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Abstract The convective Allen-Cahn (CAC) equation has been widely used for simulating multiphase
flows of incompressible fluids, which contains an extra convective term but still maintains the same maxi-
mum bound principle (MBP) as the classic Allen-Cahn equation. Based on the operator splitting approach,
we propose a second-order semi-Lagrangian exponential time differencing method for solving the CAC equa-
tion, that preserves the discrete MBP unconditionally. In our scheme, the AC equation part is first spatially
discretized via the central finite difference scheme, then it is efficiently solved by using the exponential time
differencing method with FFT-based fast implementation. The transport equation part is computed by
combining the semi-Lagrangian approach with a cut-off post-processing within the finite difference frame-
work. MBP stability and convergence analysis of our fully discretized scheme are presented. In particular,
we conduct an improved error estimation for the semi-Lagrangian method with variable velocity, so that
the error of our scheme is not spoiled by the reciprocal of the time step size. Extensive numerical tests
in two and three dimensions are also carried out to validate the theoretical results and demonstrate the
performance of our scheme.

Keywords Convective Allen-Cahn equation - semi-Lagrangian method - variable coefficients - maximum
bound principle - exponential time differencing - enhanced error estimate
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1 Introduction
In this paper we consider the convective Allen-Cahn (CAC) equation in the following form:
w +v-Vu=eAu+ f(u), t>0, xeL, (1.1)

subject to the periodic or homogeneous Neumann boundary condition. Here, 2 C R? (d =2,3)is a
connected, open, and bounded domain, A = V2 is the Laplace operator, the order parameter u(x,t) € R is
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the unknown function, the parameter e is related to the thickness of the transition layers, the bulk velocity
v(x,t) € R? is solenoidal, i.e., V - v = 0. The reaction term f(u) is a nonlinear function which will be
specified in the following context.

The classic Allen-Cahn (AC) equation [1], obtained from (1.1) by removing the convective term v - Vu,
can be regarded as the L? gradient flow with respect to the following energy functional

2
Elu] = %(Vu,Vu) + (F(u),1), (1.2)

with f(u) = —F’(u) (F is often called the potential function), where (-, -) represents the L? inner product
on 2 associated with the L? norm || - [|o. In this case, the classic AC equation satisfies the so-called energy
dissipation law in the sense that

d " OE 2 2
~Elul = P = — A <0.
pm [u] /Q S urdx /Q ‘e u+ f(u)| dx<0

However, the CAC equation (1.1) does not possess the above energy dissipation law even with a divergence-
free velocity field. As an another well-known characteristic of the AC equation, the maximum bound
principle (MBP) states that if the initial value and/or the boundary values are pointwisely bounded by a
certain positive constant in the absolute value, then the solution is bounded by the same constant everywhere
for all time. The CAC equation (1.1) inherits the same MBP from the AC equation, which turns to be an
indispensable mathematical tool to study the underlying physical characteristics [25,47], particularly for
the case of logarithmic nonlinear potential. Therefore, it is also crucial to maintain the MBP in the discrete
settings for discretization of the AC type equations. In addition, we should note neither the above AC or
CAC equation preserves the total mass.

Many numerical methods that preserve discrete MBPs have been proposed and studied for the AC
type equations in recent years. For the spatial discretization, different methods have been considered, such
as lumped-mass finite element method in [56,57], finite difference method in [61,8], and finite volume
method in [44,45]. For the temporal integration, some stabilized linear first-order semi-implicit schemes
were developed in [53,58,59] to unconditionally preserve the MBP, but the corresponding second-order
schemes only preserve the MBP conditionally. The cut-off post-processing methods were studied in [38,62]
to preserve the MBP of the AC equation. However, there are still few similar works for unconditionally
MBP-preserving numerical schemes for the CAC equation, especially for those with higher than first-order
accuracy in both space and time. Recently, the exponential time differencing (ETD) method [6,14,29,28,
?,34,35,12,13] has been widely applied and studied, in combination with linear stabilization techniques,
to discretely preserve the MBP for the AC equation. Du et al. [21] proposed the first- and second-order
stabilized ETD schemes for the nonlocal Allen-Cahn equation that preserve the MBP unconditionally.
Moreover, an abstract framework on MBP-preserving ETD schemes for a class of semilinear parabolic
equations was established by Du et al. [22]. Then, their framework was extended further to the mass-
conserving AC equations in [39,32]. In addition, an arbitrarily high-order ETD multi-step method was
presented by [38] by enforcing the maximum bound via an extra cut-off post-processing.

As an another significant feature of the CAC equation (1.1), the convective term poses extra difficulties
for constructing efficient, stable and high-order accurate numerical schemes. A common approach to deal
with the convective term and design stable schemes is the upwind strategy [9]. Shen et al. [49] and Cai et
al. [8] both designed unconditionally MBP-preserving schemes for the CAC equation based on the upwind
approach. The former used the upwind finite difference method and achieved the first-order accuracy. The
latter used the ETD framework and achieved the first- and second-order accuracy in time. The upwind
approach also has some drawbacks. It leads to variable coefficients in the linear system at each time step,
which impedes the implementation of FFT-based fast solver and significantly increases the computational
cost. It only has first-order spatial accuracy and is subject to a strict CFL stability condition [23, Chapter
7], which make it hard to capture the dynamic interface behavior of phase evolution in realistic simulations.
To resolve these issues, a numerical method with second-order spatial accuracy via the splitting approach
was proposed in [36], where the convective term is integrated separately as a fractional step and the
reconstruction with the limiter is adopted to achieve higher spatial accuracy. However, this scheme still
suffers from the strict CFL condition due to the convection part solver and thus only preserve the MBP
conditionally.

The semi-Lagrangian (SL) scheme (or called “the modified method of characteristic”) [2,19,46] is an
another popularly used approach to handle the convective term and achieve high-order accuracy in space.
It finds the previous positions of the fluid particles that will end up at the current mesh nodes. This way,
the equation is solved on the fixed mesh, which avoids remeshing and results in the linear systems with



time-independent entries. It also potentially allows for arbitrarily large time steps without breaking the
CFL condition. The SL method has been applied to solve many fluid models, e.g. see [5,7,50,55-57,60]
and the references cited therein. Error estimates for SL schemes often encounter a factor % (7 denotes
the time step size) due to the interpolation, which ruins optimal convergence results. Charles et al. [10]
recently developed a new technique for enhanced convergence analysis of SL schemes, in which they applied
the shifted Strang’s schemes [51,31] for the stability and the B-splines techniques [48] for the truncation
error. As a result, the factor % is then replaced by min {%, 1} in the corresponding error estimates. The
analysis framework in [10] was only discussed for the one-dimensional case with constant-in-space velocity
field (i.e., v(x,t) := v(t)), and it still remains open how to conduct enhanced error estimation for the SL
schemes on higher-dimensional cases with variable (in both time and space) velocities. We also note that
the techniques in [51,10] do not apply to the SL schemes with variable coefficients, because they rely on
[37, Theorem 3.1], which requires that the characteristic roots of different grid points are shifted by the
same number of cells. This condition is not met by the SL schemes with variable velocity cases, unlike the
numerical schemes that Strang [51] proved to be stable.

