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Individualized treatment rules (ITRs) for treatment recommendation is
an important topic for precision medicine as not all beneficial treatments work
well for all individuals. Interpretability is a desirable property of ITRs, as it
helps practitioners make sense of treatment decisions, yet there is a need for
ITRs to be flexible to effectively model complex biomedical data for treat-
ment decision making. Many ITR approaches either focus on linear ITRs,
which may perform poorly when true optimal ITRs are nonlinear, or black-
box nonlinear ITRs, which may be hard to interpret and can be overly com-
plex. This dilemma indicates a tension between interpretability and accuracy
of treatment decisions. Here we propose an additive model-based nonlinear
ITR learning method that balances interpretability and flexibility of the ITR.
Our approach aims to strike this balance by allowing both linear and nonlinear
terms of the covariates in the final ITR. Our approach is parsimonious in that
the nonlinear term is included in the final ITR only when it substantially im-
proves the ITR performance. To prevent overfitting, we combine crossfitting
and a specialized information criterion for model selection. Through exten-
sive simulations we show that our methods are data-adaptive to the degree
of nonlinearity and can favorably balance ITR interpretability and flexibil-
ity. We further demonstrate the robust performance of our methods with an
application to a cancer drug sensitive study.

1. Introduction. Machine learning tools have been developed extensively for healthcare
applications and have the opportunity to deeply impact human lives (Rudin (2019)). A major
area where machine learning has shown promise is in the development of individualized
treatment rules (ITRs), which are used to help personalize and tailor healthcare decisions
based on the individual characteristics of patients. Many of these approaches are black boxes
in that the model-fitting procedure does not yield results that are readily interpretable to
subject-matter experts or patients. The lack of transparency and accountability of black-box
models may have severe consequences, such as the misdiagnosis of diseases (Rudin (2019))
or incorrect interpretation of the modeled relationships between factors. This is particularly
evident when identifying ITRs. As ITRs (and the methods used to identify them) are directly
related to medical treatment decisions (Vayena, Blasimme and Cohen (2018)), there is a need
for ITR learning methods that not only yield accurate recommendation but also achieve a level
of interpretability. Moreover, intepretable ITRs could be more accessible for stakeholders,
including physicians and patients, and easier to implement in medical practice.

The goal of this paper is to develop an approach for estimating ITRs that are both accurate
and interpretable. There is often a trade-off between model performance (predictive accuracy)
and model complexity (interpretability) (Hastie, Tibshirani and Friedman (2009), Murdoch
et al. (2019)), and we aim to strike a balance along this trade-off. Simpler models tend to
be easier to interpret but may fail to fully extract signals from rich, heterogeneous data, as
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is common in studies of human health. On the other hand, complex black-box models may
perform well but can be challenging to interpret and can have issues with overfitting. Most
existing methods either result in linear ITRs (Chen et al. (2017), Qian and Murphy (2011),
Wallace and Moodie (2015)), which may perform poorly when the underlying true ITR is
nonlinear, or black-box ITRs (e.g., the ones based on Random Forests (Wager and Athey
(2018), Zhu et al. (2017)), the ones based on deep neural networks (Liang, Ye and Fu (2018),
Mi, Zou and Zhu (2019)), or the ones based on supporting vector machines with nonlinear
kernel (Zhao et al. (2012), Zhou et al. (2017))), which may be difficult to interpret. In order
to achieve a balance between these two problems, in a similar spirit to the reluctant additive
model (RAM) of Tay and Tibshirani (2020), we propose a reluctant additive model for iden-
tifying ITRs. The key principle of the reluctant additive model is to allow for nonlinearity
but to shrink preferentially toward a linear term unless warranted by the data. We refer to our
approach as Reluctant Additive Individualized Treatment Rules (RAITR), as it adheres to the
reluctant additive principle.

Classical additive models require the user to choose a priori which covariates require a
nonlinear functional form and which should be linear, which is a limitation especially in
high-dimensional scenarios. As a result, classical additive models can be overly complex.
Several approaches in the literature have explicitly focused on handling high dimensional-
ity for additive models by inducing sparsity with penalties, such as the approaches of Lin
and Zhang (2006), Ravikumar et al. (2009), and Meier, van de Geer and Bühlmann (2009).
However, these approaches either shrink the entire functional form of the effect of a covariate
to zero or otherwise include a fully nonlinear term. The fused LASSO additive model ap-
proach of Petersen, Witten and Simon (2016) allows for shrinkage toward piecewise constant
effects, enabling more parsimonious selected models than approaches that only focus on se-
lection, which either include or exclude a nonlinear term in its entirety. The sparse partially
linear additive model of Petersen and Witten (2019) is able to induce sparsity for GAMs and
can shrink toward linear functions; however, we adapted and extend RAM for learning ITRs
instead, due to its simple computational nature, which will be explained below.

In the context of ITRs, the work of Park et al. (2022) has extended the notion of sparse
additive models to handle sparse additive ITRs, which inherits the limitations of the above
sparse additive methods. In contrast, RAMs decompose the effect of a covariate on the out-
come into a linear and nonlinear component and prioritize the linear terms in estimation,
encouraging more aggressive shrinkage toward a parsimonious model while also allowing
selection of individual variables into the model. This is achieved by fitting the linear terms
first as well as penalizing the nonlinear terms based on their complexity and only allowing
their inclusion when they substantially improve the model performance above and beyond
a linear form. As ITR estimation involves treatment-covariate interactions, using a highly
flexible model to estimate the interactions could lead to overfitting. As such, the ability of
our framework to default to linear contributions to the ITR is critical and beneficial in prac-
tice. Moreover, the variable selection ability of our framework makes it more compelling for
learning ITRs with high-dimensional covariates, compared to approaches that do not incor-
porate explicit variable selection such as causal (random) forests (Wager and Athey (2018))
or weighted support vector machines (e.g., with a Gaussian kernel) (Zhou et al. (2017)). We
believe that our RAITR method has promise for effective use, in practice, as it offers the pos-
sibility for handling complex forms of heterogeneity of effects while encouraging parsimony
and interpretable effects through shrinkage toward linear ITRs.

