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Abstract—In this paper we present Sniffer Faster R-CNN
(SFR-CNN), a novel camera-LiDAR sensor fusion framework
for fast and accurate object detection in autonomous driving
scenarios. The proposed detection framework architecture uses
both LiDAR point clouds and Camera RGB images to generate
region proposals. Current implementation of the regional pro-
posal network (RPN) requires the generation of a large number
of region proposals, majority of which are unproductive. As
such, we devise a novel proposal refinement algorithm, to jointly
optimize and filter a number of proposals in RPN through
the combined application of both sets of LiDAR and image-
based proposals thereby accelerating the LiDAR-Camera fusion
algorithm without sacrificing detection precision and accuracy.
Our experiments show that number of proposals is a comple-
mentary factor in determining the computational overhead in
a detection network. Our proposed architecture is shown to
produce state of art results on the KITTI joint object detection
benchmark with the comparison being based on the execution
time. While maintaining efficient detection accuracy we decrease
the computational overhead by more than 20 % on the KITTI
dataset.

Index Terms—faster r-cnn, mmdetection, execution-time, re-
gion proposal network, regression, classification, axis-aligned
bounding boxes, connected component labeling, proposal refine-
ment algorithm.

I. INTRODUCTION

Object detection is a fundamental task in autonomous

driving technology or in computer vision domain in general

that deals with generating bounding boxes for specified object

categories along with assigning class such as car, pedestrian,

aeroplane, chair, etc to those categories in digital images

or videos. Apart from autonomous driving, it has many

practical application in video/image indexing [1], surveillance

[2], object tracking, face detection and recognition, medical

imaging, sports and so on. In autonomous driving object

detection can be used for localization, obstacle avoidance,

vehicle control, mapping, perception and planning[3]. Current

object detection approaches are mainly divided into two

types, i.e. single-stage approaches and two-stage appraches.

As illustrated in Fig. 1, one stage detectors such as RetinaNet

[4], FCOS [5], YOLO [6], SSD [7] etc. treat object detection

as a simple regression problem by taking an input image and

learning object classification and bounding-box regression

Fig. 1: Overview of One Stage and Two Stage Object Detec-

tion.

[8]. Since they are independent of additional CNN’s, they

are much faster then two-stage object detectors but generally

reach lower accuracy rates. On the other hand, two stage

detectors such as Mask R-CNN(Region-based Convolutional

Neural Networks) [9] and Faster R-CNN [10] use a Region

Proposal Network in the first stage to generate region of

interest or simply proposals followed by sending the region

proposals down the pipeline for learning the class probabilities

and bounding box regression. These models typically reach

the highest accuracy, but are slower due to overhead caused

by the complex architecture of the multiple neural networks.

In this context, finding a model that provides the optimal

trade-off between accuracy and speed is not an easy task.

Although there are quite a few approaches that have

been successfully implemented for accelerating the detection

process in two-stage detectors there are very few methods that

have addressed this problem from the perspective of region

proposal network(RPN). Current implementation of Region

Proposal Network requires generation of massive number

of region proposals, majority of which are unproductive.

Based on this principle, we hypothesize that pruning the

proposal numbers in RPN, will provide an optimal trade-off

between accuracy and speed. In order to improve execution
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Fig. 2: Overview of Two Stage Object Detection with Camera

and LiDAR.

time, we optimize the Faster R-CNN model, by replacing

the proposals in regional proposal network with our own

proposals named as sniffer proposals. We generate sniffer

proposals through the joint application of LiDAR point cloud

and camera data. We optimize the original Faster R-CNN

method especially the region proposal network of the model

and build our own architecture based on our hypothesis.The

proposed architecture delivers the following contributions:

• a Proposal Generation approach for transforming 3D

proposals obtained from LiDAR Point Cloud to 2D proposals.

• a novel Proposal Refinement Algorithm for refining and

pruning proposals in the RPN network, through the combined

application of both sets of LiDAR and image-based proposals.

