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ABSTRACT

Fire is the major forest disturbance in Siberian larch
(Larix spp.) ecosystems, which occupy 20% of the
boreal forest biome and are underlain by large,
temperature-protected stocks of soil carbon. Fire is
necessary for the persistence of larch forests, but
fire can also alter forest stand composition and
structure, with important implications for per-
mafrost and carbon and albedo climate feedbacks.
Long-term records show that burned area has in-
creased in Siberian larch forests over the past sev-
eral decades, and extreme climate conditions in
recent years have led to record burned areas. Such
increases in burn area have the potential to
restructure larch ecosystems, yet the fire regime in
this remote region is not well understood. Here, we
investigated how landscape position, geographic
climate variation, and interannual climate vari-
ability from 2001 to 2020 affected total burn area,
the number of fires, and fire size in Siberian larch
forests. The number of fires was positively corre-
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lated with metrics of drought (for example, vapor
pressure deficit), while fire size was negatively
correlated with precipitation in the previous year.
Spatial variation in fire size was primarily con-
trolled by landscape position, with larger fires
occurring in relatively flat, low-elevation areas
with high levels of soil organic carbon. Given that
climate change is increasing both vapor pressure
deficit and precipitation across the region, our re-
sults suggest that future climate change could result
in more but smaller fires. Additionally, increasing
variability in precipitation could lead to unprece-
dented extremes in fire size, with future burned
area dependent on the magnitude and timing of
concurrent increases in temperature and precipi-
tation.

Key words: Boreal forest; Carbon; Fire size; Larix;
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HIGHLIGHTS

e In Siberian larch forests, hot and dry conditions
lead to more fires.

e The most important weather factor influencing
fire size in Siberian larch forests is the amount of
precipitation in the preceding year; more ante-
cedent precipitation leads to smaller fires.

e Climate change will likely lead to more but
smaller fires in Siberian larch forests.
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INTRODUCTION

Siberia contains the only deciduous needleleaf
forests (that is, larch forests, Larix spp.) underlaid
by permafrost in the world, and these forests oc-
cupy ~ 20% of the boreal forest biome (Abaimov
2010). In addition to the unique ecology of larch
trees, Siberian ecosystems are distinctive because
continuous permafrost occurs at subarctic latitudes,
and because much of northern Siberia is underlain
by thick, carbon and ice-rich permafrost deposits.
Larch forests protect the underlying permafrost,
thereby ensuring permafrost stability (Paulson and
others 2021; Walker and others 2021; Hewitt and
others 2022; Loranty and others 2024). Fires are
common albeit infrequent in Siberian larch forests
(fire return interval is ~ 65-125 years (Talucci and
others 2022a)), and their annual burned area is an
order of magnitude greater than that of any other
vegetation type in the permafrost zone (Loranty
and others 2016). These fires modulate permafrost
conditions and post-fire vegetation composition
and forest structure (Alexander and others 2012,
2018) and are crucial to the persistence of Siberian
larch forests (Kharuk and others 2021).

Total burned area in the Siberian larch region
varies considerably from year to year, with high fire
activity strongly related to large-scale atmospheric
conditions such as positive Arctic oscillations,
which are associated with higher-than-normal
temperatures in Eurasia (Balzter and others 2005;
Kim and others 2020), and Arctic front jets, which
bring strong winds and anomalously warm and dry
conditions to northern Siberia (Scholten and others
2022). Interannual variation in burned area is also
related to interannual variation in weather,
including regional air temperature, soil moisture,
and drought indices (Jupp and others 2006; Bartsch
and others 2009; Forkel and others 2012; Pono-
marev and others 2016, 2018; Tomshin and Solo-
vyev 2021; Descals and others 2022; Talucci and
others 2022a) as well as the timing of snowmelt,
which determines the period of fuel drying (Kim
and others 2020; Scholten and others 2022; Talucci
and others 2022a). Given that rapid increases in air
temperature and earlier snowmelt have been ob-
served across the region (Box and others 2019;
Dauginis and Brown 2021), burned area has likely
increased across Siberia over recent decades.
However, the lack of consistent, moderate resolu-
tion satellite images over Siberia prior to 2000
combined with high interannual variability in
burned area makes detecting long-term change
difficult (that is, higher resolution satellites such as
Landsat (30 m) can map smaller burn scars but are

data-limited prior to 2000, whereas coarser reso-
lution satellites (= 500 m) have a longer record
over Siberia, but underestimate both burn area and
number of fires (Talucci and others 2022a)).
Nonetheless, several studies show recent increases
in burned area in Siberian larch forests (Ponomarev
and others 2016; Garcia-Lazaro and others 2018;
Kirillina and others 2020; Tomshin and Solovyev
2021), while other analysis indicate a positive trend
but no significant change in burned area (Jones
and others 2022).

With continued climate change, burned area is
expected to increase in Siberia (Sherstyukov and
Sherstyukov 2014; Williams and others 2023) due
to a concomitant increase in lightning strikes and
drier fuels (Finney and others 2018; Chen and
others 2021; Hessilt and others 2022). These envi-
ronmental changes could lead to more ignitions
(that is, number of fires), larger fires, or a combi-
nation of both. Understanding burned area changes
in terms of the number of fires and fire size has
significant implications for the persistence of larch
forests and for permafrost stability. Large fires, for
example, could increase the distance from burned
areas to seed sources since larger fires tend to have
a lower density of fire refugia (Talucci and others
2022b). This is important because larch seeds do
not survive fire and do not form a persistent seed-
bank, instead depending on wind dispersal from
nearby unburned trees (Abaimov 2010). Increasing
distance to seed source could therefore result in
lower density forests or a complete shift in func-
tional type from trees to shrubs and/or grasses
(Abaimov and Sofronov 1996; Cai and others 2013;
Barrett and others 2020). Because tree density
modulates soil temperature, carbon storage, and
albedo in larch forests (Suzuki and Ohta 2003;
Alexander and others 2012; Webb and others 2017;
Kropp and others 2019; Loranty and others 2024),
increasing fire size could restructure the ecosystem,
with significant feedbacks to permafrost stability as
well as regional and global climate.

