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Abstract— Human impedance models have emerged as a
powerful framework for describing behavior based on the kine-
matic (generalized displacement/velocity) and kinetic (general-
ized force/torque) relationship, and such models have become
essential for the rehabilitation sciences, and the development
of advanced prosthetic and orthotic devices. However, given
that most techniques include a perturbation-based protocol
for system identification, a major challenge is extending the
impedance modeling framework to more natural and realistic
settings. In this paper, we introduce an impedance model with
periodic terms for the stiffness and virtual trajectories. This
allows us to fit the model without perturbations during peri-
odic tasks. Using a single-degree-of-freedom forearm rotational
haptic manipulandum, we fit our model to N=10 participants
during dynamic physical interaction in four different virtual
environments. Our model provides an excellent fit (average
R? = 0.99) to the underlying data with minimum parameter
variation across participants suggesting the periodic impedance
model can accurately capture human dynamic behavior.

I. INTRODUCTION

The human neuromusculoskeletal system is capable of
generating intricate, efficient movements while physically
interacting with the environment [1]. These physical in-
teractions are facilitated by direct modulation of our joint
impedances (e.g., stiffness and dampening characteristics)
in response to changing environmental requirements [2].
Impedance also plays a central role in maintaining postural
and movement stability [3], and in learning new tasks [4].
System identification of human joint impedance, including
during walking, running, reaching, and grasping can help elu-
cidate how and why humans modulate impedance, provide a
better understanding of the mechanisms of motor control and
coordination, help to identify impairments in neuromuscular
function, and lead to new rehabilitation strategies.

The standard approach to human joint impedance estima-
tion is the mechanical perturbation method [5]-[7]. In this
method, controlled mechanical disturbances are applied to
a joint, and the joint’s response to these perturbations is
analyzed to gain insights into its stiffness, damping, and
inertial properties. This method is not well suited for general
system identification in various motions, and is impracti-
cal for real-time impedance estimation. Humans modulate
limb stiffness when interacting with diverse objects [8] and
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this adaptability suggests impedance modulation allows for
customization according to specific task demands, achiev-
able through adjustments in mechanical attributes, includ-
ing muscle activation levels or alterations in joint angles
[9], [10]. Because humans match their impedance with the
environment they are interacting with, which likely varies
greatly within a task, system identification methods that can
adequately capture this time varying impedance behavior
could provide a powerful avenue for investigation.

Initial investigations assumed that impedance parame-
ters remained time invariant during specific tasks. Dyck
and Tavakoli [11] proposed a method for computing the
impedance of the human arm with time-invariant impedance
parameters. They suggested that during controlled motion,
the damping coefficient of the human arm is negligible.
Along these ideas, it’s been shown that for a short time
window, joint impedance has varies within a short range
[12]. Similar linear time-invariant models for second-order
systems were used in Hasser and Cutkosky’s study of the
human hand [13]. However, in their study with Anklebot,
Lee et al. demonstrated the use of time-varying and nonlinear
system identification techniques [14], [15]. Eesbeek et al.
proposed an identification of time-variant impedance model
for wrist joint [16]. Tsumugiwa et al. estimated endpoint
limb stiffness using variable impedance control [17]. The
estimation of stiffness was carried out using the force and po-
sition of the endpoint. They showed that variable impedance
behavior provides a benefit from a stability perspective when
compared with fixed impedances, further motivating time-
varying impedances. More recently, in a simulated study,
Cavallo et al. developed a linear second-order impedance
identification model, using locally periodic kernels, for time-
varying ankle impedance [18].

In this work, we propose a model consisting of periodic
impedance parameters. The underlying assumption is that
the impedance parameters are periodic with the same period
as the task and therefore the method is restricted to steady
state behavior during clearly defined periodic tasks with
the period known a priori. The model is parameterized
as a linear time-varying second-order mass-spring-damper
system, with periodic stiffness and virtual trajectories. First
we demonstrate our method on simulated data. Next, we fit
our model to human participant data (N=10) during dynamic
interactions with a haptic manipulandum (Fig. 1). The par-
ticipants were asked to track a periodic trajectory using fore-
arm rotations while the haptic manipulandum behaved with
different environmental impedances: i) passive-environment,
with no haptic feedback, ii) stiffness-dominant environment,
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Fig. 1: Schematic representation of experimental setup (left) and details of the impedance modeling (right). The experiment
consisted of the human user interacting with a rotational haptic manipulandum. The task was to track a desired periodic
trajectory using a cursor controlled by the haptic manipulandum and visualized on the computer screen. The mechanical
impedance of the human forearm joint are represented with the parameters /y, By, and Ky. The haptic manipulandum was
controlled via an impedance controller with the virtual impedances determining the physical behavior of the manipulandum.

with spring-like behavior, iii) inertia-dominant environment,
with virtual inertia, and iv) pendulum environment, dynamics
resembling an inverted pendulum.