• evaluation on the KITTI dataset shows we outperform state-

of-the-art image-based methods and LiDAR-based method

in terms of execution time and even manage to get higher

accuracy at some instances of IoU.

II. RELATED WORKS

In the present context, there are plenty of methods that

have been implemented for the object detection task in

autonomous vehicles. If we consider both accuracy and

inference time, then it is an arduous task to pick only one

model as the best one. Some models such as [4][5][6][7]

are much faster, but provide less accurate results, while

others [8][9] are more accurate, but are very fast in terms

of execution speed. Therefore, finding the optimal trade off

between accuracy and inference speed is a very complicated

task in object detection domain. Specially, in two-stage

methods that has established convolutions neural network

as the state-of-the-art for detection in images [11]. In the

paper [12] by Huang et al., the author studied the trade-off

between accuracy and execution time for object detection

model with modern convolutional neural network concept

and argued that by changing various parameters such as

varying meta-architecture, feature extractor, image resolution

and deployment on mobile devices, the trade off can be

minimized. Different from their approach, we treat Region

Proposal Network as one of the principle factor for decreasing

the execution time. Instead of manually changing the number

of proposal without any underlying basis as proposed in

[12], we showcase that through joint application of LiDAR

proposals and camera image 2D proposals, we can prune the

number of proposals, without removing the important ones,

that will eventually impact the speed and precision.

On the other hand, [13] proposes anchor pruning methods

for object detection to reduce the computational cost of the

convolutional neural network. They also tend to focus on op-

timizing the backbone network for improving execution time.

Similarly, in [14][15], the authors discuss about pruning the

deep convolutional neural network to minimize the trade-off

between speed and accuracy. Furthermore, [16][17] discusses

about configuration of hardware component for speeding up

the execution time. While these approaches have advantages

on their own ways, we view the trade-off problem from a

different perspective. We argue that there are far too many

region proposals being generated in the region proposal layer

that eventually lead to a overload in computation. We propose,

by carefully removing the unproductive proposals, we can

decrease the computation overhead.

Fig. 3: Illustration on projecting LiDAR point clouds on a

camera image.

III. PROPOSED FRAMEWORK ARCHITECTURE

In this section, we develop an efficient structure-aware

two-stage joint detection network for object detection and

classification in autonomous vehicles.The proposed method,

depicted in Figure 4, uses a subset of proposals from both

LiDAR point cloud (3D proposals) and original Faster R-

CNN (2D proposals). Section A introduces the mechanism

we used for obtaining 2D proposals from LiDAR point cloud.

Section B introduces our novel proposal refinement algorithm

for filtering proposals. Similarly in Section C we will introduce

our network architecture including the backbone network,

feature pyramid network, RoI head and Soft Non-maximum

Suppression algorithm we used for improving the detection

accuracy. We aim to reduce the total number of proposals

used in RPN network of Faster R-CNN or any two-stage

methods and eventually decrease the execution time through

the application of our architecture.

A. Multi-Sensor Fusion

In the proposed two-stage multi-sensor detector we take

two frames, one from a LiDAR point clouds and another

from an RGB image as input. These two sensors go through

an alignment process for fusion in order to compensate for

each other. The basic camera-lidar cordinate transformation

and calibration have been provided by the KITTI dataset [26]

2
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Fig. 4: The overall architecture of our proposed joint 2D and 3D object detection framework with proposal refinement.

and we use these existing tools for projecting image captured

from cameras onto the LiDAR data as shown in Fig. 3.

B. LiDAR Proposal Generation

To showcase possible objects in the sensing data, connected

components are extracted from the point clouds as shown

in Fig. 5. We obtain 3D proposals with the application of

the Axis-Aligned Bounding Boxes (AABB) method from the

LiDAR data [19]. As shown in the Fig. 5 we project 3D

proposals onto a front-view camera image. We then select

front, middle and rear cross sections on 3D proposals. These

vertexes are transformed to image coordinates to draw 2D

boxes (coloured in 3 levels of black color as shown in Fig. 5).