The primary objective of this paper is twofold: one is to design unconditionally MBP-preserving second-
order numerical schemes for solving the CAC equation (1.1) by combining the ETD and SL methods, the
other one is to conduct the enhanced error estimation on the proposed method with variable coefficients in
two or higher dimensions. We shall consider the operator splitting approach by decoupling the CAC equation
into two AC equations and one linear transport equation at each time step. Then finite difference method is
used to spatially discrete each subsystem, especially the central finite difference scheme is applied for the AC
equation. For the linear transport part, we will reformulate it into the characteristic form and apply the SL
method for its solution. Meanwhile, the Runge-Kutta method is used to trace the characteristic curve, and
the centered cubic Lagrange interpolation with the cut-off post-processing is applied to approximate the
value at the spatial mesh nodes. Cut-off post-processing is usually not appropriate for the general transport
equation with discontinuities. However, since we have a smooth transported quantity for the CAC equation
(1.1) and a prescribed smooth velocity, we do not encounter any discontinuity. Therefore, we can apply
cut-off post-processing. For the AC equation part, the stabilized ETD schemes will be used for its solution,
where FFT-based fast implementation [35] can be naturally used for solving the resulting linear systems on
rectangular meshes. Furthermore, we are also devoted to prove enhanced error estimate for the proposed
scheme on the fully discretized system where high dimensions and variable coefficients are present.

The rest of this paper is organized as follows. Section 2 presents the conditions on the nonlinear func-
tion for the MBP satisfaction of the CAC equation and introduces the characteristic form for the linear
transport equation. In Section 3, we present the second-order operator splitting scheme which decouples
the CAC equation into two classic AC equations and one linear transport equation in the characteristic
form. Their corresponding solvers, stabilized ETDRK2 scheme for the AC equations and the SL scheme
for the transport equation, are then discussed with finite difference discretization in space. In Section 4,
fully discrete second-order SL-ETD scheme for the CAC equation is presented and its unconditional MBP
preservation and enhanced error estimate are proved. Various numerical experiments in two and three di-
mensions are performed to verify the theoretical results in Section 5. Finally, some conclusions are drawn
in Section 6.

2 Maximum bound principle and characteristic form

Let us briefly go over the prerequisites for the CAC equation (1.1) to retain the MBP property. Suppose
that f : Dom(f)(C R) — R is continuously differentiable and the initial value of u is given by

u(x,0) = uog(x), x € 2. (2.1)

For simplicity, we will consider the rectangular domain {2 = H?:1(aia b;) imposed with the periodic bound-
ary condition. Note that the results derived below can be easily extended to the case of homogeneous
Neumann boundary condition. According to the classical theory for the semilinear parabolic equations [54],
there exists a unique smooth solution to the CAC equation (1.1) under some suitable conditions on the
nonlinear function f and the velocity field v. As shown in [22], the following assumption on f is crucial for
establishing the MBP for (1.1).

Assumption 1 There exists a constant 8 > 0 such that

f(B) <0< f(=h).



There are two types of classic potential functions F'(u) (and f(u) = —F’(u)) commonly used in practice:
one is the Flory-Huggins potential:
0 90 2
b (1+w)In(l+u)+ (1 —u)ln(l —u)] — S U
with 6. > 6 > 0 for which 8 € [p, 1) with p being the positive root of f(p) = 0, the other is the double-well

potential:

F(u) = (2.2)

Fu) = i (w® - 1)2 (2.3)

for which 8 € [1,00). Under Assumption 1, the convective Allen-Cahn equation (1.1) with the potential
function (2.2) or (2.3) satisfies the MBP [25,49], i.e., if |uo(x)| < f for all x € 2, then |u(x,t)| < 8 for
all x € 2 and t > 0. The CAC equation (1.1) can be regarded as a special case of [49] with a constant
mobility.

With respect to the supremum norm, the Laplace operator A can generate a contraction semigroup
{Sa(t) = e?'}i>0 on Cper(2) [22,24], where Cper(2) is the subspace of C(£2) satisfying the periodic
boundary condition. Let ||-|/cc denote the supremum norm on C(§2). The following result holds with regard
to the semigroup generated by A = A — aZ, where o > 0 is a constant and Z is the identity operator.

Lemma 2.1 [22] The Laplace operator A generates a contraction semigroup with respect to the supremum

norm on the subspace Cper(2). Furthermore, for any o > 0, we have
[Sat)ullse < €™ |lulloo, Vu € Cper(2),t 20,
where {Sa(t)}i>o0 is the semigroup generated by A=A —aT.
Thanks to Lemma 2.1, we now transform the CAC equation to the the following stabilized form:
ut +v-Vu=Leu~+ fo(u), (2.4)
with
Lo=EA—KT, folu)=ru+ f(u),

where k is a stabilizing parameter satisfying

K> max Lf(E)]- (2.5)

Since f is continuously differentiable, (2.5) is always well-defined. Moreover, the new nonlinear term f(u)
has the following properties.

Lemma 2.2 [22] Assume that Assumption 1 and the stabilizing parameter condition (2.5) hold, then we
have

(@) |fx(€)] < kB for any & € [—B, B).
(I1) |fu(&1) = fu(&2)] < 2k|&1 — &2 for any &1,62 € [—B, B].

Next we review the material derivative and the characteristic form for the linear transport equation
ug+v-Vu=0. (2.6)

Let (X(¢),t) be the characteristic curve of the above transport equation (2.6) in 2 x (0, 7], where X(¥)
represents the position of the particle at time ¢. By the chain rule, we have

Du  du(X(t),t) 0X(t) 0X(t)

E = T = Ut(X,t)‘x:X(t) + 7 . qu(x, t)|x:X(t) = Ut + T . Vu, (27)
where 2% denotes the material derivative of u. Thus, by comparing (2.6) and (2.7), one can find that if
X(t) is determined by

0X(t)
= X 2.
5 = VX)), (2.8)
or equivalently
t
X() = X(0)+ [ v(X(s),5)ds
0
and the linear transport equation (2.6) is equivalent to
du(X (1), 1)
——= =0. 2.9
7 (2.9)



3 Operator splitting scheme for the CAC equation and subsystem solvers
3.1 Second-order operator splitting scheme with the characteristic form

In this subsection, we shall adopt the operator splitting approach with the characteristic form to decouple
the convection part and the AC part in the CAC equation (2.4). Given a terminal time 7' > 0 and a positive
integer N > 0, for simplicity we choose the uniform time steps as {t, = n7},>0 with 7 = % Introduce
X(x,tn+1;t) as the position vector at time ¢ of a fluid particle whose position is x at time ¢t = tn4+1. We
consider the three-stage second-order operator splitting, also known as the “Strang splitting”. Since the
transport velocity v is time-dependent, we need to put the AC equations at the first and third stages, and
leave the transport equation in the middle. Then the second-order operator splitting of (2.4) is written as
[36]: given u®(x) = uo(x), for n =0,1,--- , N — 1, find u" ! (x) = u***(x,7/2) such that

