
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024 3143

AutoAI2C: An Automated Hardware Generator for
DNN Acceleration on Both FPGA and ASIC

Yongan Zhang , Xiaofan Zhang, Member, IEEE, Pengfei Xu, Yang Zhao, Cong Hao , Associate Member, IEEE,
Deming Chen , Fellow, IEEE, and Yingyan Lin , Member, IEEE

Abstract—Recent advancements in deep neural networks
(DNNs) and the slowing of Moore’s law have made domain-
specific hardware accelerators for DNNs (i.e., DNN chips) a
promising means for enabling more extensive DNN applications.
However, designing DNN chips is challenging due to: 1) the
vast and nonstandardized design space and 2) different DNN
models’ varying performance preferences regarding hardware
micro-architecture and dataflows. Therefore, designing a DNN
chip often takes a large team of interdisciplinary experts months
to years. To enable flexible and efficient DNN chip design, we
propose AutoAI2C: a DNN chip generator that can automati-
cally generate both FPGA- and ASIC-based DNN accelerator
implementation (i.e., synthesizable hardware and deployment
code) with optimized algorithm-to-hardware mapping, given the
DNN model specification from mainstream machine learning
frameworks (e.g., PyTorch). Specifically, AutoAI2C consists of two
major components: 1) a Chip Predictor, which can efficiently and
reliably predict a DNN accelerator’s energy, latency, and resource
consumption using the proposed graph-based intermediate accel-
erator representation and 2) a Chip Builder, which can generate
and optimize DNN accelerator designs by automatically exploring
the design space based on targeting metrics and the Chip
Predictor’s performance feedback. Extensive experiments show
that our Chip Predictor’s predictions differ by <10% from real-
measured ones. Furthermore, AutoAI2C generated accelerators
can achieve performance comparable to or better than state-
of-the-art accelerators, achieving up to a 2.12× throughput
improvements or 2.4× latency reduction with the same level of
hardware resource usage, or reducing energy consumption by up
to 1.6×, when running the same DNN workloads.

Index Terms—AI chips, design automation, genetic algorithms,
neural network hardware.

I. INTRODUCTION

RECENT advancements in deep neural networks (DNNs)
have led to their widespread adoption in various

Manuscript received 20 September 2023; revised 16 February 2024;
accepted 1 April 2024. Date of publication 24 April 2024; date of current
version 20 September 2024. This work was supported in part by the NSF
RTML Grant under Award 1937592; in part by the NSF CAREER Award
under Grant 2345577; and in part by the AMD Center of Excellence at
UIUC. The work of Xiaofan Zhang was supported by the Google Ph.D.
Fellowship. This article was recommended by Associate Editor L.-C. Wang.
(Corresponding authors: Deming Chen; Yingyan Lin.)

Yongan Zhang, Cong Hao, and Yingyan Lin are with the Department of
Computer Science, Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: celine.lin@gatech.edu).

Xiaofan Zhang is with the ML Systems and Cloud AI, Google, Mountain
View, CA 94043 USA.

Pengfei Xu is with the Memory Solution Lab, Samsung, San Jose, CA,
USA.

Yang Zhao is with the Department of Electrical and Computer Engineering,
University of Minnesota, Twin Cities, MN, USA.

Deming Chen is with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, Champaign, IL
61801 USA (e-mail: dchen@illinois.edu).

Digital Object Identifier 10.1109/TCAD.2024.3393428

real-life applications, including self-driving vehicles [1],
medical imaging [2], and the recent surge in large lan-
guage models (LLMs) for natural language understanding and
generation [3], [4]. However, the deployment of DNN-based
applications often demands not only high accuracy but also
exceptional hardware efficiency. This includes requirements
for high throughput, low latency, and minimal energy and area
consumption. Despite the exceptional task accuracy achieved
by recently proposed DNNs, such as LLMs, their inherent
complexity necessitates substantial computation and memory
resources, posing significant challenges to practical deploy-
ment [3], [4].

While traditional computing platforms such as CPUs and
GPUs have been instrumental in advancing the field of
machine learning, they often fall short in achieving a satisfying
hardware efficiency for DNN workloads. These platforms are
generally not optimized for the high levels of parallelism
and data reuse that DNNs demand, leading to suboptimal
performance and energy inefficiency. Furthermore, the instruc-
tion overhead and rigid hardware architecture can often lead
to substatial amount of hardware idleness. As a result, there
has been growing interest in DNN hardware accelerators,
which employ specialized hardware micro-architectures and
dataflows to leverage the parallelism and data reuse opportuni-
ties inherent in DNNs, thus improving the efficiency of DNN
inference/training.

However, developing customized DNN accelerators is a
nontrivial task. Practitioners within this area are expected
to possess a wide range of cross-disciplinary knowledge,
spanning from machine learning algorithms to physical chip
design. The result is a vast and diverse design space,
necessitating a large team of domain experts and a devel-
opment time of months or even years for a single DNN
accelerator. Specifically, designing accelerators for FPGAs or
ASICs typically involves: 1) customizing micro-architecture
and dataflow design space for target DNN workloads; 2) using
RTL programming to implement accelerator prototypes; and
3) iteratively verifying and tuning the design to improve
hardware efficiency while maintaining correct functionality.
Consequently, a deep understanding of both DNN algorithms
and hardware design, as well as significant time and effort, are
essential for DNN accelerator development. To address these
challenges, recent advancements include the development of
high-level synthesis (HLS) design flows [5], [6] and DNN
design automation frameworks [7], [8], which expedite the
design process by leveraging high-level algorithmic descrip-
tions and utilizing predefined high-quality hardware IPs.
However, these tools still require considerable expert input,

1937-4151 c⃝ 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7919-049X
https://orcid.org/0000-0002-2541-8767
https://orcid.org/0000-0002-3016-0270
https://orcid.org/0000-0001-5946-203X

3144 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

as they either depend on domain experts to narrow down the
design space using pre-existing architecture standards [7], [8]
or only offer limited design exploration and optimization. This
constraint has hampered the development of DNN accelerators
with competitive performance.

For the above challenges, we propose AutoAI2C, a design
automation framework that can automatically generate opti-
mized FPGA- and ASIC-based accelerator implementations
for DNN models defined in popular machine learning frame-
works, such as PyTorch [9], and enables quick and reliable
performance estimation for hardware accelerators ranging
from customized accelerators [10], [11], [12] to commercial
edge-devices [13], [14]. The main contributions of this article
are as follows.

1) AutoAI2C: By incorporating the two proposed enablers,
i.e., Chip Predictor and Chip Builder, we construct an
automated DNN accelerator design framework dubbed
AutoAI2C, which can generate the optimized DNN
accelerator implementation in an end-to-end manner
(i.e., synthesizable hardware and deployment code),
by directly taking the inputs of DNN model defini-
tions from popular machine learning frameworks (e.g.,
PyTorch [9]) and application-driven specifications (e.g.,
performance objectives and hardware resource budgets).
Experiments conducted under various settings show
that AutoAI2C generated FPGA- and ASIC-based DNN
accelerators outperform state-of-the-art (SOTA) accel-
erators with up to a 2.12× throughput improvements
or 2.4× latency reduction with the same level of
hardware resource usage, or reducing energy consump-
tion by up to 1.6×, when running the same DNN
workloads.

2) One-for-All Design Space Description: We intro-
duce an object-oriented graph-based representation
for DNN accelerators that unifies design factors
across three abstraction levels: IP, architecture, and
hardware-mapping. This approach enables highly flex-
ible hardware configurations, scalable architecture and
mapping co-optimization, and adaptive accelerator
designs that can adapt to different algorithms.

3) Chip Predictor: Building on the unified design space
description, we propose Chip Predictor, a multigrained
performance estimation tool for DNN accelerators.
This tool offers a coarse-grained and analytical-model-
based mode for quick performance estimation, as well
as a fine-grained and run-time-simulation-based mode
for more accurate estimation, leading to less than a
10% prediction error as compared to real-measured
performance.

4) Chip Builder: To create DNN accelerator designs with
competitive hardware performance, we further pro-
pose Chip Builder, which optimizes designs within
the proposed unified design space using a two-
stage design space exploration (DSE) methodology
to balance the exploration efficiency and the gen-
erated design quality. Specifically, our Chip Builder
features: 1) an architecture/IP design process that
utilizes the quick performance feedback from Chip

Predictor’s coarse-grained mode, enabling a fast 1st-
stage exploration and optimization and 2) an IP/pipeline
design process that relies on Chip Predictor’s fine-
grained mode, for a detailed 2nd-stage IP-pipeline
co-optimization and resource reallocation.