In a connected component environment where there are

multiple points cloud segmented together we obtain connected

components from LiDAR data. In point clouds data there are

multiple points that are segmented into smaller parts which

are separated by a minimum distance. Each part is a set

of connected points. We have derived this approached from

the classic image processing algorithm, called Connected

Component Labeling (CCL) [20]. Given a set of point

cloud this algorithm is used to detect connected regions.

Once the first point of a connected component is identified,

it is easy to find and gather all the other points in that

particular connected component and this is the primary

reason why this method is effective as well as efficient.

The next step is to generate 3D proposals and for that we

use a 3D grid to extract these connected components. We

collect this grid from the octree structure which divides a

given 3D space into at most eight part in order to store

points. We can control how small the minimum gap can be

between the adjacent connected component by selecting a

different octree level. Finally, to speed up the generation of

3D proposals, components with points less than a specific

number are ignored. Next we perform segmentation of

LiDAR point cloud into disconnected components, where

each box indicates a candidate object in the given sensing data.

Once the 3D segmentation is completed, we use our align-

ment approach discussed in Section A, B, and C to produce 2D

bounding boxes from LiDAR point clouds, these are termed

as LiDAR Proposals denoted by L.

Fig. 5: Relations between 3D and 2D proposals illustrated in

the LiDAR Proposal Generation module.

C. Proposal Refinement Algorithm

In this section we showcase our novel proposal refinement

algorithm. The proposal refinement algorithm as shown in

Algorithm 1 inputs two types of proposals. First, set if 2D Li-

DAR proposals obtained from the Section D ”LiDAR Proposal

generation”. There are less than 100 LiDAR proposals per

images. Second, original 2D proposals obtained via Regional

Proposal Network of Faster R-CNN model( 1000 proposals per

image) as R. Clearly the number of proposal in original RPN is

substantial. On the other hand, 2D LiDAR proposals generated

from the proposal generation part are inadequate as seen in

Fig. 7 where white color proposal are the missing proposal that

eventually leads to those objects being undetected if only the

2D LiDAR proposals are used in the detection network. Hence

our novel proposal refinement algorithm prudently chooses

only the best proposals from both sets of proposals. For a given

image, we compare each proposal from LiDAR proposal(L)

with each proposal from original proposal(R) i.e for each

bbox( proposal) with coordinates (r1, r2, r3, r4) in R, we

compare each bbox (proposal) with coordinates (l1, l2, l3, l4)in

L for a given image. And if the difference between the all the

adjacent bbox coordinate meets the given threshold then we

keep both the proposals. However if it fails to meets the given

3

Authorized licensed use limited to: University of North Texas. Downloaded on September 28,2024 at 14:02:28 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: Main Algorithm of Proposal Refinement

Input: set of RGB proposal ri ∈ R, 0 < i ≤ 1000.

set of LiDAR proposal �j ∈ L, 0 < j ≤ 100.

Output: Final sniffer proposals S∗.

1 r1, ..., r4 are vertex coordinates in r, RGB proposal.

2 �1, ..., �4 are vertex coordinates in �, LiDAR proposal.

3 for each i and j do
4 if | ri1 − �j1 | and | ri2 − �j2 | and | ri3 − �j3 |and | ri4

− �j4 |< λ then
5 Keep r and � as sk;

6 else
7 Filter out r and � ;

8 end
9 end

10 get sniffer proposals S = {s1, s2, ..., sk}, k < 600.

11 remove repeated proposals from S.

