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Abstract— Human impedance models have emerged as a
powerful framework for describing behavior based on the kine-
matic (generalized displacement/velocity) and kinetic (general-
ized force/torque) relationship, and such models have become
essential for the rehabilitation sciences, and the development
of advanced prosthetic and orthotic devices. However, given
that most techniques include a perturbation-based protocol
for system identification, a major challenge is extending the
impedance modeling framework to more natural and realistic
settings. In this paper, we introduce an impedance model with
periodic terms for the stiffness and virtual trajectories. This
allows us to fit the model without perturbations during peri-
odic tasks. Using a single-degree-of-freedom forearm rotational
haptic manipulandum, we fit our model to N=10 participants
during dynamic physical interaction in four different virtual
environments. Our model provides an excellent fit (average
R2 = 0.99) to the underlying data with minimum parameter
variation across participants suggesting the periodic impedance
model can accurately capture human dynamic behavior.

I. INTRODUCTION

The human neuromusculoskeletal system is capable of

generating intricate, efficient movements while physically

interacting with the environment [1]. These physical in-

teractions are facilitated by direct modulation of our joint

impedances (e.g., stiffness and dampening characteristics)

in response to changing environmental requirements [2].

Impedance also plays a central role in maintaining postural

and movement stability [3], and in learning new tasks [4].

System identification of human joint impedance, including

during walking, running, reaching, and grasping can help elu-

cidate how and why humans modulate impedance, provide a

better understanding of the mechanisms of motor control and

coordination, help to identify impairments in neuromuscular

function, and lead to new rehabilitation strategies.

The standard approach to human joint impedance estima-

tion is the mechanical perturbation method [5]–[7]. In this

method, controlled mechanical disturbances are applied to

a joint, and the joint’s response to these perturbations is

analyzed to gain insights into its stiffness, damping, and

inertial properties. This method is not well suited for general

system identification in various motions, and is impracti-

cal for real-time impedance estimation. Humans modulate

limb stiffness when interacting with diverse objects [8] and
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this adaptability suggests impedance modulation allows for

customization according to specific task demands, achiev-

able through adjustments in mechanical attributes, includ-

ing muscle activation levels or alterations in joint angles

[9], [10]. Because humans match their impedance with the

environment they are interacting with, which likely varies

greatly within a task, system identification methods that can

adequately capture this time varying impedance behavior

could provide a powerful avenue for investigation.

Initial investigations assumed that impedance parame-

ters remained time invariant during specific tasks. Dyck

and Tavakoli [11] proposed a method for computing the

impedance of the human arm with time-invariant impedance

parameters. They suggested that during controlled motion,

the damping coefficient of the human arm is negligible.

Along these ideas, it’s been shown that for a short time

window, joint impedance has varies within a short range

[12]. Similar linear time-invariant models for second-order

systems were used in Hasser and Cutkosky’s study of the

human hand [13]. However, in their study with Anklebot,

Lee et al. demonstrated the use of time-varying and nonlinear

system identification techniques [14], [15]. Eesbeek et al.

proposed an identification of time-variant impedance model

for wrist joint [16]. Tsumugiwa et al. estimated endpoint

limb stiffness using variable impedance control [17]. The

estimation of stiffness was carried out using the force and po-

sition of the endpoint. They showed that variable impedance

behavior provides a benefit from a stability perspective when

compared with fixed impedances, further motivating time-

varying impedances. More recently, in a simulated study,

Cavallo et al. developed a linear second-order impedance

identification model, using locally periodic kernels, for time-

varying ankle impedance [18].

In this work, we propose a model consisting of periodic

impedance parameters. The underlying assumption is that

the impedance parameters are periodic with the same period

as the task and therefore the method is restricted to steady

state behavior during clearly defined periodic tasks with

the period known a priori. The model is parameterized

as a linear time-varying second-order mass-spring-damper

system, with periodic stiffness and virtual trajectories. First

we demonstrate our method on simulated data. Next, we fit

our model to human participant data (N=10) during dynamic

interactions with a haptic manipulandum (Fig. 1). The par-

ticipants were asked to track a periodic trajectory using fore-

arm rotations while the haptic manipulandum behaved with

different environmental impedances: i) passive-environment,

with no haptic feedback, ii) stiffness-dominant environment,



Fig. 1: Schematic representation of experimental setup (left) and details of the impedance modeling (right). The experiment

consisted of the human user interacting with a rotational haptic manipulandum. The task was to track a desired periodic

trajectory using a cursor controlled by the haptic manipulandum and visualized on the computer screen. The mechanical

impedance of the human forearm joint are represented with the parameters IH , BH , and KH . The haptic manipulandum was

controlled via an impedance controller with the virtual impedances determining the physical behavior of the manipulandum.

with spring-like behavior, iii) inertia-dominant environment,

with virtual inertia, and iv) pendulum environment, dynamics

resembling an inverted pendulum.

II. PERIODIC IMPEDANCE MODEL

A. Model Overview

The human impedance model takes the following form:

τH(t) = IH θ̈(t)+BH θ̇(t)+KH(t)(θ(t)−θv(t))+n(t) (1)

KH(t) = KH(t +T )

θv(t) = θv(t +T ),

where τH(t) is the human joint torque, and KH(t) and θv(t)
are the spring coefficient and virtual trajectory of the human

forearm, respectively, taken to be periodic with period T ,

and n(t) is additive zero-mean Gaussian noise. Note that in

this work we assume the period T is known a priori and

matches the task frequency. The human moment of inertia IH

and damping coefficient BH are considered scalar parameters.