This work is a continuation of our AutoDNNchip work
published in [15]. Specifically, AutoAI2C further enhances
AutoDNNchip [15] by making the following three new con-
tributions. First, we further expand the accelerator search
space to include more accelerator templates inspired by the
versatile accelerator [16]. This enables AutoAI2C to generate
more efficient accelerators for recent DNNs with diverse
structures, catering to various application requirements. The
newly added templates, however, increase the accelerator
search space size during DSE from 4.6 million to 40 million,
raising the exhaustive search time (8.75×) from 0.8 to 7 h.
Thus, a more efficient search algorithm is necessary to ensure
AutoAI2C’s search efficiency. To this end, second, we propose
a new search method based on a bio-inspired evolutionary
algorithm (EA) [17] for Chip Builder (see Section V) to
more efficiently navigate over the large hardware accelerator
search spaces, leading to further optimized accelerator designs
and thus better accelerator performance. Third, we conduct
comprehensive experiments to validate the effectiveness and
advantages of AutoAI2C, integrating the expanded accelera-
tor design space and the newly proposed search algorithm.
Specifically, the automatically generated accelerators from
our AutoAI2C outperform those generated using existing
SOTA design automation frameworks [15], [18], [19], [20]
by 3.72× on throughput (Section VI-E). Moreover, compared
with commonly used random search or reinforcement learning
(RL)-based search algorithms [18], our evolutionary-based
search algorithm achieves a 4.12× improvement in search
efficiency (Section VI-D).

II. BACKGROUND AND RELATED WORKS

DNN Accelerators: In recent years, DNN accelerators
have become key for accelerating DNN workloads due to
their performance and energy efficiency [8], [10], [14],
[21], [22], [23]. Innovations like DNNBuilder [8] enhance
FPGA throughput with specialized designs, while new
approaches [16] efficiently map DNN models to accelerators
by partitioning hardware resources. ASIC accelerators also see
advancements with optimizations tailored to specific appli-
cations, such as Eyeriss’s [10] row-stationary dataflow for
convolutional layers. However, the complexity of designing
these accelerators, requiring expertise in both DNN algorithms
and hardware design and taking extensive time, underscores
the value of our AutoAI2C proposal.

DNN Accelerator Performance Prediction: When estimating
DNN accelerator performance, roofline models are commonly
used, with customized analytical tools [8] also proposed
to capture the various attributes of each accelerator. For
more reliable estimation, loop-based descriptions have been
adopted by tools, such as Timeloop [24] and DNN-Chip
Predictor [25], which consider hardware design configurations,
memory hierarchies, and dataflows. These tools analyze data

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AutoAI2C: AN AUTOMATED HARDWARE GENERATOR 3145

movements and memory accesses for energy and latency
estimation. Interstellar [26] extends loop-based descriptions
by using Halide’s scheduling language to represent hardware
designs for design exploration. MAESTRO [27] uses a data-
centric approach to depict the accelerator’s data movement and
reuse behavior. However, these estimation tools often fail to
flexibly adjust for the different tradeoffs between estimation
efficiency and accuracy as does our proposed multigrained
Chip Predictor, which enables an effective and efficient DSE.

DNN Accelerator Generation: To bridge the gap between
fast DNN model development and slow implementation
of hardware accelerators, various accelerator generation
tools have been proposed. MAGNet [7] proposes and
tunes a configurable accelerator template with HLS tools.
ConfuciuX [18] leverages RL to optimize the accelerator
design. DNNBuilder [8] take the high-level DNN description
in the Caffe/TensorFlow framework and then automatically
generate optimized FPGA-based accelerators. More recent
works [19], [20], [28], [29] utilize differentiable co-search
methods to automate the generation of both DNN model
structures and paired DNN accelerator design to achieve an
improved tradeoff between task accuracy and hardware effi-
ciency. Previous works, however, either necessitate substantial
expert input to narrow down the design space based on
established architectural standards [7], [8], or they fail to offer
a design space description that can be readily adapted to
various hardware architecture styles [19], [20], [28], [29].
Our proposed AutoAI2C utilizes an one-for-all graph-based
design space description and a two-stage DSE methodology.
These two combined approaches can not only easily adapt to
a wide variety of hardware architecture styles, but can also
automatically narrow down the expansive design space.

III. ONE-FOR-ALL DESIGN SPACE DESCRIPTION

A. Overview

The design space size of DNN accelerators can be both
large and diverse, and consist of various design components.
For instance, the number of choices can explode to over 1010

and span areas from the network-on-chip (NoC) design style
to buffer sizes [20], [29]. To ensure the proposed AutoAI2C
framework’s generality and, at the same time, minimize the
human effort in the design automation loop, it is crucial to
create a design space that is both clearly formulated and
comprehensively applicable to all levels of the design. Thus,
we first summarize the DNN accelerator’s design abstraction
levels into the following three types: 1) architecture level; 2) IP
level; and 3) hardware-mapping level. Table I lists the major
design parameters which we deem to be sufficient for most
cases, with the last column showing the design abstraction
level that each design parameter resides in. Therefore, a
capable design space should cover all the aforementioned lev-
els and consistently maintain the same representation format
for ease of automation. To this end, we adopt a One-for-
all Design Space Description that utilizes a directed graph
structure to unify the design factors from the three abstraction
levels. Upon analysis of Table I, we can observe that: 1)
most of the design factors are linked to design optimization

TABLE I
SUMMARY OF DNN ACCELERATORS’ DESIGN FACTORS

TABLE II
SUMMARY OF HARDWARE IP TYPES AND APPLICABLE ATTRIBUTES IN

THE GRAPH-BASED DESIGN SPACE DESCRIPTION

from multiple levels and 2) the variation in design factors
covers a wide range, from clock frequency to algorithm-to-
hardware mapping. We thus conjecture that the overall system
performance is governed by optimization from different hard-
ware components in different design levels. Therefore, for the
design space description of the DNN accelerator, we adopt
an object-oriented directed graph which enables cross-level
optimization for the instantiated hardware components. An
illustrative example of the representation format is shown in
Fig. 2. Specifically, a basic directed graph is first constructed
using the design factors for the PE array architecture, memory
architecture and mapping/dataflow. Within the graph, each
node denotes a hardware IP which we categorize into three
types: 1) computation IP; 2) datapath IP; and 3) memory IP, as
listed in Table II. Each directed edge in the graph denotes an
interconnection between two nodes and the edge direction is
governed by the corresponding data movement’s direction, i.e.,
the data dependency between the nodes. To cover the design
possibilities across multiple abstraction levels, the directed
graph’s nodes and edges are appended with various applicable
attributes, as listed in Table II, in an object-oriented fashion.
We organize the following sections such that in Section III-B,
based on the five SOTA DNN accelerators, we introduce five
graph-based accelerator templates, which are further used in
the Hardware IP Pool (see Fig. 1 under the user specified
inputs) of AutoAI2C. Together with other customized auxiliary
templates, the available IPs can be combined into a defined
directed graph to provide a number of design candidates with
various performance tradeoffs. In Section III-C, we discuss in
detail the applicable attributes for the IP nodes and edges.

B. Graph-Based Accelerator Templates

We construct four graph-based accelerator templates in
Fig. 3 to illustrate DNN accelerators. These templates can
be compiled into real accelerator implementation by applying

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

3146 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

Fig. 1. AutoAI2C’s design flow for the DSE, optimization and DNN-to-RTL generation.

Fig. 2. Illustrating the graph-based design space description based on
a heterogeneous accelerator architecture to accelerate the residual block
in ResNet [30], with M and C denoting the output and input channels,
respectively.

appropriate IP and edge attributes (Section III-C). Specifically,
Fig. 3(a) shows an architecture template where a sequence of
multipliers is followed by an adder-tree reduction network to
compose the major PE array IP, which is a commonly used
implementation in FPGA-based accelerators. Fig. 3(b) shows
a template comprising two different PE array IPs in a
bundle, including a depth-wise convolutional IP (denoted
as DW_CONV) and a normal convolutional IP (denoted as
CONV). The DW_CONV and CONV operator combination
is commonly adopted in compact vision-based accelerator
systems such as [31]. Two dedicated BRAM IPs are included
to handle the memory configuration and access behavior for
the two computation IPs, respectively. Fig. 3(c) utilizes a
systolic array style architecture template which is adopted by
TPU [14] type DNN accelerators. Fig. 3(d) demonstrates an
architecture template where the data path IPs (i.e., NoC IPs)
define the data reuse and propagation of the activation and
weights within the PE array, and each PE IP has a more
complicated structure in terms of the register file (RF) size
and logics to feed the data to each PE. This architecture style
is adopted by the well-known DNN accelerator Eyeriss [10].

