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ABSTRACT

Fire is the major forest disturbance in Siberian larch

(Larix spp.) ecosystems, which occupy 20% of the

boreal forest biome and are underlain by large,

temperature-protected stocks of soil carbon. Fire is

necessary for the persistence of larch forests, but

fire can also alter forest stand composition and

structure, with important implications for per-

mafrost and carbon and albedo climate feedbacks.

Long-term records show that burned area has in-

creased in Siberian larch forests over the past sev-

eral decades, and extreme climate conditions in

recent years have led to record burned areas. Such

increases in burn area have the potential to

restructure larch ecosystems, yet the fire regime in

this remote region is not well understood. Here, we

investigated how landscape position, geographic

climate variation, and interannual climate vari-

ability from 2001 to 2020 affected total burn area,

the number of fires, and fire size in Siberian larch

forests. The number of fires was positively corre-

lated with metrics of drought (for example, vapor

pressure deficit), while fire size was negatively

correlated with precipitation in the previous year.

Spatial variation in fire size was primarily con-

trolled by landscape position, with larger fires

occurring in relatively flat, low-elevation areas

with high levels of soil organic carbon. Given that

climate change is increasing both vapor pressure

deficit and precipitation across the region, our re-

sults suggest that future climate change could result

in more but smaller fires. Additionally, increasing

variability in precipitation could lead to unprece-

dented extremes in fire size, with future burned

area dependent on the magnitude and timing of

concurrent increases in temperature and precipi-

tation.

Key words: Boreal forest; Carbon; Fire size; Larix;

Permafrost; Wildfire.

HIGHLIGHTS

� In Siberian larch forests, hot and dry conditions

lead to more fires.

� The most important weather factor influencing

fire size in Siberian larch forests is the amount of

precipitation in the preceding year; more ante-

cedent precipitation leads to smaller fires.

� Climate change will likely lead to more but

smaller fires in Siberian larch forests.
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INTRODUCTION

Siberia contains the only deciduous needleleaf

forests (that is, larch forests, Larix spp.) underlaid

by permafrost in the world, and these forests oc-

cupy � 20% of the boreal forest biome (Abaimov

2010). In addition to the unique ecology of larch

trees, Siberian ecosystems are distinctive because

continuous permafrost occurs at subarctic latitudes,

and because much of northern Siberia is underlain

by thick, carbon and ice-rich permafrost deposits.

Larch forests protect the underlying permafrost,

thereby ensuring permafrost stability (Paulson and

others 2021; Walker and others 2021; Hewitt and

others 2022; Loranty and others 2024). Fires are

common albeit infrequent in Siberian larch forests

(fire return interval is � 65–125 years (Talucci and

others 2022a)), and their annual burned area is an

order of magnitude greater than that of any other

vegetation type in the permafrost zone (Loranty

and others 2016). These fires modulate permafrost

conditions and post-fire vegetation composition

and forest structure (Alexander and others 2012,

2018) and are crucial to the persistence of Siberian

larch forests (Kharuk and others 2021).

Total burned area in the Siberian larch region

varies considerably from year to year, with high fire

activity strongly related to large-scale atmospheric

conditions such as positive Arctic oscillations,

which are associated with higher-than-normal

temperatures in Eurasia (Balzter and others 2005;

Kim and others 2020), and Arctic front jets, which

bring strong winds and anomalously warm and dry

conditions to northern Siberia (Scholten and others

2022). Interannual variation in burned area is also

related to interannual variation in weather,

including regional air temperature, soil moisture,

and drought indices (Jupp and others 2006; Bartsch

and others 2009; Forkel and others 2012; Pono-

marev and others 2016, 2018; Tomshin and Solo-

vyev 2021; Descals and others 2022; Talucci and

others 2022a) as well as the timing of snowmelt,

which determines the period of fuel drying (Kim

and others 2020; Scholten and others 2022; Talucci

and others 2022a). Given that rapid increases in air

temperature and earlier snowmelt have been ob-

served across the region (Box and others 2019;

Dauginis and Brown 2021), burned area has likely

increased across Siberia over recent decades.

However, the lack of consistent, moderate resolu-

tion satellite images over Siberia prior to 2000

combined with high interannual variability in

burned area makes detecting long-term change

difficult (that is, higher resolution satellites such as

Landsat (30 m) can map smaller burn scars but are

data-limited prior to 2000, whereas coarser reso-

lution satellites (‡ 500 m) have a longer record

over Siberia, but underestimate both burn area and

number of fires (Talucci and others 2022a)).

Nonetheless, several studies show recent increases

in burned area in Siberian larch forests (Ponomarev

and others 2016; Garcı́a-Lázaro and others 2018;

Kirillina and others 2020; Tomshin and Solovyev

2021), while other analysis indicate a positive trend

but no significant change in burned area (Jones

and others 2022).

With continued climate change, burned area is

expected to increase in Siberia (Sherstyukov and

Sherstyukov 2014; Williams and others 2023) due

to a concomitant increase in lightning strikes and

drier fuels (Finney and others 2018; Chen and

others 2021; Hessilt and others 2022). These envi-

ronmental changes could lead to more ignitions

(that is, number of fires), larger fires, or a combi-

nation of both. Understanding burned area changes

in terms of the number of fires and fire size has

significant implications for the persistence of larch

forests and for permafrost stability. Large fires, for

example, could increase the distance from burned

areas to seed sources since larger fires tend to have

a lower density of fire refugia (Talucci and others

2022b). This is important because larch seeds do

not survive fire and do not form a persistent seed-

bank, instead depending on wind dispersal from

nearby unburned trees (Abaimov 2010). Increasing

distance to seed source could therefore result in

lower density forests or a complete shift in func-

tional type from trees to shrubs and/or grasses

(Abaimov and Sofronov 1996; Cai and others 2013;

Barrett and others 2020). Because tree density

modulates soil temperature, carbon storage, and

albedo in larch forests (Suzuki and Ohta 2003;

Alexander and others 2012; Webb and others 2017;

Kropp and others 2019; Loranty and others 2024),

increasing fire size could restructure the ecosystem,

with significant feedbacks to permafrost stability as

well as regional and global climate.

In the short-term, an increase in burned area will

reduce fuel loads and increase fuel heterogeneity

across the landscape, with implications for per-

mafrost stability (soil organic layer loss and forest

edges promote permafrost thaw) (Jafarov and

others 2013; Nossov and others 2013; Baltzer and

others 2014; Holloway and others 2020), forest

resiliency (small and isolated stands tend to be

more susceptible to climate warming) (Khansari-

toreh and others 2017), and future fire activity.

