁 /log30 𝑁 ), 𝑁 ],

rate 1 − 𝑂 (1/log log𝑁 ), correcting radius 𝛿 = Ω(1/log3 𝑁 ), and
query complexity 𝑂 (log69 𝑁 /log log𝑁 ). We now construct

𝐶 ≔ LTC ⋒ 𝐶′ .

By construction,𝐶 is explicit and has block length 𝑁 . By Lemma 3.2

(in particular, Remark 3.3) on LTC and 𝐶′
, the overall rate of 𝐶

is at least 𝑅 − (1 + 𝑛/𝑁 ) · 𝑂 (1/log log𝑁 ) = 𝑅 − 𝑂 (1/log log𝑁 ) .
Applying Lemma 3.4 to LTC and𝐶′

, the correcting radius of𝐶 is at

least 𝛿LTC/2 and the query complexity of 𝐶 is

𝑂

(
𝑞𝑁

𝛿𝜅𝑛

)
+𝑂

(
log

69 𝑛

log log𝑛

)
≤ 𝑂

(
𝑞

𝜅
· log33 𝑁 + log

69 𝑛

log log𝑛

)
. □

This corollary states that for any binary linear LTC, there is a

binary linear RLCC with nearly the same rate and distance, and

with the same (up to polylogarithmic factors) query complexity.

4 FINAL CONSTRUCTION
The main results of this paper follow from choosing an appropriate

LTC for Corollary 3.10.

Corollary 4.1 (Explicit RLCCs). For any rate 𝑅 = 1− 𝜀 ∈ (0, 1)
and for infinitelymany𝑛, there is an explicit RLCCwith block length𝑛,
rate𝑅−𝑂 (1/log log𝑛), correcting radiusΩ(𝜀3), and query complexity

𝑂

(
(1/𝜀)35 log33 𝑛 + log

69 𝑛

log log𝑛

)
.

Proof. We can instantiate Corollary 3.10 using the LTCs of

Theorem 2.9. □

Corollary 4.2 (Gilbert–Varshamov bound RLCCs). Let 𝐻 (·)
be the binary entropy function. For any 𝑅, 𝛿, 𝜀 ∈ (0, 1) such that

𝑅 + 𝐻 (𝛿) = 1 − 𝜀

and for infinitely many 𝑛, there exists a nonexplicit RLCC with block
length 𝑛, rate 𝑅 −𝑂 (1/log log𝑛), and distance at least 𝛿 , with cor-
recting radius 𝛿/2 and query complexity

poly(1/𝜀) · log33 𝑛 +𝑂
(
log

69 𝑛

log log𝑛

)
.

Proof. Dinur, Evra, Livne, Lubotzky, and Mozes [17] construct

explicit LTCs with rate arbitrarily close to 1, which implies the

existence of infinitely many nonexplicit LTCs that approach the

Gilbert–Varshamov bound (see [17, Corollary 1.2]). These LTCs

can have any rate 𝑅 and distance 𝛿 such that 𝑅 + 𝐻 (𝛿) = 1 − 𝜀, in

which case the testability is𝜅 ≥ poly(𝜀) and the query complexity is

𝑞LTC ≤ poly(1/𝜀). We can plug these parameters into Corollary 3.10

to yield RLCCs. Because the rate of the RLCC approaches the rate

of the LTC, and the distance of the RLCC is at least the distance of

the LTC, we can say that the RLCC also approaches the Gilbert–

Varshamov bound. □

ACKNOWLEDGMENTS
We would like to thank Dana Moshkovitz for valuable discussions

and for feedback on a draft of this manuscript. We would also like to

thank Siddhartha Jain for valuable advice towards the presentation

of this work, Jeffrey Champion for proofreading, and Joshua Cook

and Justin Oh for helpful conversations. Finally, we are grateful to

anonymous reviewers for their input.

VMK is supported by NSF Grants CCF-2008076 and CCF-2312573,

and a Simons Investigator Award (#409864, David Zuckerman). GM

is supported by NSF Grant CCF-2200956, an NSF Graduate Research

Fellowship (DGE-2137420), and a UT Austin Dean’s Prestigious

Fellowship Supplement.