In addition to the four aforementioned monolithic
accelerator templates, we propose the fifth one inspired

(b)

(d)

(a)

(c)

Fig. 3. Overview of the 4 architecture templates in our Hardware IP Pool,
which are adopted from SOTA FPGA- and ASIC-based DNN accelerators,
where (a) illustrates a common architecture template where a sequence of
multipliers is followed by an adder-tree reduction network, (b) shows a
template comprising PE array IP bundle, with a depth-wise convolutional
IP (DW CONV) and a normal convolutional IP (CONV), (c) demonstrates
a systolic array style architecture template, and (d) shows an architecture
template similar to a well-known DNN accelerator Eyeriss [10].

by [8], [16], and [32]. This new template is designed to more
effectively manage the complexities of recently developed
DNN models, which feature a diverse set of layers and exe-
cution patterns. As highlighted in [32], emerging applications
like augmented/virtual reality (AR/VR) and natural language
processing (NLP) often require the deployment of multiple
DNN models for a single task. Moreover, even within a
single DNN model, there can be a heterogeneous mix of
operation types and data shapes, such as the combination
of multilayer perceptrons (MLPs), convolutional layers, and
attention mechanisms in many recent NN models. These varied
workloads pose a challenge for existing accelerators that rely
on a single, fixed architecture, making it difficult to maintain
high hardware resource utilization throughout the execution
process. To address this, our newly proposed architecture tem-
plate employs a parameterized multichunk micro-architecture.
This design balances communication bandwidth and maxi-
mizes resource utilization among different hardware modules,
particularly when running a diverse set of operations. As a
result, it significantly enhances the algorithmic throughput
of accelerators generated by AutoAI2C, especially for more
complex tasks. Specifically, as shown in Fig. 4, each chunk of

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AutoAI2C: AN AUTOMATED HARDWARE GENERATOR 3147

the micro-architecture is associated with: 1) one subaccelera-
tor, equipped with multiple memory hierarchies (e.g., on-chip
SRAM buffer and off-chip DRAM); 2) a PE array which is
parameterized by searchable design factors such as style of
PE interconnection (i.e., NoC); 3) allocated capacity for each
of the buffers; and 4) the mapping and scheduling strategies
for each operation (i.e., dataflows) to effectively leverage
data reuse and parallelism. By doing this, each subaccelerator
can flexibly process multiple but not necessarily consecutive
layers, while different subaccelerators can be pipelined. For
more efficient mapping, layers with similar structures tend to
be assigned to the same subaccelerator.

While the accelerator template in Fig. 3 features single-
accelerator micro-architectures, the one in Fig. 4 adopts a
multiaccelerator micro-architecture. As each subaccelerator in
the multiaccelerator micro-architecture has its unique design
parameters, the design space increases exponentially with the
number of subaccelerators. Specifically, each subaccelerator
in the multiaccelerator template consists of: 1) secondary
on-chip buffer IPs to encourage more local data reuse and
reduce expensive off-chip accesses and 2) a PE array, with
each PE including a multiply and accumulate (MAC) IP
and local RF IPs for the inputs, weights, and outputs; for
each subaccelerator, the NoC IPs dedicate the given DNN’s
temporal and spatial mapping into the PE array and thus
the data movement behavior within/across different memories,
which can lead to drastically different levels of hardware
performance [7]. For example, the size of the design space for
VGG16 will increase from 4.6 million to nearly 40 million,
when switching from solely considering the original single-
accelerator templates in our AutoDNNChip [15] to including
the new multiaccelerator one. As we will later show, exhaus-
tively exploring the expanded space takes almost 7 h, while the
space containing only the single-accelerator templates requires
only 0.8 h. As such, the new accelerator template enlarges the
graph-based accelerator template pool, and calls for efficient
DSE search algorithms to more efficiently navigate through
the expanded design space.

C. IP Attributes

This section presents the IP attributes used to characterize
each constructed IP in the aforementioned graph-based hard-
ware design space representation. Table II lists the possible
attributes for three different node IP types, including memory
IPs (e.g., BRAM and off-chip DRAM), data path (e.g., AXI
bus), and computation hardware that parameterizes the corre-
sponding designs. Specifically, the attributes are elaborated as
follows:

1) The Implementation or Impl. attribute represents the
necessary hardware resources for each implementation
of the IPs’ components, e.g., DRAM and BRAM for
implementing memory IPs.

2) The state machine (StM). attribute describes each IP’s
transition timestamp and conditions between states
of computation and loading/unloading data. The StM
attribute also defines both the needed input addresses and

(a)

(b) (c)

Fig. 5. Toy example demonstrating the generated StM w/o and w/ inserting
inter-IP pipeline optimization, where (a) shows a simple architecture with 2
IPs, including a data path IP and a computation IP, and the task division,
(b) and (c) illustrate the StM and the time diagram w/o and w/ inserting inter-
IP pipelines; SD and SC denote the state for data path IP and computation
IP, respectively.

generated output addresses for resolving the data depen-
dency. For instance, in Fig. 5, the IPs’ StM attribute
can be used to construct different pipeline design styles:
Fig. 5(b) and (c) illustrate two kinds of designs w/o
and w/ inter-IP pipelines along with their corresponding
StM definition, respectively. In Fig. 5(c), more states
are necessary to represent and implement the inter-IP
pipeline between data path and computation IPs.

3) The data precision or Prec. attribute represents the bit
precision for each data type within the IPs.

4) The clock Frequency or Freq. and energy/latency or
E/L attributes define the achievable clock frequency and
required unit energy/latency for the IPs, respectively.

5) The memory volume or Vol. and port/bus width or Bw
attributes represent the memory volume for memory IPs
and port/bus width of data path IPs, respectively.

IV. PROPOSED Chip Predictor

A. Overview

To enable automated DSE, as later described in Section V,
we develop a reliable and fast accelerator performance esti-
mator called Chip Predictor, based on the design space
representation proposed in Section III. As shown in Fig. 6, the
proposed Chip Predictor takes the inputs of DNN model specs
(e.g., the layer structure and activation/weight bit precision),
hardware architecture specs (e.g., number of PEs and NoC
design), algorithm-to-hardware mapping (e.g., the correspon-
dence between IPs and operators), and IP design factors (e.g.,
unit energy/delay cost of a MAC operation and memory
accesses), and then outputs the estimated energy consumption,
latency, and resource consumption to execute the specific
DNN models on the target accelerator. Under the scope of
the whole proposed AutoAI2C, Chip Predictor plays a crucial
role in connecting the framework’s different components.
Specifically, first, we construct a graph-based description that
considers all design abstraction levels and covers a large
search space. The space representation is then used as one

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

3148 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

Fig. 4. Illustration of the chunk-based pipeline architecture template, newly incorporated into our AutoAI2C.

Fig. 6. Overview of the proposed Chip Predictor.

of the inputs to Chip Predictor. Second, to accommodate the
different simulation accuracy and time requirements of Chip
Builder’s two-stage DSE, Chip Predictor adopts a mixed-
granularity prediction approach: 1) a coarse-grained mode that
provides quick analytical IP performance estimation, enabling
efficient design space reduction during Chip Builder’s 1st-
stage architecture and IP exploration and 2) a fine-grained
mode that offers accurate but slightly slower performance
prediction through run-time simulations, by modeling inter-IP
pipeline dependency between IPs. This mode is used for Chip
Builder’s 2nd-stage DSE, targeting IP-pipeline co-optimization
for reduced idle cycles.

B. Chip Predictor’s Coarse-Grained Mode

1) Analytical-Model-Based Intra-IP Modeling: Chip
Predictor’s coarse-grained mode is based on analytical models,
i.e., utilizing a set of formulations for estimation. For symbol
consistency, throughout the article, E, L, and R represent
the modeled energy, latency, and resource consumption,
respectively. ipcomp, ipdp, and ipmem denote the computation
IP, data path IP, and the memory IP, respectively. The high-
level modeling concept utilizes the unit energy, latency, and
overhead costs profiled beforehand in simulation and scales the
cost accordingly with the design attribute values to obtain the
estimated consumption. Specifically, the energy and latency
of the computation IPs are formulated by

Eipcomp = e1 + (#states)× (e2 + emac × U) (1)

Lipcomp = l1 + (#states)× lmac (2)

where (#states) denotes the total number of states as defined
by the IP StM attributes; U denotes the unrolling factor

which dedicates the number of parallel PEs; emac and lmac
denote the unit energy and latency costs for a MAC operation,
respectively; e1 and l1 are the energy and latency overhead
for starting up, i.e., latency on configuring the data path
switches and preloading data, respectively; and e2 denotes
energy or logic overhead for the controlling units. All the
unit costs are profiled beforehand for plugging in, based
on individual modules’ RTL implementation and simulations
under different clock frequencies, unroll factors, bit precisions,
etc. Meanwhile, the energy and latency of the data path IPs
can be modeled in a similar fashion

Eipdp = e3 + (#states)× (e4 + V × ebit) (3)

Lipdp = l2 + (#states)×
(

l3 + V
Pw
× lbit

)
(4)

where V denotes the total inter-IP communication data volume
(bits); Pw denotes the data path’s port width; ebit and lbit
denote, for each bit of data access, the unit energy and latency
costs, respectively; e3 and l2 are the energy and latency
overhead for starting up the pipeline, respectively; and e4 and
l3 denote the CPU and auxiliary logics controlling overhead
for the energy and latency, respectively.