Over the longer term, such a reduction in fuel

loads/continuity could act as a negative feedback to

climate change, if extreme fire weather is unable to
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promote fire spread due to insufficient fuel avail-

ability (Kelly and others 2013; Héon and others

2014). At the same time, fires in Siberian larch

forests are typically thought to be ignition-limited

(that is, fuel is plentiful but too moist to ignite)

(Kharuk and others 2021), and fuel availability

does not appear to constrain large fires in southern

Eurasian larch forests (Liu and others 2013; Fang

and others 2015). The relative importance of fuel

availability, fire weather, and other landscape

controls on fire size in Siberian larch forests is un-

known, thereby limiting our ability to project fu-

ture fire activity.

In this study, we seek to better understand fire

activity in Siberian larch forests by differentiating

trends in burned area from those in fire size and the

number of fires and by examining what controls

each of these fire characteristics. We studied fires

that occurred between 2001 and 2020 in Siberian

larch forests underlaid by continuous permafrost,

with the goals to understand (1) trends in burned

area, fire size, and number of fires, (2) drivers of

interannual variability in burned area, fire size, and

number of fires, (3) drivers of spatial variability in

fire size, and (4) the sensitivity of burned area, fire

size, and number of fires to weather variables

(precipitation and temperature) and landscape

type. To study the effects of landscape type, we

applied a clustering analysis to landscape variables

(slope, elevation, vegetation, and water cover, and

so on). Our study differs from previous studies of

burned area in Siberian larch forests in that we

separate the controls of and trends in fire size,

number of fires, and total burned area as well as

distinguish how weather variables impact burned

area differently across landscape types.

MATERIALS AND METHODS

Overview

We evaluated the drivers of fire characteristics in

Siberian larch forests using perimeters for fires that

occurred between 2001 and 2020 together with

geospatial datasets of landscape, weather, and fuel

characteristics. We considered the following

weather variables: vapor pressure deficit, climactic

water deficit, Palmer drought severity index, soil

moisture, wind, and maximum air temperature in

fire month, precipitation and temperature anoma-

lies in the preceding summer, annual precipitation

and temperature anomalies, and the meltwater

anomaly (see Table 1 for a complete list of variables

and data sources). We chose these variables, rather

than metrics of fire weather (for example, the fire

weather index (Field and others 2015), which are

better suited to predict the probability of fire at a

given location and time), to be able to disentangle

the broad-scale climate processes controlling

burned area, fire size, and number of fires.

To determine the drivers of interannual vari-

ability in fire characteristics, we fit linear regres-

sions relating weather variables to annual burned

area, mean fire size, and number of fires. We fit

separate linear regressions to determine if the

trends in these fire characteristics (annual burned

area, mean fire size, and number of fires) were

significant over our study period. To determine

drivers of spatial variability in fire size, we fit a

machine learning model relating fire size to land-

scape, weather, and fuel characteristics. Addition-

ally, we applied a clustering algorithm to the

landscape characteristics within fire perimeters,

which identified two primary clusters: upland and

lowland fires. We used the upland/lowland classi-

fication to structure subsequent analyses.

Study Region and Fire Data

Our study region was larch forests in the continu-

ous permafrost zone of Eurasia north of 50� N. We

delineated larch forests using the 2015 European

space agency climate change initiative land cover

map (Defourny 2017) and delineated permafrost

zones according to Obu and others (2018). The

study region covers 2.9 m km2, which is 70% of

the Eurasian continuous permafrost region.

Burned area, fire size, and number of fires were

taken from an existing Landsat-derived dataset of

2001–2020 fire perimeters across Siberia (Talucci

and others 2021). The fire perimeters capture a

range of burn severities and likely include both

high and low severity fires (that is, fires where

canopy trees survive) (Talucci 2022a, b). From this

dataset, we selected fires within the continuous

permafrost zone (Obu and others 2018) where >

10% of the pixels (30 m) within the fire perimeter

were larch dominated (Defourny 2017). The data-

set we analyzed included 8886 fires across 20 years

(2001–2020).

We calculated fire size as the area within each

fire perimeter, and we calculated total burned area

as the sum of all fire sizes. Due to limitations of

Landsat images collected in some years (that is, the

Landsat 7 scanline error), it was not possible to

quantify the area of unburned patches (that is,

refugia) in the entire 2001–2020 fire perimeter

dataset (Talucci and others 2021, 2022b). Previous

work suggests that refugia are more likely in

topographic depressions and in areas with steep

Siberian Larch Forests 881



Table 1. Summary and Explanation of Datasets used in the Analysis of Spatial Drivers of Fire Size

Variable Description Spatial

resolution

Temporal

resolution

Data source(s)

Proportion of wa-

ter pixels in a

fire perimeter

Water pixels are defined as any pixel identi-

fied as containing water (that is, experi-

ences seasonal inundation, is permanent

water, or is wet with high frequency) over

the dataset period (1999–2021)

30 m Static (Pickens and others 2020)

Proportion of

larch pixels in a

fire perimeter

Larch pixels are defined by their landcover

classification (tree covered, needle leaved,

deciduous) and therefore contain open and

closed forest canopies

300 m Static (Defourny 2017)

Slope 30 m Static Below 60� N: (NASA JPL

2020) Above 60� N:
(Porter and others 2018)

First burn day Each fire Day of fire (Talucci and others 2022a)

Vapor pressure

deficit

4 km Month of

fire

(Abatzoglou and others

2018)

Climactic water

deficit

4 km Month of

fire

(Abatzoglou and others

2018)

Latitude 30 m Static

Temperature

anomaly in the

preceding sum-

mer

Annual temperature is calculated as the sum

of temperature from the day of snowmelt in

the previous year to the day of snowmelt in

the fire year. Temperature anomaly is the

difference between the annual temperature

in the fire year and the mean annual tem-

perature over the 2001–2020 study period

9 km Summer

preced-

ing the

fire

Snowmelt: (Hall and Riggs

2016)temperature: (Mu-

ñoz 2019)

% Tree canopy

cover

Canopy closure for all vegetation > 5 m in

the year 2000

30 m Static (Hansen and others 2013)

Elevation 30 m Static Below 60� N: (NASA JPL

2020) Above 60� N:
(Porter and others 2018)

Annual precipita-

tion anomaly

Annual precipitation is calculated as the sum

of precipitation from the day of snowmelt in

the previous year to the day of snowmelt in

the fire year. The anomaly is the difference

between the annual precipitation in the fire

year and the mean annual precipitation

over the 2001–2020 study period

9 km Year pre-

ceding

the fire

Snowmelt: (Hall and Riggs

2016) precipitation:

(Muñoz 2019)

Tree cover con-

nectivity

Connected forests are groups of touching for-

est (that is, forest cover > 30%) pixels.