The reluctant additive principle, while advantageous in many ways, also creates unique
challenges in the setting of ITR estimation. Since the reluctant additive principle is inherently
multistaged, care is required to prevent overfitting. We combine crossfitting, to help prevent
double-dipping outcome information, with use of the concordance information criteria (CIC;
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Shi, Song and Lu (2021)) to perform the final ITR model selection. As we demonstrate em-
pirically, implementing the CIC performs quite well at identifying complex treatment rules
while simultaneously preventing overfitting.

This paper is structured as follows. In Section 2 we define notation and assumptions to esti-
mate ITRs in the context of observational data as well as describe the model-fitting procedure
for RAITR. In Section 3 we conduct a series of simulations to compare ITRs estimated from
our approach to simple linear ITRs and complicated black-box nonlinear ITRs. In Section 4
we apply RAITR to learn ITRs for cancer treatment using the Genomics of Drug Sensitivity
in Cancer (GDSC) study (Iorio et al. (2016)), where the data are high dimensional and of low
to moderate signal. We demonstrate that for studies like GDSC it is useful for a method to be
flexible enough to detect nonlinear ITRs but also pick simpler models when required. Finally,
we conclude with a discussion in Section 5.

2. Methods.

2.1. Notation and assumptions. We refer to our treatment of interest as an exposure to
emphasize that we are working in an observational context. Each independent observation is
composed of a triplet (Y,A,X), where Y is the observed response, A is a binary exposure
taking values 1 or −1, and X is a p-dimensional vector of preexposure covariates of interest.
For ease of notation, we make the assumption that a larger value of Y corresponds to a more
desirable outcome. Adopting the potential outcomes framework of Rubin (2005), we denote
Y(a) as the potential outcome if the exposure were set to level a. We then define

(2.1) �(x) ≡ E
[
Y(1)|X = x

] − E
[
Y(−1)|X = x

]
as the conditional (causal) average treatment effect (CATE), given x.

In many real-world scenarios, the CATE varies as a function of covariates, which is a form
of a “heterogeneous treatment effect” (HTE). The CATE is closely related to individualized
treatment rules (ITR) in the sense that

d∗(x) = sign
{
�(x)

}
is an optimal ITR. As such, an optimal ITR can be estimated by modeling �(·). Our modeling
strategy focuses on estimating a flexible ITR through a flexible parameterization of the CATE,
while maintaining the qualitative and visual interpretability of the resulting ITR.

To relate �(x) to observable quantities, we impose the following standard assumptions for
causal identification:

(i) Consistency: Y = 1(A = 1)Y (1) + 1(A = −1)Y (−1).
(ii) Strong ignorability: A ⊥⊥ (Y (1), Y (−1))|X.

(iii) Positivity: 0 < π(x, a) < 1 for all x ∈ X for a ∈ {−1,1}, where π(x, a) = Pr(A =
a|X = x).

With these assumptions (2.1) is equivalent to

(2.2) �(x) = E(Y |A = 1,X= x) − E(Y |A = −1,X= x).

We can highlight the role of the conditional treatment effect by reexpressing the conditional
mean function as

(2.3) E(Y |A = a,X = x) = μ(x) + a

2
�(x),

where μ(x) = 1
2{E(Y |A = 1,X = x) + E(Y |A = −1,X = x)}, which is a simple average of

conditional outcomes under two treatments for a given set of covariate values. We refer to
μ(X) as the main effect of X for convenience. Please note that this definition differs from the
commonly used notion of “main effect” in the ITR literature, which typically refers to the
conditional mean outcome under control (E(Y |A = 0,X= x)).
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2.2. Reluctant additive individualized treatment rules. In this section we describe how
we model and estimate ITRs by minimizing a loss function motivated by (2.3). Though linear
ITRs are more interpretable than black-box ITRs, they may be insufficient in accurately de-
scribing complex HTEs. We aim to strike a balance between interpretability and complexity
by extending linear ITRs via sparse generalized additive models (GAMs, Hastie and Tibshi-
rani (1990)), which allows each variable to impact the outcome in a nonlinear and additive
fashion but omits interactions between components in X. We adopt the “reluctant GAM” idea
(Tay and Tibshirani (2020)) of fitting sparse GAMs, wherein linear approximations of �(x)
are favored over nonlinear ones unless otherwise warranted by the data. As a guiding prin-
ciple, we prefer an ITR to only contain effects that are linear in the original set of variables:
nonlinearities are only included thereafter if they significantly improve performance (Tay
and Tibshirani (2020)). Since we focus on estimating treatment rules, we coin our approach
as Reluctant Additive Individualized Treatment Rules (RAITR). An outline of the RAITR
procedure is provided in Algorithm 1. Our approach differs from the approach of Tay and
Tibshirani (2020) in several key ways, some of which are due to the particularities in estimat-
ing ITRs, and others are general modifications that we have found to improve performance
and mitigate the effects of overfitting arising from the procedure’s sequential nature.