2) Analytical-Model-Based Inter-IP Modeling: The system
performance, as indicated by the total latency, energy, and
resource consumption of a DNN building block (e.g., the
bundle in [21] and [33]), is modeled such that the total energy
consumption is obtained from summing up the consumption
of all the instantiated IPs. The total latency is obtained from
summing up all the IPs’ latencies on the critical path of the
graph. Specifically, it is formulated as

Rmem =
∑

ipmem∈G

Volipmem (5)

Rmul =
∑

ipcomp∈G

Uipcomp + Rmuldec (6)

E =
∑

ip∈G

Eip; L = max
path∈G

∑

ip∈path

Lip (7)

where G denotes the whole graph representing the targeted
accelerator; Rmem denotes the total consumed memory volume
for each memory type as defined by the Impl attributes; Rmul
denotes the total number of consumed multipliers used in
both the computation IPs and the necessary memory address
decoding logic, with the latter specially denoted as Rmuldec .

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AutoAI2C: AN AUTOMATED HARDWARE GENERATOR 3149

Regarding the latency estimation, the system latency for the
represented accelerator is taken from the maximum of all the
data paths’ latencies, i.e., the critical path latency. For faster
modeling, the inter-IP pipeline effects are excluded in the
coarse-grained mode but further included in the fine-grained
mode of Chip Predictor (see Section IV-C). More cycles can
be saved in the fine grained mode thanks to the inserted inter-
IP pipelines.

C. Chip Predictor’s Fine-Grained Mode

In the fine-grained mode of Chip Predictor, we utilize
Algorithm 1 to perform the run-time simulations by consider-
ing the inter-IP pipeline to obtain the corresponding inter-IP
latency. Overall, Algorithm 1 greedily schedules the targeted
algorithm’s operations on their corresponding hardware IPs at
a much finer granularity (as fine as each input feature point).
The finer-grained scheduling enables the maximum possible
overlap in execution time among the targeted hardware IPs for
implementing the inter-IP pipeline.

The detailed run-time simulation algorithm is described in
Algorithm 1, where each IP (denoted as ip) has: 1) its neighbor
IPs on the graph specified as ip.prev and ip.next according to
the operation dependency and algorithm mapping, respectively,
and each ip receives its input data from ip.prev and passes
its outputs to ip.next; and 2) a StM for each instantiated IP
based on the previously defined StM attribute to store different
states during the whole execution process, including each IP’s
busy/idle status and its required inputs and produced outputs.
The algorithm iteratively checks whether a mapped operation
can be scheduled to run and the IP can move to the next state.
Specifically, for each clock cycle during the simulation, ip can
transition to the next state when: 1) all the output data in the
current states is produced (i.e., ip completes computing and
reaches the idle state) and 2) ip.prev has produced all of the
input data which ip requires for the next state. The amount of
required input and output data is based on the granularity of
the mapped operation. If ip is in the idle state but the required
inputs are not ready from ip.prev, it will continue waiting in
the idle state, causing an increase in the idle cycles associated
with this IP and blocking the pipeline. An ip is designated
as busy when generating its outputs and will transition to the
idle state when it finishes generating all the outputs in this
state.

V. PROPOSED Chip Builder

A. Overview

To automate accelerator design in complex and practical
implementations, we introduce Chip Builder, which features
a two-stage DSE engine (Section V-B). This engine can:
1) efficiently rule out infeasible designs via the 1st-stage
optimization, which focuses on architecture/IP designs using
Chip Predictor’s coarse-grained mode and 2) effectively boost
the performance of the remaining designs (e.g., those left
from the previous stage) via the 2nd-stage IP-pipeline co-
optimization using Chip Predictor’s fine-grained mode. To
improve the DSE efficiency, which could otherwise render the
DSE infeasible for certain complicated accelerator designs,

Algorithm 1 Run-Time Simulation for Chip Predictor’s the
Fine-Grained Mode

1: Input: An accelerator design specified by graph G;
2: For each edge in G
3: ipstart ←− edge′s starting node;
4: ipend ←− edge′s ending node;
5: Add ipstart to ipend .prev;
6: Add ipend to ipstart.next;
7: Initialize energy and latency: E = 0, cycles = 0;
8: While not all inference outputs are stored back
9: cycles←− cycles + 1;

10: For each ip in G
11: If (ip is idle) & (all needed inputs ∈ outputs of ip.prev)
12: ip←− busy;
13: ip jumps to the next state;
14: If (ip is idle) & (not all needed inputs ∈ outputs of ip.prev)
15: ip.idle_cycles←− ip.idle_cycles + 1;
16: If (ip is busy) & (not all outputs for ip is ready)
17: Update the ready outputs for ip;
18: If (ip is busy) & (all outputs for ip is ready)
19: ip←− idle;
20: E←− E + Eip;
21: L←− cycles

global clk freq ;
22: ipbottleneck ←− ip with minimum idle cycles.

Algorithm 2 IP-Pipeline Co-Optimization Stage for the Chip
Builder

1: Input: Design space DG containing N2 graphs;
2: For each G in DG
3: For each edge in G
4: ipstart ←− edge′s starting node;
5: ipend ←− edge′s ending node;
6: Add ipstart to ipend .prev;
7: Add ipend to ipstart.next;
8: While simulated latency LG does not converge (Algorithm 1)
9: ip←− ipbottleneck from Algorithm 1;

10: If inter-IP pipeline is inserted between ip and ip.next
11: allocate more resource to ip;
12: Else
13: insert inter-IP pipeline between ip and ip.next;
14: update the state machine of ip;
15: update the state machine of ip.next;
16: Select top Nopt candidates in DG

we also introduce a tailored EA for the fast exploration
stage, enabling more efficient scanning of the design space
(Section V-C).

B. Two Stage DSE

As illustrated in Fig. 1, the design optimization flow of
AutoAI2C utilizes Chip Builder’s two-stage DSE engine based
on the feedback from the proposed Chip Predictor. To effec-
tively and efficiently explore the design space, summarized
as design factors in Table I, AutoAI2C comprises three major
procedures as outlined in Fig. 1.

1) First-Stage DSE: A fast exploration process for the
micro-architecture and dataflow space to efficiently
prune away infeasible designs with the help of Chip
Predictor’s coarse-grained mode.

2) Second-Stage DSE: An IP resource optimization and
inter-IP pipeline exploration process to effectively
improve the hardware performance of the top performing
design candidates generated from the 1st-stage DSE and
to more accurately pick out the best designs.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

3150 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

3) A system-level design validation using automated RTL
generation and execution.

1) Step I (Early Stage Architecture and IP Configuration
Exploration): As shown in the middle section of Fig. 1, the
fast exploration stage primarily focuses on parsing the input
algorithm specs, matching the algorithm with suitable hard-
ware templates and optimizing the hardware design factors.
Specifically, first, a DNN parser is implemented to extract the
DNN layer information (e.g., layer types such as CONV, ReLU
and Pooling), given the definition from a mainstream machine
learning framework (e.g., PyTorch [9]). Second, based on the
parsed DNN model definition, the user-defined performance
metric (e.g., latency) and hardware budgets (e.g., max available
BRAM size of the FPGAs), an accelerator design space
containing N1 potential candidates is generated by producing
commonly-used and applicable hardware architecture tem-
plates and hardware IP templates from the Hardware IP pool.
For example, a folded and more reused hardware architecture
is favored over a flattened one when the resource budget is
limited, while flattened structures that facilitate IP pipelines
and have shorter initiation intervals are preferred when the
budget is sufficient and throughput is the primary performance
goal. Third, an exhaustive search is conducted on the possible
design choices for the architecture and IP configuration to
eliminate most infeasible designs and narrow down the design
space to N2 (N2 < N1) promising candidates, such as designs
with lower latency or higher throughput based on specific
design requirements. This quick early exploration leverages
the analytical nature of the Chip Predictor’s coarse-grained
mode, allowing for efficient navigation through the vast space.
However, in situations where the accelerator architecture is
more complex and involves numerous design choices, this
exhaustive approach to reducing the design space may be
restrictive. As a result, in Section V-C, we introduce a more
efficient evolutionary search algorithm to enhance the speed
of rapid exploration.