Tree cover connectivity is the areal propor-

tion of the fire that is connected forest

30 m Static (Hansen and others 2013)

Soil carbon den-

sity

Soil organic carbon density in the top 5 cm of

soil

250 m Static (Poggio and others 2021)

Palmer drought

severity index

Palmer Drought Severity Index in the month

of fire

4 km Sonth of

fire

(Abatzoglou and others

2018)

Annual tempera-

ture anomaly

Annual temperature is calculated as the sum

of temperature from the day of snowmelt in

the previous year to the day of snowmelt in

the fire year. Temperature anomaly is the

difference between the annual temperature

in the fire year and the mean annual tem-

perature over the 2001–2020 study period

9 km Year pre-

ceding

the fire

Snowmelt: (Hall and Riggs

2016) temperature:

(Muñoz 2019)
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slopes, low tree cover, and higher elevations (Ta-

lucci and others 2022b), which suggests that our

overestimation of burned area could be higher in

uplands than in lowlands.

To understand the relative contribution of dif-

ferent fire sizes to total burned area, we divided

these fires into four size classes: small (0–10 K ha),

medium (10–100 K ha), large (100 K–1 M ha),

and mega > 1 M ha). For each year (2001–2020),

we quantified the number of fires and the burned

area in each size class.

Trends and Interannual Variability
in Burned Area, Mean Fire Size,
and Number of Fires

To determine if the burned area, mean fire size, or

number of fires changed over the 20-year study

period, we fit linear models relating each of these

variables to fire year. We fit separate models for

uplands, lowlands, and the entire study region. We

used the Pearson correlation coefficient to assess

the association between annual burned area and

number of fires and mean fire size.

We considered multiple weather variables (in

separate, simple linear regressions; see below) as

Table 1. continued

Variable Description Spatial

resolution

Temporal

resolution

Data source(s)

% Sand in soil Proportion of sand particles (> 0.05 mm) in

the fine earth fraction

250 m Static (Poggio and others 2021)

Precipitation

anomaly in the

preceding sum-

mer

Preceding summer precipitation is calculated

as the sum of precipitation from the day of

snowmelt to the first day of snow-on in the

year preceding fire. The anomaly is the

difference between the preceding summer

precipitation for the fire year and the mean

summer precipitation over the 2001–2020

study period

9 km Summer

preced-

ing the

fire

Snowmelt and snow-on:

(Hall and Riggs. 2016)

precipitation: (Muñoz

2019)

Ruggedness Ruggedness is the absolute value of the dif-

ference in elevation between an individual

pixel and the neighborhood of surrounding

pixels. We calculated the pixel-wise

ruggedness relative to a landscape scale

of � 7 ha and then averaged the rugged-

ness values of all pixels within the fire

30 m Static Below 60� N: (NASA JPL

2020) Above 60� N: (Por-
ter and others 2018)

Mean annual

temperature

Annual mean temperature for the period

1960–1990

Static (Hijmans and others 2005)

Maximum air

temperature in

fire month

4 km Month of

fire

(Abatzoglou and others

2018)

Mean annual

precipitation

Annual mean precipitation for the period

1960–1990

(Hijmans and others 2005)

Meltwater anom-

aly

Meltwater is the sum of water in snowmelt

from January through July of the year of

the fire. The anomaly is the difference be-

tween the meltwater in the fire year and

the mean meltwater over the 2001–2020

study period

9 km Summer

preced-

ing the

fire

(Muñoz 2019)

Soil moisture in

month of fire

4 km Month of

fire

(Abatzoglou and others

2018)

Wind in month of

fire

Wind speed at 10 m 4 km Month of

fire

(Abatzoglou and others

2018)

Ecozone Terrestrial ecoregion Static (Olson and others 2001)

Arctic/subarctic Static (Talucci and others 2022a)

A subset of these variables (weather conditions) were used in the analysis of interannual variability in mean fire size, number of fires, and burned area (see Methods for more
details).
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potential drivers of the interannual variation in

burned area, mean fire size, and number of fires.

When modeling burned area and the number of

fires, each weather variable was averaged across

the entire study region in each year, because we

predicted that the burned area and number of fires

in the study region would depend on regional

weather. In contrast, when modeling mean fire

size, we first averaged weather variables across the

pixels within each fire perimeter and then averaged

the weather variables across all fire perimeters in a

given year, because we predicted that fire size

would depend on the weather conditions at the fire

locations (rather than the regional mean weather).

The same weather variables were used for all three

response variables (burned area, mean fire size, and

number of fire), but the weather variables were

calculated in different ways with respect to spatial

averaging (as explained above) and timing (see

below).

Weather variables included in our analysis were:

vapor pressure deficit, wind speed, climatic water

deficit, Palmer Drought Severity Index, monthly

maximum air temperature, soil moisture, annual

precipitation, annual temperature, and precipita-

tion and temperature in the preceding summer. For

models of burned area and number of fires, vapor

pressure deficit, wind speed, climatic water deficit,

Palmer Drought Severity Index, monthly maxi-

mum temperature, and soil moisture were aver-

aged across the months of May–August (� 85% of

fires occur between these months) in each year.

For the mean fire size model, these variables were

evaluated during the month of the first day of the

fire. Annual precipitation and temperature vari-

ables were calculated as the sum of precipitation or

temperature from snow-off (that is, the last snow-

on date) in the previous year to snow-off in the fire

year. Precipitation and temperature in the preced-

ing summer were calculated as the sum of the

precipitation or temperature from snow-off in the

previous year to the first snow-on in the previous

year. Annual and preceding summer temperature

and precipitation data came from the ERA5-Land

hourly dataset (� 9 km) (Muñoz 2019), snow

cover timing was derived from the daily MODIS

snow cover product (� 500 m) (Hall and Riggs

2016), and other weather variables, including

monthly maximum air temperature, were obtained

from the monthly TerraClimate dataset (� 4 km)

(Abatzoglou and others 2018). We included vari-

ables from both the ERA5-Land dataset and the

TerraClimate dataset because while the ERA5-Land

dataset has higher temporal resolution (hourly vs.

monthly) and is therefore more suitable to char-

acterize fire weather, it does not include integrated

metrics of temperature and precipitation (for

example, vapor pressure deficit, climactic water

deficit, Palmer drought severity index), which were

also important in our analysis.

