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Computational challenges in additive 
manufacturing for metamaterials design

Keith A. Brown & Grace X. Gu

Additive manufacturing plays an essential 
role in producing metamaterials by precisely 
controlling geometries and multiscale 
structures to achieve the desired properties. In 
this Comment, we highlight the challenges and 
opportunities from additive manufacturing for 
computational metamaterials design.

Metamaterials are engineered structures with properties not typically 
found in natural materials, achieved through their unique micro- or 
nano-scale architecture. Additive manufacturing (AM), or 3D printing, 
plays a crucial role in creating these complex structures1. It allows for pre-
cise control over the material’s geometry at the scale necessary for meta-
material properties to emerge. The additive nature of 3D printing can 
construct intricate patterns and shapes required to achieve the desired 
metamaterial behavior by enabling rapid prototyping, customization, 

and the ability to explore a vast design space with relative ease and effi-
ciency. Further, emerging ‘4D printing’ techniques, which incorporate 
time as a fourth dimension, can lead to features or properties (for exam-
ple, shape, stiffness, and so on) that are programmed to evolve and adapt 
to environments after production2. However, designing and predict-
ing the behavior of additively manufactured metamaterials is complex 
because their properties are dependent upon physical phenomena that 
can be highly sensitive to minute structural details at multiple length 
scales and processing parameters. In this Comment, we will discuss the 
computational challenges and opportunities associated with additive 
manufacturing for metamaterials (see the schematic in Fig. 1, top).

The first challenge is the vast design space offered by AM, mag-
nified by the hierarchical nature of metamaterials, which makes 
brute-force design exploration impractical. Recent strides in research 
have suggested using graph-based representations to better capture 
the irregularities within material architectures, thereby providing a 
more accurate depiction of potential design variations3. Additionally, 
parametric or procedural designs leverage algorithms to generate 
structures based on a limited set of initial parameters, simplifying the 
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Fig. 1 | The additive manufacturing process for metamaterials fabrication 
and highlights of the emerging techniques that can assist the production of 
metamaterials. Top: the conventional additive manufacturing (AM) process for 
metamaterials includes mapping out the digital design space and the printing 
process for fabrication. Bottom: methods that can help in the design of AM for 
metamaterials design and validation. Process parameter optimization methods 

for optimizing the multi-dimensional parameter space in AM (left). Multi-fidelity 
machine learning models for incorporating architectural design and process 
parameters into computational models (middle). Self-driving labs for automated 
exploration of complex metamaterial design spaces (right). The green dots 
represent selected points on the 3D plot and the colours in the multi-fidelity 
model represent different layers in the neural network.
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lower-fidelity, computationally cheaper data, enabling more accurate 
and efficient predictions. This approach substantially enhances the abil-
ity to optimize metamaterial properties and functionalities, addressing 
the challenge of computational complexity while reducing the time and 
resource expenditure typically required for such tasks.

The final challenge is that computational models of additively 
manufactured metamaterials must be evaluated and refined as part 
of the design and validation process. This is a challenge both because 
many metamaterial properties of interest are expensive or inaccurate 
to simulate and additive manufacturing introduces variations in micro-
structure that are not reliably predictable. From a throughput perspec-
tive, estimating properties using simulation or other computational 
modeling approaches such as machine learning would be preferred 
as this can be faster and less expensive than experiment. However, 
there are major challenges in accurately simulating metamaterial 
properties. First, there are many properties for which accurate and fast 
computational predictors have yet to be developed11. For instance, it is 
very challenging to predict the high-strain mechanics of components 
due to material nonlinearities, structural nonlinearities, and dynamic 
self-contacts. Similar considerations make it challenging to predict 
fatigue life of metamaterials using computational means. For proper-
ties that can be predicted using simulation such as elastic modulus or 
Poisson’s ratio, accurately capturing the hierarchical geometry with the 
processing-specific microstructure is challenging. If the metamaterial 
contains structural motifs that spans over three orders of magnitude 
in size, the numerical precision and minimum voxel size needed to 
capture these features from AM processes can make any simulation 
computationally expensive to run, motivating the development of 
multi-scale approaches12. Furthermore, simulating 4D printed meta-
materials poses computational challenges due to their dynamic nature 
where properties evolve over time in response to external stimuli. Due 
to these challenges, there have been efforts to capture large databases 
of experimental mechanical performance and use these to build or 
refine predictive models of metamaterial properties.