2) Step II (Inter-IP Pipeline Exploration and IP
Optimization): To enhance performance, this step takes the
N2 designs obtained from the fast exploration stage as inputs
and carries out further IP optimization using Algorithm 2.
In actual implementation, N2 is empirically tuned such that
the top N2 designs from the 1st-stage DSE stand out the
most from the rest of the designs, i.e., the centroid of the top
N2 designs’ performance has the maximum distance to the
centroid of the rest of the designs’ performance. The 2nd-
stage DSE primarily involves inserting inter-IP pipelines for
more precise estimation, identifying bottlenecks, reallocating
resources, and exporting the best designs. Specifically, first,
a new design space of size N3 (automatically inferred from
previous N2 designs) is created by inserting inter-IP pipelines
into different positions within the associated graph-based
space representation. This leads to N3 new graphs with varying
inter-IP pipeline designs and potentially different hardware
performance. Second, for each of the graphs with inter-
IP pipelines inserted, bottleneck IPs are identified during
Algorithm 1’s run-time simulations and then optimized via
deeper (if not already inserted) inter-IP pipeline designs
or provided with more resources via reallocation, until the

performance converges based on the estimation from Chip
Predictor’s fine-grained mode (The performance optimization
process can also terminate based on the designated total
number of optimization iterations), as shown in Algorithm 2.
Third, after the final optimization iteration, the top Nopt
design candidates are selected based on the Chip Predictor’s
estimated hardware performance. RTL validation is then
performed on these candidates to ensure their practicality for
implementation.

Although the designs before the 1st-stage DSE can also
benefit from the above Inter-IP Pipeline Exploration and IP
Optimization, the performance gap between the top N2 designs
and the rest of the designs is usually too large for the rest of
the designs to catch up. Therefore, we only focus on the top
N2 designs in this step for better efficiency.

3) Step III (Design Validation Through RTL Generation and
Execution): Upon obtaining the top Nopt optimized designs
from the two-stage DSE, an automated code generation pro-
cedure is executed to generate the RTL or HLS C source code
for FPGA and ASIC back-ends, respectively.

1) For the FPGA back-end, we use the standard Vivado [5]
design flow to generate the bitstream with the
predesigned system diagram templates. Concurrently,
designs that fail the place and route (PnR) process
are removed to ensure the functional validity of the
AutoAI2C’s generated accelerators. The final generated
design files include the board-level deployment C code,
the quantized and reordered weights’ binaries, and the
HLS C code for the HLS IP back-end.

2) For the ASIC back-end, the generated design files
include the synthesizable RTL code and testbench,
the quantized and reordered weight binaries, and the
memory specifications. To generate the gate-level or
layout netlist, the output RTL can be passed to an EDA
tool like Design Compiler. Simultaneously, Memory
Compilers use the on-chip memory specifications to
generate the memory design. As a result, the correct
functionalities of all output designs are ensured after
completing this process.

C. Evolutionary Search Algorithm as Efficient Plugin

In this section, we present the evolutionary search algorithm
that serves as a plugin for the vanilla Chip Builder’s fast
exploration stage. The vanilla Chip Builder denotes the Chip
Builder variant that uses exhaustive search to conduct DSE.
The motivation is that the accelerator design space can
easily explode with the more diverse accelerator templates
that are required by the most recent DNN models, which
have increased complexity and structure diversity, making
the exhaustive search algorithm adopted in the vanilla Chip
Builder less efficient or even infeasible. Therefore, our objec-
tive is to equip the vanilla Chip Builder with a more efficient
evolutionary search algorithm capable of handling a much
larger design space, ultimately leading to superior accelerators
with enhanced hardware performance.

Evolutionary search algorithms surpass conventional ran-
dom search in efficiency by strategically exploring promising

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AutoAI2C: AN AUTOMATED HARDWARE GENERATOR 3151

Algorithm 3 Proposed Evolutionary Search Algorithm as a
Plugin for Chip Builder’s Fast Exploration Stage

1: Inputs: Termination condition T; the maximum population pmax; pertur-
bation rate r; birth/dying rate s; the number of output genomes N2;

2: genome_pool ={}
3: While T not met
4: If size of genome_pool ≤ pmax
5: If genome_pool is empty
6: Generate s ∗ pmax new genomes by randomly picking genes
7: Add new genomes to genome_pool
8: Else
9: Generate new genomes by randomly change r of the genes from

the top s ∗ pmax performing genomes in genome_pool
10: Add the new genomes to genome_pool
11: Else
12: Remove the bottom s ∗ pmax genomes from genome_pool
13: Return N2 top performing genomes from genome_pool

areas and using information from previous iterations to guide
the search toward optimal solutions [34]. The flexibility and
reduced sensitivity to hyperparameters as compared with
algorithms like Bayesian Optimization also make EAs partic-
ularly suitable for optimizing new hardware architectures or
algorithmic applications.

As detailed in Algorithm 3, our proposed evolutionary
search algorithm enables efficient exploration by maintaining
constant perturbation around favorable design points and
filtering out undesired ones. Following the convention in [17],
during each search iteration, the candidate accelerators under
evaluation can be regarded as genomes. The properties of
these genomes are characterized by genes, which are designed
to denote connections among different hardware IPs and
IPs’ attributes within a parameterized graph-based accelerator
design description, as introduced in Section III-B. During
implementation, each genome is represented as a vector
with each element as a gene. In Algorithm 3, T represents
the termination condition of the search process and can be
designed to either achieve the target accelerator performance
(e.g., energy or latency) or complete a specific number of
search iterations. The maximum population, pmax, indicates
the highest number of accelerator choices considered during
each search iteration. The perturbation rate, r, represents the
fraction of genes modified based on the top-ranking designs
to generate new designs or genomes. The birth or dying rate,
s, denotes the fraction of newly created designs or removed
designs due to poor performance. Finally, N2 refers to the
number of the ultimately selected top-performing designs, as
described in Section V-B.

With the proposed EA-based accelerator search algorithm,
our Chip Builder, and thus AutoAI2C, can more efficiently
explore the large design spaces and handle more diverse
accelerator template pools, promising to generate accelerators
with more competitive performance, as validated in our exper-
iments (see Section VI-E).

VI. EXPERIMENT RESULTS

A. Methodology and Setup

Hardware Setup: We evaluate AutoAI2C’s effectiveness
using 20 DNN models across six platforms, including three
edge devices [12], [13], [14], one cloud-level FPGA [36],

TABLE III
APPLICATION-DRIVEN INPUTS, SUCH AS THE OBJECTIVES (E.G.,

LATENCY) AND HARDWARE CONSTRAINTS (E.G., RESOURCE BUDGET),
WHEN Chip Builder’S GENERATED FPGA- AND ASIC-BASED DNN

ACCELERATORS ARE EVALUATED

Fig. 7. Chip Predictor’s prediction error for the energy consumption targeting
15 DNN model variants from SkyNet(SK) [21] and MobileNetV2(MB) [35]
on 3 edge devices: an edge FPGA, Edge TPU, and edge GPU.

and two ASIC-based accelerators [10], [11]. Table III summa-
rizes the hardware settings for different platforms, including
resource constraints and application-driven specifications,
which are tailored for real-time visual recognition tasks
like image classification and object detection. For the high-
performance ZC706 FPGA board [36], we use frames per
second (FPS) as the performance metric to align with
cloud computing needs. Table I outlines the architecture and
dataflow search space for our proposed accelerator DSE.
Throughout the experiments, we validate the top 10 designs
after the two-stage DSE, i.e., Nopt is set to 10.

Benchmarked DNN Models and Datasets: To fairly compare
with two academic ASIC accelerators [10], [11], we use the
DNN models specified in their original papers. For the three
edge devices, we evaluate 15 representative compact DNN
model variants from MobileNetV2 [35] and SK [21], with dif-
ferent model settings such as channel scaling factors and input
resolutions. To assess AutoAI2C’s scalability, we also bench-
mark additional models of varying complexity [37], [38], as
illustrated in Fig. 10.

Chip Predictor Setup: The unit energy and latency factors
are extracted either through real-device measurement, synthe-
sized simulation, or paper-reported data [10].

B. Validation of Chip Predictor

In this section, we evaluate the prediction accuracy of the
proposed Chip Predictor, where the prediction errors, as we
later show, are all under 10%, enabling the predictor to reliably
guide the proposed Chip Builder during the DSE.

1) Validation of the Predicted Energy Consumption: As
shown in Fig. 7, as compared with the real-measured ones
from 3 edge devices, under the same settings, Chip Predictor’s
maximum prediction error is under 9.17%, where the major

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

3152 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

Fig. 8. Chip Predictor’s prediction error on the latency consumption targeting
15 DNN model variants from SK [21] and MobileNetV2(MB) [35] on 3 edge
devices: an edge FPGA, Edge TPU, and edge GPU.

source of error comes from the not modeled power cost of
peripheral modules, e.g., board IOs, and routine processes of
the operating systems running on the boards.