12 return sniffer proposals S∗ = {s1, s2, ..., sn}, n ≤ k.

threshold value λ we filter out or simply remove the proposal

set from both sniffer and original proposal. We evaluate this

algorithm for two different cases. In first case we keep the

threshold to a less then or equal to value to address the problem

related with the small LiDAR proposals. For instance, for a

very small LiDAR proposals which is unable to contain any

object within itself will meet the threshold with the larger

original proposals which will be kept in the final proposal set

thus producing good detection result. Similarly, In second case

we keep the threshold to a greater then or equal to value to

address the problem related with the large LiDAR proposals.

For instance, for a very large LiDAR proposals which is able

to contain object but will be eventually disregarded due to

IoU threshold will meet the threshold with the smaller original

proposals which will be kept in the final proposal set thus again

contributing to good detection result. Both the cases can be

achieved through the application of absolute subtraction of the

bounding boxes. From both cases, we obtain certain number of

proposals for a given image but there are multiple repetition

due to the fact that same proposal meets the threshold for

multiple other proposals and as result of this, it will be output

multiple times. We remove the repeated proposals by manually

checking the repeated appearance of each proposals to finally

obtain final sniffer proposals as illustrated in Algorithm 1.

We conduct this experiment for different threshold value to

eventually obtain the best threshold for our algorithm. The

number of final sniffer proposals (∼600) as shown in algorithm

is based on the best threshold value which we have discussed

in Section E.

D. Simplified Network Architecture

We emulate the Faster R-CNN model as our base model and

make necessary changes in both test configuration especially

regional proposal network(RPN), and regional convolutional

neural network (RCNN).In Fig. 6 we illustrate the simplified

architecture of our entire framework.

Fig. 6: Network architecture of our proposed solution.

Backbone Convolutional Neural Network or simply CNN

are normally composed of multiple convolutional network

layers and pooling layers. While convolutional layers are used

to extract an over-complete representation of the input feature,

pooling layers on the other hand are used to downsample

the feature map size to minimize the execution and assist in

creating more robust representation. Backbone is the part that

transforms an image to feature maps, such as a ResNet-50

without the last fully connected layer [20] . We are using

ResNet-50 as our backbone network as it is proven to have

achieved the best performance in classes car and pedestrian

[22].Our backbone network contains four convolutional blocks

with depth 50.Each convolution is followed by a batch nor-

malization. As a result, the backbone network produces multi-

stage feature maps at different spatial resolutions[23].

Feature Pyramid Network Neck is the part that connects

the backbone and heads. It performs some refinements or

reconfiguration on the raw feature maps produced by the

backbone. We adopt Feature Pyramid Network ”FPN” with

256 output channels in our base model as it can be trained

end-to-end with all scales and is used consistently a train/test

time. FPN are able to achieve higher accuracy than all the

existing state-of-art methods for feature refinement [23].

Proposal Layer The goal of the Proposal Layer is to prune

the list of proposals produced by the LiDAR and refine

them with original 2D proposals again with the application

of proposal refinement algorithm and produce class more

accurate bounding boxes to be used to test the classification

layer to produce good classification and regression results.

Leveraging proposals generated from proposal layer, ROI

on corresponding images can be effectively identified, hence

accelerating the detection process with a low computational

cost.

Region of Interest RoIExtractor is the part that extracts

RoIwise features from a single or multiple feature maps with

RoIPooling-like operators. Similarly, RoIHead is the part that

takes RoI features as input and make RoI-wise task specific

predictions, such as bounding box classification/regression,

mask prediction[20]. We adopt SingleRoIExtractor for this

purpose.

Soft Non-Maximum Suppression One indispensable compo-

nent of object detection is non-maximum suppression (NMS),

a post-processing algorithm responsible for merging all detec-

tions that belong to the same object [23]. In NMS detection,

box with the maximum score is selected and all the other

detection boxes with a significant overlap are suppressed for

a given threshold value. However, there is one problem with

this approach. As per the design of the algorithm, if an object

4
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lies within the predefined overlap threshold, it leads to a miss.