We propose to approximate �(X) with an additive model, that is,

(2.4) �(X) ≈ f (X) ≡
p∑

j=1

fj (Xj ),

where fj is a function of only the j th entry, Xj , of X. In the following we will introduce a
computationally efficient and effective procedure for estimating the additive components fj

that will comprise our estimated ITR.
Many frameworks have been proposed to model ITRs with the primary focus on linear

ITRs, including outcome-weighted learning (Zhao et al. (2012)), Q-learning (Qian and Mur-
phy (2011)), weighted learning (Chen et al. (2017)), and dynamic weighted ordinary least

Algorithm 1 Reluctant GAMs for Interpretable Nonlinear ITR
Input: (Xi , Yi,Ai), i = 1, . . . , n: covariate X (with dimension p), outcome Y , treatment A,

and penalty terms λ1, λ2 ≥ 0.
Process: Fit the weighted learning with least square loss and linear rule:

β̂1 = argmin
β

n∑
i=1

π̂ (Xi ,Ai)
−1

{
Yi − m̂(Xi) − Ai

2
βT Xi

}2
+ λ1

p∑
j=1

|βj |,

and compute residuals ri = Yi − m̂(Xi ) − (Ai/2)β̂
T

1 Xi , i = 1, . . . n. For each covariate
j ∈ {1, . . . , p}, fit a weighted (π̂(Xi ,Ai)

−1 as the weight) penalized smoothing spline
(with data-dependent degrees of freedom) of ri on gj (Xij ). Fit penalized regression with
LASSO penalty of A on X and G:

β̂ = argmin
β

n∑
i=1

π̂(Xi ,Ai)
−1

{
Yi − m̂(Xi) − Ai

2

(
βT

linXi + βT
nonGi

)}2

+ λ2

p∑
j=1

(|β lin,j | + γj |βnon,j |),

with penalty γj = min(
√

p,1 + s−1
j ).

Output: f̂λ2(Xi) = β̂ linXi + β̂nonGi for i = 1, . . . , n.
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squares (Wallace and Moodie (2015)). We propose a general framework that can enhance
any least square loss-based linear ITR learning method (Chen et al. (2017), Qian and Murphy
(2011), Wallace and Moodie (2015)) to learn interpretable nonlinear ITRs. As an illustra-
tive example, we focus on extending the weighted learning framework of Chen et al. (2017)
to learn interpretable nonlinear ITRs. The loss function for learning optimal ITR (fopt(X))
under weighted learning is defined as follows:

(2.5) fopt(X) = argmin
f

E

[{Y − m(X) − A
2 f (X)}2

π(X,A)

]
,

where m(X) is any function of X only and π(X,A) is the propensity score. The validity of
(2.5) is not impacted by the choice of m(X) when π(X,A) is correctly specified. However,
using m(X) = μ(X) can protect against the misspecification of π(X,A). For this reason we
use this choice throughout our paper and generally advocate for use of flexible models to es-
timate this function. The inclusion of the inverse of propensity score is to eliminate measured
confounding in observational studies. In particular, this weighting framework can be consid-
ered as the extension of inverse propensity score weighted regression for average treatment
effect estimation to ITRs estimation.

Since we are not interested in the interpretation of the main effects and the propensity
score, we can use flexible machine learning techniques to estimate them so that the model
misspecification issues can be avoided. However, using flexible models for m(X) and π(X,A)

can also lead to overfitting issue and bias the estimation of ITR. To mitigate this issue, we
use the crossfitting procedure (Chernozhukov et al. (2018)) together with flexible models
to estimate these nuisance parameters. For the rest of the section, we assume that we have
access to an estimate of m(X) and π(X,A) that can be plugged into (2.5), and we defer from
describing crossfitting version of our algorithm to Section 2.3.

Consider the case with n independent observations (Yi,Ai,Xi)
n
i=1. The first step of our

proposed procedure is to construct an initial sparse linear approximation of �(X) using
weighted learning (Chen et al. (2017), Tian et al. (2014)). This involves fitting a linear model
for �(X) with a regularization term. For simplicity of presentation, we consider the LASSO
(Tibshirani (1996)), but other penalties can also be used,

(2.6) β̂1 = argmin
β

n∑
i=1

π̂(Xi ,Ai)
−1

{
Yi − m̂(Xi ) − Ai

2
βT Xi

}2
+ λ1

p∑
j=1

|βj |.

This results in coefficients β̂1, which yield linear ITRs. We use K-fold cross-validation to
choose the tuning parameter in (2.6) with the weighted mean-squared error as the criterion. In
particular, we use the corresponding inverse propensity score to weight the error contribution
of each subject. Thus, the tuning parameter is selected to optimize accuracy in estimating the
linear portion of the interaction function �(X).

The next step is to construct residuals from the linear ITRs and the main effects, ri =
Yi − m̂(Xi) − Ai β̂

T

1 Xi/2, for i = 1, . . . n. Thus, if the additive approximation (2.4) is well
posited, the residual ri will contain only the error term and any nonlinear components of
�(X). Using these residuals as a working response, for each covariate Xj (j = 1, . . . p) in X,
we fit an inverse propensity weighted penalized smoothing spline model (Wahba (2006)) to
estimate the additive nonlinear contribution of each covariate j to �(X). We then construct
a design matrix of the fitted values from each of these covariate-specific models to be used
as additional features in a final estimate of �(X). Constructing the nonlinear features one
variable at a time ensures computational efficiency, while still maintaining an additive model
(i.e., no between-variable interactions). In contrast to Tay and Tibshirani (2020), which used
a fixed value for degrees of freedom, we use penalized splines with a data-adaptive value for
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degrees of freedom (Krivobokova, Crainiceanu and Kauermann (2008)). While using fixed
degrees of freedom, as in Tay and Tibshirani (2020), allows one to straightforwardly bound
the overall degrees of freedom used, we have found that nonlinear terms for different co-
variates can be either under- or oversmoothed if there is a wide degree of variation in the
variability of the different additive terms. We have found this problem to be well mitigated
by using penalized splines.

