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ABSTRACT: The accurate calculation of equilibrium constants for Free Energy
protein—protein association is of fundamental importance to quantitative , N —
biology and remains an outstanding challenge for computational biophysics. |

Traditionally, equilibrium constants have been computed from one-

dimensional free energy surfaces derived from sampling along a single ; - M
collective variable. Importantly, recent advances in enhanced sampling : .

o Supporting Information

methodology have facilitated the characterization of multidimensional free
energy landscapes, often exposing multiple thermodynamically important
minima missed by more restrictive sampling methods. A key to the
effectiveness of this multidimensional sampling approach is the
identification of collective variables that effectively define the configura-
tional space of dissociated and associated states. Here we present the
application of two machine learning methods for the unbiased
determination of collective variables for enhanced sampling and analysis
of protein—protein association. Our results both validate prior work, based on intuition derived collective variables, and demonstrate
the effectiveness of the machine learning methods for the identification of collective variables for association reactions in complex
biomolecular systems.
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B INTRODUCTION namically relevant structures.'' Enhanced sampling methods
including umbrella sampling,'”"® metadynamics, *~'® and
adaptive biasing forces'” have been extensively used to explore
the free energy landscape defining TM protein dimerization
using both all-atom and coarse-grained models.'>'*'*72% In
addition, similar approaches have been used to understand
protein—lipid interactions in complex membrane bilayers.”® A
converged free energy surface can provide insight into the
nature of the dimer state ensemble and can be used to calculate
the association binding constant, which can be quantitatively
compared to experimental data. However, the effectiveness of
these enhanced sampling methods depends on the choice of
collective variables (CVs) that effectively differentiate not only
monomer and dimer but also competing dimer substates.

In the study of protein homodimerization, commonly used
CVs are the center-of-mass (COM) distance between the TM

Membrane proteins represent an important class of bio-
molecules that are essential to cellular organization and
function. Most membrane proteins contain one or more
transmembrane (TM) regions that span the membrane
bilayer."”” Membrane proteins also play crucial roles in cellular
signaling with G-protein coupled receptors representing
common therapeutic targets.3 Association of membrane
associated enzymes and their substrates through the inter-
action of the TM domains is known to play a key role in the
biogenesis of a diverse array of proteins including the amyloid-
B (AB) protein in Alzheimer’s disease.”> As a result, the
association of TM regions of the protein in membrane has
received significant attention in experiment, theory, and
simulations for over four decades. ' Nevertheless, there
remain fundamental outstanding questions related to the
nature of the associated state and the magnitude of related
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of even single-pass TM domains in membrane imposes a
significant challenge to the effective sampling of thermody-
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helices (D) and the distance root-mean-square displacement
from a reference dimer structure (D,,.4)." > However,
sampling over one-dimensional CVs can fail to sample all
thermodynamically important structures in the dimer state
ensemble. Sampling along D, and D,4 using umbrella
sampling can result in restrictive sampling that leads to
overestimation of the binding free energy.'> Two-dimensional
umbrella sampling along the xy-transverse components of the
center-of-mass distance between two TM helices has been
shown to more effectively sample relevant dimer substates."
However, this approach can be computationally expensive and
challenging to implement.

To address this shortcoming, we have recently proposed a
metadynamics protocol to study the homodimerization of TM
helices using three collective variables: the x-projection and y-
projection of the center-of-mass distance between the two TM
helices and the interhelical crossing angle.'® Through
comparison with the results of exhaustive unbiased sampling,
we demonstrated that the proposed 3D metadynamics
approach can effectively sample the free energy landscape
characterizing the monomer and dimer state ensembles,
leading to converged estimates of the dimerization free energy
and associated equilibrium constant.