The complexity of validating simulations of the extreme mechani-
cal performance of metamaterials against experimental data adds 
another layer of difficulty. Experiment remains the gold standard for 
testing metamaterial designs and validating simulation tools. This is 
especially true in extreme mechanics, where simulation tools are incom-
plete, and fields like nanophotonics where manufacturing-induced 
variations can strongly influence the optical properties of nanostruc-
tures. Thus, the speed and efficiency of experimental testing become 
a paramount concern. Recently, self-driving labs, or automated experi-
ments (Fig. 1, bottom right) in which the experiments are selected by 
machine learning, have become an essential tool for rapidly exploring 
complex metamaterial design spaces13. The use of active learning strate-
gies such as Bayesian optimization allows them to identify superlative 
designs with 10–1,000 times fewer experiments than grid-based search-
ing14. At present, self-driving labs have been employed principally in 
the mechanics of additively manufactured structures and materials 
discovery, so there are many opportunities for developing systems to 
accelerate the study of many other facets of metamaterial design. For 
example, a single unified system that autonomously tunes material 
properties, produces hierarchical structures, and then functionally 
evaluates the resulting metamaterial has yet to be realized. The recent 
demonstration of a system that screens both material properties and 
architecture to study extreme mechanical properties provides inspi-
ration for what type of superlative performance can be uncovered by 
simultaneously tuning material property and structure15.

design process. To effectively navigate this extensive design space, 
optimization techniques such as topology optimization and genetic 
algorithms are employed4. Machine learning also plays a crucial role by 
enabling generative design strategies that can predict complex archi-
tectures from a relatively modest input of variables, thus expediting 
the design process. Another innovative approach involves utilizing 
self-assembly processes to naturally dictate the formation of finer-scale 
features5. Addressing the AM constraints, such as support material 
requirements and printer resolution, is integral to the computational 
design process. Previous approaches have managed these constraints 
by incorporating simulation tools that predict the need for support 
structures and adjust the design to optimize resolution and material 
use6. These simulations and related computational tools are essential 
for optimizing the use of support structures, which are often necessary 
to prevent the collapse of overhanging features and to maintain the 
integrity of the structure during the printing process. By accurately 
predicting where supports are needed, simulation tools and algorithms 
can help reduce the amount of excess material used, thereby minimiz-
ing waste and decreasing the post-processing time required to remove 
these supports. By blending advanced computational methods with 
practical manufacturing considerations, the field can push the bounda-
ries of what is possible with metamaterials in AM.

Another challenge for computation is the effect of processing con-
ditions and parameters on the additively manufactured metamaterial 
part. The mechanical properties of parts produced through additive 
manufacturing are influenced by process parameters and conditions 
such as energy input, layer height, printing speed, and ambient condi-
tions (with specifics that depend on the AM approach)7. These print-
ing parameters can affect the microstructure of materials, which in 
turn impact the strength, ductility, and fatigue life of the printed parts. 
Recently, there have been in situ monitoring and correction techniques 
developed to detect these effects and correct for them8. Computational 
models must incorporate these variables to provide accurate predictions 
of the final product’s properties. By simulating the additive manufactur-
ing process, taking into account the thermal history, stress develop-
ment, and cooling rates, the models can be used to optimize parameters 
for desired mechanical outcomes (Fig. 1, bottom left). This predictive 
capability is essential for developing design principles that can reliably 
produce parts with specified properties and performance. Hence, the 
integration of process parameters into computational models or digital 
twins9 is critical for advancing AM toward producing parts that meet 
precise engineering specifications and for the systematic exploration 
of new material systems and geometries. Digital twins, virtual replicas 
of physical systems updated with real-time data, can be conducive for 
simulating, predicting, and optimizing the AM process to achieve precise 
engineering specifications and explore new materials and geometries.

Ultimately, the integration of architectural design and process 
parameters into computational models would be key to obtaining meta-
materials with desired properties and functionalities. When considering 
the data needed to train such models, there is a tradeoff between cost 
and fidelity, namely that high-fidelity simulations are often necessary 
to capture complex phenomena, but cheaper low-fidelity simulations 
are more appropriate for exploring the vast parameter space. Further-
more, experiments are often necessary to take into account intricate 
processing-property relationships and processing-dependent defects. 
Utilizing multi-fidelity machine learning models10 (Fig. 1, bottom mid-
dle) presents a promising approach to integrate architectural design 
and process parameters effectively. These models can simultaneously 
process high-fidelity simulations and experimental data alongside 
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In closing, the frontier of metamaterials science represents a 
convergence of advanced additive manufacturing techniques, compu-
tational innovations, and experimental validation. As we harness the 
power of optimization, machine learning, and automated experimenta-
tion, the potential of metamaterials continues to expand, promising 
new application spaces.
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	Fig. 1 The additive manufacturing process for metamaterials fabrication and highlights of the emerging techniques that can assist the production of metamaterials.