The simple yet efficient way to deal with this case is to use

Soft-NMS which instead of completely removing proposals

with low score, assigns a reduced confidence score to these

proposals so that they are still under consideration for the

presence of other object belonging to a different class. Soft-

NMS obtains consistent improvements for the coco-style mAP

metric on standard datasets like PASCAL VOC 2007 (1.7 %

for both RFCN and Faster-RCNN) and MS-COCO (1.3 % for

R-FCN and 1.1 % for Faster-RCNN) by just changing the

NMS algorithm without any additional hyper-parameters[25].

IV. EXPERIMENTS AND RESULTS

To prove experimentally the viability of our proposed frame-

work we evaluate the performance of our model on KITTI

dataset [26]. In this section we will mainly discuss about our

experimental setting, implementation details and then analyze

the effect and performance of our framework in the real world

environment and compare it with the existing state-of-the-art

methods.

A. Dataset

KITTI Dataset [26] is one of the most popular dataset of

2D as well as 3D detection for autonomous driving. In KITTI

dataset there are usually 7, 481 training samples and 7, 518 test

samples.For experiment studies we split the official training

set into three different sets;a training set of 4600 samples,

a validation set of 1481 samples and a mini-test set of 200

samples. The KITTI benchmark requires detections of cars,

pedestrians and cyclist. However, for the ease of experiments

and easy accessibility of groundtruth for cars and pedestrians,

we trained our model based on these two classes only.

B. Training and Inference Details.

We use MMDetection toolbox for training, validation and

testing purposes.This is an object detection toolbox that con-

tains a rich set of object detection and instance segmentation

methods as well as related components and modules [21].Our

joint 2d and 3d framework is trained emulating the Faster

R-CNN method in an end-to-end manner with the SGD

optimizer. For the KITTI dataset, we train the entire network

with the batch size 24, learning rate 0.0025 for 4 epochs

on Intel Core i9 10th Gen Processor, which takes around 7

hrs.Similarly, under the same environment we test 200 samples

of images in different scenarios.

C. Evaluation Metric.

We adopt standard evaluation metrics for PASCAL VOC

dataset evaluating the results using two widely used metrics

namely mean average precision(mAP) and recall. The mAP

value is calculated with a rotated IoU threshold 0.5 for cars

and pedestrian. The mean average precision on the test set is

calculated with 40 recall positions on the official KITTI test

server. Similarly, in addition to the evaluation metrics we also

assess the execution of our Proposal Refinement Algorithm

and visualize the impact of the algorithm by providing the

graphical representation of number of proposal kept and

removed from both original and LiDAR sets of proposals. We

will thoroughly discuss about this evaluation in Section E ”

Result of Proposal Refinement”.

D. Comparison with state-of-the-art methods.

We report the performance on our KITTI test set and

compare it with other state-of-art methods. Table 1 shows

the performance of our framework on the KITTI test set

that we extracted from the original test set. As expected the

performance is very good in original Faster R-CNN method.

The region proposal network of the original Faster R-CNN

method consists of 2D proposals only. On the other hand,

for Faster R-CNN (LiDAR Only) method we use proposals

only from the LiDAR. The inference result based on LiDAR

only method clearly shows that the 3D proposals are not

sufficient for accurate object detection results. Although the

latency is low in comparison to the original Faster R-CNN,

the mAP at different instances of IoU is significantly lower.