The choice of collective variables to study rare events in a
complex biological system can be challenging. A large class of
CVs can be defined as functions of atomic coordinates
providing a coarse-grained representation of the slow modes
and essential coordinates defining the biological process under
study.”””* Recent application of machine learning methods to
the identification of CVs has significantly improved the
effectiveness of enhanced sampling methods.”>™>” Parrinello
and co-workers employed the deep linear discriminant analysis
(DeepLDA) approach to identify collective variables for
sampling a rugged free energy surface connecting multiple
metastable states using metadynamics.”® The DeepLDA
method uses a deep neural network to perform a nonlinear
transformation of the input descriptors, optimized by linear
discriminant analysis (LDA), to identify CVs.”” The DeepLDA
protocol offers an improvement to alternative LDA approaches
such as harmonic linear discriminant analysis (HLDA), which
relies on the identification of linearly separable input
descriptors.”” Tiwary and co-workers have developed the
state predictive information bottleneck (SPIB) method to
interpret high-dimensional molecular dynamics simulation data
in the study of rare events.”” The SPIB approach identifies
collective variables of the system through the analysis of the
input descriptors obtained from molecular dynamics trajecto-
ries using time delay as a hyperparameter. Collective variables
obtained using the SPIB method have been used to effectively
sample the left- to right-handed chirality transition of synthetic
peptides and to study the permeation of small molecules
through membrane bilayers.*”

In this study, we employed the DeepLDA and SPIB methods
to identify CVs for enhanced sampling simulations of TM
protein homodimerization. Collective variables were derived
from extensive unbiased simulations using the DeepLDA and
SPIB methods. Well-tempered metadynamics was then applied
using the learned collective variables identified through each
approach to study the dimerization equilibrium. We compared
the results obtained from the simulations using DeepLDA and
SPIB derived CVs to those obtained from our 3D
metadynamics protocol. Our results demonstrate that Deep-
LDA and SPIB methods are powerful tools for identifying
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collective variables for enhanced sampling simulation and
analysis of complex biomolecular systems.

B METHODS

Molecular Dynamics Simulation Model and Methods.
Two transmembrane proteins, glycophorin A (GpA) and
WALP23, were studied. The structure of GpA was taken from
the PDB ID 1AFO.* Residues 69—97 of GpA were placed in a
membrane bilayer containing 404 POPC lipids. WALP23 was
studied in a membrane bilayer consisting of 406 POPC lipids.
All lipid bilayers were solvated with 12 MARTINI v3 water
beads per lipid, and a 0.15 M NaCl concentration was used.
The temperature of the simulations was maintained at 310 K
using a velocity rescaling thermostat, and the pressure was
maintained at 1 bar using the semi-isotropic Parrinello—
Rahman barostat. The MARTINI v3 force field was used to
simulate the protein-embedded membrane bilayers using the
recommended sets of parameters.”*

Defining the Input Descriptors. To train the neural
network (NN) models, input descriptors were chosen based on
the TM homodimer conformations. In an a-helix, any pair of
residues R and R + 4 represent the same face of interaction.
For example, it is well-known that the GXXXG motif of GpA
plays an important role in governing dimer structures where
the two Gly residues appear on a common face of the helix,
facilitating helix—helix interactions."? Building on this insight,
we defined four points on the a-helix as the center of mass of
the backbone beads of residues Rand R+ 4, R+ 1and R+ 5, R
+2and R + 6, and R + 3 and R + 7. For GpA and WALP23,
the residue R was chosen to be 79 and 6, respectively. A total
of 16 interhelical distances were defined by these four points
on each helix, and the crossing angle between two helices was
used as input descriptors to represent each frame of the
trajectory. A pictorial representation of all 17 descriptors is
shown in Supplementary Figure 1.

Identifying Collective Variables Using the DeepLDA
Protocol. LDA is widely used as a dimensionality reduction
method for a classification problem, which seeks to find a
linear combination of the input descriptors that separates the
data into different classes. We take x;, x,, ..., xy = X to be a set
of N samples containing d descriptors values. The objective of
LDA is to find a linear projection of the descriptors A, where
XAT is maximally separable. The projection matrix A is chosen
to maximize the ratio

AS A"
AS A" (1)

where S, is the within class scatter matrix and S, is the between
class scatter matrix defined through the total scatter matrix S,.