Let Gi denote the vector of nonlinear effects (i.e., the fitted values from the covariate-
specific penalized splines) for the ith observation, where the j th entry of Gi is given by
gj (Xij ), where gj (·) is the spline function fit by regressing ri on the j th covariate Xij . We
define the combined coefficients for the linear and nonlinear components as βT = (βT

lin,β
T
non)

and their estimates as β̂
T = (β̂

T

lin, β̂
T

non). Finally, in order to select the final model, we perform
a penalized regression of Yi − m̂(Xi ) on Xi and Gi ,

β̂ = argmin
β

n∑
i=1

π̂(Xi ,Ai)
−1

{
Yi − m̂(Xi) − Ai

2

(
βT

linXi + βT
nonGi

)}2

+ λ2

p∑
j=1

(|βlin,j | + γj |βnon,j |),
(2.7)

where γj is a data-driven penalty factor for the j th nonlinear term. In particular, we set
γj = min(

√
p,1 + s−1

j ) with sj defined as the standard deviation of the j th nonlinear term
across all observations. Such a penalty factor allows us to penalize nonlinear terms based on
their complexity, that is, the penalty factor for the j th nonlinear term is smaller for covariates
whose estimated nonlinear terms have large variation and the penalty is larger for terms with
small variation. Since γj is lower bounded by 1, it guarantees the penalization for nonlinear
terms is heavier than the corresponding linear term, which agrees with our proposal to have
a parsimonious rule. Furthermore, γj is upper bounded by

√
p to prevent the overall penalty

from being dominated by extreme penalty factors. The selection of the penalization term λ2
will be discussed in more detail in Section 2.4; however, it requires great care as to not over-fit
the data, since the criterion (2.7) contains several terms (m̂ and G) estimated from the data.
Given a well-chosen value λ2, the final estimate for �(X) is expressed as

(2.8) f̂λ2(X) = β̂ linX+ β̂nonG,

where inclusion of λ2 in the notation indicates the dependence of the estimated function on
the final tuning parameter. The final treatment rule is then d̂(X) = sign{f̂λ2(X)}. We note
that both (2.6) and (2.7) can be optimized with existing software for the LASSO, such as
glmnet, and thus each step is computationally simple and expedient.

The proposed procedure has multiple aspects for encouraging parsimonious ITRs and en-
hancing their interpretability. Following the reluctant additive principle, our method promotes
preference for linear terms in two ways: 1.) nonlinear terms are fit using the residuals after
removing the linear terms; 2.) nonlinear terms are penalized based on their complexity; there-
fore, they must contribute substantially to the ITR to survive the final model selection process
in Step 3. Furthermore, traditional GAMs allow multiple nonlinear features representing the
nonlinear effect of variable j . In contrast, our construction in Step 2 combines them as one
feature. This ensures that after variable selection, one variable can contribute at most two
terms to the final ITRs: one for the linear effect and the other for the nonlinear effect. This
preference for linear terms combined with the simple structure, as shown in (2.8), allows for
complexity, while still maintaining an easy-to-understand interpretation, which is a key ad-
vantage of our method compared to existing nonlinear ITR learning methods. Now that we
have shown the main idea of our approach, we next provide implementation details that are
critical to making RAITR work effectively, that is, estimation of m(X) and π(X,A) and the
tuning parameter (λ2) selection.
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2.3. Nuisance parameter estimation with crossfitting. Since we are focused on identify-
ing individualized treatment rules, the parameters in the main effects m(X) and propensity
score π(X,A) models may be considered nuisance parameters. The work by Pan and Zhao
(2021) shows that using flexible models for estimating m(X) and π(X,A) is still useful in the
sense that well-estimated main effects and propensity scores can lead to improved robustness
and efficiency of the ITR estimator. However, in practice, we have seen that using a model
that is too flexible for the nuisance parameter can introduce bias. In order to use a flexible
model while simultaneously preventing overfitting, we use crossfitting (Chernozhukov et al.
(2018)) with a gradient boosting model (Hastie, Tibshirani and Friedman (2009)) to estimate
the main effects model. Using complex models for the nuisance parameters does not conflict
with our goal of creating interpretable ITRs, since this does not affect the interpretability of
the final treatment rules. Once the main effects and propensity score estimates are specified,
we implement the augmentation procedure with our approach, as described in Section 2.2.
The estimation of nuisance parameters is performed as follows:

(1) Take a K-fold random partition (Ik)
K
k=1 of observation indices [n] = 1, ..., n such that

the size of each fold Ik is nK = n/K . Also, for each k ∈ [K] = 1, ...,K , define the comple-
ment set I c

k := {1, ..., n}\Ik .
(2) For each k ∈ K , using only data in using I c

k , we construct the propensity score model
and the main effect models. We denote these models as π̂ I c

k (X,A) and m̂Ic
k (X), respectively.

Since the construction of the propensity score model and main effect model uses the out-
of-fold samples, crossfitting prevents the model overfitting for these nuisance parameters.
Though crossfitting to avoid overfitting of nuisance models is important, it is worth noting
that the objective for the two nuisance models differs: optimizing fit (minimizing prediction
error) in the main effect model can reduce variance and improve ITRs, whereas optimizing fit
in the propensity score may lead to instability: the goal of this model is to achieve covariate
balance between treatment groups, and ideally, minimizing covariate imbalance should be
the objective of this model fit.

Once we estimate the nuisance parameters, to implement RAITR, we simply replace
π̂(X,A) and m̂(X) in Algorithm 1 with π̂ I c

k (X,A) and m̂Ic
k (X), respectively. Adapting Al-

gorithm 1 to use with estimators arising from out-of-fold data requires care; therefore, we
explicitly show an algorithm (Algorithm 2) in the Supplementary Material (Maronge, Huling
and Chen (2023)).

Now that we have described fitting the RAITR model, including the nuisance parameters,
the final requirement is selecting the tuning parameter, λ2, for the penalized regression of the
final model. Next, we specify the criteria for selecting this parameter.