II. PERIODIC IMPEDANCE MODEL
A. Model Overview

The human impedance model takes the following form:

T (1) =15 6(1) + By O(1) + Ku (1) (0(t) — 6,(1)) +n(t) (1)
Ky(t)=Ku(t+T)
0,(t)=6,(t+T),

where 7y (t) is the human joint torque, and Ky () and 6,(r)
are the spring coefficient and virtual trajectory of the human
forearm, respectively, taken to be periodic with period T,
and n(t) is additive zero-mean Gaussian noise. Note that in
this work we assume the period T is known a priori and
matches the task frequency. The human moment of inertia Iy
and damping coefficient By are considered scalar parameters.
The periodic stiffness term is parameterized as a sum of sines
shifted to exclude the possibility of negative stiffness:

Ky(t) = Xn: K, (1 +sin(not + ¢,))
n=0

2

where K, and ¢, are the amplitude and phase of each
harmonic, respectively, and @ = 27” is the task frequency.
Similarly, we parameterize the virtual trajectory as:

6,(t) =Y Busin(nwt + y,)
n=0

3)

where 6, and y, are the amplitude and phase of each
harmonic, respectively.

B. System Identification
The model parameters outlined in (1)-(3) can described

using the parameter vector:

X = [IH By Ky - Ky - ¢.60 - 6, yp - %]_

42

In this work, we choose n =5 harmonics to fit the underlying
data. For the system identification procedure, the true torque
signal Ty (¢) and the true angular position 6(¢) are collected,
and subsequently the derivatives of 0(¢) are estimated. These
four signals provide the data set for the system identification.
To find the optimal parameter vector x, we used the global
optimizer toolbox in MATLAB to solve:

“4)

min ||z (1) = T (1,%)[|2
subject to: x <x <X

where Ty is the estimated torque signal, x and X are the
lower and upper bounds of the parameter vector. We used
patternsearch and fmincon within a loop to obtain
estimates for the parameter vector.

III. SIMULATION STUDY

To verify our methodology we simulated (1) with varying
amplitudes of noise n(¢). Special care was taken to choose
the reference parameter vector such that the resulting system
exhibited stable dynamics. We limited the harmonics to n =15
and chose the spectrum of Ky and 6, to be decreasing with
increasing frequency. We used ode45 with a time step of
1/1000 seconds and simulated the system for 15 seconds and
a task period of 5 seconds. Using the simulated kinematics
and kinetics we used the system identification procedure
outlined previously to recover the parameter vector. We
repeated the simulated experiment for seven different signal-
to-noise (SNR) ratios, from 10 to 40 db in increments of 5
dB. The simulated (ground truth) and estimated torque 7y (¢),
stiffness Ky (¢), and virtual trajectory 60,(¢) for SNR of 40,
25, and 10 dB are shown in Fig. 2. We calculated the error
for the two time varying parameters (Ky and 6,) as:

error = \/Zt (ptrue(f) —p([))Z

Y, (ptrue(t))z )

where the sums are taken over the time steps. For the two
scalar parameters (Iy and Bp), the error was calculated
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Fig. 2: Simulated (ground truth) and estimated torque Ty (?)
(left column), stiffness Ky (¢) (center column), and virtual
trajectory 6,(¢) (right column) with SNR of 40 (top row), 25
(center row), and 10 (bottom row) dB.

similarly, except the sums in (5) were omitted (since they
are scalars). Bar plots for the parameter estimation error for
each SNR level are shown in Fig. 3.

IV. EXPERIMENTAL METHOD
A. Setup

The equation of motion for our experiment, as shown in
Fig. 1, can be derived as

18(t) = 1a(6) + T (1) (©)

where I, is the inertia of the shaft (including the handle),
which can be calculated from the motor and gearbox’s
combined moment of inertia, 7,(¢) is active torque from the
motor, and Ty (¢) is the torque from the human participant.
We considered the rotational damping of the handle to be
negligible. The external inertia I, is estimated as

I, = ImotorR2 + Igear

where 1,50, 18 motor’s inertia, (Lypror = 92.5 gcmz), Lyeqr is
gear’s inertia (Jgeqr = 5 gem?), and R is the gear ratio (R =
36). The external inertia, I,, for our system was calculated
as 0.0119 Kgm?/degree.

B. Participants

Ten participants (9 men and 1 woman) with no known
neuro-muscular disabilities ranging in age from 20 to 33
years old (mean age = 22.4, standard deviation = 4.27) were
recruited to participant in this study. The study was reviewed
and approved by the University of Southern California In-
stitutional Review Board! and written informed consent to
participate was provided by each participant.