Q65 o (e,8) - fulu” G 5), 5 €0.7/2) e u(6,0) = u"(x), - (Allen-Cahn)
du** (X(x, tn+1;tn + 5),8)

=0, s€0,7] & u™(x,0) =u"(x,7/2), (Linear Transport)

ds
ou™(x, )

B = Lou™"(x,8) + fu (W™ (x,5)), s€[0,7/2] & u"*(x,0) =u""(x,7). (Allen-Cahn)

(3.1)
According to [30, Chapter IV], the splitting scheme (3.1) bears a local splitting error of O(72) in time.
For the linear transport equation (the second equation) in (3.1), the solution remains a constant along
the characteristic curve. For the simplicity, we denote the trajectory of such a particle (i.e., the characteristic
curve) X(x,tn+1;t) as X(t), which is determined by the following equation:

d

—X(t) = v(X(1),t t € [tn;tnt1l,
LX) =v(X(1).0), VL [tn.tnra] o)
X(tn+1) =X,
The solution X(t) for ¢ € [tn,tnt1] also can be expressed as
tnt1
X(t) = x — / v(X(s), s)ds, (3.3)
t

which is the integral form of the characteristic line equation.

To avoid the accuracy reduction, we shall adopt the second-order strong stability preserving Runge-
Kutta (SSPRK2) method for (3.3) to numerically compute X" as the approximation of X(¢y) in (3.1), that
is

XY =x —7v(x, tni1),

X" =ix+3 (X(l) — TV(X(l),tn)) .
The error estimate regarding the SSPRK2 scheme (3.4) is given as follows [27, Chapter I1.3].

Lemma 3.1 Assuming that v € C?([0,T], C?(2)?) and the exact solution X(t) to the characteristic curve
equation (3.3) belongs to C*[0,T]. Let X™ be generated by SSPRK2 in the interval [tn,tn+1], then it holds
that for any T > 0,

(3.4)

X (tn) — X"]|oo < CT2.

Remark 1 When we just conduct one step time-marching from ¢, to 541, Lemma 3.1 in fact gives us the
the truncation error of the SSPRK2 method.

3.2 Spatial discretization and subsystem solvers

From now on, we are going to construct the numerical solvers for the two subsystems: the AC equation
and the transport equation. For simplicity, we here only consider the two-dimensional case in terms of the
illustration and analysis but all results can be again extended to higher-dimensional cases.

Let the uniform discrete mesh (25, of domain {2 be a set of nodes x;,; = (23, y;) with z; = a1 +ih, y; =
az + jh, 0 <i < Ny and 0 < j < Ny, where h = bl];i;“ = 132];7;”. Let up(x) (or abbreviated as up) be a
grid function on 2, with up,(x;,;) = ui,j (Xi,; € 2). To deal with the periodic boundary condition, we set
Up (XN, +4,5) = un(Xoxi,j) and up(X; N, +j) = un(Xi0+;5). For convenience, we can also view the discrete
grid function up(x) as a Nz x N, dimensional vector with entries u;, ;.



3.2.1 Central difference in space and exponential time differencing for the Allen-Cahn equation

The classic Allen-Cahn equation in the stabilized form reads

0
% = Leu(x,8) + fr(u(x,s)), x€2, s>0. (3.5)
Note here u(x,s) represents u*(x,t) or u***(x,t) in (3.1). The second-order central difference scheme is

adopted to discretize the Laplacian A as follows:

Up(Xit1,5) — 2un(Xi,y) +un(Xi-1,5) | un(Xig+1) — 2un(Xi;) + un(Xii—1)
h2 + h? )

Anun(xij) =

Then the spatial-discretization of (3.5) reads

dup,(x,8)

1 = Ly nun(x,s) + fe(un(x,s)), x € 2, s>0, (3.6)

where L. = €>Aj, — kZj, and Ty, is the identity operator (or the identity matrix if uy(x, s) is viewed as a
vector function). For the grid function uy := up(x) (x € 25) with u; ; = up(xq,5), its discrete L norm

|l - llco.n, and the L? norm || - || are respectively defined as
N,—1N,—1
S N > D
lenlloo,n 0<i<N,~10Sj<N,~1 3l el " 0 j=0 o
i= Jj=

We will apply the second-order ETD Runge-Kutta scheme for the temporal integration of the ODE
system (3.6). By the definition of £, p, it can generate the semigroup S, , (t) = e“~"*, which is a matrix
exponential. Denoting U} as the numerical approximation of up(t5), we compute U ,?"H as follows:

NZLL+1 _ eﬁm,hTU}"Zf +/ eﬁn,n(T*S)fﬁ(U}TLL)d&.7
0 (3.7)

n Trrmn T T—S8 T—S n S T
Uptt = efenTyy +/ el )( - fm(Uh)‘f';fn(UhH)) ds,
0

where the first row in (3.7) in fact is produced from the first-order ETD scheme. We will denote (3.7)
as Ut = sETDRK2 (U7, 7). Note that FFT-based fast algorithms can be easily implemented for the
aforementioned sSETDRK2, see [22,39] for more details.

3.2.2 Semi-Lagrangian method for the linear transport equation with variable coefficients

Consider the linear transport equation (2.6) with variable coeflicients in two dimensions
u+v-Vu=0, te(0,7T),x¢ef, (3.8)

where v(x,t) = (vz,vy)7 is a space- and time-dependent velocity field. Note here u(x, s) represents u** (x, t)
n (3.1). Recalling (2.8) and (2.9), for X(¢tn) = X(X,tn+1;tn) defined in (3.3), we have u(x,tn4+1) =
u(X(tn), tn). In practice, the position of the characteristic curve is traced by numerical procedure as

Xij(tn) = X(Xi,j, tnt15tn) = X7

with the SSPRK2 scheme (3.4), i.e., u(Xq 5, tnt+1) = w(X7;, tn).

Since X; j(tn) (and X7';) may not locate at the spatial grid points, the polynomial interpolation is
usually adopted for the SL method. Assume that X7 ; = (azgfj,y;fj)T is obtained by using the SSPRK2
scheme (3.4), we have

n n n n
Tij = XTi — Vg 5T, Yig = Yj — Uy,5T,
1
T 1
Wi vp )" = S0k tng) + V(XL 1),

where Xglj) = X;,j — TV(Xi,j,tn+1) is obtained from the forward Euler scheme (i.e., the first step of (3.4)).
This implies

[vg.ils [vy i1 <NV Lo (@x [t tnsa])-



n n

Without loss of generality, let us assume vy, ;, v, ;
locate the interval containing X7';. It holds

> 0 and the other cases can be treated similarly. We first

(i = 2T ys = vy iT) € [Titrys Titr,+1) X [Yjtr, Yjtr,+1)

such that - -

Ty < fv;ﬁiﬁ <ryg+1, 7ry< fv;l’jﬁ <7y + 1.
Define sy =i+ 1z, €z =i+ 72+ 1, sy = j + 1y, and ey = j + ry + 1. Following the notations from [10], we
introduce the reduced Courant number p, and p, as follows:

v LT v T
po=To+ 14y =y 1 (3.9)

and clearly fi., p1yy € (0,1]. Moreover, for the general cases of vy ;, vy

v, (even without the positivity assump-
tion), it can be verified that the following estimates hold:

(1 = o)tz < min { va},;|77 1} . (1— py)py < min {'vyhﬂh 1} . (3.10)

As mentioned above, the interpolation is unavoidable for the SL method. To obtain a stable interpolation
scheme, Strang’s stencils [10,16,31,51] are widely used. For a grid function u;’; (for x; ; € £2;) under the
periodic boundary condition, let us consider the Lagrange interpolation 7y , over the sub-domain I ; x I ;,
where k£ and p are two non-negative integers and determined by the specifically chosen interpolation,

Ipi = [Titr,+1+k—ps Titr,+1+k] a0d Iyj = [Yj1r, +14k—p; Yjtry+1+k]:

l.=k ly=k

Tipu” (2,y) = Z Z I§I+lw(m)Ingy(y)UTeLxHI,eyHy7
ly=k—ply=k—p

where the Lagrangian polynomials are defined respectively by

k k
T — Te,+ Y — Yey,+q
e, @)= ][ o o _ex —, I, ()= I —
q=k—p,qsl, ~eetle extq a=k_p.a#l, Yey+1, = Yey+q
Let us define the function «;, (pz, k,p) [10] as
bogtm
o, (pas ko p) = I8, 40, (27) = T8, (i —vgm) =[] 2,
_ q—le
q=k—p,qFls

and oy, (ty, k,p) can be defined similarly. Then the SL method for solving the linear transport equation
(3.8) can be written as

lo=k ly=Fk

n+1 n
wi =Y > au, (pay ki p)au, (1, K P)UE, 1, ey 41, (3.11)
ly=k—ply=k—p

where u™(x;,;) = u;; is the numerical approximation of u(x; j,t»), and the parameters p,u, at each

index (4,5) is determined from X7’; which is produced from the SSPRK2 scheme (3.4). We also note that
the interpolation parameters p, and py in (3.11) (or (3.12)) are generally different for each x;; and n.
Equivalently, we also can write the SL method (3.11) for u™ := u"(x) (x € 24, n > 0) as

"t = Rt iy eyt s (3.12)

where s = 2 stands for the SSPRK2 scheme (3.4) (s indicates the order of solvers for tracing the charac-
teristic curve). By standard interpolation results, it yields that

WXPj tn) = Ruy vy kpst(Xig, tn) = O(RPFY), s =2,

which often leads to the term O((%) hP) in the error estimate of the SL method for the linear transport
equation (3.8). In [10], an enhanced error estimate was successfully established for the one-dimensional



transport equation with constant-in-space velocity field. Their analysis technique controls the interpolation
errors and successfully proves an enhanced global error estimate involving

ofan(ta}).

Here we shall extend their results to the high-dimensional transport equation with variable coefficients.
The local truncation error function G™ for the SL scheme (3.12) at time ¢, and point x;; can be
expressed as

lo=k l,=k

G?,j = u(Xi»j(t")’tn) - Z Z ai, (:uﬂ?akvp)aly (H’?hkap)u(xez+lz,ey+lyatn)
lo=k—pl,=k—p (3.13)

= u(Xij(tn),tn) — u(Xi;, tn) + g3,
where g;'; is the interpolation error given as

lo=k ly=k

gi; =u(X7, tn) — Z Z i, (i, ks p)aw, (fy, ks P)u(Xe, +1, e, 41, tn)- (3.14)
ly=k—ply=k—p

By Taylor expansion, we can directly obtain u(X; j(tn),tn) — u(X3;,tn) = O(7?) for the SSPRK2 scheme
(3.4). We are left with estimating the interpolation error g;;.

Let us first consider the one-dimensional problem. In [10], the authors derived and obtained the inter-
polation error by using the spline function and the Peano representation for the divided differences [48]
(although they only took into account of constant-in-space velocities), which will be followed in our analysis.
Suppose Qf'H is the spline function over the p 4 2 points z; — vz ;7 and ;1,414 for il =k —p <i < k
(following the same notations before by ignoring the y variable). Then the residue for the interpolation
formula on a function w(zx) is given by

lo=k
gt = w(ei—vir) — S o, (e b, pw(ze, 1,)
to=k—p (3.15)
. Titr+1+k
== QU (2)w Y (z)dx,
p: Titr+i+k—p
with
l=e,+k
w; = H (Te, — pah — x1).
l=e;+k—p
Assuming p = 2k +m with m € {0,1,2}, k > 0, then w; can be bounded by
il < 200 (1 = p)h?FH ((p — WD < 2masc{pa (1 — ) Yo ((p — k)2, (3.16)

which implies an enhanced interpolation error estimates for g;* in (3.15) as
197 < C max{ s (1 — pz)}h? T < C'min {1, %} hPHL

With the help of this bound, the refined estimations on the interpolation error ||g"||so,» and the local
truncation error ||G™||oo,n can be easily obtained for the one-dimensional case. Now we turn to deal with
the more complicated two dimensional problem and our derivation and result can be directly extended to
higher dimensions d > 3.

Lemma 3.2 Assume p =2k +m with m € {0,1,2} and k > 0. If u(-,tn) is a sufficiently smooth periodic
function defined on §2, then the interpolation error (3.14) satisfies

6p+1u('7 tn)
axp"rl

8p+1u(., tn)

Mloon < Crpp(1 = p)hP*
19" loo,n < Cpp(1 = 1) o Gyr1

, (3.17)
L=(0)

where
p(1 = ) = max{max{pe (1 — pa) }, max{py (1 — py) },



and Cy,p > 0 is a positive constant depending on k and p. In particular, we have the enhanced error estimate

as
p+1, (.
" (s tn) ) (3.18)
L>(£2)

Oxpt1

ap+1u(_7 t’”«)
ayp+1

n . voo
lg" llso,n < Ck,p min {17 TT} pPtl <‘ ‘
Lo (£2)

where voo = ||V(, -)HLoc(QX[tmth]).