This is due to the very small number of proposals used in

LiDAR only detection method. Like mentioned earlier in the

section ”LiDAR Proposal Generation”, we used Axis-aligned

Bounding Boxes followed by Connected Component Labeling

method to convert 3D LiDAR proposals to 2D LiDAR pro-

posals. In comparison to the original proposals, the number of

proposals generated through this method is significantly lower

as a result of which they fail to encapsulate the entirety of the

image. In Fig. 8, the gray bounding boxes are the projection

of LiDAR proposals and the white boxes are the ground-

truth bounding boxes. We can clearly see that the there are

no LiDAR proposals for some of the object in each of the test

images. Hence, we can conclude that only LiDAR proposals

are not enough for accurate object detection as they have

missed out on several ground truth objects. On the other hand

2D proposals from the original method yields a fairly accurate

results with around 1000 proposals per image, majority of

which are ineffectual. Our Sniffer Faster R-CNN framework,

utilizes only the most useful sets of proposals from both

sets of proposals and even manages to outperform Original

Faster-RCNN in some instances of IoU. It also outperforms

Faster R-CNN (LiDAR only) method by a significant margin

as shown in Table 1. Similarly, as indicated by our results

in Table 1, Sniffer Faster R-CNN represents a significant

improvement in terms of inference runtime. The latency for

Sniffer Faster-RCNN is 0.1737 which is 20 % improvement

over the original Faster-RCNN, which has latency of 0.2149

seconds per frame.The inference time is based on our KITTI

input test samples consisting of 200 images.Similarly, we also

evaluate the performance of our model for other two-stage

methods and we can clearly see that the approach can be

extended to any two-stage methods such as Cascade R-CNN

as seen in the Table I.

E. Result of Proposal Refinement

In this section we showcase the impact of our novel Proposal

Refinement algorithm for filtering proposals. The original

5
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Method
Car Pedestrian

Latency(s/f) GFLOPs
@0.4 @0.5 @0.6 @0.7 @0.4 @0.5 @0.6 @0.7

Faster R-CNN 0.92 0.91 0.892 0.87 0.815 0.795 0.689 0.571 0.2149 206.76
Cascade R-CNN 0.928 0.92 0.903 0.864 0.788 0.761 0.724 0.517 0.3147 234.47
Sniffer Cascade R-CNN 0.92 0.914 0.898 0.859 0.764 0.747 0.715 0.514 0.1989 234.27
Sniffer Faster R-CNN 0.912 0.903 0.894 0.837 0.817 0.798 0.708 0.55 0.1737 206.67

TABLE I: A comparision of the performance of Sniffer Faster R-CNN with the state of the art object detectors evaluated on

the KITTI test set. The results are evaluated by the mean Average Precision with 40 recall positions.

(a) (b)

Fig. 7: Projection of 2D LiDAR proposals on KITTI test set ( white bounding boxes are missing candidate boxes/proposals in

the image whereas black bounding boxes are the LiDAR proposals.

Faster R-CNN accommodated large number of proposal, ma-

jority of which are ineffectual. On the other hand, Faster R-

CNN with LiDAR proposals in RPN has inadequate number

of proposals. Our Proposal Refinement algorithm sorts out

and utilizes only the most useful proposals from both sets

of proposals. Fig. 9 and Fig. 10 demonstrate total number

of proposal kept and removed for a given number of objects

in test images after the application of our algorithm. It can

be observed that for test images consisting of few number of

objects, the number of proposals removed from both original

and LiDAR proposals is significantly high. This is mainly due

to the fact that less number of proposals can be considered

for presence of small number of objects. For instance, let’s

consider a scenario where there is only one car in the vicinity,

that means we do not have to draw proposals in every single

part of the image. The proposals can be concentrated only to

the part of the image that contains the car and this can be

achieved by fewer proposals in comparison to the scenario

of having large number of cars or pedestrian in the vicinity,

where we will definitely need more proposals to encompass

the entirety of the image so that no objects are left undetected.

This is again visible in the graph given below. For instance, in

images having number of object equal to 2, significant number

of proposals are removed and very few proposals are kept.

Similarly, in images having number of object equal to 10,

few proposals are removed and large number of original as

well as LiDAR proposals are kept. This is consistent with

our expectation that neither an excessive, overly populated

proposals nor a deficient proposals is required for good object

detection result. Our algorithm yields only the useful sets of

proposals that are required for object detection.This evaluation

is based on threshold lambda value equal to 20. We gradually

increase the value of lambda as seen in Fig. 9 to find the

optimal value and as visible in the Fig. 9 the accuracy seems

to be stable beginning at lambda value equal to 50. We will

further discuss about the varying value of lambda in section

below.