We fit simple linear regression models that re-

lated annual burned area, annual mean fire size,

and annual number of fires to each weather vari-

able. We chose this approach because collinearity

among predictor variables made model selection

unreliable using a multiple regression approach,

and because the size of the dataset (n = 20 years)

was too small to employ more complicated meth-

ods without overfitting the models.

Prior to all linear regression and correlation

analyses described above, burned area was square

root transformed and the number of fires and mean

fire size were log transformed to help meet the

assumptions of linearity, normally distributed er-

rors, and homoscedasticity. We visually assessed

the scatterplots of the correlated variables and

found no obvious departures from these assump-

tions. We implemented the Shapiro–Wilk normal-

ity and Breusch–Pagan tests to test the residuals of

our linear models for normality and heteroskedas-

ticity, respectively. The sample size for these anal-

yses was n = 20 years, which we judged to be

insufficient for more complex analyses (for exam-

ple, nonlinear models with non-normal errors). We

implemented the correlation and regression anal-

yses using the cor, cor.test, and lm functions,

respectively, in R (R Core Development Team

2023). We report results for all regressions where

the model p-value was less than 0.05.

Spatial Variability in Fire Size

We explored different weather, fuel, and site vari-

ables as potential drivers of fire size, which are

summarized in Table 1 and described below. The

original pixel resolution varied depending on the

original dataset (see Table 1), but all datasets were

resampled to 30 m using the nearest neighbor

method. For most variables, pixel-level values were

averaged across all pixels within each fire perime-

ter. The exceptions to this were the proportion of

pixels classified as larch or water within each fire

perimeter and categorical variables (for example,

Arctic/subarctic), which were calculated (propor-

tions) or obtained (categories) for each fire

perimeter. All geospatial processing was conducted

in Google Earth Engine (Gorelick and others 2017).

Weather variables included in our fire size

analysis were either evaluated in the month of the

fire (climatic water deficit, Palmer drought severity

884 E. Webb and others



index, vapor pressure deficit, windspeed, and

monthly maximum temperature from TerraClimate

(� 4 km) (Abatzoglou and others 2018)), or as the

anomaly from the 20-year (2001–2020) mean

(meltwater, annual temperature, annual precipi-

tation, summer temperature, and summer precipi-

tation, calculated from the ERA5-Land hourly

dataset (� 9 km)). To derive weather anomalies,

we first calculated the total amount of water in

snowmelt and the sums of annual precipitation,

summer precipitation, annual temperature, and

summer temperature in each year (2001–2020) at

each pixel (� 9 km; native resolution of the data-

set) across the study region. Anomalies were

computed as the difference between these variables

at the location of the fire in the fire year and the

twenty-year mean at the location of each fire. To

derive annual meltwater, we summed the amount

of water in snowmelt from January through July.

To derive annual precipitation and temperature, we

summed precipitation or temperature from snow-

off in the previous year to snow-off in the current

year. To derive precipitation and temperature in

the previous summer, we summed precipitation or

temperature from snow-off in the previous year to

snow-on in the previous year. Snow-on and snow-

off dates were derived from the daily MODIS snow

cover product (� 500 m) (Hall and Riggs. 2016).

Site characteristics included in our fire size

analysis were long-term (1960–1990) mean annual

precipitation and mean annual temperature (Hij-

mans and others 2005), latitude, percentage of sand

within the soil (Poggio and others 2021), terrestrial

ecozone (for example, mountain tundra, taiga)

(Olson and others 2001), whether the fire occurred

in the Arctic or subarctic (Talucci and others 2021),

the proportion of water pixels within a fire, and

topographic variables derived from digital elevation

models (slope, ruggedness relative to the sur-

rounding � 7 ha landscape, and elevation). Water

pixels were defined as any pixel identified by

Pickens and others (2020) as containing water (that

is, experiences seasonal inundation, is permanent

water, or is wet with high frequency) over the

Pickens and others (2020) dataset period (1999–

2021). Topographic variables were derived from

the Arctic digital elevation model (DEM; � 2 m)

(Porter and others 2018) for pixels above 60� N and

the NASA DEM (� 30 m) (NASA JPL 2020) for

pixels below 60� N (the Arctic DEM does not ex-

tend below 60� N and the NASA DEM does not

extend above 60� N). We included the Arctic/sub-

arctic category because previous work indicated a

different fire regime between the two regions,

potentially related to permafrost depth and forest

stand structure (Talucci and others 2022a).

We considered multiple above- and below-

ground fuel characteristics to account for the fact

that fires can be surface fires (that is, fueled by

aboveground ground layer vegetation), ground

fires (fueled by soil organic matter), and/or crown

fires (fueled by tree crowns), burning both above-

and belowground vegetation (Webb and others

2024). Specifically, we included the proportion of

larch pixels within a fire (larch pixels were identi-

fied from Defourny (2017)), soil carbon density in

the top 5 cm of the soil profile (a proxy for soil

organic matter fuel loads) (Poggio and others

2021), tree canopy cover in 2000 (a proxy for

aboveground fuel loads (Alexander and others

2024)) (Hansen and others 2013), tree cover con-

nectivity, soil moisture in the month of fire

(Abatzoglou and others 2018), and the first day of

the year associated with the fire (‘first burn day’)

(Talucci and others 2021). We defined tree cover

connectivity as the proportion of the area within

the fire that is both connected forest (defined as

spatially contiguous groups of pixels connected at

one or more edges) and where forest cover is >

30% (Hansen and others 2013). We considered

the proportion of larch separately from tree cover

because larch species have traits associated with fire

resistance such as high leaf moisture, thick bark,

and self-pruning of lower branches that control fire

intensity (and therefore also likely control fire

spread) differently from other co-occurring tree

species (Wirth 2005; Rogers and others 2015). We

considered the first burn day as a fuel characteristic

because as the active layer progressively thaws over

the course of the summer, more organic soil is

available for combustion (Turetsky and others

2011).