2) Validation of the Predicted Latency: Benchmarked
against measured results of the 15 DNN models on the 3
edge devices, Chip Predictor’s latency prediction results are
shown in Fig. 8. The average prediction error is 4.85%, 3.73%,
and 6.57% on the edge GPU, the Ultra96 FPGA board,
and the edge TPU, respectively, where the maximum latency
prediction error is 9.75%.

C. Evaluation of Our New Chip Builder and AutoAI2C

In this section, we evaluate the performance of the proposed
Chip Builder and AutoAI2C as a whole, making use of our
time-efficient and accurate Chip Predictor and the EA search
algorithm to perform an effective two-stage DSE. Specifically,
we analyze and benchmark the hardware performance of
AutoAI2C generated DNN accelerators against that of the base-
lines by comparing the hardware performance of AutoAI2C
generated accelerators against that of SOTA designs under the
same conditions.

1) Evaluating AutoAI2C’s Generated FPGA-Based
Accelerators: We benchmark AutoAI2C-generated accelera-
tors with four SOTA FPGA DNN accelerators [8], [39], [40],
[41] in terms of the throughput (i.e., FPS). As shown in
Table IV, accelerators generated by the enhanced AutoAI2C
consistently outperform those of SOTA baselines. In particular,
on ImageNet, AutoAI2C generated accelerators achieve a
1.11× to 2.12× FPS improvement on VGG16 and 1.10× to
1.73× on AlexNet. When optimizing the accelerator designs
for the throughput objective, the pipelined template illustrated
in Fig. 4 is eventually picked due to its higher hardware
utilization on DNN tasks with decent depth and drastically
different layer shapes. In other cases, single accelerator
templates, as shown in Fig. 3, tend to be favored for their lower
latency and resource consumption. The consistently better
performance of AutoAI2C generated accelerators validates
its effectiveness in automatically navigating over the large
accelerator space to generate optimized accelerators for a
given DNN model. Note that when using AutoAI2C to generate
optimized accelerators, for a fair comparison, we adopt the
same precision and FPGA resource budgets as the baselines.

Fig. 9. Benchmarking the normalized energy consumption of ASIC-based
accelerators from AutoAI2C and the ones in [11], on five shallow neural
networks under the same configurations and throughput requirement.

2) Evaluating AutoAI2C’s Generated ASIC-Based
Accelerators: In these experiments, we evaluate the optimized
performance tradeoff between latency and energy consumption
for AutoAI2C generated ASIC-based accelerators. Through
benchmarking the energy consumption against the SOTA
ASIC-based accelerator [11] on five shallow neural networks,
we demonstrate that the proposed AutoAI2C can generate
ASIC-based accelerators with comparable or even superior
energy efficiency under the same throughput constraint.
Specifically, as shown in Fig. 9, AutoAI2C generated ASIC-
based accelerators consistently outperform [11] in all five
networks, with a 7.9% to 58.3% energy consumption
reduction, highlighting the SOTA acceleration efficiency of
AutoAI2C generated accelerators.

D. Evaluating AutoAI2C’s EA-Based Search Algorithm

In this section, we evaluate the effectiveness of the enhanced
AutoAI2C’s EA-based search algorithm by benchmarking its
search efficiency over that of both random search and RL-
based search baselines, which are utilized in existing design
automation frameworks such as [18]. Specifically, we optimize
the accelerator parameters for VGG16 and AlexNet models
using the same hardware settings as in Table IV, based on the
random search, RL-based, and EA-based search algorithms.
For the RL-based search, the number of layers and hidden
units in the RNN are tuned to maximize the search efficiency,
where we adopt a 2-layer RNN with 1024 and 512 hidden units
for the VGG16 and AlexNet cases, respectively. Furthermore,
we empirically tune the hyper-parameters for our EA-based
search and find that the searched accelerators’ performance
is not sensitive to the adopted hyper-parameter values. In
all experiments, the hyper-parameters are as follows: the
maximum population pmax is set to 1E+4, the perturbation
rate r is set to 0.25, the birth/dying rate s is set to 0.2, and
the termination condition T is defined as the point at which an
accelerator design is identified that can achieve performance
metrics of 300 FPS for AlexNet and 30 FPS for VGG16,
which are competitive with the SOTA FPGA accelerators as
shown in Table IV. Search efficiency is quantified by the
number of sampled design points to discover an accelerator
design that meets these performance criteria. For consistent
comparison, the number of sampled design points are averaged
over 50 runs for each search algorithm. Table V shows that
the EA-based search consistently achieves the best search

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AutoAI2C: AN AUTOMATED HARDWARE GENERATOR 3153

TABLE IV
AutoAI2C GENERATED FPGA ACCELERATORS VERSUS SOTA FPGA ACCELERATORS BASED ON A ZC706 FPGA BOARD [36], WHEN

ACCELERATING VGG16 AND ALEXNET ON IMAGENET AT A FREQUENCY OF 200MHZ

TABLE V
EVALUATING THE PROPOSED EA-BASED SEARCH ALGORITHM AGAINST
RANDOM AND RL-BASED SEARCH USING THE ACCELERATOR DESIGN
SPACE FOR ALEXNET AND VGG16. THE DESIGN SPACE SIZE IS 4E+7.
EFFICIENCY METRIC IS THE AVERAGE NUMBER OF SAMPLED DESIGN

POINTS OUT OF 50 RUNS TO FIND AN ACCELERATOR DESIGN THAT CAN
ACHIEVE 300 FPS FOR ALEXNET AND 30 FPS FOR VGG16

efficiency across the tested tasks. Specifically, it improves
the search efficiency by 2.62× and 3.25× on AlexNet and
2.19× and 2.85× on VGG16, as compared to the RL-based
and random search baselines, respectively. Apart from the
difference in the number of sampled design points, RL requires
a costly training and inference computation for the RNN,
leading to a much longer search time than EA and random
search.

E. Evaluating AutoAI2C Against Existing Design Automation
Frameworks

In this section, we compare the performance of accelerators
created using our AutoAI2C framework with four SOTA DNN
accelerator design automation tools: 1) AutoDNNchip [15];
2) EDD [19]; 3) DIAN [20]; and 4) ConfuciuX [18]. The
assessment of the baselines is achieved by analyzing and repro-
ducing this article presented hardware architecture templates,
search spaces, and DSE methods, which are essential enablers
for the effectiveness of DSE and the resulting accelerator
performance. Each framework’s performance is benchmarked
using the same set of DNN structures (shown in Fig. 10)
and dataset (ImageNet), with data precision set to 16-bit on
the ZC706 hardware platform. Comparisons are made under
hard constraints of the total number of design points sampled
by each framework. The constraints are set as 0.125E+7,
0.25E+7, 0.5E+7, 1E+7, and 2E+7, where 2E+7 is the
rough number of design points sampled by random search to
reach a competitive performance level. For consistency, the
performance is averaged over 50 runs for each framework and
each constraint.

Based on our comparison, we identify four key observations.
First, as shown in Fig. 10, accelerators craftedwithour AutoAI2C
framework consistently outperform those from the four baseline
tools, showing an up to 3.72× increase in FPS across different
DNN models. The results highlight AutoAI2C’s ability to
deliver high-performance DNN accelerators. The reasons for
this performance edge, which we will detail further, include: 1)

a versatile and extensive design space facilitated by a graph-
based approach and a broader selection of micro-architecture
templates and 2) an efficient two-stage DSE.

Second, our analysis shows that while tools like EDD [19]
and DIAN [20] demonstrate promising initial performance
improvements in settings with a limited number of sampled
design points, their gains are notably capped. Specifically,
EDD [19] and DIAN [20] use differentiable optimization
techniques for hardware configurations, which allow for quick
performance boosts in a short optimization period. However,
the accelerators designed by these methods often reach a
performance ceiling that is relatively low. This limitation
appears to stem from the frameworks’ tradeoff between
design space flexibility and compatibility with differentiable
optimization, relying on rigid design space templates that
limit potential improvements. In contrast, our method employs
a flexible, graph-based design space that enables greater
performance potential. Yet, this flexibility complicates the
application of baseline differentiable search techniques within
our design framework.

Third, our comparison with AutoDNNchip [15] and
ConfuciuX [18] revealed a more significant performance
boost in structurally complex networks, e.g., 2.56× for sim-
pler VGG16 [43] as opposed to 3.72× for more complex
FBNet-C [37]. This improvement largely stems from our
use of a heterogeneous multiaccelerator micro-architecture
template (chunk-based pipeline architecture) as shown in
Fig. 4, enabling the deployment of specialized subaccelerators
for layer clusters with similar structures. By tailoring the
hardware design to each layer’s optimal computation patterns,
e.g., adjusting hardware parallelism to fit the dimensions
of larger network weights, we enhance computing resource
utilization and achieve higher throughput than the single-
accelerator designs of AutoDNNchip [15] and ConfuciuX [18].
The benefits of aligning computation patterns with hardware
design become increasingly apparent as network structures
grow more complex, underscoring the value of our multiac-
celerator approach.