In the short-term, an increase in burned area will
reduce fuel loads and increase fuel heterogeneity
across the landscape, with implications for per-
mafrost stability (soil organic layer loss and forest
edges promote permafrost thaw) (Jafarov and
others 2013; Nossov and others 2013; Baltzer and
others 2014; Holloway and others 2020), forest
resiliency (small and isolated stands tend to be
more susceptible to climate warming) (Khansari-
toreh and others 2017), and future fire activity.
Over the longer term, such a reduction in fuel
loads/continuity could act as a negative feedback to
climate change, if extreme fire weather is unable to
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promote fire spread due to insufficient fuel avail-
ability (Kelly and others 2013; Héon and others
2014). At the same time, fires in Siberian larch
forests are typically thought to be ignition-limited
(that is, fuel is plentiful but too moist to ignite)
(Kharuk and others 2021), and fuel availability
does not appear to constrain large fires in southern
Eurasian larch forests (Liu and others 2013; Fang
and others 2015). The relative importance of fuel
availability, fire weather, and other landscape
controls on fire size in Siberian larch forests is un-
known, thereby limiting our ability to project fu-
ture fire activity.

In this study, we seek to better understand fire
activity in Siberian larch forests by differentiating
trends in burned area from those in fire size and the
number of fires and by examining what controls
each of these fire characteristics. We studied fires
that occurred between 2001 and 2020 in Siberian
larch forests underlaid by continuous permafrost,
with the goals to understand (1) trends in burned
area, fire size, and number of fires, (2) drivers of
interannual variability in burned area, fire size, and
number of fires, (3) drivers of spatial variability in
fire size, and (4) the sensitivity of burned area, fire
size, and number of fires to weather variables
(precipitation and temperature) and landscape
type. To study the effects of landscape type, we
applied a clustering analysis to landscape variables
(slope, elevation, vegetation, and water cover, and
so on). Our study differs from previous studies of
burned area in Siberian larch forests in that we
separate the controls of and trends in fire size,
number of fires, and total burned area as well as
distinguish how weather variables impact burned
area differently across landscape types.

MATERIALS AND METHODS
Overview

We evaluated the drivers of fire characteristics in
Siberian larch forests using perimeters for fires that
occurred between 2001 and 2020 together with
geospatial datasets of landscape, weather, and fuel
characteristics. We considered the following
weather variables: vapor pressure deficit, climactic
water deficit, Palmer drought severity index, soil
moisture, wind, and maximum air temperature in
fire month, precipitation and temperature anoma-
lies in the preceding summer, annual precipitation
and temperature anomalies, and the meltwater
anomaly (see Table 1 for a complete list of variables
and data sources). We chose these variables, rather
than metrics of fire weather (for example, the fire

weather index (Field and others 2015), which are
better suited to predict the probability of fire at a
given location and time), to be able to disentangle
the broad-scale climate processes controlling
burned area, fire size, and number of fires.

To determine the drivers of interannual vari-
ability in fire characteristics, we fit linear regres-
sions relating weather variables to annual burned
area, mean fire size, and number of fires. We fit
separate linear regressions to determine if the
trends in these fire characteristics (annual burned
area, mean fire size, and number of fires) were
significant over our study period. To determine
drivers of spatial variability in fire size, we fit a
machine learning model relating fire size to land-
scape, weather, and fuel characteristics. Addition-
ally, we applied a clustering algorithm to the
landscape characteristics within fire perimeters,
which identified two primary clusters: upland and
lowland fires. We used the upland/lowland classi-
fication to structure subsequent analyses.

Study Region and Fire Data

Our study region was larch forests in the continu-
ous permafrost zone of Eurasia north of 50° N. We
delineated larch forests using the 2015 European
space agency climate change initiative land cover
map (Defourny 2017) and delineated permafrost
zones according to Obu and others (2018). The
study region covers 2.9 m km?, which is 70% of
the Eurasian continuous permafrost region.

Burned area, fire size, and number of fires were
taken from an existing Landsat-derived dataset of
2001-2020 fire perimeters across Siberia (Talucci
and others 2021). The fire perimeters capture a
range of burn severities and likely include both
high and low severity fires (that is, fires where
canopy trees survive) (Talucci 2022a, b). From this
dataset, we selected fires within the continuous
permafrost zone (Obu and others 2018) where >

10% of the pixels (30 m) within the fire perimeter
were larch dominated (Defourny 2017). The data-
set we analyzed included 8886 fires across 20 years
(2001-2020).

We calculated fire size as the area within each
fire perimeter, and we calculated total burned area
as the sum of all fire sizes. Due to limitations of
Landsat images collected in some years (that is, the
Landsat 7 scanline error), it was not possible to
quantify the area of unburned patches (that is,
refugia) in the entire 2001-2020 fire perimeter
dataset (Talucci and others 2021, 2022b). Previous
work suggests that refugia are more likely in
topographic depressions and in areas with steep
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Table 1. Summary and Explanation of Datasets used in the Analysis of Spatial Drivers of Fire Size
Variable Description Spatial Temporal Data source(s)
resolution resolution
Proportion of wa- Water pixels are defined as any pixel identi- 30 m Static (Pickens and others 2020)
ter pixels in a fied as containing water (that is, experi-
fire perimeter ences seasonal inundation, is permanent
water, or is wet with high frequency) over
the dataset period (1999-2021)
Proportion of Larch pixels are defined by their landcover 300 m Static (Defourny 2017)
larch pixels in a classification (tree covered, needle leaved,
fire perimeter deciduous) and therefore contain open and
closed forest canopies
Slope 30 m Static Below 60° N: (NASA JPL
2020) Above 60° N:
(Porter and others 2018)
First burn day Each fire  Day of fire (Talucci and others 2022a)
Vapor pressure 4 km Month of (Abatzoglou and others
deficit fire 2018)
Climactic water 4 km Month of  (Abatzoglou and others
deficit fire 2018)
Latitude 30 m Static
Temperature Annual temperature is calculated as the sum 9 km Summer Snowmelt: (Hall and Riggs
anomaly in the of temperature from the day of snowmelt in preced- 2016)temperature: (Mu-
preceding sum- the previous year to the day of snowmelt in ing the oz 2019)
mer the fire year. Temperature anomaly is the fire
difference between the annual temperature
in the fire year and the mean annual tem-
perature over the 2001-2020 study period
% Tree canopy Canopy closure for all vegetation > 5 m in 30 m Static (Hansen and others 2013)
cover the year 2000
Elevation 30 m Static Below 60° N: (NASA JPL
2020) Above 60° N:
(Porter and others 2018)
Annual precipita- Annual precipitation is calculated as the sum 9 km Year pre-  Snowmelt: (Hall and Riggs
tion anomaly of precipitation from the day of snowmelt in ceding 2016) precipitation:
the previous year to the day of snowmelt in the fire (Mufioz 2019)
the fire year. The anomaly is the difference
between the annual precipitation in the fire
year and the mean annual precipitation
over the 2001-2020 study period
Tree cover con- Connected forests are groups of touching for- 30 m Static (Hansen and others 2013)
nectivity est (that is, forest cover > 30%) pixels.
Tree cover connectivity is the areal propor-
tion of the fire that is connected forest
Soil carbon den- Soil organic carbon density in the top 5 cm of 250 m Static (Poggio and others 2021)
sity soil
Palmer drought Palmer Drought Severity Index in the month 4 km Sonth of (Abatzoglou and others
severity index of fire fire 2018)
Annual tempera- Annual temperature is calculated as the sum 9 km Year pre-  Snowmelt: (Hall and Riggs
ture anomaly of temperature from the day of snowmelt in ceding 2016) temperature:
the previous year to the day of snowmelt in the fire (Mufioz 2019)