2.4. Model selection criterion. A natural choice for selecting λ2 (and the corresponding
ITR) is to perform K-fold cross-validation of the LASSO model in (2.7). However, an extra
stage of cross-validation would increase required computation. Moreover, as we show in
simulations and data example, cross-validation tends to overselect nonlinear effects. Lastly,
conducting cross-validation for the final model can attenuate the benefit of crossfitting; that
is, the estimation error of nuisance parameters and parameters of interest in the ITR would
no longer be orthogonal, unless complex nested cross-validation strategy is used. Hence, we
consider an alternative approach for selecting λ2 by the concordance information criterion
(CIC; Shi, Song and Lu (2021)). From our experimentation CIC performs favorably to cross-
validation to control bias in the final ITRs of RAITR. As an added feature, the CIC does not
require splitting the data into folds, thereby reducing computational load. The CIC is denoted

CIC(f̂λ) = nC(f̂λ) − κnDF(f̂λ)),
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where C(f̂λ) is the concordance function for the ITR (sign(f̂λ)) governed by a tuning pa-
rameter λ that drives the complexity of the ITR, κn is a constant depending on n and/or
p, and DF(f̂λ) is the degrees of freedom of the corresponding ITR. In our setup we use
λ = λ2. Choices for the value of κn and DF(f̂λ) may affect the performance of CIC, and
optimal choices are still open research problems; however, we aim to provide recommenda-
tions based on numerical results. The CIC is composed of two terms: the first term is the
concordance function, and the second is a penalty for ITR complexity, similar to BIC. The
concordance function is defined as

C(f̂λ) = E
[{

Yi(1) − Yi(−1)
} − {

Yj (1) − Yj (−1)
}] × 1

{
f̂λ(Xi ) > f̂λ(Xj )

}
.

Let A = −1 denote the reference treatment (either control, placebo, or active comparator
treatment) and A = 1 denote the treatment of interest, the concordance is a measure of the
degree to which patients who are more likely to be assigned to the treatment of interest also
have larger individual treatment effects (relative to the reference treatment A = −1). The
empirical estimator of the concordance is given by

Ĉ(f̂λ) = 1

n(n − 1)

∑
i 	=j

[{Yi − E(Yi |Xi = xi ,Ai = −1)}{0.5Ai + 0.5 − π(xi ,Ai = 1)}
π(xi ,Ai = ai)

− {Yj − E(Yj |Xi = xi ,Ai = −1)}{0.5Aj + 0.5 − π(xj ,Aj = 1)}
π(xj ,Aj = aj )

]

× 1
{
f̂λ(xi ) > f̂λ(xj )

}
.

(2.9)

We also consider the doubly-robust estimator,

ĈDR(f̂λ)

= 1

n(n − 1)

∑
i 	=j

×
[{Yi − E(Yi |Xi = xi ,Ai = −1)}{0.5Ai + 0.5 − π(xi ,Ai = 1)}(0.5Aj + 0.5)

π(xi ,Ai = ai)π(xj ,Aj = 1)
(2.10)

− {Yj − E(Yj |Xj = xj ,Aj = −1)}{0.5Aj + 0.5 − π(xj ,Aj = 1)}(0.5Ai + 0.5)

π(xj ,Aj = aj )π(xi ,Ai = 1)

]

× 1
{
f̂λ(xi ) > f̂λ(xj )

}
.

ĈDR(f̂λ) is doubly robust in that it is a consistent estimator of C(f̂λ) when either the mod-
els for π(x,A) or E(Yi |X = x,Ai = −1) is correctly specified. Although Fan et al. (2017)
and Shi, Song and Lu (2021) studied the theoretical properties of these estimators using
κn of a certain order, we consider the numerical performance of different choices of κn.
Particularly, we show two possible choices κn = logn or κn = 2, which were advocated
by Shi, Song and Lu (2021) to mimic AIC and BIC for likelihood-based model selection.
In the context of RAITR, we maximize the CIC to select the tuning parameter in our final
model. Note that we can plug in the crossfitted version of the main effect model (mIc

k ) and
propensity score model (πIc

k ) into ((2.9) or (2.10)) such that the resulting criterion may ben-
efit from the nuisance parameter estimation described in Section 2.3. Obtaining a precise
estimate of DF(fλ) is challenging in our setting and is an area of open work. We use a
simple approximation that we have found is effective in practice. The choice of DF(fλ) is∑p

j=1 1{β̂lin,j 	= 0} + ∑p
j=1 1{β̂non,j 	= 0}D̂F(gj ), where D̂F(gj ) is the estimated degrees of

freedom for the estimated smoothing spline for the j th variable.
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In our proposal we use λ = λ2 and do not select λ1 with the CIC metric, as λ1 is set
in the first stage. We do not choose λ1 with CIC because we do not use the linear terms
by themselves as our final treatment rule. Instead, our choice of λ1 emphasizes accuracy in
predicting the linear components of the interactions, whereas our choice of λ2 emphasizes
performance of the estimated ITRs resulting from our entire proposed estimation procedure.

3. Simulation. In this section we study the performance of our method and existing
methods in a number of settings. In each setting we simulate n i.i.d samples (Yi,Xi ,Ai).
Each Xj (j = 1 . . . p) is distributed as Xj ∼ Unif(−2,2), where “Unif” represents the
continuous uniform distribution. The treatment A follows a binary distribution (−1 or 1),
where P(A = 1|X) = exp(XT β)/{1 + exp(XT β)}, with β = (1,−1,0.5,0,0, . . . ,0)T . The
response is normally distributed as N(m(X)+ (A/2)×�(X),4). For these simulations m(X)

is given by the nonlinear function m(X) = −c
∑5

j=1{Xj + (2/3)(2X2
j − 1)}. We adjust the

value of c to adjust the relative effect size of �(X) to the remaining components in the re-
sponse function. For each data-generating model we investigate two values of c: the smaller
value indicates a “large” effect size, and the larger value indicates a “small” effect size. We
consider multiple models for �(X) with various degrees of complexity. The goal is to show
that, in cases where �(X) is relatively simple (e.g., linear), our approach does not sacrifice
simplicity; however, in complicated cases (e.g., highly nonlinear, polynomial, or tree-based
models), RAITR is able to capture these complexities. The particular choices of �(X) are
given as below:

1. Linear: �(X) = XT β , β = (1,−1,0.5,1,−1,−0.5,0,0, . . . ,0)T , c = 0.1 or 3.
2. Highly Nonlinear: �(X) = X3

1 +|X3| exp{X5}+ 5 sin (2πX7)+ 5 cos (2πX6)− (X4 +
X8)

2 + 3|X2 + X5|, c = 1 or 8.
3. Tree: �(X) = 3{1(X1 +0.5 > 0)×sign(X2 −0.5)}+2.5{1(X1 +0.5 < 0)×sign(X4 −

0.5)} + 0.5, c = 1 or 5.
4. Polynomial: �(X) = 0.2 + X2

1 + X2
2 − X2

3 − X2
4, c = 0.1 or 2.