This material is based upon work supported by the National

Science Foundation Graduate Research Fellowship Program under

Grant No. DGE-2137420. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation.

A CONCRETE PARAMETERS FOR LOCALLY
TESTABLE CODES

We instantiate the LTC construction from Theorem 2.9 with suitable

parameters. In particular, for any 𝜀 ∈ (0, 1), Dinur, Evra, Livne,
Lubotzky, and Mozes [17] give an explicit construction for a family

of LTCs with rate at least 1 − 𝜀 and distance, testability, and query

complexity within a polynomial (or inverse polynomial) of 𝜀, such

that consecutive codes in the family differ in block size by a factor

which is a polynomial of 1/𝜀. Setting 𝜀 = Θ(1/log𝑁 ) yields the
following family of LTCs:

Theorem A.1 ([17, Theorem 1.1, Lemma 5.1, and Remark 5.3]).

For sufficiently large 𝑁 ∈ N, there exists an explicit odd prime power
𝑝 = Θ(log10 𝑁 ) such that there is an infinite family of explicit binary
linear locally testable codes {LTC1, LTC2, . . . } where every LTC𝑗 has

• block length 𝑛 𝑗 = Θ((𝑝3𝑗 − 𝑝 𝑗 ) · log20 𝑁 ),
• rate 1 − 1/(100 log𝑁 ),
• distance Ω(1/log3 𝑁 ),
• testability Ω(1/log15 𝑁 ), and
• query complexity 𝑂 (log20 𝑁 ).

Corollary (Corollary 3.7 restated). For every sufficiently
large 𝑁 ∈ N, there exists an integer 𝑛 ∈ [Ω(𝑁 /log30 𝑁 ), 𝑁 ] and a
family of LTCs {LTC1, . . . , LTC𝑚} such that

• Each LTC𝑗 is binary, linear, and explicit.
• Each LTC𝑗 has:



STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Vinayak M. Kumar and Geoffrey Mon

– rate 𝑅 = 1 − 𝜀LTC ≥ 1 −𝑂 (1/log𝑁 ),
– distance 𝛿LTC ≥ Ω(1/log3 𝑁 ),
– testability 𝜅LTC ≥ Ω(1/log15 𝑁 ), and
– query complexity 𝑞LTC ≤ 𝑂 (log20 𝑁 ).

• Each LTC𝑗 has block length 𝑛 𝑗 , such that 𝑛1 ≤ 𝑂 (log50 𝑁 ),
𝑛𝑚 = 𝑛, and ∀𝑗 . 𝑛 𝑗+1/𝑛 𝑗 = Θ(log30 𝑁 ).

• The number of codes is𝑚 = 𝑂 (log𝑁 /log log𝑁 ).

Proof. Let 𝑝 and {LTC1, LTC2, . . . } be instantiated using Theo-

rem A.1 with parameter 𝑁 . Let𝑚 be the smallest integer such that

𝑛𝑚 ≤ 𝑁 , and define 𝑛 ≔ 𝑛𝑚 . Then, {LTC1, . . . , LTC𝑚} have the
desired rate, distance, testability, and query complexity. In addition,

𝑛1 ≤ 𝑂 (𝑝3 log20 𝑁 ) = 𝑂 (log50 𝑁 ). Next, for all 𝑗 ≥ 1,

𝑛 𝑗+1
𝑛 𝑗

= Θ

(
𝑝3( 𝑗+1) − 𝑝 𝑗+1

𝑝3𝑗 − 𝑝 𝑗

)
= Θ(𝑝3) = Θ(log30 𝑁 ).

Hence, 𝑛 ≤ 𝑁 ≤ 𝑂 (𝑝3𝑛), so 𝑛 ≥ 𝑁 /𝑝3. Finally,

𝑚 ≤ log𝑁

𝑂 (log(log30 𝑁 ))
= 𝑂

(
log𝑁

log log𝑁

)
. □
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