the fire year. Temperature anomaly is the
difference between the annual temperature
in the fire year and the mean annual tem-
perature over the 2001-2020 study period
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Table 1. continued
Variable Description Spatial Temporal Data source(s)
resolution resolution
% Sand in soil Proportion of sand particles (> 0.05 mm) in 250 m Static (Poggio and others 2021)
the fine earth fraction
Precipitation Preceding summer precipitation is calculated 9 km Summer Snowmelt and snow-on:
anomaly in the as the sum of precipitation from the day of preced- (Hall and Riggs. 2016)
preceding sum- snowmelt to the first day of snow-on in the ing the precipitation: (Mufioz
mer year preceding fire. The anomaly is the fire 2019)
difference between the preceding summer
precipitation for the fire year and the mean
summer precipitation over the 2001-2020
study period
Ruggedness Ruggedness is the absolute value of the dif- 30 m Static Below 60° N: (NASA JPL
ference in elevation between an individual 2020) Above 60° N: (Por-
pixel and the neighborhood of surrounding ter and others 2018)
pixels. We calculated the pixel-wise
ruggedness relative to a landscape scale
of ~ 7 ha and then averaged the rugged-
ness values of all pixels within the fire
Mean annual Annual mean temperature for the period Static (Hijmans and others 2005)
temperature 1960-1990
Maximum air 4 km Month of  (Abatzoglou and others
temperature in fire 2018)
fire month
Mean annual Annual mean precipitation for the period (Hijmans and others 2005)
precipitation 1960-1990
Meltwater anom- Meltwater is the sum of water in snowmelt 9 km Summer (Mufioz 2019)
aly from January through July of the year of preced-
the fire. The anomaly is the difference be- ing the
tween the meltwater in the fire year and fire
the mean meltwater over the 2001-2020
study period
Soil moisture in 4 km Month of  (Abatzoglou and others
month of fire fire 2018)
Wind in month of Wind speed at 10 m 4 km Month of  (Abatzoglou and others
fire fire 2018)
Ecozone Terrestrial ecoregion Static (Olson and others 2001)
Arctic/subarctic Static (Talucci and others 2022a)

A subset of these variables (weather conditions) were used in the analysis of interannual variability in mean fire size, number of fires, and burned area (see Methods for more

details).

slopes, low tree cover, and higher elevations (Ta-
lucci and others 2022b), which suggests that our
overestimation of burned area could be higher in
uplands than in lowlands.

To understand the relative contribution of dif-
ferent fire sizes to total burned area, we divided
these fires into four size classes: small (0-10 K ha),
medium (10-100 K ha), large (100 K-1 M ha),
and mega > 1 M ha). For each year (2001-2020),
we quantified the number of fires and the burned
area in each size class.

Trends and Interannual Variability
in Burned Area, Mean Fire Size,
and Number of Fires

To determine if the burned area, mean fire size, or
number of fires changed over the 20-year study
period, we fit linear models relating each of these
variables to fire year. We fit separate models for
uplands, lowlands, and the entire study region. We
used the Pearson correlation coefficient to assess
the association between annual burned area and
number of fires and mean fire size.

We considered multiple weather variables (in
separate, simple linear regressions; see below) as
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potential drivers of the interannual variation in
burned area, mean fire size, and number of fires.
When modeling burned area and the number of
fires, each weather variable was averaged across
the entire study region in each year, because we
predicted that the burned area and number of fires
in the study region would depend on regional
weather. In contrast, when modeling mean fire
size, we first averaged weather variables across the
pixels within each fire perimeter and then averaged
the weather variables across all fire perimeters in a
given year, because we predicted that fire size
would depend on the weather conditions at the fire
locations (rather than the regional mean weather).
The same weather variables were used for all three
response variables (burned area, mean fire size, and
number of fire), but the weather variables were
calculated in different ways with respect to spatial
averaging (as explained above) and timing (see
below).

Weather variables included in our analysis were:
vapor pressure deficit, wind speed, climatic water
deficit, Palmer Drought Severity Index, monthly
maximum air temperature, soil moisture, annual
precipitation, annual temperature, and precipita-
tion and temperature in the preceding summer. For
models of burned area and number of fires, vapor
pressure deficit, wind speed, climatic water deficit,
Palmer Drought Severity Index, monthly maxi-
mum temperature, and soil moisture were aver-
aged across the months of May—-August (~ 85% of
fires occur between these months) in each year.
For the mean fire size model, these variables were
evaluated during the month of the first day of the
fire. Annual precipitation and temperature vari-
ables were calculated as the sum of precipitation or
temperature from snow-off (that is, the last snow-
on date) in the previous year to snow-off in the fire
year. Precipitation and temperature in the preced-
ing summer were calculated as the sum of the
precipitation or temperature from snow-off in the
previous year to the first snow-on in the previous
year. Annual and preceding summer temperature
and precipitation data came from the ERA5-Land
hourly dataset (~ 9 km) (Mufioz 2019), snow
cover timing was derived from the daily MODIS
snow cover product (~ 500 m) (Hall and Riggs
2016), and other weather variables, including
monthly maximum air temperature, were obtained
from the monthly TerraClimate dataset (~ 4 km)
(Abatzoglou and others 2018). We included vari-
ables from both the ERAS5-Land dataset and the
TerraClimate dataset because while the ERA5-Land
dataset has higher temporal resolution (hourly vs.
monthly) and is therefore more suitable to char-

acterize fire weather, it does not include integrated
metrics of temperature and precipitation (for
example, vapor pressure deficit, climactic water
deficit, Palmer drought severity index), which were
also important in our analysis.