Fourth, we expanded our analysis by applying the DSE
methods of AutoDNNchip [15] and ConfuciuX [18] within
our design space to evaluate their optimization efficiency.
We found that despite our design space’s greater flexibil-
ity and breadth, these frameworks were less effective at
leveraging and navigating it, often resulting in suboptimal
hardware performance, as shown in Fig. 10. Specifically,
AutoDNNchip [15]’s exhaustive search and ConfuciuX [18]’s
RL method struggled to efficiently explore the vast design
space for the best configurations. Although the performance
difference between our approach and these baselines decreases
when the number of sampled design points is limited, our

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

3154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

(b)(a)

(c) (d)

Fig. 10. Performance of generated accelerators by AutoAI2C and four baselines [15], [18], [19], [20] when accelerating (a) AlexNet [42], (b) VGG16 [43],
(c) EfficientNet-B0 [38], and (d) FBNet-C [37] using different numbers of sampled design points.

AutoAI2C framework more effectively uses an increased num-
ber of sampled design points to secure a more substantial
performance gain.

VII. FRAMEWORK EXTENDABILITY AND SCALABILITY

Extendability: Our AutoAI2C framewor can be flexibly
applied across various application domains beyond its ini-
tial focus on DNN acceleration. The core of our approach,
a graph-based design space representation coupled with a
strategy that integrates multiple heterogeneous accelerators
within a single template, is inherently domain-agnostic. This
approach is particularly effective for computational tasks
that can be decomposed into heterogeneous subtasks. For
example, graph processing tasks often involve partitioning a
large graph into multiple subgraphs to enhance processing
efficiency [44]. Different subgraphs may exhibit unique data
sparsity patterns, necessitating specialized accelerators for
each to achieve optimal processing efficiency [44]. Our frame-
work accommodates this need by allowing for the deployment
of distinct subaccelerators, each dedicated to processing a
specific subgraph.

The adaptation of our heterogeneous multiaccelerator archi-
tecture to graph processing or other domains indeed requires
the design of each subaccelerator to be tailored to the specific
application requirements. While the architecture for a DNN
accelerator might differ significantly from that needed for
graph processing, the versatility of our graph-based design
space representation enables this format to be reused across
various submodule design levels, so our proposed DSE
methods and performance modeling can still be compatible
and utilized.

Scalability: With more competitive hardware templates
incorporated into the Hardware IP Pool as subaccelerators, our

proposed AutoAI2C can be additionally augmented to ensure
both the scalability of hardware performance and the efficiency
of DSE. From an architectural standpoint, increasing the num-
ber of subaccelerators in a design can meet specific application
needs, e.g., distributed processing, but also can introduce
potential challenges. Specifically, the communication among
subaccelerators could emerge as a performance bottleneck.
Integrating more advanced and efficient interconnect IPs can
be a strategic priority to solve this issue. Furthermore, with
more subaccelerators, interconnect topologies among subac-
celerators becomes increasingly critical to achieving optimal
performance. Subaccelerator level topology exploration can be
added to our DSE process, which is currently empirically fixed
for each template. Thanks to our graph-based design space
representation, the new exploration can leverage techniques
like graph processing to find the optimal topology for enhanc-
ing the hardware performance.

The inclusion of additional subaccelerators naturally
expands the design space, potentially making it exponentially
larger. However, it is important to note that not all subac-
celerator designs need to be interdependent. For instance,
designs catering to distinct algorithmic operators may be
decoupled, allowing us to approach the DSE in a more modular
fashion, dividing it into smaller, manageable subspaces. These
subspaces can then be explored in parallel for much improved
optimization efficiency.

VIII. CONCLUSION

To bridge the gap between the growing demand for
DNN accelerators and the challenging DNN accelerator
design process with ever-increasing complexity, we introduce
AutoAI2C, a framework that automates the generation of

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AutoAI2C: AN AUTOMATED HARDWARE GENERATOR 3155

both FPGA- and ASIC-based DNN accelerators. AutoAI2C
leverages the proposed One-for-all Design Space Description,
Chip Predictor, and Chip Builder, enabling a flexible and
accessible design process and consistently generating designs
with similar or even superior performance as compared with
SOTA DNN accelerators in terms of throughput, latency,
and energy efficiency. Extensive experiments show that DNN
accelerators generated by AutoAI2C outperform SOTA designs
with a up to 2.12× higher throughput or a 2.4× decrease in
latency without increasing hardware resource consumption, or
a reduction in energy costs by up to 1.6×.

REFERENCES

[1] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” J. Field Robot.,
vol. 37, no. 3, pp. 362–386, 2020.

[2] A. S. Lundervold and A. Lundervold, “An overview of deep learning in
medical imaging focusing on MRI,” Zeitschrift für Medizinische Physik,
vol. 29, no. 2, pp. 102–127, 2019.

[3] “Gpt-4 technical report.” openai. 2023. [Online]. Available:
https://cdn.openai.com/papers/gpt-4.pdf

[4] Z. Yu et al., “Master-ASR: Achieving multilingual scalability and low-
resource adaptation in ASR with modular learning,” in Proc. ICML,
2023, pp. 40475–40487.

[5] (Xilinx Semicond. Manuf. Commer. Co., San Jose, CA, USA).
Vivado High-Level Synthesis. Accessed: Apr. 15, 2024. [Online].
Available: https://www.xilinx.com/products/design-tools/vivado/high-
level-design.html

[6] D. Chen et al., “xPilot: A platform-based behavioral synthesis
system,” in Proc. SRC TechCon, 2005, pp. 1–5.

[7] R. Venkatesan et al., “MAGNet: A modular accelerator generator for
neural networks,” in Proc. IEEE/ACM ICCAD, 2019, pp. 1–8.

[8] X. Zhang et al., “DNNBuilder: An automated tool for building
high-performance DNN hardware accelerators for FPGAs,” in Proc.
IEEE/ACM ICCAD, 2018, pp. 1–8.

[9] “Pytorch.” Accessed: Sep. 17, 2022. [Online]. Available:
https://pytorch.org/

[10] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
ACM/IEEE 43rd ISCA, 2016, pp. 367–379.

[11] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the sen-
sor,” in Proc. 42nd Annu. Int. Symp. Comput. Archit., 2015, pp. 92–104.

[12] “Avnet Ultra96.” xilinx. Accessed: Sep. 1, 2019. [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/1-vad4rl.html

[13] “Jetson TX2.” nvidia. Accessed: Apr. 15, 2024. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-tx2

[14] “Edge TPU.” google. Accessed: Sep. 1, 2019. [Online]. Available:
https://coral.withgoogle.com/docs/edgetpu/faq/

[15] P. Xu et al., “AutoDNNchip: An automated DNN chip predictor and
builder for both FPGAS and ASICs,” in Proc. FPGA, 2020, pp. 40–50.

[16] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator effi-
ciency through resource partitioning,” in Proc. ISCA, 2017, pp. 535–547.

[17] A. Samajdar, P. Mannan, K. Garg, and T. Krishna, “GeneSys: Enabling
continuous learning through neural network evolution in hardware,” in
Proc. 51st IEEE/ACM MICRO, 2018, pp. 855–866.

[18] S.-C. Kao, G. Jeong, and T. Krishna, “ConfuciuX: Autonomous hard-
ware resource assignment for DNN accelerators using reinforcement
learning,” in Proc. 53rd IEEE/ACM MICRO, 2020, pp. 622–636.

[19] Y. Li et al., “EDD: Efficient differentiable DNN architecture and
implementation co-search for embedded AI solutions,” in Proc. 57th
ACM/IEEE DAC, 2020, pp. 1–6.

[20] Y. Zhang et al., “DIAN: Differentiable accelerator-network co-search
towards maximal DNN efficiency,” in Proc. IEEE/ACM ISLPED, 2021,
pp. 1–6.

[21] X. Zhang et al., “SkyNet: A hardware-efficient method for object
detection and tracking on embedded systems,” 2020, arXiv:1909.09709.

[22] Y. Zhao et al., “SmartExchange: Trading higher-cost memory stor-
age/access for lower-cost computation,” in Proc. ACM/IEEE 47th ISCA,
2020, pp. 954–967.

[23] W. Li, P. Xu, Y. Zhao, H. Li, Y. Xie, and Y. Lin, “Timely: Pushing data
movements and interfaces in PIM accelerators towards local and in time
domain,” in Proc. ACM/IEEE 47th ISCA, 2020, pp. 832–845.

[24] A. Parashar et al., “Timeloop: A systematic approach to DNN accelerator
evaluation,” in Proc. ISPASS, 2019, pp. 304–315.

[25] Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin, “DNN-chip
predictor: An analytical performance predictor for DNN accelerators
with various dataflows and hardware architectures,” in Proc. IEEE
ICASSP, 2020, pp. 1593–1597.