We fit a histogram-based gradient boosting

regression tree (HGBRT) model (a machine learn-

ing algorithm) that related log transformed fire size

to site characteristics, fuel characteristics, and

weather variables (see above and Table 1). We

chose the HGBRT approach because regression

trees are an easily interpretable method of deter-

mining variable importance and ensemble methods

such as boosting generally produce better models

(lower bias and variance) than single tree methods

(Elith and others 2008). We fit the HGBRT using

the Python-based Scikit-learn library (Pedregosa

and others 2011), and optimal model hyperpa-

rameters were determined using grid search and

tenfold cross-validation (Kohavi 1995; Elith and

others 2008). We selected the best performing

model and evaluated its performance using tenfold
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cross-validation repeated 100 times; the mean

model R2 (standard deviation) was 0.46 (0.03). This

final model was used for subsequent analyses of

feature importance and partial dependence of fea-

tures.

Using the HGBRT model, we employed permu-

tation importance (Pedregosa and others 2011) to

quantify the relative importance of each potential

driver of spatial variability in fire size. Permutation

importance randomly shuffles the value of each

explanatory variable among all fires and determi-

nes the resulting drop in average R2 value. To

quantify the relative importance of each group of

explanatory variables (that is, site characteristics,

fuel characteristics, and weather conditions), we

permutated each group of explanatory variables

together, rather than individually. Individual and

grouped variable permutation importances were

repeated 100 times and were implemented using

the Scikit-learn (Pedregosa and others 2011) and

rfpimp (Parr and Turgutlu 2018) libraries, respec-

tively.

To understand the shape and direction of the

relationships between fire size and explanatory

variables, we used the HGBRT model to derive the

marginal effect of the two most important variables

in each group (site characteristics: proportion of

water pixels in the fire perimeter and slope; fuel

characteristics: proportion of larch pixels in the fire

perimeter and first burn day; weather conditions:

climactic water deficit and vapor pressure deficit)

on fire size. Marginal effects are calculated by

generating a fire size prediction for each observa-

tion in the dataset while varying the value of the

intended variable and keeping all other explana-

tory variables as is. The marginal effect of a value of

the intended variable is the average fire size pre-

diction at that value, and the range of marginal

effects is plotted in a partial dependence plot

(Hastie and others 2009).

Initial analyses revealed a sharp directional

change in marginal effect between 0 and 0.004 for

the proportion of water within the fire perimeter

and between 0.996 and 1 for the proportion of

larch pixels within the fire perimeter. Because it is

unlikely that such small changes in water or larch

presence could, by themselves, have strong effects

on fire behavior, these apparent effects likely re-

flect the presence of unmeasured variables (or er-

rors in the measured variables) rather than physical

processes. For example, it seems unlikely that the

difference between the water fractions 0 and 0.004

would, by itself, cause a significant change in fire

behavior, whereas it seems plausible that this

apparent effect in reality reflects a meaningful dif-

ference in site conditions (for example, thin rocky

soils vs. deeper soils) that was not captured by the

available data (Table 1). Given the ambiguous

interpretation of the marginal effects over these

small intervals (0–0.004 for proportion of water;

0.996–1 for proportion of larch), we have excluded

these intervals from the partial dependence plots

shown in the main text; for completeness, we show

the non-truncated partial dependence plots in

Figure S1.

Grouping Data into Wet/Dry Years, Cool/
Hot Years, and Landscape Types

We also studied the sensitivity of burned area, fire

size, and number of fires to categorical groupings of

weather (low/high precipitation/temperature

years) and landscape variables (upland/lowland

ecosystems). To group weather variables, we

averaged the annual air temperature across the fire

perimeters of each year and then classified years as

low (below the median) or high (above the med-

ian) temperature. We similarly classified years as

wet (above median) or dry (below median) based

on annual precipitation (averaged across fire

perimeters of each year).

To group fires into different landscape types, we

applied the k-means clustering algorithm to ele-

vation, ruggedness, slope, tree cover, soil carbon

density, and percent sand within the soil (see above

and Table 1 for variable definitions and data sour-

ces). These variables were selected because they

were important drivers of fire size (see Results) and

because they are defined for individual pixels,

which simplified applying the clustering algorithm

at the regional scale (see below). We did not in-

clude variables that could only be calculated for

multiple pixels (for example, proportion of water

pixels within a fire) because it was not straight-

forward to include such variables in the regional

analysis described below. We implemented the k-

means clustering algorithm using the KMEANS

function in the fdm2id library (Blansché 2023) in R

(R Core Development Team 2023). The optimal

number of clusters, based on the silhouette meth-

od, was two. Based on the mean values of the

characteristics of the two clusters (Table 2), we

named the clusters ‘upland’ (higher elevation,

steeper slopes, lower prevalence of water, and

lower soil carbon density) and ‘lowland’ (lower

elevation, gentler slopes, higher soil carbon den-

sity, and higher prevalence of water). The terms

‘upland’ and ‘lowland’ are widely used to describe

landscape position in the boreal forest biome (for

example, Chapin and others 2010; Eichhorn 2010;
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Jorgenson and others 2022), but these terms may

be ambiguous in some cases. For example,

depending on the values of the six classification

variables (elevation, ruggedness, slope, tree cover,

soil carbon density, and percent sand), some fires

on plateaus may be classified as upland, whereas

other fires plateaus may be classified as lowland.

Thus, we use the terms ‘upland’ and ‘lowland’ for

convenience, but these terms may not be suit-

able for every pixel in our study and may not have

a simple correspondence to other topographic

terms.

To calculate the regional fraction of upland and

lowland ecosystems, we applied the same k-means

clustering algorithm described above to the entire

study region. We first extracted the variables nec-

essary for the cluster analysis (elevation, rugged-

ness, slope, tree cover, soil carbon density, and

percent sand within the soil) from 100,000 ran-

domly selected 30 m pixels from across the study

region. (We sampled a subset, rather than the en-

tire study region, to reduce the computational de-

mands of our analysis.) We then used the k-means

clustering results based on fires to classify each of

these 100,000 pixels as either upland or lowland,

which provided a region-wide estimate for the

fractions of upland and lowland pixels.

RESULTS

Interannual Variability in Burned Area,
Mean Fire Size, and Number of Fires

There was no statistically significant trend in

burned area, mean fire size, or number of fires in

uplands, lowlands, or across the entire study area

(p > 0.05 for all trends; Figure 1). Interannual

variation in burned area was large, with the largest

Table 2. Characteristics of Fires in Upland and Lowland Ecosystems

Upland Lowland

Percentage of study region 31 69

Burned area (ha) 13,742,261 53,645,374

Percentage of burned area 20 80

Number of fires 3913 4,967

Percentage of fires 44 56

Fire size (ha) 3512 ± 10,841 10,800 ± 46,645

% Slope 13 ± 7 4 ± 2

Ruggedness 3 ± 3 1 ± 0.8

Elevation (m) 946 ± 268 310 ± 198

Soil carbon density 602 ± 42 638 ± 44

% Tree canopy cover 25 ± 18 30 ± 18

% Larch pixels in fire 0.8 ± 0.2 0.8 ± 0.2

% Water pixels in fire 0.01 ± 0.04 0.04 ± 0.08

Values with error estimates are the fire-wise mean and standard deviation of the variable.