We fit simple linear regression models that re-
lated annual burned area, annual mean fire size,
and annual number of fires to each weather vari-
able. We chose this approach because collinearity
among predictor variables made model selection
unreliable using a multiple regression approach,
and because the size of the dataset (n = 20 years)
was too small to employ more complicated meth-
ods without overfitting the models.

Prior to all linear regression and correlation
analyses described above, burned area was square
root transformed and the number of fires and mean
fire size were log transformed to help meet the
assumptions of linearity, normally distributed er-
rors, and homoscedasticity. We visually assessed
the scatterplots of the correlated variables and
found no obvious departures from these assump-
tions. We implemented the Shapiro-Wilk normal-
ity and Breusch—Pagan tests to test the residuals of
our linear models for normality and heteroskedas-
ticity, respectively. The sample size for these anal-
yses was n = 20 years, which we judged to be
insufficient for more complex analyses (for exam-
ple, nonlinear models with non-normal errors). We
implemented the correlation and regression anal-
yses using the cor, cor.test, and /m functions,
respectively, in R (R Core Development Team
2023). We report results for all regressions where
the model p-value was less than 0.05.

Spatial Variability in Fire Size

We explored different weather, fuel, and site vari-
ables as potential drivers of fire size, which are
summarized in Table 1 and described below. The
original pixel resolution varied depending on the
original dataset (see Table 1), but all datasets were
resampled to 30 m using the nearest neighbor
method. For most variables, pixel-level values were
averaged across all pixels within each fire perime-
ter. The exceptions to this were the proportion of
pixels classified as larch or water within each fire
perimeter and categorical variables (for example,
Arctic/subarctic), which were calculated (propor-
tions) or obtained (categories) for each fire
perimeter. All geospatial processing was conducted
in Google Earth Engine (Gorelick and others 2017).

Weather variables included in our fire size
analysis were either evaluated in the month of the
fire (climatic water deficit, Palmer drought severity
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index, vapor pressure deficit, windspeed, and
monthly maximum temperature from TerraClimate
(~ 4 km) (Abatzoglou and others 2018)), or as the
anomaly from the 20-year (2001-2020) mean
(meltwater, annual temperature, annual precipi-
tation, summer temperature, and summer precipi-
tation, calculated from the ERAS5-Land hourly
dataset (~ 9 km)). To derive weather anomalies,
we first calculated the total amount of water in
snowmelt and the sums of annual precipitation,
summer precipitation, annual temperature, and
summer temperature in each year (2001-2020) at
each pixel (~ 9 km; native resolution of the data-
set) across the study region. Anomalies were
computed as the difference between these variables
at the location of the fire in the fire year and the
twenty-year mean at the location of each fire. To
derive annual meltwater, we summed the amount
of water in snowmelt from January through July.
To derive annual precipitation and temperature, we
summed precipitation or temperature from snow-
off in the previous year to snow-off in the current
year. To derive precipitation and temperature in
the previous summer, we summed precipitation or
temperature from snow-off in the previous year to
snow-on in the previous year. Snow-on and snow-
off dates were derived from the daily MODIS snow
cover product (~ 500 m) (Hall and Riggs. 2016).
Site characteristics included in our fire size
analysis were long-term (1960-1990) mean annual
precipitation and mean annual temperature (Hij-
mans and others 2005), latitude, percentage of sand
within the soil (Poggio and others 2021), terrestrial
ecozone (for example, mountain tundra, taiga)
(Olson and others 2001), whether the fire occurred
in the Arctic or subarctic (Talucci and others 2021),
the proportion of water pixels within a fire, and
topographic variables derived from digital elevation
models (slope, ruggedness relative to the sur-
rounding ~ 7 ha landscape, and elevation). Water
pixels were defined as any pixel identified by
Pickens and others (2020) as containing water (that
is, experiences seasonal inundation, is permanent
water, or is wet with high frequency) over the
Pickens and others (2020) dataset period (1999-
2021). Topographic variables were derived from
the Arctic digital elevation model (DEM; ~ 2 m)
(Porter and others 2018) for pixels above 60° N and
the NASA DEM (~ 30 m) (NASA JPL 2020) for
pixels below 60° N (the Arctic DEM does not ex-
tend below 60° N and the NASA DEM does not
extend above 60° N). We included the Arctic/sub-
arctic category because previous work indicated a
different fire regime between the two regions,

potentially related to permafrost depth and forest
stand structure (Talucci and others 2022a).

We considered multiple above- and below-
ground fuel characteristics to account for the fact
that fires can be surface fires (that is, fueled by
aboveground ground layer vegetation), ground
fires (fueled by soil organic matter), and/or crown
fires (fueled by tree crowns), burning both above-
and belowground vegetation (Webb and others
2024). Specifically, we included the proportion of
larch pixels within a fire (larch pixels were identi-
fied from Defourny (2017)), soil carbon density in
the top 5 cm of the soil profile (a proxy for soil
organic matter fuel loads) (Poggio and others
2021), tree canopy cover in 2000 (a proxy for
aboveground fuel loads (Alexander and others
2024)) (Hansen and others 2013), tree cover con-
nectivity, soil moisture in the month of fire
(Abatzoglou and others 2018), and the first day of
the year associated with the fire (‘first burn day’)
(Talucci and others 2021). We defined tree cover
connectivity as the proportion of the area within
the fire that is both connected forest (defined as
spatially contiguous groups of pixels connected at
one or more edges) and where forest cover is >
30% (Hansen and others 2013). We considered
the proportion of larch separately from tree cover
because larch species have traits associated with fire
resistance such as high leaf moisture, thick bark,
and self-pruning of lower branches that control fire
intensity (and therefore also likely control fire
spread) differently from other co-occurring tree
species (Wirth 2005; Rogers and others 2015). We
considered the first burn day as a fuel characteristic
because as the active layer progressively thaws over
the course of the summer, more organic soil is
available for combustion (Turetsky and others
2011).