[26] X. Yang et al., “Interstellar: Using halide’s scheduling language to
analyze DNN accelerators,” in Proc. 25th ASPLOS, 2020, pp. 369–383.

[27] H. Kwon et al., “MAESTRO: An open-source infrastructure
for modeling dataflows within deep learning accelerators,” 2018,
arXiv:1805.02566.

[28] Y. Fu, Y. Zhang, Y. Zhang, D. Cox, and Y. Lin, “Auto-NBA: Efficient
and effective search over the joint space of networks, bitwidths, and
accelerators,” in Proc. ICML, 2021, pp. 3505–3517.

[29] Y. Zhang, H. You, Y. Fu, T. Geng, A. Li, and Y. Lin, “G-CoS: GNN-
accelerator co-search towards both better accuracy and efficiency,” in
Proc. IEEE/ACM ICCAD, 2021, pp. 1–9.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, 2016, pp. 770–778.

[31] Y. Zhao et al., “I-FlatCam: A 253 FPS, 91.49 µj/frame ultra-compact
intelligent lensless camera for real-time and efficient eye tracking in
vr/ar,” in Proc. VLSI, 2022, pp. 108–109.

[32] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chandra,
“Heterogeneous dataflow accelerators for multi-DNN workloads,” in
Proc. HPCA, 2021, pp. 71–83.

[33] C. Hao et al., “FPGA/DNN Co-design: An efficient design methodology
for IoT intelligence on the edge,” in Proc. 56th Annu. Design Autom.
Conf., 2019, pp. 1–6.

[34] R. C. Correa, A. Ferreira, and P. Rebreyend, “Scheduling multiprocessor
tasks with genetic algorithms,” Trans. Parallel Distrib. Syst., vol. 10,
no. 8, pp. 825–837, Aug. 1999.

[35] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
CVPR, 2018, pp. 4510–4520.

[36] (Xilinx Semicond. Manuf. Commer. Co., San Jose, CA, USA). Xilinx
ZC706 Evaluation Kit. Accessed: Sep. 30, 2020. [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

[37] B. Wu et al., “FBNet: Hardware-aware efficient ConvNet design via
differentiable neural architecture search,” in Proc. IEEE/CVF CVPR,
2019, pp. 10734–10742.

[38] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks,” 2020, arXiv:1905.11946.

[39] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y. W. Tai, “Exploring hetero-
geneous algorithms for accelerating deep convolutional neural networks
on FPGAs,” in Proc. 54th DAC, 2017, pp. 1–6.

[40] J. Qiu et al., “Going deeper with embedded FPGA platform for
convolutional neural network,” in Proc. ACM/SIGDA FPGA, 2016,
pp. 26–35.

[41] (Xilinx Semicond. Manuf. Commer. Co., San Jose, CA, USA).
Chaidnnv2: Hls Based Deep Neural Network Accelerator Library
for Xilinx Ultrascale+ MPSoCs. Accessed: Dec. 1, 2020. [Online].
Available: https://github.com/Xilinx/CHaiDNN

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015, arXiv:1409.1556.

[44] H. You, T. Geng, Y. Zhang, A. Li, and Y. Lin, “GCoD: Graph con-
volutional network acceleration via dedicated algorithm and accelerator
co-design,” in Proc. HPCA, 2022, pp. 460–474.

Yongan Zhang received the B.S. and M.S. degrees
from Rice University, Houston, TX, USA, in 2019
and 2023, respectively. He is currently pursuing the
Ph.D. degree with the School of Computer Science,
Georgia Institute of Technology, Atlanta, GA, USA.

His research interests include AI-assisted hard-
ware design, deep learning accelerator design, and
hardware–software co-design.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

3156 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

Xiaofan Zhang (Member, IEEE) received the Ph.D.
degree in electrical and computer engineering from
the University of Illinois at Urbana-Champaign,
Champaign, IL, USA, in 2022.

He is currently a Software Engineer with
Google, Mountain View, CA, USA, with the
focus on developing and optimizing large-scale
AI systems for large model training and serving.
His research interests include AI Systems, energy-
efficient computing, and HW/SW co-design.

Dr. Zhang has received the IEEE/ACM William
J. Mccalla ICCAD Best Paper Award in 2018, the IEEE/ACM Design
Automation Conference System Design Contest Double Championships
(2019), the Sundaram Seshu International Student Fellowship in 2020, the
Google Ph.D. Fellowship in 2020, the First-Place Winner Award of ACM
Student Research Competition at ICCAD in 2021, the Rambus Computer
Engineering Fellowship in 2021, and the Mavis Future Faculty Fellowship in
2021.

Pengfei Xu received the B.S. degree from Shanghai
Jiao Tong University, Shanghai, China, in 2017, and
the M.Eng. degree from Rice University, Houston,
TX, USA, in 2019.

He is currently an Engineer with Samsung. His
research interests include deep learning accelerator
design, hardware–software co-design, and hardware
design automation.

Yang (Katie) Zhao received the Ph.D. degree from
Rice University, Houston, TX, USA, in 2023.

She is an Assistant Professor with the Department
of Electrical and Computer Engineering, University
of Minnesota Twin Cities, Minneapolis, MN, USA.
Prior to this, she spent 2023 as a Postdoctoral
Research Fellow with the Georgia Institute of
Technology, Atlanta, GA, USA. Her research interest
resides at the intersection of computer architecture,
hardware design, and machine learning (ML), with a
recent focus on hardware acceleration for emerging

ML models, such as large language models.
Dr. Zhao received the ML and Systems Rising Stars in 2023, the Ralph

Budd Award for Best Thesis in the School of Engineering Rice University in
2023, the First Place in the University Demo Best Demonstration at DAC in
2022, and the Cadence Women in Technology Scholarship in 2020.

Cong (Callie) Hao (Associate Member, IEEE)
received the Ph.D. degree from Waseda University,
Tokyo, Japan, in 2017.

She was a Postdoctoral Fellow with the Georgia
Institute of Technology (Georgia Tech), Atlanta, GA,
USA, from 2020 to 2021 and also worked as a
Postdoctoral Researcher of ECE with the University
of Illinois at Urbana–Champaign, Champaign, IL,
USA, from 2018 to 2020. She is currently
an Assistant Professor with the Department of
Electrical and Computer Engineering, Georgia Tech.

Her current research interests lie in the joint area of efficient hardware
design and machine learning algorithms, reconfigurable and high-efficiency
computing, and electronic design automation tools.

Dr. Hao was a recipient of the NSF CAREER Award.

Deming Chen (Fellow, IEEE) received the Ph.D.
degree from the Computer Science Department,
University of California at Los Angeles, Los
Angeles, CA, USA, in 2005.

He is the Abel Bliss Professor of the Grainger
College of Engineering, University of Illinois at
Urbana-Champaign (UIUC), Champaign, IL, USA.
He is the Director of the AMD-Xilinx Center of
Excellence and the Hybrid-Cloud Thrust CoLead
of the IBM-Illinois Discovery Accelerator Institute,
UIUC. He has published more than 250 research

papers, received ten best paper awards and one ACM/SIGDA TCFPGA Hall-
of-Fame Paper Award, and given more than 140 invited talks. His current
research interests include reconfigurable computing, hybrid cloud, system-
level design methodologies, machine learning and acceleration, and hardware
security.

Dr. Chen is an ACM Distinguished Speaker and the Editor-in-Chief of the
ACM Transactions on Reconfigurable Technology and Systems.

Yingyan (Celine) Lin (Member, IEEE) received
the Ph.D. degree in ECE from the University of
Illinois at Urbana-Champaign, Champaign, IL, USA,
in 2017.

She is currently an Associate Professor with
the School of Computer Science, Georgia Institute
of Technology, Atlanta, GA, USA. Her research
interests include efficient machine learning systems
via cross-layer innovations, aiming to develop effi-
cient algorithms, accelerators, and automated tools
for enabling ubiquitous on-device intelligence, and
promoting green AI.

Dr. Lin was a recipient of the Best Student Paper Award from the 2016 IEEE
International Workshop on Signal Processing Systems (SiPS 2016), the 2016
Robert T. Chien Memorial Award from UIUC for Excellence in Research,
and was selected as a Rising Star in EECS by the 2017 Academic Career
Workshop for Women at Stanford University. She was a recipient of the NSF
CAREER Award, the IBM Faculty Award, and the Meta Faculty Research
Award, and recently received the ACM SIGDA Outstanding Young Faculty
Award. She served as the Program Co-Chair for the 32nd IEEE International
Conference on Application-Specific Systems, Architectures and Processors
(ASAP 2021). She is currently an Associate Editor of IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 28,2024 at 09:14:49 UTC from IEEE Xplore. Restrictions apply.