1 oo
N-1

' )
where S, = S, + S,,. A generalized eigenvalue problem can be
solved to find the solution for eq 1 in the form

Spe; = US,.;

)

for i = 1, ..., d, the eigenvectors ¢; form the desired projection
matrix A.

We studied the thermodynamic properties of two classes,
namely, bound and unbound states of TM homodimers, using
the DeepLDA method. The input descriptors of the system
were fed into a neural network model with 6 parameters to
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obtain a nonlinear transformation represented by Aj(X). The
representation obtained from the topmost hidden layer
h = Ny(X) is then used to perform LDA (Figure la). The

Descriptors (X) Hidden layer

Input of LDA

h=5o(X) State A

J

State B

Linear discriminant
analysis
(LDA)

DeeplLDA CV

(a)

Decoder

(b)

Figure 1. Schematic representation of the construction of collective
variables using the (a) DeepLDA and (b) SPIB protocols. Seventeen
descriptors, represented by the red circles, were used to define a
homodimer configuration and to train the NN models.

loss function for the two-class classification problem is defined
as

Lipa = -1 4)
where the eigenvalue v, corresponds to the amount of
discriminative separation along the eigenvector e;. Another
term was added to the loss function to regulate the separation
between two classes (see the Supporting Information). The
resulting DeepLDA CV can be calculated as S = he{. The
DeepLDA code was adapted from the work of Bonati, Rizzi,
and Parrinello.”

Identifying Collective Variables Using the SPIB
Protocol. SPIB uses an information bottleneck approach
that seeks a concise representation z based on the input
descriptors X providing maximum information about the target
y (Figure 1b). A model can be trained from the initial state
labels by using the SPIB protocol, which is iteratively refined to
obtain the final state representation. In practice, a nonlinear
NN model is trained by feeding input descriptors to predict the
information bottleneck z, which can be used to identify the
collective variables for use in enhanced sampling simulations
and analysis. Then, another NN model is used as a decoder,
predicting the future state label y based on the value of z. The
goal of the information bottleneck approach is to predict the
maximum information about the target while retaining the
minimum information about the initial descriptors.

An unbiased trajectory can be represented by descriptors x;,
Xy «y Xypes and initial state labels yy, y,, ..., Yy where x and x;
are the values of descriptors at an arbitrary time ¢ and ¢ + At.
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For large trajectory data, a model can be trained using the
SPIB protocol by maximizing the objective function

1 - P(z"1x")
Lo = — lo 2" — B log ——>
spIB = Ty Z gq(y ) — P log P(z")

n=1

(5)

where the first term of the objective function reflects the
prediction capability of the desired output state and the second
term can be interpreted as a regularizer of the information
from x" to z". The trade-off between these two terms can be
controlled by the parameter . The terms gq(y"*lz"), P(zlx),
and P(z) are calculated through deep NN models. The SPIB
code employed in this study was adapted from the work of
Wang and Tiwary.”’

3D Metadynamics Enhanced Sampling Simulations.
Well-tempered metadynamics was employed to study the
homodimerization of TM helices using three collective
variables (3D metadynamics), defined as the x-projection
and y-projection of the center-of-mass distance between two
helices and the crossing angle between two helices. A detailed
description of the 3D metadynamics protocol was provided in
a previous study.'®

Well-tempered metadynamics® was also performed along
the collective variables developed using DeepLDA and SPIB
protocols. A Gaussian of height 0.1 kJ/mol was added along
the CVs after every 2000 steps using a multiple walker
approach. A biasfactor value of 10 was used. All simulations
were performed using GROMACS v2021,% patched with
PLUMED v2.9.” The NN models were developed using
PyTorch,”® and metadynamics along the CVs developed by the
NN models was performed using the PLUMED interface for
PyTorch. A flowchart illustrating the workflow used in this
study is shown in Supplementary Figure 2.