We fit a histogram-based gradient boosting
regression tree (HGBRT) model (a machine learn-
ing algorithm) that related log transformed fire size
to site characteristics, fuel characteristics, and
weather variables (see above and Table 1). We
chose the HGBRT approach because regression
trees are an easily interpretable method of deter-
mining variable importance and ensemble methods
such as boosting generally produce better models
(lower bias and variance) than single tree methods
(Elith and others 2008). We fit the HGBRT using
the Python-based Scikit-learn library (Pedregosa
and others 2011), and optimal model hyperpa-
rameters were determined using grid search and
tenfold cross-validation (Kohavi 1995; Elith and
others 2008). We selected the best performing
model and evaluated its performance using tenfold
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cross-validation repeated 100 times; the mean
model R? (standard deviation) was 0.46 (0.03). This
final model was used for subsequent analyses of
feature importance and partial dependence of fea-
tures.

Using the HGBRT model, we employed permu-
tation importance (Pedregosa and others 2011) to
quantify the relative importance of each potential
driver of spatial variability in fire size. Permutation
importance randomly shuffles the value of each
explanatory variable among all fires and determi-
nes the resulting drop in average R*> value. To
quantify the relative importance of each group of
explanatory variables (that is, site characteristics,
fuel characteristics, and weather conditions), we
permutated each group of explanatory variables
together, rather than individually. Individual and
grouped variable permutation importances were
repeated 100 times and were implemented using
the Scikit-learn (Pedregosa and others 2011) and
rfpimp (Parr and Turgutlu 2018) libraries, respec-
tively.

To understand the shape and direction of the
relationships between fire size and explanatory
variables, we used the HGBRT model to derive the
marginal effect of the two most important variables
in each group (site characteristics: proportion of
water pixels in the fire perimeter and slope; fuel
characteristics: proportion of larch pixels in the fire
perimeter and first burn day; weather conditions:
climactic water deficit and vapor pressure deficit)
on fire size. Marginal effects are calculated by
generating a fire size prediction for each observa-
tion in the dataset while varying the value of the
intended variable and keeping all other explana-
tory variables as is. The marginal effect of a value of
the intended variable is the average fire size pre-
diction at that value, and the range of marginal
effects is plotted in a partial dependence plot
(Hastie and others 2009).

Initial analyses revealed a sharp directional
change in marginal effect between 0 and 0.004 for
the proportion of water within the fire perimeter
and between 0.996 and 1 for the proportion of
larch pixels within the fire perimeter. Because it is
unlikely that such small changes in water or larch
presence could, by themselves, have strong effects
on fire behavior, these apparent effects likely re-
flect the presence of unmeasured variables (or er-
rors in the measured variables) rather than physical
processes. For example, it seems unlikely that the
difference between the water fractions 0 and 0.004
would, by itself, cause a significant change in fire
behavior, whereas it seems plausible that this
apparent effect in reality reflects a meaningful dif-

ference in site conditions (for example, thin rocky
soils vs. deeper soils) that was not captured by the
available data (Table 1). Given the ambiguous
interpretation of the marginal effects over these
small intervals (0-0.004 for proportion of water;
0.996-1 for proportion of larch), we have excluded
these intervals from the partial dependence plots
shown in the main text; for completeness, we show
the mnon-truncated partial dependence plots in
Figure S1.

Grouping Data into Wet/Dry Years, Cool/
Hot Years, and Landscape Types

We also studied the sensitivity of burned area, fire
size, and number of fires to categorical groupings of
weather  (low/high  precipitation/temperature
years) and landscape variables (upland/lowland
ecosystems). To group weather variables, we
averaged the annual air temperature across the fire
perimeters of each year and then classified years as
low (below the median) or high (above the med-
ian) temperature. We similarly classified years as
wet (above median) or dry (below median) based
on annual precipitation (averaged across fire
perimeters of each year).

To group fires into different landscape types, we
applied the k-means clustering algorithm to ele-
vation, ruggedness, slope, tree cover, soil carbon
density, and percent sand within the soil (see above
and Table 1 for variable definitions and data sour-
ces). These variables were selected because they
were important drivers of fire size (see Results) and
because they are defined for individual pixels,
which simplified applying the clustering algorithm
at the regional scale (see below). We did not in-
clude variables that could only be calculated for
multiple pixels (for example, proportion of water
pixels within a fire) because it was not straight-
forward to include such variables in the regional
analysis described below. We implemented the k-
means clustering algorithm using the KMEANS
function in the fdm2id library (Blansché 2023) in R
(R Core Development Team 2023). The optimal
number of clusters, based on the silhouette meth-
od, was two. Based on the mean values of the
characteristics of the two clusters (Table 2), we
named the clusters ‘upland’ (higher elevation,
steeper slopes, lower prevalence of water, and
lower soil carbon density) and ‘lowland” (lower
elevation, gentler slopes, higher soil carbon den-
sity, and higher prevalence of water). The terms
‘upland’ and ‘lowland’ are widely used to describe
landscape position in the boreal forest biome (for
example, Chapin and others 2010; Eichhorn 2010;
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Table 2. Characteristics of Fires in Upland and Lowland Ecosystems

Upland Lowland
Percentage of study region 31 69
Burned area (ha) 13,742,261 53,645,374
Percentage of burned area 20 80
Number of fires 3913 4,967
Percentage of fires 44 56
Fire size (ha) 3512 + 10,841 10,800 + 46,645
% Slope 13+7 4 +2
Ruggedness 3+3 1+0.8
Elevation (m) 946 £+ 268 310 £ 198
Soil carbon density 602 + 42 638 + 44
% Tree canopy cover 25+ 18 30 £ 18
% Larch pixels in fire 0.8 £ 0.2 0.8 £ 0.2
% Water pixels in fire 0.01 £ 0.04 0.04 + 0.08

Values with error estimates are the fire-wise mean and standard deviation of the variable.

Jorgenson and others 2022), but these terms may
be ambiguous in some cases. For example,
depending on the values of the six classification
variables (elevation, ruggedness, slope, tree cover,
soil carbon density, and percent sand), some fires
on plateaus may be classified as upland, whereas
other fires plateaus may be classified as lowland.
Thus, we use the terms ‘upland’ and ‘lowland’ for
convenience, but these terms may not be suit-
able for every pixel in our study and may not have
a simple correspondence to other topographic
terms.

To calculate the regional fraction of upland and
lowland ecosystems, we applied the same k-means
clustering algorithm described above to the entire
study region. We first extracted the variables nec-
essary for the cluster analysis (elevation, rugged-
ness, slope, tree cover, soil carbon density, and
percent sand within the soil) from 100,000 ran-
domly selected 30 m pixels from across the study
region. (We sampled a subset, rather than the en-
tire study region, to reduce the computational de-
mands of our analysis.) We then used the k-means
clustering results based on fires to classify each of
these 100,000 pixels as either upland or lowland,
which provided a region-wide estimate for the
fractions of upland and lowland pixels.