Proof We will make use of the tensor polynomial interpolation error formula discussed in [15]. At X7'; =
(:c:-fj,yffj)T, we have

noo__ .. n noo__ n
L5 = Xi — Vg Ty Yij = Yj — Uy 57,

n n
Tij = Te, — Pahy  Yij = Ye, — pyh,

where the set of mesh nodes used for interpolation are (a?lwyly) with e + k —p < Iz < ez + k and
—p <1y < ey + k. Recalling the tensor interpolation (3.11), the error g;'; (3.14) can be decomposed as
(see [15]):

lo=k
gi'; = wa(al;) Z Vo D) F ey (u]) Y TE o ()6 (), (3.19)
ly=k—p l,=k—p
where
l=e,+k l=e,+k
we(a)) = ] (@e. —peh—x), wyiy)= ]  @We, —myh—w),
l=e,+k—p l=ey+k—p
the function &;(y) is given by
1 S1 Sp—1
&(y) = / / x / O u(xG + 510XT 4 - 85p0Xy  tn) dsp dsp—1 -+ - dsy (3.20)
o Jo 0
with x;' = (e, +k—p+1,y) (for I =0,1,---,p) and dx]" = x* — x;*_;, and the function &y (z) is given by
1 S1 Sp—1 1
&y(x) = / / - / T u(yl + 510yT 4+ -+ 50y, tn) dspdsp—1 -+ - ds1 (3.21)
o Jo 0

with y;" = (2,9Ye, +k—pt1) (for I = 0,1,--- ,p) and dy;" = y;' — y;"1. Based on (3.19) and (3.16), it is
straightforward to get

|wa (27,5)], |wy(y§fj)| < Op(l = p). (3.22)
On the other hand, the Lagrangian polynomials Z S, (-) and Z7 |, () are bounded on the intervals I ;

and I ;, respectively. Thus, combining (3.20), (3.21) (3 22) and (3.19) together, we get the estimates (3.17)
and (3.18) by taking the supremum over all mesh nodes x; ;.

By using Lemma 3.2, we can easily obtain the following estimates for the local truncation error G™
defined in (3.13).

Lemma 3.3 Assume v(x,t) € C%([0,T];C*(2)) and u(x,t) € C([0,T];CPT(2)). The local truncation
error (3.13) for the SL scheme (3.12) with the SSPRK2 characteristic curve solver satisfies

1G™ |co.n < C17 +Cgm1n{ h}h”“, 0<n<T/r—1, (3.23)

where C1 and C2 are independent of T, h and n.

To obtain the error estimates for the SL scheme (3.12), we also need its stability result in addition to the
local truncation errors presented in Lemma 3.3. Next we will present the stability analysis of the SL scheme
(3.12). Note that Ferretti showed in [26] the unconditional stability of the SL method with the centered
Lagrange interpolation of odd degrees up to 13 for the one-dimensional case with constant-in-space velocity
and the tensor product of these Lagrange interpolations for higher-dimensional cases. He first uncovered the
equivalence between the SL method and the area-weighted Lagrange-Galerkin (LG) finite element method
[43] by showing that there exists an L? basis such that the SL scheme can be recast as an LG scheme with
such a basis. As analyzed in [26], these results also can be extended to higher-dimensional cases.

For simplicity, we will use the one-dimensional case to briefly review the idea and then derive the result
we need. Let us first denote {n;} and {(x} as the basis functions for the SL scheme and the LG scheme



defined on the uniform grids, which are obtained by the affine mappings of two reference functions n and
¢, respectively. Then the SL method reads as: given uj = {ug ,}, find uZ'H such that

uint =D u e (X7), (3.24)
k

or in the matrix form,

uptt =e"uy, (3.25)
where U"t! is the vector with u?jgl as its i-th component, ¥ is the matrix with entries ¥;", = ng(X7).
The area-weighted LG method read: given uj = {ug ,}, find up ! such that

;uzﬁf /Q cz-(@ck(&)df:;uz,h /Q Gi(€)Ch (€ — xi + XT)de, (3.26)

or in the matrix form,

MU = &"U}, (3.27)

where M is the mass matrix and ®” is the matrix with entries
o= [ GO~ xi+ XD
n

It was shown in [26] that there exists a basis for the area-weighted LG scheme satisfying M = I and
" = P ie., the equivalence between the SL method and the area-weighted LG method, and consequently
the unconditional stability of the SL scheme in L? norm is obtained from [43, Theorems 3.3 and 3.4].

Among the centered Lagrange interpolation, the centered cubic Lagrange interpolation (k =1, p = 3)
belongs to the Strang’s stencils, which will be applied in our SL scheme (3.12) so that the analysis techniques
and results in [26] and [10] can be utilized. Moreover, the SSPRK2 scheme is able to provide the consistent
approximations for X" to meet the assumption in [26]. Thus the stability of the SL scheme with the centered
cubic Lagrange interpolation is stated below without proof.

Lemma 3.4 Assume v € L°(0,T; W (£2)) and consider the SL method (3.12) with k =1, p = 3, and
the SSPRK?2 scheme (3.4) for tracking the characteristic curve. Then there exists a constant M, independent
of h, n and T, such that

gy Ml < (14 M) | s (3.28)
We remark that it was first shown in [43] that the area-weighted LG scheme provides the above estimation

(3.28) in the whole domain R? (d = 1,2,3), and then it was proven later in [26] that the equivalence
between the SL and area-weighted LG schemes also holds for the bounded domain 2.

4 Second-order semi-Lagrangian exponential time differencing scheme
Now we present our fully discrete second-order semi-Lagrangian exponential time differencing scheme for
solving the CAC equation (1.1). For the linear transport equation (3.8), the SL method often fails to
preserve the MBP due to the use of high order interpolation, thus an extra cut-off post-process is imposed
to guarantee that. Suppose the transported quantity w by the transport equation is continuous in the
domain and should lie in the interval [m, M], then we shall define the corrected quantity w® as

we(x;,;) = max{min{w(x; ;), M},m}, 0<i<Ny—1,0<j< N, —1.
As shown in [38], the cut-off operator is contractive, i.e.,

Jw® = @°|n < Jlw — @]

for any two quantity functions w and w with the same expected minimum and maximum values m and M.
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Combining the sETDRK2 scheme with the SL method, the fully discretization of (3.1) is as follows:
given Uy (x) = uo(x) (x € ), for n =0,1,--- , N — 1, find U™, such that

*,n+l n
Uh 2 =sETDRK2 (Uh,T/Q),
ok *,n+ 2L
Uh mtl R#za#y717312Uh, n 2,
Ut = max{min{U;" " M}, m}, (4.1)

1 ~ 1
with 17 = min{U, " ? }, N = max{U,;""*},
1,7 3

Uptt = sSETDRK2 (U0 7/2).

We specially note that the values of m and M are updated based on the numerical solution produced from
the first AC equation solve by sETDRK at each time step. We will call (4.1) as the SL-ETD2 scheme. Since
the SETDRK2 scheme unconditionally preserves the discrete MBP for solving the AC equation [22], we
naturally have the following result.

Theorem 4.1 (Discrete MBP of SL-ETD2) Suppose that Assumption 1 and the condition (2.5) hold, then
the SL-ETD2 scheme (4.1) unconditionally preserves the discrete MBP, i.e., for any time step size T > 0,
the SL-ETD2 solution satisfies | Uy, ||oo,n < B for any n > 0.

Next, we can turn to the error estimation.