B RESULTS AND DISCUSSION

We studied the homodimerization of GpA (SEPEITLIIFG-
VMAGVIGTILLISYGIRR) and WALP23 (GWWLALALALA-
LALALALALWWA) using metadynamics using the collective
variables derived from the machine learning based protocols.
Dimerization kinetics of GpA and WALP23 have been
extensively characterized by using computational and exper-
imental studies. These systems have been frequently used to
assess new enhanced sampling approaches because of the
wealth of data that is available. The effectiveness of the
enhanced sampling methods is dependent on the choice of
collective variables. A proper choice of collective variables
should facilitate the sampling of both native and non-native
configurations of the homodimer, leading to a converged
estimation of the association free energy.

Generating the Training Data Sets. To use machine
learning based collective variables, it is important to train a NN
model by including both native and non-native dimer
structures in the training data sets. Unbiased simulations of
GpA and WALP23 in POPC were performed to build the
training data sets. A total of 25 and 20 independent trajectories
of length 5 us were performed for GpA and WALP23,
respectively. All simulations were started by placing the helices
at least 2.5 nm apart to study the spontaneous aggregation of
the homodimer. The population density obtained from the
unbiased simulations was projected onto the crossing angle
and D, space (Supplementary Figure 3). Many of the
trajectories were found to be stuck in a single energy
minimum, so the potential of mean force (PMF) associated
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Figure 3. SPIB derived converged state representations for the homodimerization of GpA and WALP23 projected onto the (a, d) crossing angle
and D,,,,, and (b, e) CV space. Potential of mean force along the 2D CV representing the association of (c) GpA and (f) WALP23. The minimum

value of the PMFs was set to zero to guide the comparison.

with the dimerization of the homodimers was not calculated.
However, we characterized the bound state structural
ensembles for both GpA and WALP23. The structural
ensemble obtained from the unbiased simulations was found
to be similar to that obtained from the 3D metadynamics
simulations.'® This finding suggests that the concatenated
trajectory acquired from the independent, unbiased simu-
lations contains information about those metastable states
essential to the description of the association equilibrium for
GpA and WALP23.

One of the major characteristics of the homodimer
structures is the crossing angle distribution between two
helices (Supplementary Figure 3). Previous studies have shown
that the thermodynamic origin of different crossing angle
distributions can be identified as a specific interaction hotspot
on the xy-projection of the COM—COM distances between
two helices. We chose four points that can be associated with
different interaction sites on the helix. Sixteen interhelical
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distances were defined by the four points on each helix, and
the interhelical crossing angle was chosen as descriptors for
each homodimer configuration (Methods).

Application of the DeepLDA Protocol. The DeepLDA
protocol has been successfully used to derive collective
variables to study rare events in biomolecules.””*" We used
the DeepLDA protocol to study the dimerization of proteins in
the membrane. Data obtained from the unbiased simulations
were used to train the NN models. Two classes, namely, bound
and unbound states, were defined to derive a one-dimensional
collective variable connecting the monomeric and dimeric
states of the protein. For GpA and WALP23, the bound state
structures were chosen if the D, value was less than 1.2 and 1
nm, respectively, and the unbound state structures were chosen
if the D, value was greater than 2.5 nm. The histogram of the
training data points projected onto the DeepLDA derived CV
is shown in Figure 2. Well-tempered metadynamics was
performed using the DeepLDA derived CV to study the

https://doi.org/10.1021/acs.jctc.4c00454
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Figure 4. Potential of mean force along the x-projection and y-projection of the COM—COM distances between two helices of GpA and WALP23
obtained from (a, d) the 3D metadynamics and simulations along the CVs derived from the (b, ) DeepLDA and (c, f) SPIB protocols. The COM
of one helix was centered on the xy-plane. COM”*-to-Gly” vector of GpA and COM''-to-Ala'' of WALP23 are represented by the black arrow.
COM of a helix was defined as the center of mass of X — 2 to X + 2 residues. Panels (a) and (d) were derived from the previous study.lé