REsuLTs

Interannual Variability in Burned Area,
Mean Fire Size, and Number of Fires

There was no statistically significant trend in
burned area, mean fire size, or number of fires in
uplands, lowlands, or across the entire study area

(» > 0.05 for all trends; Figure 1). Interannual
variation in burned area was large, with the largest

> lowland upland
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Figure 1. Mean fire size, number of fires, and total
burned area across Siberian larch ecosystems from 2001
to 2020. Trends in the mean fire size, number of fires,
and total burned area were not significant (p > 0.05 for
each trend).
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fire year burning more than 36 times as much area
as the smallest fire year. Mean fire size also varied
substantially from year to year; the largest annual
mean fire size was ~ 6.5 times greater than the
smallest. Similarly, the year with the most fires had
nearly 7 times more fires than the year with the
fewest. Annual burned area was strongly related to
both the number of fires (r = 0.86; p < 0.01) and
the mean fire size (r = 0.87; p < 0.01) (Figure 2),
although the number of fires and the mean fire size
were considerably less correlated (r = 0.54;
p = 0.01). The relative importance of different fire
sizes varied across years, with fire sizes over 1 M ha
occurring only in 2002 (Figure 3). When all years
were combined, small fires (< 10 K ha) accounted
for 88% of all fires (n = 7,836) and 25% of the area
burned, medium fires (10-100 K ha) accounted for
11% all fires (n=938) and 37% of the area
burned, large fires (100 K-1 M ha) accounted for
1% of all fires (z =110) and 35% of the area
burned, and mega fires (> 1 M ha) accounted for
less than 1% of the number of fires (n = 2) and 4%
of the area burned.

Interannual variation in burned area and num-
ber of fires were most strongly linked to regional
vapor pressure deficit, but precipitation, tempera-
ture, and integrated precipitation/temperature
metrics (that is, Palmer Drought Severity Index,
climatic water deficit, and soil moisture) were also
important predictors of burned area and number of
fires (Table 3). The only statistically significant
predictor of interannual variation in mean fire size
was precipitation in the preceding year (Table 3).
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Figure 3. Cumulative area burned in each fire year. The
numbers printed on the bars are the number of fires
corresponding to each year and fire size class. The colors
denote the cumulative areal contribution from each fire
size class: small (0-10 K ha), medium (10-100 K ha),
large (100 K-1 M ha), and mega (> 1 M ha).

Drivers of Spatial Variation in Fire Size

Site characteristics were the most important pre-
dictors of fire size, followed by fuel characteristics
and weather conditions (Figure 4). Two of the
three most important predictors of fire size (pro-
portion of water within a fire perimeter and slope;
Figure 4) were also important in distinguishing
upland from lowland ecosystems (Table 2). Fires
tended to be larger in areas with a small amount of
water and with shallow slopes (Figure 5). The
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Figure 2. Relationship between annual burned area and number of fires (left), annual burned area and mean fire size
(middle), and annual mean fire size and number of fires (right) for upland and lowland landscape positions. All
correlations are statistically significant (annual burned area and number of fires: r = 0.86; p < 0.01; annual burned area
and mean fire size r = 0.87; p < 0.01; mean fire size and number of fires: r = 0.54; p = 0.01).
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Table 3. Temporal Trends in Region-Wide Mean Values of Environmental Variables (‘Regional Trends’) and
Relationships Between Interannual Variation in Fire Regime Characteristics and Environmental Variables

Variable Estimate Standard error R?
Regional trends Annual temperature 0.12 0.03 0.49
Summer temperature 0.08 0.03 0.24
Palmer drought severity index* - 0.09 0.03 0.30
Vapor pressure deficit* 0.10 0.03 0.33
Climactic water deficit* 0.08 0.04 0.21
Soil moisture* — 0.09 0.03 0.31
Mean fire size Precipitation in the preceding year — 0.50 0.20 0.25
Number of fires Palmer drought severity index* —0.48 0.21 0.23
Vapor pressure deficit* 0.80 0.14 0.65
Climactic water deficit* 0.74 0.16 0.55
Maximum summer temperature* 0.68 0.17 0.46
soil moisture* — 0.50 0.20 0.26
Burned area Precipitation in the preceding summer — 0.47 0.21 0.22
Palmer drought severity Index* — 0.60 0.19 0.37
Vapor pressure deficit* 0.84 0.13 0.71
Climactic water deficit* 0.75 0.16 0.56
Maximum summer temperature* 0.68 0.17 0.47
Soil moisture* — 0.57 0.19 0.32

Estimates are slopes from simple linear regressions where the response and explanatory variables were both standardized to unit variance. To meet the assumptions of
normality and homogeneity of variance, burned area was square root transformed and mean fire size, number of fires, soil moisture, and summer temperature were log
transformed prior to standardization. Only significant regressions (p < 0.05) are reported. The sample size for all regressions is 20 years (2001-2020). See Table 1 for

explanation and data sources of variables.
*Averaged across the months of May—-August for each year.

proportion of larch pixels within a fire and the first
day of the fire (‘first burn day’) was the most
important fuel characteristics, with higher propor-
tions of larch pixels and earlier first burn days
associated with larger fires (Figure 5). Climatic
water deficit and vapor pressure deficit were the
most important weather variables, with higher
deficits leading to larger fires (Figure 5).

Distribution and Fire Characteristics
of Upland and Lowland Ecosystems

Upland ecosystems (that is, those with steeper
slopes, rugged terrain, and higher elevation)
occupied 31% of the study region, but contained
44% of the fires, suggesting that uplands are more
likely to ignite than lowlands (Table 2). However,
uplands accounted for a disproportionately small
percentage of the burned area (20%) because, on
average, fires in uplands were ~ 1/3 the size of
fires in lowlands. Lowland ecosystems (that is,
those with gentle slopes, higher proportion of wa-
ter, and higher soil carbon density) occupied the
other 69% of the study region and supported a
comparatively small number of fires (56%) but
sustained a disproportionately large percentage of
the burned area (80%) (Table 2).