The optimal ITRs are additive in X in the linear and polynomial settings but are not additive
in the highly nonlinear and tree settings.

We train the ITRs with various sample sizes (n = 250,500,1000) and covariate dimension
(p = 100,500,1000) combinations, then evaluate the ITR on a testing set of size 10,000.
We report two commonly used metrics for ITR performance evaluation: the value function
of the estimated rule and the agreement between the estimated rule and the optimal rule. In
particular, for a given rule d̂(X), we can directly estimate E[Y(d̂(X))] and E[d̂(X) = d∗(X)]
by evaluating their empirical versions on the testing data.

We estimate ITRs using two versions of a strictly linear rule based on the weighted learn-
ing (Chen et al. (2017)) with the least square loss (i.e., using only the first three steps of
the algorithm in Supplementary Material Section A to estimate ITRs), generalized random
forests (GRF; Athey, Tibshirani and Wager (2019), Wager and Athey (2018)), sparse additive
model for treatment effect-modifier selection (samTEMsel; Park et al. (2022)), and different
variations of our method, RAITR. We did not include support vector machine-based nonlin-
ear ITR learning methods, such as Zhao et al. (2012), Zhou et al. (2017), in the comparison,
as they are not suited for the high dimensional covariate settings considered in this paper.
Additional information about the simulation scenarios, including computational load, covari-
ate balancing, and a formal definition of “small” and “large” effect sizes can be found in
Supplementary Material Sections B.1, B.2, and B.3, respectively.

In Figures 1 to 4, we show results across 100 replicates in terms of the agreement. In
Supplementary Material Section B.3, we also display results in terms of the value function.
For linear ITRs and RAITR, we either select tuning parameters using cross-validation (CV)
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FIG. 1. Top: Results for agreement for large effect size, linear data-generating model for n = 250,500,1000
and p = 100,500,1000 for RAITR, linear ITRs, GRF, and samTEMsel. Bottom: As for top but small effect size.
The vertical axis limits of the bottom plot have been modified for clarity.

or the concordance information criterion (CIC). When CIC is used, we either set κn = logn

or κn = 2 (2κ), and either use the standard estimate for concordance or the doubly-robust
(DR) version. For other methods the tuning parameters are selected by CV.

Regarding the linear setting, unsurprisingly, the linear ITR analyses perform best, but
RAITR, particularly with tuning parameters selected using CIC, performs comparably to
the linear rules. Using RAITR with final models selected by CV generally performs poorly
because the model over-selects nonlinear terms. The samTEMsel method generally performs
relatively poorly, compared to linear ITRs, suggesting a tendency for it to select overly com-
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FIG. 2. Top: Results for agreement for large effect size, highly nonlinear data-generating model for
n = 250,500,1000 and p = 100,500,1000 for RAITR, linear ITRs, GRF, and samTEMsel. Bottom: As for top but
small effect size. The vertical axis limits of the bottom plot have been modified for clarity.

plex ITRs when the underlying data structure is simple. Similarly, GRF struggles, due to the
linear ITR structure, and is particularly poor in high-dimensional settings, as it does not have
an explicit variable selection component.

In the highly nonlinear setting, RAITR with CIC consistently outperforms all other meth-
ods, particularly with a large effect size. Due to the highly complex and nonadditive nature of
the ITR in this setting, there appears to be an upper bound on how well RAITR can perform.
Despite this, in the “large” effect setting, RAITR is desirable compared to the other nonlinear
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FIG. 3. Top: Results for agreement for large effect size, tree data-generating model for n = 250,500,1000 and
p = 100,500,1000 for RAITR, linear ITRs, GRF, and samTEMsel. Bottom: As for top but small effect size.

ITRs. In the “small effect” setting, no method except RAITR (with a large enough sample
size) does better than the naive “always treat” rule.

In the tree setting, GRF outperforms all other methods for some scenarios but performs
poorly when the dimension is large, again due to its lack of an explicit variable selection
component. Using samTEMsel or RAITR with CIC consistently performs well. In the poly-
nomial setting, RAITR and samTEMsel perform much better than all other methods, with
RAITR performing the best when the sample size is large enough to support the augmenta-
tion procedure.
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FIG. 4. Top: Results for agreement for large effect size, polynomial data-generating model for
n = 250,500,1000 and p = 100,500,1000 for RAITR, linear ITRs, GRF, and samTEMsel. Bottom: As for top but
small effect size.

In general, RAITR with CIC regularly performs at least as well, and many times, bet-
ter than the other approaches considered. A caveat is that the augmentation procedure tends
to require a large sample size to perform well. However, even in the settings with smaller
sample size, RAITR performs comparably to other approaches and in the settings with large
sample size often performs much better. In many cases, when κn = logn, RAITR performs
better on average than when κn = 2; however, it appears that the 2κ version can better protect
against poor performance. Therefore, the choice of κn should be made relative to the applica-
tion of interest. In these simulations, RAITR with doubly-robust CIC performed comparably
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FIG. 5. Example of resulting ITR from RAITR (CIC, 2κ , DR) from one repetition of the highly nonlinear sim-
ulation setting (left) as well as contribution from the linear component (top-right) and nonlinear component
(bottom-right).

to the standard version. Additionally, RAITR performs well in the “small effect” setting,
particularly when the sample size is large enough to support augmentation. Finally, increas-
ing dimensionality can cause deterioration in performance for other methods, such as GRF,
samTEMsel, and linear rules, but RAITR appears to be more robust to this problem. Notably,
the results for the linear ITR and highly nonlinear ITR settings jointly emphasize RAITR’s
ability to balance performance and return either simple ITRs or sufficiently complex ITRs
when necessary. Note that Shi, Song and Lu (2021) also proposed the value information cri-
terion (VIC) for ITR model selection as well as CIC. In their study Shi, Song and Lu (2021)
observed that CIC performed better than VIC empirically. We also observed a similar phe-
nomenon in the early development of our method. As such, we focus on comparing the results
of RAITR by using either CIC or the commonly used method of CV as the model selection
criterion.