dimerization free energy surfaces of GpA and WALP23. The
PMFs obtained from the metadynamics simulations are shown
in Figure 2. For GpA, three wells in the PMF were found along
the CV, and in the case of WALP23, two wells were observed.
The well near the bound state population of the protein was
observed due to the stable dimeric forms of the homodimers.
The well near the unbound state population of the
homodimers arises due to the excess area available to the
dimer (Supplementary Figure 4). For GpA, the well that is
observed at —0.2 along the CV cannot be separated from the
bound state well along the lateral COM—COM distance
(Deom) of the helices, but it is separable if we consider the z
movement of the helices (Supplementary Figure 4). Thus, the
origin of that well can be referred to as a metastable state of
GpA that arises due to the movement of the helices along the
membrane normal.

Application of the SPIB Protocol. The SPIB protocol
was used to derive a 2D collective variable describing the
dimerization of GpA and WALP23. Dimer configurations
obtained from the unbiased simulations were used to train
neural network (NN) models. The SPIB protocol uses a time
delay (At) as a hyperparameter to incorporate information
from states at time t in predicting the state at time t + At. We
utilized all independent unbiased trajectories separately to
extract state information after a time delay of At. Based on the
values of the crossing angle and D, of the homodimer
configurations, we defined 20 and 16 initial states for GpA and
WALP23, respectively (Supplementary Figure S). The encoder
and decoder models were then trained to obtain the converged
populations of the final states (Figure 3). The projection of the
initial data points onto the 2D collective variables derived from
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the SPIB protocol is shown in Figure 3. The final state
populations suggest that the SPIB protocol can retain complete
information about the stable dimeric states observed in the
unbiased simulations. Well-tempered metadynamics simula-
tions were performed using the two collective variables derived
from the SPIB protocol. The PMFs along the SPIB derived
CVs obtained for the homodimerization of GpA and WALP23
are shown in Figure 3. The convergence of PMFs along the
DeepLDA and SPIB derived CVs was assessed by projecting
the PMF onto D, (Supplementary Figure 6).

Extending CVs Using DeepLDA and SPIB. We further
characterized the importance of all descriptors in deriving
collective variables (CVs) using DeepLDA and SPIB protocols
(Supplementary Figures 7 and 8). The importance of a
descriptor was calculated by summing the weight of that
descriptor in the first hidden layer of the NN models. The
results indicate that the crossing angle distribution plays a
dominant role in defining a collective variable using the SPIB
protocol. This trend is predictable, as many final state
representations obtained from the SPIB protocol are separable
along the crossing angle space. In contrast, weights of the
distance descriptors were found to be similar. In the case of
CVs derived from the DeepLDA protocol, no specific trends in
the descriptor weights were observed.

Density along the x-projection and y-projection of the
COM-COM distances between two helices carries important
information about the interaction sites on the helix. All of the
dimers exhibit a unique hotspot on the xy-plane. We have
previously demonstrated that it is possible to refine a PMF
along the xy-plane, leading to different handedness properties
of the homodimer."
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Table 1. Dimerization Free Energy of GpA and WALP23 Homodimers Reported in Previous Studies

protein/sequence methods/force field collective variables free energy of dimerization (kcal/mol) medium
GpA
residues 73—95 CHARMM27 Deom 11.57 dodecane
residues 69—97 CHARMM36m geometrical route 10.7"% POPC bilayer
residues 69—97 CHARMM36 (rescaled) D,na 3.0-3.8" POPC bilayer
full TM domain MARTINI v2 Deom 9.1 DPPC bilayer
residues 69—97 MARTINI v2 Dimsd 8.4%° POPC bilayer
residues 69—97 MARTINI v2 Dy 9.3" POPC bilayer
residues 69—97 MARTINI v2 2D US 7.5" POPC bilayer
residues 69—97 MARTINI v3 Dy 5.9% POPC bilayer
TM domain MARTINI v3 Deom 3.1°" DLPC bilayer
residues 69—97 MARTINI v3 3D metadynamics 7.0'¢ POPC bilayer
experimental 34-12.147%
WALP23
MARTINI v2 Deom 4.8% DOPC bilayer
MARTINI 2.9% di-C18:2PC
MARTINI v3 Deom 2.9% POPC bilayer
MARTINI v3 Deom 2.6% DOPC bilayer
MARTINI v3 3D metadynamics 32" POPC bilayer
MARTINI v3 3D metadynamics 2.6 DOPC bilayer
(AALALAA), experimental 3.0%° di-C18:1PC