! Authors Realmuto and Sanger were previously affiliated with the Uni-
versity of Southern California were the study was conducted.
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Fig. 3: Parameter errors for all SNR trials demonstrating our
method is relatively accurate with SNR under 25 dB.

C. Virtual Environments and Haptic Manipulandum

Figure 1 shows the experimental setup used in this study,
which involved the participant holding the handle of a
rotational haptic manipulandum with one degree-of-freedom.
The haptic manipulandum comprised of a brushless DC
motor and gearhead (EC 45 Flat, 42.9 mm, 30W brushless
motor, and 36:1 Planetary Gearhead, Maxon, Switzerland)
attached to a shaft with a handle for the participant to
interact with. Angular feedback was provided by an encoder
at the shaft (AMT20 Series, CUI Devices, USA). The motor
was directly controlled by a Beaglebone Black development
platform, operating at a loop frequency of 1 kHz, through an
external motor current control board (ESCON 36/3 EC, 4-
Q Servocontroller for EC motors, Maxon, Switzerland) that
took an analog set point for the desired motor current as
input. The motor, gear, encoder, and haptic manipulandum
were securely assembled onto a table in a fixed position.
A computer screen next to the device displayed the desired
tracking trajectory on a semi-circular display and the partic-
ipants were asked to follow that trajectory. The participants’
current position also appeared on the display. To generate
interaction torques and simulate dynamic environments, an
impedance controller was employed [19]. The active torque
of the haptic manipulandum was proportional to the motor
current:

Ta (t) = 7Rk‘£'im (t)

where R ( = 36) was the gear ratio, k; ( = 0.0255 Nm/A) the
torque constant, and i,,, the motor current. The motor current
was modulated for each environment as follows:

0 Passive
. K, 0(t Sprin
)= () pring )
L0 (t) Inertia

1,(0¢(t) + g(sin(6(¢))) Pendulum

where K, and [, are the virtual impedance parameters,
6(t) the feedback signal for the angular position, 6y(t) the
real-time estimate of the angular acceleration, and g the
gravitational constant, take as g =1 in this study.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 28,2024 at 01:44:30 UTC from IEEE Xplore. Restrictions apply.



100

50

position (degree)
o

-50

-100

(a) Passive

~ observed
= = desired

(b) Spring

position (degree)

0 1000

Fig. 4: Observed (blue) and desired (red) angular position of
one participant during one cycle for all four environments.
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Fig. 5: Angular position, angular velocity, angular accelera-
tion, and active torque for one trial in the spring environment.

D. Experimental Procedure

Each participant experienced four distinct dynamic en-
vironments, as outlined in (7): Passive, Stiffness, Inertia,
and Pendulum environments, which were achieved via the
haptic manipulandum impedance controller as shown in
Fig. 1. In the Passive environment, the virtual impedance
parameters were set to zero, so the system did not incorporate
any additional torque from the impedance controller. In the
other three environments (Spring, Inertia, and Pendulum) the
impedance controller was active and provided torque to the
system based on the virtual impedance parameters, e.g., the
spring coefficient and moment of inertia as shown in (7).
This means that the system’s response was determined by the
impedance controller. Specifically, the Spring environment
emphasized the effect of the spring coefficient, while the
Inertia environment emphasized the effect of the moment
of inertia, and the Pendulum environment was designed to
simulate an inverted pendulum. In the Spring environment,
the virtual impedance parameters were chosen as K, = 0.03
Nm/degree and I, = 0. In the Inertia environment, the virtual
impedance parameters were chosen as , = 5 Nms? and
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Fig. 6: Fitted torques signals over a single cycle from the sys-
tem identification model parameters for four environments.

K, = 0. In the Pendulum environment, g = 1 and I, = 5
Nms?. These experimental parameters were carefully chosen
to avoid instability during human interactions through an
iterative tuning process completed prior to the experiments.
The experiment was divided into five blocks, where in each
block the participant completed four trials, one for each
environment. During each trial, the participant was required
to follow a sinusoidal trajectory of 15 cycles at 0.2 Hz,
ranging from -80° to 80°. In the first block the environ-
ments appeared in the following order: Passive, Stiffness,
Inertia, Pendulum. In all subsequent blocks the order of
the environments was randomized. To minimize the effect
of learning and transient adaptation, we included only the
last ten cycles of the last experimental block for analysis.
Figure 4 shows representative trials of the observed and
desired angular position for one participant during all four
dynamics environments over a single cycle.

E. System Identification Details

Our model is outlined in (1)-(3). We chose n =5 har-
monics to fit the model to the human participant data. For
the system identification procedure, the reference torque
signal is take as Ty = 1,0(t) — 7,(¢), and therefore the active
torque T, and the angular position 6(z) were collected, and
subsequently the derivatives of 6(r) are estimated. These four
signals provide the data set for the system identification and
a representing trial is shown in Fig. 5. We use the same
optimization problem in (4).