Theorem 4.2 (Error estimate of SL-ETD2) Suppose that f(-) € C*, Assumption 1 and the requirement
(2.5) hold. Given the fized terminal time T > 0, assume that v € C3([0,T], C®(2)%), the ezact solution u
to the model equation (1.1) belongs to C?([0,T], Cper(2)) and {Uj}n>1 is generated by the fully discrete
SL-ETD2 scheme (4.1) with Uy (x) = uo(x) for x € £2p,. Then for any 7 € (0, 1], we have

u(x, tn) — UR(x)|In < C (# + 1% 4 min {ﬁ, 1} h3) L 0<n<T/r (4.2)
T

Proof For 0 <n < T/t —1, setting u”(x,0) = u(x,tn) (x € £2) in (3.1), we claim that for s € [0,7/2],s1 €
[0,7], .
[l (%, 8) 1 + [lw™ (%, 81) Lz + lu™" (%, 8) [ 74 < C, (4.3)

and
w(x, tni1) — u***(x,7/2)|| < CT° (4.4)

where C' and C are constants independent of 7, h and n.

The estimate (4.3) follows the MBP and regularity assumptions as well as theories for parabolic and
transport equations, and we shall omit the proof of this part. In addition, it follows that afu*(x,s),
dku*(x, s), and aflu**(x, s1) (k = 1,2) are bounded in L? space.

Next, we turn to prove the estimate (4.4), which is the local error for the semi-discrete-in-time splitting
scheme (3.1). Recalling the splitting scheme (3.1), we have

0 (5,) = Se. (ubxita) + [ e, (s = w)fulu’ (e, s € [0.7/2],
uw (%, 8) = u(x,7/2) — /OS v(x,tn +w) - Vu'™* (x,w) dw, se€|0,7], (4.5)
w(x,8) = Se, (s)u (%, 7) + /OS Se, (s —w) fu(u™ (x,w))dw, s €[0,7/2].
By the property of the semigroup, it can be rewritten as
uw(x,7/2) = Se, (T)u(x, tn) — /OT Se, (7/2) (v(x,tn +5) - VU™ (x,5)) ds

+/O SLN(T—s)f,.;(u*(x,s))ds—l—/O Se. (1)2 = 8) fulu™™ (x,8))ds.  (4.6)

In addition, we have

sk ok ok

u*(x,8) —u(x,tn +8) = O(1), u™(x,8) —u(x,tn +s+7/2) = O(7),

11



u (%, 8) —u*(x,7/2) = O(7).
Noticing

ur(x,7/2) = v (x+7/2) — /05 v(x,ty +8) - Vu™(x,7/2) ds + 0(7'2),

and applying the midpoint rule to the first line of (4.6) and the Trapezoidal rule to the integrals on the
second line of (4.6), respectively, we obtain

u(1/2) = S (Tultn) — 78z, (1/2) (v (tn_%) -V (u*(7/2) _ /05 V(tn + 5) - Vu*(1/2) ds))
T (S () fulultn)) + e, (7/2) (fulu" (7/2) + fulw™(O)) + S (r/2))) 47
+0(r%),
where we have omitted the spatial variable x for simplicity. Recalling the Duhamel formula for u(t,+1) as
ultn 1) = Se, (7Ju(ta) + [ Se, (7 = 5)fu(ultn + 9) ds

0 (4.8)

- /OT S (7 — ) (V(tn + 8) - Vultn + 5)) ds.

Applying the Simpson’s rule to the first integral and the midpoint rule to the second integral in (4.8),
respectively, we reach

Wtni1) = Se. (T)ultn) — 78z, (7/2) (v (thr%) Vu(tn + 7/2)) (4.9)
+ % (Sc, (1) fuu(tn)) + 28¢, (1/2) fu(u(T/2)) + fu(u(tnt1))) + O(%),

which implies that «***(7/2) —u(tn+1) = O(7?). By the Duhamel’s formula for u(ty41/2) (similar to (4.8))
and in view of that u*(s) — u(tn +s) = O(7) and S¢,_(7/2 — s) = Id 4+ O(7), we have

-

u(tn +7/2) =u"(1/2) — /oi V(tn + ) - Vu*(1/2) ds + O(72). (4.10)
Since
S (/2 4w 0) = £ (W(0) + (7)) = u(r/2) + O(),
by Taylor expansion, it yields
% (fu(u™(1/2)) + fu (@™ (0))) = fu(u(tn +7/2)) + O(7). (4.11)

Combining the estimate u***(7/2) — u(tn4+1) = O(1?), (4.10), (4.11), (4.7) and (4.9), we then obtain (4.4).

Let £"(x) = u(x,tn) — Uy (x) (x € 2,,n > 0) be the error function. From t, to tn+1, on the com-
putational domain x € (25,, by Taylor expansion and Duhamel’s formula the first equation in (3.1) can be
rewritten as

W (x,7/2) = Sc, (7/2) u(x, tn) + /05 Se., (1/2 — 8) fulu” (x,5)))ds + O(rh?), x € Q.

Subtracting the first equation in (4.1) from the above equation, we have

*,n+1

u(x,7/2) = U, " =S8c,., (1/2) (u”(x)—U;?)—l—Rl(x)+R2(x)+0(7'h2), X € 2, (4.12)
where

1.2

Ri(x) = /O TS (729 (Fu(x s>>—< )fn(u*(x,O))—%fn(U*(x,Tﬂ)))ds,

T
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and

T — 258

(fu(u" (x)) = fx(UR))

T

Ra(x) = /Og Sc.(r/2—3) (
2 (1) — S0 s
Here ﬁ;’nJr% is obtained via ETD1 with given U}, i.e.,
0 = Se. (/D U + [ T S0, (72— 8) (J(UT)) ds.

By the linear interpolation properties, it is easy to show that

T — 28
T

fe(u” (x,5)) = fe(u” (x,0)) = ?fn(u*(& 7/2)) =0(r%), x€ 2, s€e[0,7/2],

which implies
[R1]ln < CT2. (4.13)

By Lemma 2.2, using Taylor expansion, we have

-
~x,nti

" (x,7/2) = U, " 2 |ln < e 2 1€ | + (26)|E" (|1 + C(7 + %)) / T3 ds
0

< (1+50) 1€ In + OG> + k).

Thus we have

H (1 - 2—) (e 0, 0)) = FulUR)) + 22 (" G 7/2)) = FuT" )

h
< (1 - ?) 26| 1 + % [26 (14 Z0) ™l + C (2 4 7)) (4.1)
< 26(1 4 K3)||E™||n + C (T + h?)s,
and consequently
| R2|n < /2 e_“(g_s)[Qﬁ(l + &8)|E™ | + C(r + h?)s]ds
0
<2(1 - F) e+ 2> F — 1+ DI + OG + 702) (415)
< KT||E™|n + C(r% + 72h?),
where we have used the inequality e™* <1 — s+ % (s > 0). Combining (4.12)-(4.15), we get
" *,nt1 KT K272 n 3 2,2 2
I (x,7/2) = U™ 2 I < (1+7+ - > l€"ln +C (7% +7°h? + 78°) . (4.16)

By the same argument, using the local error bound in (4.4), we can have the following estimate for the
last step of SL-ETD2:

€™l < Hlu™ (¢, 7/2) = U I+ 0™ (%, 7/2) = wgx, o) ||

22 (4.17)
< <1 n % N 587' > ™ (x, 7) — Um0, 4 © (7_3 22 Thz) .
Since m < u**(x,7) < M, in view of the cut-off process, we get
[ (x,7) — Up*"T0¢(x)||n = || max{min{u**(x,7), M},m} — max{min{U;* """ (x), M}, m}||n

< ||u**(x7 T) - U;*7n+1(x)|‘h7
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where

w (%, 7) = Uy (x) = wF (X (tn), 7) = Ry 1.3,2U (%,7)

=u" (X(tn), 7) —u" (Xn,7) + 0 (Xn, tny1) — Ry, o, 1,320 (X,7)
+ Ruz,uy71,372(U*(X77) — Un(x,7)).
By using Lemmas 3.1, 3.4, 3.3 and 3.2, we obtain
*,n+1

" (e, 7) = U™ < (1L M) Ju” o6, ) = U2, + € (7 4+ min {1, - | ).