We calculated a PMF as a function of the xy-projection of
the COM—COM distances obtained from the simulations
along CVs derived from the DeepLDA and SPIB protocols
(Figure 4). One of the helices was centered on the xy-plane,
and the COM*-to-Res™ vector of the same helix was aligned
with the positive x-axis. The population density of the other
helix with respect to that of the centered helix is represented as
a PMF on the xy-plane. Results obtained from the simulations
along DeepLDA and SPIB derived CVs were found to be
similar to those of the 3D metadynamics simulation. GpA
showed multiple minima on the xy-plane, representing the
presence of multiple interaction sites. Meanwhile, a predom-
inant minimum was observed for WALP23, demonstrating a
specific interaction pattern of the helix.

Comparison of Computed Association Free Energies
with Experiment. Several experimental and computational
studies have evaluated the dimerization free energies of GpA
and WALP23. The experimental results for the free energy of
dimerization of GpA vary from 3.4 to 12.1 kcal/mol.*'~*
Chipot and co-workers reported the free energy of
dimerization of GpA to be 11.5 kcal/mol in dodecane using
the all-atom CHARMM?27 force field*” and 10.7 kcal/mol in a
POPC bilayer using the CHARMM36m force field."® Best and
co-workers reparameterized the protein—lipid interaction of
the CHARMM36 force field and reported the dimerization
free energy of GpA to be 3.0—3.8 kcal/mol in a POPC
bilayer.'” The MARTINI coarse-grained force field has also
been extensively used to study protein homodimerization in
membrane bilayers. Using the MARTINI force field, Marrink
and co-workers evaluated the dimerization free energy of GpA
to be 9.1 kcal/mol in a DPPC bilayer.”” Sansom and co-
workers” and Straub and co-workers'® used the D,
collective variable to study GpA and reported dimerization
free energies of 8.4 and 9.3 kcal/mol, respectively. However, a
two-dimensional umbrella sampling simulation predicted the
association free energy of the GpA homodimer to be 7.5 kcal/
mol. Castillo et al. studied the WALP23 homodimer in DOPC
and reported a dissociation free energy of 4.8 kcal/mol.**
Marrink and co-workers studied the equilibrium association
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constant of WALP23 and found the associated dimerization
free energy to be 2.9 kcal/mol.*’ An experimental study of
(AALALAA); using FRET spectroscopy resported the dimeri-
zation free energy to be 3 kcal/mol % In the recent
development of the MARTINI force field, Souza et al. reported
the dimerization free energy of GpA in POPC and that of
WALP23 in POPC to be 5.9 and 2.9 kcal/mol, respectively.’*
Using the 3D metadynamics protocol, we reported the free
energy of dimerization of GpA and WALP23 in POPC to be
7.0 and 3.2 kcal/mol, respectively.'® The dimerization free
energies of GpA and WALP23 homodimers obtained from
previous studies are presented in Table 1.

