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Computational challengesinadditive
manufacturing for metamaterials design
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W Check for updates

Additive manufacturing plays an essential

role in producing metamaterials by precisely
controlling geometries and multiscale
structures to achieve the desired properties. In
this Comment, we highlight the challenges and
opportunities from additive manufacturing for
computational metamaterials design.

Metamaterials are engineered structures with properties not typically
found in natural materials, achieved through their unique micro- or
nano-scale architecture. Additive manufacturing (AM), or 3D printing,
playsacrucial rolein creating these complex structures’. It allows for pre-
cise control over the material’s geometry at the scale necessary for meta-
material properties to emerge. The additive nature of 3D printing can
constructintricate patterns and shapes required to achieve the desired
metamaterial behavior by enabling rapid prototyping, customization,
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and the ability to explore a vast design space with relative ease and effi-
ciency. Further, emerging ‘4D printing’ techniques, which incorporate
timeasafourth dimension, canlead tofeatures or properties (for exam-
ple, shape, stiffness, and so on) that are programmed to evolve and adapt
to environments after production”. However, designing and predict-
ing the behavior of additively manufactured metamaterials is complex
because their properties are dependent upon physical phenomenathat
can be highly sensitive to minute structural details at multiple length
scales and processing parameters. In this Comment, we will discuss the
computational challenges and opportunities associated with additive
manufacturing for metamaterials (see the schematicin Fig. 1, top).
The first challenge is the vast design space offered by AM, mag-
nified by the hierarchical nature of metamaterials, which makes
brute-force design explorationimpractical. Recentstridesin research
have suggested using graph-based representations to better capture
the irregularities within material architectures, thereby providing a
moreaccurate depiction of potential design variations®. Additionally,
parametric or procedural designs leverage algorithms to generate
structures based onalimited set of initial parameters, simplifying the
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Fig.1| The additive manufacturing process for metamaterials fabrication
and highlights of the emerging techniques that can assist the production of
metamaterials. Top: the conventional additive manufacturing (AM) process for
metamaterialsincludes mapping out the digital design space and the printing
process for fabrication. Bottom: methods that can help in the design of AM for
metamaterials design and validation. Process parameter optimization methods

Multi-fidelity models
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for optimizing the multi-dimensional parameter space in AM (left). Multi-fidelity
machine learning models for incorporating architectural design and process
parameters into computational models (middle). Self-driving labs for automated
exploration of complex metamaterial design spaces (right). The green dots
represent selected points on the 3D plot and the colours in the multi-fidelity
model represent different layers in the neural network.
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design process. To effectively navigate this extensive design space,
optimization techniques such as topology optimization and genetic
algorithms are employed*. Machine learning also plays a crucial role by
enabling generative design strategies that can predict complex archi-
tectures from a relatively modest input of variables, thus expediting
the design process. Another innovative approach involves utilizing
self-assembly processes to naturally dictate the formation of finer-scale
features’. Addressing the AM constraints, such as support material
requirements and printer resolution, isintegral to the computational
design process. Previous approaches have managed these constraints
by incorporating simulation tools that predict the need for support
structures and adjust the design to optimize resolution and material
use®. These simulations and related computational tools are essential
for optimizing the use of supportstructures, which are often necessary
to prevent the collapse of overhanging features and to maintain the
integrity of the structure during the printing process. By accurately
predictingwhere supports are needed, simulation tools and algorithms
canhelp reduce the amount of excess material used, thereby minimiz-
ing waste and decreasing the post-processing time required to remove
these supports. By blending advanced computational methods with
practical manufacturing considerations, the field can push the bounda-
ries of what is possible with metamaterials in AM.

Another challenge for computationis the effect of processing con-
ditions and parameters on the additively manufactured metamaterial
part. The mechanical properties of parts produced through additive
manufacturing are influenced by process parameters and conditions
such as energy input, layer height, printing speed, and ambient condi-
tions (with specifics that depend on the AM approach)’. These print-
ing parameters can affect the microstructure of materials, which in
turnimpact the strength, ductility, and fatigue life of the printed parts.
Recently, there have beeninsitu monitoring and correction techniques
developed todetect these effects and correct for them®. Computational
models mustincorporate these variables to provide accurate predictions
of thefinal product’s properties. By simulating the additive manufactur-
ing process, taking into account the thermal history, stress develop-
ment, and cooling rates, the models can be used to optimize parameters
for desired mechanical outcomes (Fig. 1, bottom left). This predictive
capability is essential for developing design principles that canreliably
produce parts with specified properties and performance. Hence, the
integration of process parameters into computational models or digital
twins’ is critical for advancing AM toward producing parts that meet
precise engineering specifications and for the systematic exploration
of new material systems and geometries. Digital twins, virtual replicas
of physical systems updated with real-time data, can be conducive for
simulating, predicting, and optimizing the AM process to achieve precise
engineering specifications and explore new materials and geometries.