Therefore,

||u**(x, T) _ U;Z*,n-&-l,c

In < [lu™ e, m) = U

L (4.18)
* T *,n+ = 3 . T 4
< L. > - .
< (14 Mr7)|u (x,2) U, ”h—i—C(T +m1n{1,h}h)
Next, combining (4.16), (4.17) and (4.18), we have for 7 € (0, 1],
1 RT HQTQ 2 3 T 4
IE™n < (1 + M) (1+7+ . ) 1€l + € (* +min {1, T} n*)
(4.19)

<1+ CE™n +C (7% + min {1, %}h‘l) . 0<n<T/r—1

Recalling ||£°||;, = 0, we finally obtain the desired estimates (4.2) by using the discrete Gronwall’s inequality.

T

Remark 2 From Lemma 3.3 and Theorem 4.2, we can see that the term 7 or % always appears in the
derivations, which is a well-known feature of the SL method. On the other hand, through our delicate error
analysis, it only appears inside min {1, %} or min {17 §}7 which produces an enhanced error estimate.

5 Numerical experiments

In this section, we will demonstrate the performance of our proposed scheme via various two- and three-
dimensional numerical experiments. The computational domain is set to be [0, 1]2 in two dimensions and
[0, 1]3 in three dimensions. Because of the periodic boundary condition, FFT-based fast solvers are imple-
mented in the computation of ETD scheme.

5.1 Convergence tests

Consider the CAC equation (1.1) in two dimensions with the initial condition
uo(x,y) = cos(2mx) cos(2my)

and ¢ = 0.1. Additionally, the nonlinear function f = —F" is chosen as the double-well potential (2.3), i.e.,
f(u) = u — u®. The stabilizing coefficient is x = 2 and the terminal time is 7' = 1. The velocity term is set
to be

v(z,y) = e '[sin(2my), sin(2rz)]”

satisfying the divergence-free condition. The centered cubic polynomial interpolation is used in the SL
method.

For the purpose of calculating approximation errors without knowing the exact solution, the numerical
solution obtained by the SL-ETD2 scheme with h = 1/2048 and 7 = 1/2048 is treated as the referential
value. We first simultaneously and repeatedly decrease the the time step size 7 and the spatial mesh size h
by a factor of 2. The discrete L and L? norm of the numerical errors and their corresponding convergence
rates are presented in Table 1, where the expected second-order temporal rate is clearly observed. Next we
test the special property of the enhanced error estimate by fixing h (ﬁ and ﬁ, respectively ) and only
repeatedly decrease 7. The discrete L and L? errors and their corresponding convergence rates in time are
given in Table 2. As we can see, the errors get smaller with the smaller 7, which implies that the reciprocal
of 7 does not impact the error. Along with the decrease of 7, the spatial error gradually dominates the
whole error and the convergence rate degrades from 2 and gets smaller and smaller.
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Table 1 The discrete L and L2 norm errors and their corresponding convergence rates produced the fully discrete
SL-ETD2 schemes for the two-dimensional CAC (1.1) with the double-well potential.

T h L Error Rate L° Error Rate
1/8 1/16  1.1587e-1 - 3.0356e-2 -
1/16 1/32  1.7736e-2  2.71  4.5647e-3  2.73
1/32 1/64 3.9315e-3  2.17 9.8732¢-4 2.21
1/64 1/128 9.3782e-4  2.07 2.3198e-4 2.09
1/128 | 1/256 2.2839e-4  2.04 5.6128¢-5  2.05

Table 2 The discrete L> and L? norm errors and their corresponding convergence rates in time produced the SL-ETD2
schemes for the two-dimensional CAC (1.1) with the double-well potential, where the time step size 7 is repeatedly halved
while the spatial mesh size h being fixed.

- h=1/128 h =1/256
L> Error Rate L? Error Rate | L™= Error Rate L? Error Rate
1/8 3.2036e-02 1.0963e-02 3.1820e-02 1.0953e-02

1/16 | 9.0995e-03 1.82 2.9194e-03 1.91 | 8.8938e-03 1.84 2.9080e-03 1.91
1/32 | 2.6151e-03 1.80 7.7222e-04 1.92 | 2.4105e-03 1.88 7.5900e-04 1.94
1/64 | 9.3782e-04 1.48 2.3198e-04 1.74 | 6.7218e-04 1.84 1.9722e-04 1.94
1/128 | 5.3535e-04 0.81 1.0667e-04 1.12 | 2.2839e-04 1.56 5.6128e-05 1.81
1/256 | 4.3677e-04 0.29 7.9810e-05 0.42 | 1.1932e-04 0.94 2.3141e-05 1.28

5.2 MBP tests

We numerically simulate the CAC equation in two dimensions with ¢ = 0.01 and study the discrete MBP
with long-term phase separation processes. We start the simulations using the SL-ETD2 scheme with the
initial value given by the quasi-uniform state

uo(z,y) = 0.9sin(1007x) sin(1007y)

and the velocity
v(z,y) = e_t[sin(27ry); sin(27rz)]T

The spatial mesh size is chosen as h = 1/512, and two different time steps 7 = 0.1 and 7 = 0.01 are tested.

We first consider f as the double-well potential function case (2.3) with the bounding constant 8 = 1 and
the stabilizing coefficient is k = 2 correspondingly. Figure 1 shows the snapshots of the numerical solution
at t = 0.1, 0.8, 5 and 20 respectively, which are obtained with 7 = 0.1. The SL-ETD2 scheme with 7 = 0.01
produces similar results. The time evolutions of the supremum norm and energy (defined in (1.2)) with
7 =0.1 and 7 = 0.01 are presented in Figure 2. We observe that the energy decreases monotonically and the
discrete MBP is preserved perfectly under both time step sizes. Next we consider the case of Flory-Huggins
potential (2.2) with two parameters § = 0.8 and 6. = 1.6. In this case, the bounding constant § ~ 0.9575
and the stabilizing coefficient is k = 8.02 correspondingly [22]. Figure 3 presents the configurations of the
numerical solution at ¢ = 0.1, 0.8, 5 and 20 respectively, obtained with 7 = 0.1. The time evolutions of the
supremum norm and energy with 7 = 0.1 and 7 = 0.01 are plotted in Figure 4, and it is again observed
that the energy decreases monotonically and the discrete MBP is well-preserved numerically under both
time step sizes. In addition, we can observe the double-well potential and the Flory-Huggins potential in
the CAC equation behave very similarly in this problem.