As a final point of emphasis, a key reason for RAITR to yield a highly interpretable result
is that each covariate can only contribute at most two terms to the final ITR. This is demon-
strated in Figure 5. For demonstration we generate data using a similar model to the highly
nonlinear setting, as described before; except now, we have �(X) = (1/2) cos(2X1)(2X1),
n = 1000, and p = 10. We show the contribution of X1 to the resulting ITR from one repe-
tition of RAITR (CIC, 2κ , DR). On the left we plot the covariate vs. f̂ (X) = β̂ linX+ β̂nonG
as well as the true ITR. On the top-right and bottom-right, we show only the linear and non-
linear contribution, respectively. The figure demonstrates that RAITR allows us to visualize
the contribution of a covariate to an ITR in a simple manner, which results in a higher level
of interpretability and can be quite useful in practice.

4. Analysis of GDSC data. The Genomics of Drug Sensitivity in Cancer (GDSC) study
measures the response of 1018 human cancer cell lines to 265 anticancer drugs (Yang et al.
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(2012)). In particular, it contains detailed genetic information, including gene expression
and chromosomal copy number, pharmacological information and treatment responses on
human cancer cell lines. As noted by Iorio et al. (2016), since cancer cell lines are replicable,
we may test multiple drugs on the same cell line in order to compare drug sensitivity to a
response of interest. This makes the GDSC data and similar datasets, such as Cancer Cell Line
Encyclopedia (Ghandi et al. (2019)), a particularly interesting resource for benchmarking the
performance of different ITRs.

In this paper, we focus on the outcome IC50, which is the drug concentration that reduces
viability by 50%. This measurement was collected on each of the 1018 cancer cell lines.
A smaller value for IC50 means the drug is more effective. Hence, to be consistent with the
notation of a large value is desirable, we use −log(IC50) the log transformation is done fol-
lowing the procedure used by Yang et al. (2012) as the outcome. We use the gene expression
data (17,419 genes in total) of each cancer line as the predictors, and our aim is to recom-
mend the drug that is more effective between a pair of drugs. Gene expression was chosen
because it was the most predictive data type for drug sensitivity in the GSDC study (Iorio
et al. (2016)).

The minimum and maximum of the mean log(IC50) of the considered drugs are −5.59
and 8.00, respectively. There are 133 drugs with the mean log(IC50) less than 2. Among
these drugs with relatively small log(IC50), there are 235 drug pairs with similar log(IC50)

values among cancer cells: that is, the empirical probability of one drug being the optimal
treatment is greater than 0.35 and less than 0.65. Lastly, we select the 26 drug pairs out of
235 drug pairs that are most likely to have a nonlinear relationship between log(IC50) and
the gene expression level. The complete results for all 26 pairs are given in Supplementary
Material Section C. Here we show results from six drug pairs that are representative: (1)
SN-38 and Vinblastine, (2) JQ1 and Navitoclax, (3) IGFR_3801 and CD532, (4) AZD2014
and IOX2, (5) Cytarabine and IMD-0354, and (6) Refametinib and AZD6738. These drug
combinations were chosen because they gave a large variety in performance for the methods
under consideration.

We use the median absolute deviation (MAD) to filter out the gene expressions with low
variability (MAD < 1), resulting in 1486 genes for the downstream analyses. The number
of cells (sample size) varies for different drug pairs due to different degree of outcomes
missing—a full table of number of cells for each of the 26 drug pairs is given in Table C.1 of
the Supplementary Material but is approximately 900 cells for each drug pair.

We randomly split the data into training (two-thirds) and testing (one-third), then evaluate
trained models on the testing data. We repeat this procedure 100 times. Even though we can
observe the response for both treatments, we construct the training data to be more compa-
rable to learning ITRs in a standard clinical setting. In particular, for each cell we randomly
select one treatment as the “observed” treatment and the corresponding − log(IC50) as the
“observed” outcome and discard the remaining treatment and outcome-related information
for model training. On the testing data, we can directly calculate the empirical agreement and
value function of the trained model on the testing data, as we did in the simulation study. Typ-
ically, we would need to estimate the propensity score and/or outcome regression function for
calculating the empirical agreement and the value function, but due to the special structure
of the GDSC data, this is not required. Finally, we report the average agreement and value
function over the 100 replications. A selection of the results with respect to the agreement is
given in Table 1. The complete results with the agreement and the value function for all 26
drug pairs are given in Supplementary Material Section C.

As seen in Table 1, RAITR, particularly RAITR (CIC, 2κ , DR), performs well across all
drug pairs, which indicates a high level of flexibility. In two out of the six reported drug pairs
RAITR (CIC, 2κ , DR) performs best and in the remaining settings still performs strongly.
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TABLE 1
Results from GDSC analysis for a selection of drug pairs. In one row linear method is denoted L. to increase

clarity. Results are given in terms of mean agreement across 100 replicates with the associated standard errors
in parentheses. The highest performing method(s) for each drug is in bold

SN-38 and JQ1 and IGFR_3801 AZD2014 Cytarabine Refametinib
Vinblastine Navitoclax and CD532 and IOX2 and and