Figure 1. Mean fire size, number of fires, and total

burned area across Siberian larch ecosystems from 2001

to 2020. Trends in the mean fire size, number of fires,

and total burned area were not significant (p > 0.05 for

each trend).
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fire year burning more than 36 times as much area

as the smallest fire year. Mean fire size also varied

substantially from year to year; the largest annual

mean fire size was � 6.5 times greater than the

smallest. Similarly, the year with the most fires had

nearly 7 times more fires than the year with the

fewest. Annual burned area was strongly related to

both the number of fires (r = 0.86; p < 0.01) and

the mean fire size (r = 0.87; p < 0.01) (Figure 2),

although the number of fires and the mean fire size

were considerably less correlated (r = 0.54;

p = 0.01). The relative importance of different fire

sizes varied across years, with fire sizes over 1 M ha

occurring only in 2002 (Figure 3). When all years

were combined, small fires (< 10 K ha) accounted

for 88% of all fires (n = 7,836) and 25% of the area

burned, medium fires (10–100 K ha) accounted for

11% all fires (n = 938) and 37% of the area

burned, large fires (100 K–1 M ha) accounted for

1% of all fires (n = 110) and 35% of the area

burned, and mega fires (> 1 M ha) accounted for

less than 1% of the number of fires (n = 2) and 4%

of the area burned.

Interannual variation in burned area and num-

ber of fires were most strongly linked to regional

vapor pressure deficit, but precipitation, tempera-

ture, and integrated precipitation/temperature

metrics (that is, Palmer Drought Severity Index,

climatic water deficit, and soil moisture) were also

important predictors of burned area and number of

fires (Table 3). The only statistically significant

predictor of interannual variation in mean fire size

was precipitation in the preceding year (Table 3).

Drivers of Spatial Variation in Fire Size

Site characteristics were the most important pre-

dictors of fire size, followed by fuel characteristics

and weather conditions (Figure 4). Two of the

three most important predictors of fire size (pro-

portion of water within a fire perimeter and slope;

Figure 4) were also important in distinguishing

upland from lowland ecosystems (Table 2). Fires

tended to be larger in areas with a small amount of

water and with shallow slopes (Figure 5). The

Figure 2. Relationship between annual burned area and number of fires (left), annual burned area and mean fire size

(middle), and annual mean fire size and number of fires (right) for upland and lowland landscape positions. All

correlations are statistically significant (annual burned area and number of fires: r = 0.86; p < 0.01; annual burned area

and mean fire size r = 0.87; p < 0.01; mean fire size and number of fires: r = 0.54; p = 0.01).

Figure 3. Cumulative area burned in each fire year. The

numbers printed on the bars are the number of fires

corresponding to each year and fire size class. The colors

denote the cumulative areal contribution from each fire

size class: small (0–10 K ha), medium (10–100 K ha),

large (100 K–1 M ha), and mega (> 1 M ha).
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proportion of larch pixels within a fire and the first

day of the fire (‘first burn day’) was the most

important fuel characteristics, with higher propor-

tions of larch pixels and earlier first burn days

associated with larger fires (Figure 5). Climatic

water deficit and vapor pressure deficit were the

most important weather variables, with higher

deficits leading to larger fires (Figure 5).

Distribution and Fire Characteristics
of Upland and Lowland Ecosystems

Upland ecosystems (that is, those with steeper

slopes, rugged terrain, and higher elevation)

occupied 31% of the study region, but contained

44% of the fires, suggesting that uplands are more

likely to ignite than lowlands (Table 2). However,

uplands accounted for a disproportionately small

percentage of the burned area (20%) because, on

average, fires in uplands were � 1/3 the size of

fires in lowlands. Lowland ecosystems (that is,

those with gentle slopes, higher proportion of wa-

ter, and higher soil carbon density) occupied the

other 69% of the study region and supported a

comparatively small number of fires (56%) but

sustained a disproportionately large percentage of

the burned area (80%) (Table 2).

In uplands, fire characteristics were more sensi-

tive to temperature than to precipitation, with

high-temperature years associated with a 35% in-

crease in mean fire size, 45% increase in the

number of fires, and 95% increase in burned area

(Figure 6). Greater burned area in high-tempera-

ture years was due to increases across a wide range

of fire sizes (Figure 7). In comparison, low-precip-

itation years were associated with smaller effects on

mean upland fire characteristics (Figure 6), al-

though the largest upland fires occurred in low-

precipitation years (Figure 7).

In contrast to uplands, lowlands were more

sensitive to precipitation than to temperature, with

low-precipitation in the preceding year associated

with a 65% increase in mean fire size, 79% in-

crease in number of fires, and 194% increase in

burned area (Figure 6). Temperature effects were

weaker than precipitation effects in lowlands but

were still substantial for burned area (57%) and

mean fire size (50%). In years where the previous

year had low precipitation, there were increases in

lowland burned area across all fire sizes (Figure 7).

In contrast, greater lowland burned area in years

where the previous year had high temperatures

was primarily due to increases in the larger fire

sizes (Figure 7). The largest two fires (that is, mega

fires; > 1 M ha) occurred in years with both low

Table 3. Temporal Trends in Region-Wide Mean Values of Environmental Variables (‘Regional Trends’) and
Relationships Between Interannual Variation in Fire Regime Characteristics and Environmental Variables

Variable Estimate Standard error R2

Regional trends Annual temperature 0.12 0.03 0.49

Summer temperature 0.08 0.03 0.24

Palmer drought severity index* - 0.09 0.03 0.30

Vapor pressure deficit* 0.10 0.03 0.33

Climactic water deficit* 0.08 0.04 0.21

Soil moisture* - 0.09 0.03 0.31

Mean fire size Precipitation in the preceding year - 0.50 0.20 0.25

Number of fires Palmer drought severity index* - 0.48 0.21 0.23

Vapor pressure deficit* 0.80 0.14 0.65

Climactic water deficit* 0.74 0.16 0.55

Maximum summer temperature* 0.68 0.17 0.46

soil moisture* - 0.50 0.20 0.26

Burned area Precipitation in the preceding summer - 0.47 0.21 0.22

Palmer drought severity Index* - 0.60 0.19 0.37

Vapor pressure deficit* 0.84 0.13 0.71

Climactic water deficit* 0.75 0.16 0.56

Maximum summer temperature* 0.68 0.17 0.47

Soil moisture* - 0.57 0.19 0.32

Estimates are slopes from simple linear regressions where the response and explanatory variables were both standardized to unit variance. To meet the assumptions of
normality and homogeneity of variance, burned area was square root transformed and mean fire size, number of fires, soil moisture, and summer temperature were log
transformed prior to standardization. Only significant regressions (p < 0.05) are reported. The sample size for all regressions is 20 years (2001–2020). See Table 1 for
explanation and data sources of variables.
*Averaged across the months of May–August for each year.
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preceding year precipitation and high preceding

year temperature (Figure 7).