In uplands, fire characteristics were more sensi-
tive to temperature than to precipitation, with
high-temperature years associated with a 35% in-
crease in mean fire size, 45% increase in the
number of fires, and 95% increase in burned area
(Figure 6). Greater burned area in high-tempera-
ture years was due to increases across a wide range
of fire sizes (Figure 7). In comparison, low-precip-
itation years were associated with smaller effects on
mean upland fire characteristics (Figure 6), al-
though the largest upland fires occurred in low-
precipitation years (Figure 7).

In contrast to uplands, lowlands were more
sensitive to precipitation than to temperature, with
low-precipitation in the preceding year associated
with a 65% increase in mean fire size, 79% in-
crease in number of fires, and 194% increase in
burned area (Figure 6). Temperature effects were
weaker than precipitation effects in lowlands but
were still substantial for burned area (57%) and
mean fire size (50%). In years where the previous
year had low precipitation, there were increases in
lowland burned area across all fire sizes (Figure 7).
In contrast, greater lowland burned area in years
where the previous year had high temperatures
was primarily due to increases in the larger fire
sizes (Figure 7). The largest two fires (that is, mega
fires; > 1 M ha) occurred in years with both low
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Figure 4. Relative importance of predictor variables in explaining the size of individual fires. The top panel displays the
relative importance of individual variables, with the bar color denoting to which group the predictor belongs. The bottom
panel is the relative importance of each group of predictor variables. ‘Relative importance’ indicates the reduction in R?
when a variable (or group of variables) is omitted from the machine learning model.

preceding year precipitation and high preceding
year temperature (Figure 7).

The entire study region (uplands and lowlands
combined) was more sensitive to precipitation than
to temperature, with low precipitation in the pre-
ceding year associated with 76% larger fires, 31%
more fires, and 131% more burned area when
precipitation was high in the preceding year (Fig-
ure 6). These trends in fire size and burned area are

largely driven by the sensitivity of lowlands to
precipitation (Figs. 6 and 7), since lowland fires
account for the largest fires and 80% of the total
burned area (Table 2).
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Figure 5. Histograms (gray bars, left axis) and partial dependence plots (colored lines, right axis) of the two most
important site characteristics (top row), fuel characteristics (middle row), and weather conditions (bottom row) for

explaining fire size in the machine learning model.

DiscussioN
Controls over Fire Size

Spatial variation in fire size was most strongly re-
lated to landscape position. Whereas there were
more fires in landscapes with steeper slopes, greater
terrain ruggedness, and higher elevation (that is,
uplands), fires were larger in flatter, lower eleva-
tion areas with lower terrain ruggedness (that is,
lowlands). These results likely reflect different fuel
characteristics in uplands and lowlands. Uplands

tend to be better drained, leading to drier surface
fuels that more readily ignite, but fuel is also more
discontinuous with more natural firebreaks (for
example, rocky outcrops, creeks), limiting fire
spread (Sofronov and Volokitina 2010). A larger
number of fires in uplands could also reflect the
fact that steep slopes and rugged terrain promote
spot fires (Storey and others 2020), with fire spot-
ting resulting in additional, distinct fire perimeters
beyond the primary fire perimeter.

Fires in Siberian larch forests are typically surface
fires, fueled by the moss and lichen matrix on the
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Figure 6. Summary statistics for fire size, number of fires, and burned area binned by high/low temperature/precipitation
years and landscape position. Triangles and horizontal lines represent mean and median values, respectively. Vertical lines
are 1.5 times the interquartile range and outliers are omitted for visualization purposes. Low/high years were defined as
being above/below the median (see Methods Section). For precipitation, percentage values are the percent increase in the
mean fire characteristic from high- to low-precipitation years (the difference divided by the mean of the high-precipitation
years times 100). For temperature, percentage values are the percent increase in the mean fire characteristic from low- to
high-temperature years (the difference divided by the mean of the low-temperature years times 100).

forest floor and the deep undecomposed soil or-
ganic layer rather than the forest canopy (Sofronov
and others 2000; Kharuk and others 2021). Be-
cause moss thrives in wet environments, lowlands
tend to have higher fuel loads with fewer firebreaks
(Sofronov and others 2000), which means that,
once ignited, these fires can burn over larger areas,
particularly following low-precipitation years when
the fuel is relatively dry. In well-drained areas like
uplands, water has a shorter residence time, so
surface fuels are unlikely to maintain high water
content for prolonged periods (for example, mul-
tiple weeks or months), even during high-precipi-
tation years. The rapid draining of uplands may
explain why upland fire size is mostly insensitive to
precipitation.

In lowlands, our results suggest that wet condi-
tions (that is, high precipitation in the preceding
year) protect surface fuel from excessive burning,
but that dry conditions may lead to increases in fire
size across all fire size classes. This corroborates
earlier work that demonstrated that soil moisture
tends to act as an ‘on/off switch,” with large burned
areas not possible if soil moisture is moderately
high (Bartsch and others 2009). Low precipitation
may dry out natural firebreaks such as typically wet
mossy bogs, streams, and shallow rivers, allowing
fire to spread farther in dry years (Sofronov and
Volokitina 2010). At the same time, low precipita-
tion also dries out forest floor fuels, increasing the
flammability surface fuels. Our results also cor-
roborate Forkel and others (2012), who showed
that high burned area is related to low soil moisture
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conditions in the previous year. This lagged effect is
likely due to two co-occurring mechanisms. First,
because the ground is frozen during snow melt,
meltwater does not infiltrate the soil profile, so fall
soil moisture conditions largely control spring soil
moisture conditions (Sofronov and others 2000).
Second, because water has a high specific heat, the
previous year soil moisture affects the rate of soil
thaw in the spring (Sofronov and others 2000),
with low moisture years thawing organic layer
fuels earlier than high moisture years.

Across the entire study region (uplands and
lowlands combined), fires that were initiated in the
spring tended to be larger, with fire size decreasing
over the course of the season. This is the opposite
pattern of observations of fire size in North Amer-
ican boreal forests, where later season fires are
larger because more of the active layer is thawed,
making more ground fuels available for combustion
(Turetsky and others 2011). However, our results
are consistent with field-based observations in Si-
berian larch forests, where early season ‘runaway’
fires fueled mostly by the litter layer (since the soil
organic layer is not thawed) are common (Sofronov
and Volokitina 2010; Kharuk and others 2021).