IMD-0354 AZD6738

Method Mean agreement (standard deviation), 100 replicates

Always Treat 0.517 (0.022) 0.593 (0.025) 0.599 (0.025) 0.536 (0.023) 0.538 (0.025) 0.496 (0.024)
GRF 0.527 (0.030) 0.659 (0.025) 0.654 (0.029) 0.534 (0.040) 0.605 (0.034) 0.681 (0.026)
samTEMsel 0.562 (0.043) 0.647 (0.025) 0.656 (0.024) 0.528 (0.041) 0.576 (0.035) 0.687 (0.027)
Linear (CV) 0.627 (0.048) 0.618 (0.042) 0.653 (0.042) 0.531 (0.041) 0.603 (0.036) 0.697 (0.026)
L. (CIC, 2κ , DR) 0.630 (0.034) 0.621 (0.027) 0.661 (0.026) 0.551 (0.028) 0.609 (0.029) 0.696 (0.025)
RAITR (CV) 0.613 (0.037) 0.630 (0.033) 0.655 (0.035) 0.543 (0.037) 0.599 (0.034) 0.687 (0.029)
RAITR (CIC) 0.600 (0.052) 0.631 (0.042) 0.645 (0.044) 0.538 (0.036) 0.590 (0.033) 0.677 (0.037)
RAITR (CIC, 2κ) 0.627 (0.038) 0.641 (0.032) 0.667 (0.029) 0.549 (0.031) 0.612 (0.026) 0.697 (0.026)
RAITR (CIC, DR) 0.599 (0.054) 0.631 (0.039) 0.647 (0.038) 0.539 (0.037) 0.592 (0.032) 0.680 (0.036)
RAITR 0.628 (0.038) 0.642 (0.031) 0.667 (0.029) 0.550 (0.030) 0.613 (0.024) 0.696 (0.026)

(CIC, 2κ , DR)

Each of the other methods performs well for particular drug pairs but also performs poorly in
other pairs. The high degree of flexibility, together with the aforementioned interpretability
makes RAITR a desirable method for ITR identification.

5. Discussion. We propose a new method, RAITR, for learning flexible yet interpretable
nonlinear ITRs based on a reluctant generalized additive model. RAITR is designed with
high dimensionality in mind and efficiently adapts to the smoothness of the underlying ITR.
RAITR is parsimonious by supplying a simple modeling framework that only includes com-
plex terms that are essential for the ITR. Even when complex, nonlinear terms are selected;
our framework allows for a simple data-visualization tool in order to increase interpretability
and collaboration. On the other hand, using the reluctant additive framework creates chal-
lenges, which we have addressed by combining crossfitting with CIC, a modern information-
based model selection criterion.

As is seen in both the data analysis and simulations, there are times when the linear ITR
is enough for an accurate treatment decision. This is because, even if the underlying het-
erogeneous treatment effect is highly nonlinear, the resulting optimal ITR may be well ap-
proximated by a linear ITR. As such, it is imperative to have highly flexible methods which
perform well in simpler settings, such as RAITR. Despite the demonstrated advantages of
RAITR, one key area of concern with respect to performance is that the augmentation proce-
dure seems to require a relatively large sample size, particularly in high-dimensional settings,
to perform well. For this reason and in extremely small sample size settings, we would recom-
mend either using a simpler parametric model for augmentation or omitting the augmentation
step (omitting would not impact bias). Furthermore, because our method is designed to “fall
back” to a linear ITR when nonlinear terms are not warranted by the data, our approach is
almost always competitive with linear ITR approaches. Lastly, regarding when it is appropri-
ate to estimate an ITR, the general principle would also apply: if the sample size is simply
too small, it may not feasible to estimate an ITR using any method. If the dimensionality is
extremely high, it is advisable to use a variable screening procedure to eliminate variables
that do not have marginal interactions with the treatment.
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Note that the current implementation of RAITR does not enforce the strong heredity prop-
erty, which is the notion of including a nonlinear term in the model only when the corre-
sponding linear term has also been included. Even though the chance of violation of strong
heredity property with RAITR is low due to how the nonlinear terms are constructed, incor-
porating strong heredity would be an important future area of research. For example, one
approach would be to use the penalty proposed in Bian et al. (2023) to ensure strong hered-
ity. Moreover, even though RAITR is motivated by learning ITRs for observational studies,
it is directly applicable to data from controlled experiments and randomized trials. Due to a
commonly observed phenomenon of variance reduction when known propensity scores are
estimated, the estimated propensity score would still be used in RAITR, since even a well-
executed randomized trial could have finite sample covariate imbalance, and estimating aver-
age treatment effect has shown that it is beneficial to use the estimated (correctly-specified)
propensity score, even if the true treatment assignment mechanism is known (Hirano, Imbens
and Ridder (2003)).

In this work we focused on extending linear ITRs to nonlinear ITRs under the weighted
learning framework; however, our method can be readily applicable to other ITR learning
frameworks whose current implementations are focused on learning linear ITRs such as A-
learning (Chen et al. (2017), Nie and Wager (2021)), dynamic weighted ordinary least squares
(Wallace and Moodie (2015)), and more. Moreover, the RAITR approach was designed with
continuous outcomes in mind, but the justification of the loss does not require the outcome
to be continuous and could thus be applied to count or binary outcomes. However, a simi-
lar approach could be developed for other types of responses using the general class of loss
functions explored in Chen et al. (2017) and Huling and Yu (2021). Other areas of future
research include extending RAITR for multicategory treatments (Qi et al. (2020)) or contin-
uous treatments (Chen, Zeng and Kosorok (2016)) and allowing for the inclusion of pairwise
interaction effects via the reluctant interaction modeling framework (Yu, Bien and Tibshirani
(2019)).
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SUPPLEMENTARY MATERIAL

Supplement to “A reluctant additive model framework for interpretable nonlinear
individualized treatment rules” (DOI: 10.1214/23-AOAS1767SUPPA; .pdf). Algorithm 2,
additional simulation and real data analysis results, and information on computation times.

Code (DOI: 10.1214/23-AOAS1767SUPPB; .zip). The software for the proposed method
in R.
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