The entire study region (uplands and lowlands

combined) was more sensitive to precipitation than

to temperature, with low precipitation in the pre-

ceding year associated with 76% larger fires, 31%

more fires, and 131% more burned area when

precipitation was high in the preceding year (Fig-

ure 6). These trends in fire size and burned area are

largely driven by the sensitivity of lowlands to

precipitation (Figs. 6 and 7), since lowland fires

account for the largest fires and 80% of the total

burned area (Table 2).

Figure 4. Relative importance of predictor variables in explaining the size of individual fires. The top panel displays the

relative importance of individual variables, with the bar color denoting to which group the predictor belongs. The bottom

panel is the relative importance of each group of predictor variables. ‘Relative importance’ indicates the reduction in R2

when a variable (or group of variables) is omitted from the machine learning model.

890 E. Webb and others



DISCUSSION

Controls over Fire Size

Spatial variation in fire size was most strongly re-

lated to landscape position. Whereas there were

more fires in landscapes with steeper slopes, greater

terrain ruggedness, and higher elevation (that is,

uplands), fires were larger in flatter, lower eleva-

tion areas with lower terrain ruggedness (that is,

lowlands). These results likely reflect different fuel

characteristics in uplands and lowlands. Uplands

tend to be better drained, leading to drier surface

fuels that more readily ignite, but fuel is also more

discontinuous with more natural firebreaks (for

example, rocky outcrops, creeks), limiting fire

spread (Sofronov and Volokitina 2010). A larger

number of fires in uplands could also reflect the

fact that steep slopes and rugged terrain promote

spot fires (Storey and others 2020), with fire spot-

ting resulting in additional, distinct fire perimeters

beyond the primary fire perimeter.

Fires in Siberian larch forests are typically surface

fires, fueled by the moss and lichen matrix on the

Figure 5. Histograms (gray bars, left axis) and partial dependence plots (colored lines, right axis) of the two most

important site characteristics (top row), fuel characteristics (middle row), and weather conditions (bottom row) for

explaining fire size in the machine learning model.

Siberian Larch Forests 891



forest floor and the deep undecomposed soil or-

ganic layer rather than the forest canopy (Sofronov

and others 2000; Kharuk and others 2021). Be-

cause moss thrives in wet environments, lowlands

tend to have higher fuel loads with fewer firebreaks

(Sofronov and others 2000), which means that,

once ignited, these fires can burn over larger areas,

particularly following low-precipitation years when

the fuel is relatively dry. In well-drained areas like

uplands, water has a shorter residence time, so

surface fuels are unlikely to maintain high water

content for prolonged periods (for example, mul-

tiple weeks or months), even during high-precipi-

tation years. The rapid draining of uplands may

explain why upland fire size is mostly insensitive to

precipitation.

In lowlands, our results suggest that wet condi-

tions (that is, high precipitation in the preceding

year) protect surface fuel from excessive burning,

but that dry conditions may lead to increases in fire

size across all fire size classes. This corroborates

earlier work that demonstrated that soil moisture

tends to act as an ‘on/off switch,’ with large burned

areas not possible if soil moisture is moderately

high (Bartsch and others 2009). Low precipitation

may dry out natural firebreaks such as typically wet

mossy bogs, streams, and shallow rivers, allowing

fire to spread farther in dry years (Sofronov and

Volokitina 2010). At the same time, low precipita-

tion also dries out forest floor fuels, increasing the

flammability surface fuels. Our results also cor-

roborate Forkel and others (2012), who showed

that high burned area is related to low soil moisture

Figure 6. Summary statistics for fire size, number of fires, and burned area binned by high/low temperature/precipitation

years and landscape position. Triangles and horizontal lines represent mean and median values, respectively. Vertical lines

are 1.5 times the interquartile range and outliers are omitted for visualization purposes. Low/high years were defined as

being above/below the median (see Methods Section). For precipitation, percentage values are the percent increase in the

mean fire characteristic from high- to low-precipitation years (the difference divided by the mean of the high-precipitation

years times 100). For temperature, percentage values are the percent increase in the mean fire characteristic from low- to

high-temperature years (the difference divided by the mean of the low-temperature years times 100).
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conditions in the previous year. This lagged effect is

likely due to two co-occurring mechanisms. First,

because the ground is frozen during snow melt,

meltwater does not infiltrate the soil profile, so fall

soil moisture conditions largely control spring soil

moisture conditions (Sofronov and others 2000).

Second, because water has a high specific heat, the

previous year soil moisture affects the rate of soil

thaw in the spring (Sofronov and others 2000),

with low moisture years thawing organic layer

fuels earlier than high moisture years.

Across the entire study region (uplands and

lowlands combined), fires that were initiated in the

spring tended to be larger, with fire size decreasing

over the course of the season. This is the opposite

pattern of observations of fire size in North Amer-

ican boreal forests, where later season fires are

larger because more of the active layer is thawed,

making more ground fuels available for combustion

(Turetsky and others 2011). However, our results

are consistent with field-based observations in Si-

berian larch forests, where early season ‘runaway’

fires fueled mostly by the litter layer (since the soil

organic layer is not thawed) are common (Sofronov

and Volokitina 2010; Kharuk and others 2021).

Most of the precipitation in Siberia occurs during

the summer, particularly in July and August

(Kostrova and others 2020; Han and Menzel 2022).

This mid- to late-season precipitation could reduce

fire size by expanding the presence of natural fire

breaks (for example, wet mossy bogs, streams), and

by moistening lichens and mosses (Mallen-Cooper

and others 2021) and the underlying soil organic

layer that make up the majority of the fuel load.