V. RESULT

We estimated the parameters of the periodic impedance
model using system identification for all N=10 participants in
all four dynamics environments. Using these parameters, we
estimated the human torque signal using (1), and as shown
in Fig. 6, the human torque values provide an excellent fit
to the underlying data. The average estimated parameters
for the damping coefficient (By) and moment of inertia (/)
during the four distinct dynamic environments are shown in
Table I. The periodic impedance parameters for all subjects
across all environments are shown in Fig. 7.

VI. DISCUSSION

Here, we introduced a periodic impedance model, showed
through simulation it produces valid estimations at various
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Fig. 7: Spring coefficient (Ky) and virtual trajectory (6,) results from system identification for all subjects during all four
environments. From left to right: Ky in the time domain, K, in the frequency domain, 6, in the time domain, 6, in
the frequency domain. First row: Passive Environment. Second row: Spring Environment. Third row: Inertia Environment.
Last row: Pendulum Environment. On time domain plots red traces represent 4 one-standard deviation, blue traces are
the population average, and other colors are the individual participants. On frequency domain plots, red dots represent
the individual participants’ parameters, vertical black line represents the interquartile range, and horizontal black line the

population average.

noise levels, and fit the model to N=10 participants across
four different environments using system identification. The
average R-squared, calculated using the true human torque
signal and the estimated human torque signal, over all
environments and participants was found to be around R =
0.99. The high average R-squared value indicates the model
is capable of accurately capturing the dynamic interactions,
however further analysis is required to elucidate whether the
model is over-fitting.

45

Of note is the variability in estimated parameters across
the four dynamic environments and the absence of vari-
ability across participants within each environment. For the
first two environments (Passive and Spring), the identified
stiffness coefficient was not periodic, but nearly constant.
More interesting is that the stiffness coefficient during the
Spring environment is close to the environmental virtual
stiffness (K, = 0.03), as can be seen in the first and second
columns, second row in Fig. 7. This suggests that participants
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were impedance matching with the environment, perhaps to
maximize mechanical power transfer, and supports the idea
that humans adapt their impedance to the task.

During the Pendulum environment, our analysis suggests
that time-varying stiffness is important, evident from the
consistent spring coefficient traces across participants in
the last row of Fig. 7. We also note the consistent virtual
trajectory across subjects, suggesting a consistent motor
control strategy across participants.

While the general approach to impedance system identi-
fication leverages external perturbations to evoke responses,
we explored fitting parameterized periodic models directly
to periodic task data. The major assumption is that during
steady state cyclic behavior, when learning and transients do
not dominate the response, the time varying impedances are
periodic with the same task frequency. While this assumption
is not necessary for dynamic stability, it greatly simplifies the
identification problem and a limitation of our method.

Care is required for implementation and interpretation of
our method. The solution is sensitive to the choice in the
upper and lower bounds, and further investigation is required
to understand the uniqueness of the solution, as it is be
possible to arrive at multiple (locally optimal) parameter
vectors that result in the same trajectories. Over-fitting is also
possible. While we are confident our technique can capture
the general trend, it does not fully encapsulate the intricacies
of muscle activation and joint mechanics. This is evident in
our results which have inertia variations on the order 30% be-
tween the Passive and Pendulum environments. The variation
in inertia is probably due to unmodeled dynamics that are
accounted for in model’s inertia term. Future work will aim
at minimizing these limitations through more comprehensive
simulation studies, controlled human experiments, and a
comprehensive comparison between impedances models.

VII. CONCLUSION

The process of system identification in human movement
serves as a valuable tool for gaining deeper insights into the
underlying mechanisms of motor control and coordination.
The development and successful testing of the periodic
impedance model represent a step forward in understanding
human-robot interactions. The simulation study and high
average R-squared values for all environment indicates the
reliability of our model. The sensitivity we observed to
changing environments emphasizes the importance of em-
ploying adaptable control strategies in different situations.
The phenomenon of impedance matching further emphasizes

TABLE I: Damping co-efficient (By) and moment of inertia
(Iy) for all environments.

Damping Co-efficient ~ Moment of Inertia

Environments

By (Ns/m) Iy (Nms?)
Passive 3.30x 10°° 0.0144
Spring-Dominant 9.66 x 1076 0.0144
Inertia-Dominant 0 0.0198
Pendulum 453 %1074 0.0207

the adaptability and sophistication of human motor control
mechanisms. The findings from this research have impli-
cations for various domains, including as a crucial tool in
the development of advanced prosthetic devices, enhancing
rehabilitation robotics, and enabling more natural interactions
in collaborative settings.
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