Ultimately, the integration of architectural design and process
parameters into computational models would be key to obtaining meta-
materials with desired properties and functionalities. When considering
the data needed to train such models, there is a tradeoff between cost
and fidelity, namely that high-fidelity simulations are often necessary
to capture complex phenomena, but cheaper low-fidelity simulations
aremore appropriate for exploring the vast parameter space. Further-
more, experiments are often necessary to take into account intricate
processing-property relationships and processing-dependent defects.
Utilizing multi-fidelity machine learning models' (Fig. 1, bottom mid-
dle) presents a promising approach to integrate architectural design
and process parameters effectively. These models can simultaneously
process high-fidelity simulations and experimental data alongside

lower-fidelity, computationally cheaper data, enabling more accurate
and efficient predictions. Thisapproach substantially enhances the abil-
ity to optimize metamaterial properties and functionalities, addressing
the challenge of computational complexity while reducing the time and
resource expenditure typically required for such tasks.

The final challenge is that computational models of additively
manufactured metamaterials must be evaluated and refined as part
of the design and validation process. This is a challenge both because
many metamaterial properties of interest are expensive orinaccurate
tosimulate and additive manufacturing introduces variations in micro-
structure thatare not reliably predictable. From a throughput perspec-
tive, estimating properties using simulation or other computational
modeling approaches such as machine learning would be preferred
as this can be faster and less expensive than experiment. However,
there are major challenges in accurately simulating metamaterial
properties. First, there are many properties for which accurate and fast
computational predictors have yet to be developed™. For instance, it is
very challenging to predict the high-strain mechanics of components
due tomaterial nonlinearities, structural nonlinearities, and dynamic
self-contacts. Similar considerations make it challenging to predict
fatigue life of metamaterials using computational means. For proper-
ties that can be predicted using simulation such as elastic modulus or
Poisson’s ratio, accurately capturing the hierarchical geometry with the
processing-specific microstructure is challenging. If the metamaterial
contains structural motifs that spans over three orders of magnitude
in size, the numerical precision and minimum voxel size needed to
capture these features from AM processes can make any simulation
computationally expensive to run, motivating the development of
multi-scale approaches®. Furthermore, simulating 4D printed meta-
materials poses computational challenges due to their dynamic nature
where properties evolve over timein response to external stimuli. Due
tothese challenges, there have been efforts to capture large databases
of experimental mechanical performance and use these to build or
refine predictive models of metamaterial properties.

The complexity of validating simulations of the extreme mechani-
cal performance of metamaterials against experimental data adds
another layer of difficulty. Experiment remains the gold standard for
testing metamaterial designs and validating simulation tools. This is
especially truein extreme mechanics, where simulationtools areincom-
plete, and fields like nanophotonics where manufacturing-induced
variations can strongly influence the optical properties of nanostruc-
tures. Thus, the speed and efficiency of experimental testing become
aparamount concern. Recently, self-driving labs, or automated experi-
ments (Fig. 1, bottom right) in which the experiments are selected by
machinelearning, have become an essential tool for rapidly exploring
complex metamaterial designspaces®. The use of active learning strate-
gies such as Bayesian optimization allows them to identify superlative
designswith10-1,000 times fewer experiments thangrid-based search-
ing™. At present, self-driving labs have been employed principally in
the mechanics of additively manufactured structures and materials
discovery, sothere are many opportunities for developing systems to
accelerate the study of many other facets of metamaterial design. For
example, a single unified system that autonomously tunes material
properties, produces hierarchical structures, and then functionally
evaluatestheresulting metamaterial has yet to be realized. The recent
demonstration of a system that screens both material properties and
architecture to study extreme mechanical properties provides inspi-
ration for what type of superlative performance can be uncovered by
simultaneously tuning material property and structure®.
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