Larch forests have the largest relative burned

area (per-unit land area) of any forest type in Si-

beria (Kharuk and others 2021). Similarly, we

found that fires with a higher proportion of larch

pixels tended to be larger, likely due to species traits

and stand characteristics that promote fire spread.

The low canopy closure characteristic of larch for-

ests, for example, allows wind to freely penetrate

the canopy, advancing the fire front (Sofronov and

Volokitina 2010). Because larch trees drop their

needles each fall, the presence of larch trees creates

a low bulk density fuel bed of larch needles, which,

combined with the underlying moss layer, pro-

motes flammability. Additionally, larch presence

directly affects understory species composition,

with implications for both fuel loads and fuel

Figure 7. Relationship between fire size and total burned area separated by landscape position and high/low

temperature/precipitation years (above/below median). Fire size classes are: small (0–10 K ha), medium (10–100 K ha),

large (100 K–1 M ha), and mega (> 1 M ha).
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moisture (Loranty and others 2018; Paulson and

others 2021). In particular, larch presence increases

moss abundance, a key fuel source when alive and

dead (Alexander and others 2020; Paulson and

others 2021). An increasing proportion of larch

pixels within a fire perimeter may also reflect

higher ground fuel connectivity, which may be

somewhat independent of our canopy-derived

metric of fuel connectivity.

Ultimately, fire size is influenced by the inter-

action of multiple factors, many of which do not

vary on human timescales (for example, topogra-

phy) or are stochastic processes (for example, wind

speed, lighting strikes). Projecting future fire re-

gimes requires identifying the climate signal within

the noise of these other factors. Of our studied

variables, precipitation in the preceding year was

the only climate variable that could explain inter-

annual variation in mean fire size across the study

region, with lower precipitation leading to larger

fires. While temperature is an important driver in

uplands, precipitation is more important in low-

lands. Because lowlands account for more fires and

have a larger mean fire size than uplands, inter-

annual variability in burned area across the entire

region is largely determined by lowlands.

Controls over the Number of Fires

Fires in northern Siberian larch forests are pri-

marily lightning ignited, while at the southern

extent of the forest where population density is

higher, anthropogenic ignitions are more common

(Kirillina and others 2020; Kharuk and others

2021; Xu and others 2022). The number of fires in

any year is thus a function of the number of

lightning strikes, anthropogenic activity, and the

susceptibility of fuel to ignition sources. We found

that interannual variability in the number of fires

was primarily driven by drought indices such as

vapor pressure deficit, which impacts both the

number of lightning strikes and fuel flammability

(Sedano and Randerson 2014; Scholten and others

2022). Specifically, hot and dry conditions (that is,

high vapor pressure deficit) are associated with

ignition and fire spread efficiency (Sedano and

Randerson 2014; Hessilt and others 2022). While

we did not account for human activity in our

models, fuel conditions are agnostic to the ignition

source, and the hot and dry conditions that amplify

fire spread in lightning-ignited fires would also

increase ignition and fire spread probabilities in

human-ignited fires.

Controls over Burned Area

Correlations between interannual variability in

region-wide burned area and environmental vari-

ables were strongest for vapor pressure deficit and

other integrated metrics of moisture and tempera-

ture, consistent with previous analyses of burned

area in Siberia (Balzter and others 2005; Pono-

marev and others 2016, 2018; Talucci and others

2022a). Annual burned area was strongly and

positively correlated with both the annual mean

fire size and the annual number of fires. However,

while the highest burned area occurred in years

with both a high number of fires and a large mean

fire size, mean fire size showed only a moderate

correlation with the number of fires. This may re-

flect the randomness of where lightning strikes

occur combined with the importance of ignition

location to eventual fire size (for example, high

lightning years may not result in large burned areas

if the majority of ignitions occur in uplands).

Additionally, interannual variability in the number

of fires and fire size were best predicted by different

environmental variables (current year fire vapor

pressure deficit and previous year precipitation,

respectively), making it less likely that optimal

conditions to support both large fires and a large

number of fires co-occur.

Future Burned Area

A growing body of evidence, including this study,

demonstrates that burned area in Siberian larch

forests is highly dependent on temperature, pre-

cipitation, and the combination of the two (Jupp

and others 2006; Bartsch and others 2009; Forkel

and others 2012; Ponomarev and others 2016,

2018; Tomshin and Solovyev 2021; Descals and

others 2022; Scholten and others 2022; Talucci and

others 2022a). While models project both warming

air temperatures and increasing precipitation across

Siberia, future precipitation projections are more

uncertain than temperature projections (Van Der

Wiel and Bintanja 2021). For example, some cli-

mate models project an increase in winter and fall

precipitation with little to no change in the sum-

mer (Cai and others 2024), but observations across

Siberia show that most of the increase in precipi-

tation over the past 70 years occurred during the

summer (Wang and others 2021). Accurately

understanding the timing of precipitation will be

important for projecting future fire size. Increased

snowfall, for example, might not directly impact

the fire regime if snowmelt runs off and does not

contribute to soil moisture conditions (Sofronov
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and others 2000). On the other hand, increasing

summer precipitation could impact the fire regime

because summer precipitation directly affects

ground fuel moisture conditions and therefore fire

behavior. Similarly, there is considerable uncer-

tainty in projections of future soil moisture condi-

tions, with some models projecting wetting from

increased precipitation and others projecting drying

from increased evapotranspiration, and all models

lacking key processes that determine soil moisture

conditions in permafrost systems (Andresen and

others 2020).

Given that warming temperatures lead to Arctic

wetting (Box and others 2019; McCrystall and

others 2021), our results suggest that climate

change may have opposite effects on the number of

fires and fire size. Specifically, the number of fires

increased with vapor pressure deficit and other

metrics of drought, which are expected to increase

with climate change (Yuan and others 2019), sug-

gesting that Siberian larch forests could experience

more fires in the coming century. On the other

hand, mean fire size was negatively related to

precipitation, and the expected increases in pre-

cipitation could result in a decrease in mean fire

size. However, interannual variability in precipita-

tion may increase, with some very dry years, even

as mean annual precipitation increases (Pender-

grass and others 2017). This precipitation variabil-

ity could lead to extreme fire sizes. Climate change

over future decades could therefore lead to more

fires, smaller fires on average, and more variable

fire sizes in Siberian larch forests. Ultimately, future

trends and interannual variability in total burned

area will be determined by multiple factors,

including the degree of warming, the magnitude

and seasonal timing of precipitation and tempera-

ture change, and interannual climate variability.
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