The periodic stiffness term is parameterized as a sum of sines

shifted to exclude the possibility of negative stiffness:

KH(t) =
n

∑
n=0

Kn(1+ sin(nωt +φn)) (2)

where Kn and φn are the amplitude and phase of each

harmonic, respectively, and ω = 2π
T

is the task frequency.

Similarly, we parameterize the virtual trajectory as:

θv(t) =
n

∑
n=0

θn sin(nωt +ψn) (3)

where θn and ψn are the amplitude and phase of each

harmonic, respectively.

B. System Identification

The model parameters outlined in (1)-(3) can described

using the parameter vector:

x =
[

IH BH K0 · · · Kn φ1 · · · φn θ0 · · · θn ψ1 · · · ψn

]

.

In this work, we choose n= 5 harmonics to fit the underlying

data. For the system identification procedure, the true torque

signal τH(t) and the true angular position θ(t) are collected,

and subsequently the derivatives of θ(t) are estimated. These

four signals provide the data set for the system identification.

To find the optimal parameter vector x, we used the global

optimizer toolbox in MATLAB to solve:

min
x

‖τH(t)− τ̂H(t,x)‖2 (4)

subject to: x ≤ x ≤ x̄

where τ̂H is the estimated torque signal, x and x̄ are the

lower and upper bounds of the parameter vector. We used

patternsearch and fmincon within a loop to obtain

estimates for the parameter vector.

III. SIMULATION STUDY

To verify our methodology we simulated (1) with varying

amplitudes of noise n(t). Special care was taken to choose

the reference parameter vector such that the resulting system

exhibited stable dynamics. We limited the harmonics to n= 5

and chose the spectrum of KH and θv to be decreasing with

increasing frequency. We used ode45 with a time step of

1/1000 seconds and simulated the system for 15 seconds and

a task period of 5 seconds. Using the simulated kinematics

and kinetics we used the system identification procedure

outlined previously to recover the parameter vector. We

repeated the simulated experiment for seven different signal-

to-noise (SNR) ratios, from 10 to 40 db in increments of 5

dB. The simulated (ground truth) and estimated torque τH(t),
stiffness KH(t), and virtual trajectory θv(t) for SNR of 40,

25, and 10 dB are shown in Fig. 2. We calculated the error

for the two time varying parameters (KH and θv) as:

error =

√

∑t(ptrue(t)− p(t))2

∑t(ptrue(t))2
(5)

where the sums are taken over the time steps. For the two

scalar parameters (IH and BH ), the error was calculated









were impedance matching with the environment, perhaps to

maximize mechanical power transfer, and supports the idea

that humans adapt their impedance to the task.

During the Pendulum environment, our analysis suggests

that time-varying stiffness is important, evident from the

consistent spring coefficient traces across participants in

the last row of Fig. 7. We also note the consistent virtual

trajectory across subjects, suggesting a consistent motor

control strategy across participants.

While the general approach to impedance system identi-

fication leverages external perturbations to evoke responses,

we explored fitting parameterized periodic models directly

to periodic task data. The major assumption is that during

steady state cyclic behavior, when learning and transients do

not dominate the response, the time varying impedances are

periodic with the same task frequency. While this assumption

is not necessary for dynamic stability, it greatly simplifies the

identification problem and a limitation of our method.

Care is required for implementation and interpretation of

our method. The solution is sensitive to the choice in the

upper and lower bounds, and further investigation is required

to understand the uniqueness of the solution, as it is be

possible to arrive at multiple (locally optimal) parameter

vectors that result in the same trajectories. Over-fitting is also

possible. While we are confident our technique can capture

the general trend, it does not fully encapsulate the intricacies

of muscle activation and joint mechanics. This is evident in

our results which have inertia variations on the order 30% be-

tween the Passive and Pendulum environments. The variation

in inertia is probably due to unmodeled dynamics that are

accounted for in model’s inertia term. Future work will aim

at minimizing these limitations through more comprehensive

simulation studies, controlled human experiments, and a

comprehensive comparison between impedances models.

VII. CONCLUSION

The process of system identification in human movement

serves as a valuable tool for gaining deeper insights into the

underlying mechanisms of motor control and coordination.

The development and successful testing of the periodic

impedance model represent a step forward in understanding

human-robot interactions. The simulation study and high

average R-squared values for all environment indicates the

reliability of our model. The sensitivity we observed to

changing environments emphasizes the importance of em-

ploying adaptable control strategies in different situations.

The phenomenon of impedance matching further emphasizes

TABLE I: Damping co-efficient (BH ) and moment of inertia

(IH ) for all environments.

Environments
Damping Co-efficient

BH (Ns/m)

Moment of Inertia

IH (Nms2)

Passive 3.30×10−6 0.0144

Spring-Dominant 9.66×10−6 0.0144
Inertia-Dominant 0 0.0198

Pendulum 4.53×10−4 0.0207

the adaptability and sophistication of human motor control

mechanisms. The findings from this research have impli-

cations for various domains, including as a crucial tool in

the development of advanced prosthetic devices, enhancing

rehabilitation robotics, and enabling more natural interactions

in collaborative settings.
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