5.3 Convective tests
This subsection will consider the two-dimensional convective Allen-Cahn equation with € = 0.01. The initial

value is generated by the random uniform distribution between -0.9 and 0.9. The velocity filed is chosen as
a clockwise rotational one, taking the form

v(z,y) = [y —0.5;0.5 — z]".

The spatial mesh size is chosen as h = 1/512.
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Fig. 1 Numerical solution at ¢ = 0.1, 0.8, 5 and 20 (top to bottom and left to right) for the two-dimensional CAC equation
(1.1) with the double-well potential, produced by the SL-ETD2 scheme with 7 = 0.1.
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Fig. 2 Evolutions of the the energy (left) and supremum norm (right) of the numerical solution for the two-dimensional
CAC equation (1.1) with the double-well potential, produced by the SL-ETD2 scheme with 7 = 0.1 and 7 = 0.01.

Figure 5 presents the snapshots of the numerical solutions at ¢ = 0.1, 5, 20, and 100 respectively for the
double-well potential case, produced by the SL-ETD2 scheme with 7 = 0.1. The corresponding evolutions
of supremum norm and energy are illustrated in Figure 6. The discrete MBP is indeed well preserved and
the energy decays monotonically. Moreover, we clearly observe the ordering and coarsening phenomena as
well as the rotation effect due to the convective term along the time evolution. We then simulate the case
of Flory Huggins potential function with 8 = 0.8 and 6. = 1.6. Figure 7 depicts the configurations of the
numerical solution at ¢ = 0.1, 5, 20 and 100 respectively, produced by the SL-ETD2 scheme with 7 = 0.1.
Corresponding evolutions of the supremum norm and the energy are given in Figure 8. It is observed that
the discrete MBP is indeed well preserved and the energy decays monotonically. Moreover, the rotational
phenomena is also observed as expected.
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Fig. 3 Numerical solutions at t = 0.1, 0.8, 5 and 20 (top to bottom and left to right) for the two-dimensional CAC equation
(1.1) with the Flory-Huggins potential, produced by the SL-ETD2 scheme with 7 = 0.1.
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Fig. 4 Evolutions of the the energy (left) and supremum norm (right) of the numerical solution for the two-dimensional
CAC equation (1.1) with the Flory-Huggins potential, produced by the SL-ETD2 scheme with 7 = 0.1 and 7 = 0.01.

5.4 Rotating bubble in three dimenisons

We finally perform a three-dimensional simulation of the rotating bubble governed by the convective Allen-
Cahn equation with € = 0.01. The simulations starts with the initial configuration described by the discon-
tinuous state

0.9, (z—-03)?+ (y—0.3)%+ (2 —0.5)? < 0.22,
uo(,y, 2) = { —0.9, otherwise.

The components of v are given by a clockwise rotational velocity field along z direction, taking the form
v(z,y,z) = [y—0.5,0.5—z,0]".

The spatial mesh size is chosen as h = 1/512 and the time step size 7 = 0.1.
We first test the case of the double-well potential function (2.3). Figure 9 presents the configurations
of the numerical solutions at ¢ = 1, 10 and 50. The corresponding evolutions of the supremum norm, the
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Fig. 5 Numerical solutions at ¢ = 0.1, 5, 20 and 100 (top to bottom and left to right) for the two-dimensional CAC

equation (1.1) with the double-well potential, produced by the SL-ETD2 scheme with 7 = 0.1.
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Fig. 6 Evolutions of the the energy (left) and supremum norm (right) of the numerical solution for the two-dimensional
CAC equation (1.1) with the double-well potential, produced by the SL-ETD2 scheme with 7 = 0.1.

energy, and the radius of the ball (zero level set) are plotted in Fig. 10. It is clearly observed that the
energy decays monotonically and the radius of the ball gradually decreases to 0. When the radius is smaller
than h, the mesh can not capture the ball anymore, and jump occurs in the radius plot. Moreover, the

discrete MBP for the CAC equation is preserved perfectly. Next we consider the case of the Flory-Huggins
potential (2.2) with 6 = 0.8 and 6. = 1.6. Figure 11 gives the configurations of the numerical solutions at

t = 1, 10 and 50 respectively. The corresponding developments of the supremum norm, energy, and radius
are plotted in Figure 12 which shows the similar behaviors as those of the double-well potential case.

6 Conclusion
In this paper, we develop a second-order operator splitting-based unconditional MBP-preserving numerical
scheme, SL-ETD2, for the the convective Allen-Cahn equation. At each time step, the CAC equation is
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Fig. 7 Numerical solutions at ¢ = 0.1, 5, 20 and 100 (top to bottom and left to right) for the two-dimensional CAC
equation (1.1) (1.1) with the Flory-Huggins potential, produced by the SL-ETD2 scheme with 7 = 0.1.
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Fig. 8 Evolutions of the the energy (left) and supremum norm (right) of the numerical solution for for the two-dimensional
CAC equation (1.1) with the Flory-Huggins potential, produced by the SL-ETD2 scheme with 7 = 0.1.

split into three stages: the AC equation at the first and third stage, and the linear transport equation at the
second stage. For the AC part, we use the stabilized ETDRK2 scheme for its time integration. Note that
FFT-based fast algorithm can be implemented for its solution. For the transport part, we rewrite it into a
characteristic form and solve it with a semi-Lagrangian method. A second-order SSPRK method is used to
back-track the roots of the characteristic curve at the previous time step and approximate their values using
a centered cubic polynomial interpolation. In addition, we apply a cut-off post-processing on the SL solution
to preserve the MBP. We prove that the proposed SL-ETD2 scheme are second-order accurate in both space
and time by conducting an enhanced error estimation for the SL. method with variable velocity. Finally,
we conduct some numerical experiments to confirm the theoretical results and demonstrate our proposed
scheme’s performance. As an important application, the CAC equation is often part of a multiphase flows
system, and our future research will focus on how to extend our proposed scheme to solve more complex

coupled models and conserve their physical quantities.
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Fig. 9 Numerical solutions at ¢ = 1, 10, and 50 respectively (from left to right) for the three-dimensional CAC equation
(1.1) with the double-well potential, produced by the SL-ETD2 scheme with 7 = 0.1. In each time panel, the top represents
the isosurface (u = 0) and the bottom represents the numerical solution across z = 0.5.
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Fig. 10 Evolution of the energy (left), the supremum norm (middle) and the radius of the ball (right) in the numerical
solution for the three-dimensional CAC equation (1.1) with the double-well potential, produced by the SL-ETD2 scheme
with 7 = 0.1.
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Fig. 11 Numerical solution at ¢ = 1,10, and 50 respectively for the three-dimensional CAC (1.1) with the Flory Huggins
potential, produced by the SL-ETD2 scheme with 7 = 0.1. In each time panel, the top represents the isosurface and the
bottom represents the approximated solution across the z = 0.5.
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