Most of the precipitation in Siberia occurs during
the summer, particularly in July and August
(Kostrova and others 2020; Han and Menzel 2022).
This mid- to late-season precipitation could reduce
fire size by expanding the presence of natural fire
breaks (for example, wet mossy bogs, streams), and
by moistening lichens and mosses (Mallen-Cooper
and others 2021) and the underlying soil organic
layer that make up the majority of the fuel load.
Larch forests have the largest relative burned
area (per-unit land area) of any forest type in Si-
beria (Kharuk and others 2021). Similarly, we
found that fires with a higher proportion of larch
pixels tended to be larger, likely due to species traits
and stand characteristics that promote fire spread.
The low canopy closure characteristic of larch for-
ests, for example, allows wind to freely penetrate
the canopy, advancing the fire front (Sofronov and
Volokitina 2010). Because larch trees drop their
needles each fall, the presence of larch trees creates
a low bulk density fuel bed of larch needles, which,
combined with the underlying moss layer, pro-
motes flammability. Additionally, larch presence
directly affects understory species composition,
with implications for both fuel loads and fuel
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moisture (Loranty and others 2018; Paulson and
others 2021). In particular, larch presence increases
moss abundance, a key fuel source when alive and
dead (Alexander and others 2020; Paulson and
others 2021). An increasing proportion of larch
pixels within a fire perimeter may also reflect
higher ground fuel connectivity, which may be
somewhat independent of our canopy-derived
metric of fuel connectivity.

Ultimately, fire size is influenced by the inter-
action of multiple factors, many of which do not
vary on human timescales (for example, topogra-
phy) or are stochastic processes (for example, wind
speed, lighting strikes). Projecting future fire re-
gimes requires identifying the climate signal within
the noise of these other factors. Of our studied
variables, precipitation in the preceding year was
the only climate variable that could explain inter-
annual variation in mean fire size across the study
region, with lower precipitation leading to larger
fires. While temperature is an important driver in
uplands, precipitation is more important in low-
lands. Because lowlands account for more fires and
have a larger mean fire size than uplands, inter-
annual variability in burned area across the entire
region is largely determined by lowlands.

Controls over the Number of Fires

Fires in northern Siberian larch forests are pri-
marily lightning ignited, while at the southern
extent of the forest where population density is
higher, anthropogenic ignitions are more common
(Kirillina and others 2020; Kharuk and others
2021; Xu and others 2022). The number of fires in
any year is thus a function of the number of
lightning strikes, anthropogenic activity, and the
susceptibility of fuel to ignition sources. We found
that interannual variability in the number of fires
was primarily driven by drought indices such as
vapor pressure deficit, which impacts both the
number of lightning strikes and fuel flammability
(Sedano and Randerson 2014; Scholten and others
2022). Specifically, hot and dry conditions (that is,
high vapor pressure deficit) are associated with
ignition and fire spread efficiency (Sedano and
Randerson 2014; Hessilt and others 2022). While
we did not account for human activity in our
models, fuel conditions are agnostic to the ignition
source, and the hot and dry conditions that amplify
fire spread in lightning-ignited fires would also
increase ignition and fire spread probabilities in
human-ignited fires.

Controls over Burned Area

Correlations between interannual variability in
region-wide burned area and environmental vari-
ables were strongest for vapor pressure deficit and
other integrated metrics of moisture and tempera-
ture, consistent with previous analyses of burned
area in Siberia (Balzter and others 2005; Pono-
marev and others 2016, 2018; Talucci and others
2022a). Annual burned area was strongly and
positively correlated with both the annual mean
fire size and the annual number of fires. However,
while the highest burned area occurred in years
with both a high number of fires and a large mean
fire size, mean fire size showed only a moderate
correlation with the number of fires. This may re-
flect the randomness of where lightning strikes
occur combined with the importance of ignition
location to eventual fire size (for example, high
lightning years may not result in large burned areas
if the majority of ignitions occur in uplands).
Additionally, interannual variability in the number
of fires and fire size were best predicted by different
environmental variables (current year fire vapor
pressure deficit and previous year precipitation,
respectively), making it less likely that optimal
conditions to support both large fires and a large
number of fires co-occur.

Future Burned Area

A growing body of evidence, including this study,
demonstrates that burned area in Siberian larch
forests is highly dependent on temperature, pre-
cipitation, and the combination of the two (Jupp
and others 2006; Bartsch and others 2009; Forkel
and others 2012; Ponomarev and others 2016,
2018; Tomshin and Solovyev 2021; Descals and
others 2022; Scholten and others 2022; Talucci and
others 2022a). While models project both warming
air temperatures and increasing precipitation across
Siberia, future precipitation projections are more
uncertain than temperature projections (Van Der
Wiel and Bintanja 2021). For example, some cli-
mate models project an increase in winter and fall
precipitation with little to no change in the sum-
mer (Cai and others 2024), but observations across
Siberia show that most of the increase in precipi-
tation over the past 70 years occurred during the
summer (Wang and others 2021). Accurately
understanding the timing of precipitation will be
important for projecting future fire size. Increased
snowfall, for example, might not directly impact
the fire regime if snowmelt runs off and does not
contribute to soil moisture conditions (Sofronov
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and others 2000). On the other hand, increasing
summer precipitation could impact the fire regime
because summer precipitation directly affects
ground fuel moisture conditions and therefore fire
behavior. Similarly, there is considerable uncer-
tainty in projections of future soil moisture condi-
tions, with some models projecting wetting from
increased precipitation and others projecting drying
from increased evapotranspiration, and all models
lacking key processes that determine soil moisture
conditions in permafrost systems (Andresen and
others 2020).

Given that warming temperatures lead to Arctic
wetting (Box and others 2019; McCrystall and
others 2021), our results suggest that climate
change may have opposite effects on the number of
fires and fire size. Specifically, the number of fires
increased with vapor pressure deficit and other
metrics of drought, which are expected to increase
with climate change (Yuan and others 2019), sug-
gesting that Siberian larch forests could experience
more fires in the coming century. On the other
hand, mean fire size was negatively related to
precipitation, and the expected increases in pre-
cipitation could result in a decrease in mean fire
size. However, interannual variability in precipita-
tion may increase, with some very dry years, even
as mean annual precipitation increases (Pender-
grass and others 2017). This precipitation variabil-
ity could lead to extreme fire sizes. Climate change
over future decades could therefore lead to more
fires, smaller fires on average, and more variable
fire sizes in Siberian larch forests. Ultimately, future
trends and interannual variability in total burned
area will be determined by multiple factors,
including the degree of warming, the magnitude
and seasonal timing of precipitation and tempera-
ture change, and interannual climate variability.
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