We calculated the association free energies of GpA and
WALP23 from the simulations along DeepLDA and SPIB
derived CVs. The probability densities of homodimer
conformations were projected onto the lateral COM—COM
distance of the helices (D) and are shown in Figure 5. An
entropic factor kzT In(r) was added to the PMF to account for
the excess area available to the dimer at larger D, values. The
binding constant was then calculated by integrating the PMF

 4Psa-s4
using
1 2 [T _
Kp=—Xx— f r e AWO/KT g,
2 Ay Yo

AG = —kgT In(Kp) (6)
The cutoft distance r. was chosen to be 2.3 nm to separate the
dimeric and monomeric states of the homodimer. The PMFs
were found to plateau after r, and were set to zero. A reference
area A, was chosen to be 1 nm”. The dimerization free energies
of the GpA and WALP23 homodimers obtained from this
study are presented in Table 2. The free energy of dimerization
obtained from the simulations along DeepLDA and SPIB
derived CVs was found to be comparable to that obtained from
the 3D metadynamics simulations.

Comparison of Computed Dimer Structures with
Experiment. Structures of transmembrane protein homo-
dimers have been extensively characterized by using exper-
imental and computational studies. GpA structures derived
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Figure 5. Potential of mean force (PMF) for the association of GpA
and WALP23 as a function of the lateral center-of-mass distances
between two helices (D.,y,), obtained from the 3D metadynamics and
simulations along the CVs derived from the DeepLDA and SPIB
protocols. The PMFs were set to plateau at zero to guide the
comparison. Error bars associated with each PMF were calculated
using block average analysis.

from NMR in detergent micelle,®® solid state NMR,*® and
crystallographic analysis in lipid cubic phase bilayers™® provide
consistent information. The GpA homodimer was found to be
stabilized by interhelical interactions between residues of the
glycine zipper (GXXXG) motifs, forming a right-handed
helical structure with a crossing angle of —22°. Mutations of
the GXXXG motif*”** and T87"”° were found to disrupt the
dimerization propensity of GpA. Sengupta et al. studied triple
mutations of the GXXXG motif and T87F mutant of GpA
using the MARTINI v2 force field.”> Although the mutants
were found to dimerize, their dimerization tendency was
reduced compared to that of the wild-type sequence. Previous
studies using one-dimensional collective variables showed that
the GpA homodimer is stabilized by interactions conveyed
through the G,oXXXGg;XXXTy, motif, forming a right-handed
helix with a crossing angle of —26°."% However, in many cases,
the simulations were found to be trapped in one energy
minimum, restricting the sampling of important thermody-
namically relevant conformations. A study using a two-
dimensional collective variable showed the importance of
non-native dimer structures as well as native interaction
through the GXXXG motif in the calculation of the association
constant of the GpA homodimer.'” A complete estimation of
the stable structural ensemble can be compared with the
experimental results to calibrate the computational models.
In this context, it is important to derive an enhanced
sampling technique that exhaustively samples all possible dimer
configurations. Sahoo et al. studied the GpA homodimer using

the MARTINI v3 force field and reported three conforma-
tional clusters characterized by different handedness proper-
ties.”' We have studied GpA and WALP23 homodimerization
using the MARTINI v3 force field, employing our 3D
metadynamics protocol.'® Five different stable homodimer
configurations of GpA were identified through comparison to
unbiased simulations. GXXXG motif interactions were found
to play an important role in the formation of a right-handed
helical dimer. WALP23 forms a right-handed helical dimer
stabilized by the AJXXXA,; motif, whereas the left-handed
helix formation was found to be facilitated by the A, XXXA |,
motif.

To characterize the structural ensembles of GpA and
WALP23 obtained from the simulations along DeepLDA and
SPIB derived CVs, we projected the PMF onto the crossing
angle and D, (Figure 6). A similar crossing angle distribution
of WALP23 was observed from the 3D metadynamics and
simulations along DeepLDA and SPIB derived CVs. A stable
right-handed structure (cluster R) of WALP23 with an average
crossing angle of —22° was found, and a shallow minimum at a
crossing angle of 22° predicts a stable left-handed dimer
conformation (cluster L). The probability distribution of GpA
along the crossing angle predicts three major conformational
ensembles (clusters L1, L2, and R). A similar qualitative
pattern was observed using all three protocols. However, the
global minimum of PMF was observed to be located at
different positions. The need to sample multiple states across
the crossing angle distribution demonstrates the importance of
the proper choice of collective variables to facilitate enhanced
sampling.

B CONCLUSIONS

The calculation of association constants for transmembrane
protein helices is of fundamental importance in biophysics and
our understanding of biomolecular organization and cellular
signaling. Converged estimations of the dimerization free
energy can be compared to experimental results to calibrate
computational models. Previous studies showed that the
effectiveness of an enhanced sampling method in capturing
relevant dimer conformations and determining the equilibrium
association constant depends on the choice of the collective
variables. Sampling along one-dimensional collective variables
D.m and D,,4 was found to lead to frustrated sampling,
leading to an overestimation of the dimerization free energy.
Recently, we proposed a metadynamics protocol to investigate
the homodimerization of transmembrane proteins using three
collective variables: the x- and y-projections of the relative
center-of-mass distances between two helices and the
interhelical crossing angle. Comparisons between 3D metady-
namics simulations and extensive unbiased simulations
demonstrate that the 3D metadynamics approach comprehen-
sively samples thermodynamically relevant dimer conforma-
tions and provides a converged estimation of the dimerization
free energy.

Table 2. Minimum of PMFs along D,,,,, (AW,,;,) and Dimerization Free Energy (AG) of GpA and WALP23 Homodimers
Obtained from the 3D Metadynamics and the Simulations along the DeepLDA and SPIB Derived CVs

3D metadynamics DeepLDA SPIB
protein AW, (kcal/mol) AG (kcal/mol) AW, (keal/mol) AG (kcal/mol) AW, (kcal/mol) AG (kcal/mol)
GpA =73 + 0.1 =7.0 £ 0.1 =73+ 02 —=7.0 £ 0.2 =72 + 0.1 =7.0 £ 0.1
WALP23 —3.6 + 0.2 —-32 +02 -3.6 + 0.1 =32+ 0.1 =33+ 0.1 —-3.0 £ 0.1
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Figure 6. Potential of mean force (PMF) for the association of GpA and WALP23 as a function of crossing angle and D, obtained from (a, d) the
3D metadynamics and simulations along the (b, ) DeepLDA and (c, f) SPIB derived CVs. The minimum value of the PMFs was set to zero to
guide the comparison. Clusters were labeled as L or R based on the handedness properties of the helix.

In this work, we derived collective variables using two
machine learning based protocols, DeepLDA and SPIB, to
investigate the association/dissociation equilibrium of GpA
and WALP23 homodimers. To ensure optimal performance of
the neural network based collective variables in studying
transmembrane protein dimerization, it is essential that the
training data set contains information on both native and non-
native dimer structures. To derive these collective variables, a
deep neural network model was trained by using data obtained
from extensive unbiased simulations. Following the identi-
fication of the essential collective variables, metadynamics
simulations can be initiated from any equilibrium configuration
of the transmembrane homodimer embedded in a membrane
bilayer.

We compared the results obtained from simulations
characterizing the dimerization of TM proteins using different
collective variables. The dimerization free energies obtained
from simulations using CVs derived from DeepLDA and SPIB
protocols were found to be similar to those obtained through
the 3D metadynamics simulations. Projecting the probability
density for the dimer conformational ensembles of GpA and
WALP23 onto the xy-plane and onto the crossing angle and
Doy similar hotspots on the xy-plane and along the crossing
angle were observed using all three approaches. Simulations
using CVs derived from DeepLDA and SPIB, as well as 3D
metadynamics simulations, sample similar homodimer con-
formational ensembles. Our results demonstrate the broad
applicability of the 3D metadynamics approach in studying
transmembrane protein homodimerization and suggest that the
DeepLDA and SPIB protocols can be employed to effectively
derive CVs that inform and enhance the simulation and
analysis of protein—protein association in complex biomolec-
ular systems.

B ASSOCIATED CONTENT

Data Availability Statement

Initial structures of membrane bilayers containing the GpA and
WALP23 homodimers and the scripts used to perform well-
tempered metadynamics along the collective variables derived
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