F. Ablation Studies

To further validate the effectiveness of our proposed frame-

work, we evaluate the performance of our model on varying

value of lambda(λ). As mentioned earlier, we have defined a

lambda threshold value in our proposal refinement algorithm.

We conducted separate set of test experiments for λ0 to λ100.

As seen in Fig. 10. the mAP is very low at the initial stage

but as the value of lambda increases, mAP also increases

and becomes stable at value λ45. With increasing value of λ
the total number of our final sniffer proposals in RPN also

increases and the execution time also increases as seen in

Fig. 11. This meets the expectation of our proposal refinement

algorithm because as the threshold value increases additional

or more number of proposals will the criteria and this results in

more number of proposals being kept or selected from original

and LiDAR proposal set. While there are 32636 proposal

selected for λ20 value there are around 60794 proposals

selected for λ30 value. From the above numbers we can

conclude that latency is directly proportional to the value of λ
which is directly proportional to the number of proposals. This

means the latency is also directly proportional to the number

of proposals. The latency for λ20 is 0.164 second per frame

which is lower in comparison to the latency for λ30 which

stands at 0.17 second per frame. While number of proposal is

not the most significant factor for decreasing the latency it is

very clear that it is one of the useful factor for a accelerated

execution result. This is also visible in the Fig. 11 that show

the runtime analysis. TABLE II on the other hand illustrates

the performance of our model when compared to the base

network in terms of number of parameter used and GFLOPs.

Apart from the changes in the number of proposals in RPN

and some finetuning there are no major changes in the overall

architecture of our model as compared to the original Faster-

6
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(a) (b)

Fig. 8: Impact of proposal refinement algorithm on number of proposal being kept and removed for given number of objects

in an image.

Fig. 9: The effect of variation of lambda values to the Sniffer

Faster R-CNN network.

Fig. 10: Runtime analysis to demonstrate number of proposals

as a useful factor for accelerating the execution time of object

detection.

Method
Car

AP@0.5
Pedestrian
AP@0.5

Number of Parameters GFLOPs

Base Network
(Faster R-CNN)

0.91 0.795 41.22m 206.76

Base Network
(LiDAR Proposals)

0.92 0.761 41.22m 206.76

Sniffer Faster R-CNN
( 40 )

0.87 0.79 41.13m 206.67

Sniffer Faster R-CNN
( 50 )

0.903 0.798 41.13m 206.67

TABLE II: A comparison of the performance of different

variations of hyper parameters, evaluated on the KITTI test set.

The effect of variation of hyper parameters on the GFLOPs

and number of parameters ( in million) are measured relative

to the base network.

RCNN method and this is clearly visible in TABLE II. As

shown in the table there is no significant difference in the the

number of parameter and GFLOPs value in all the cases.

G. Real World Object Detection Performance

Fig. 12 shows the three selected examples of the object

detection results, with the first image showing the projection

of LiDAR only 2D proposals, second image showing the

projection of original 2D proposals, third image showing the

projection of sniffer proposals obtained after proposal refine-

ment and the final image showing the final detection result

based on the sniffer proposal. These figures demonstrate that

while the proposals generated by LiDAR only are very few in

number they are not sufficient for accurate object detection. On

the other hand, as seen in second figure, the original method

contains far too many proposals. Some of these proposals

are repeated and some are nowhere near the object in the

image. Therefore, they are unproductive and hence can be

disregarded. This is achieved through our Proposal Refinement

algorithm and the projection of sniffer proposals in the third

figure demonstrate the usefulness of our algorithm. We can

clearly see, the counterproductive proposals have now been

disregarded and only the most useful proposal are kept and we

can observe the accurate detection result in the final image.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 11: Projection of proposals on the KITTI test set and real world object detection results.( Fig a,e,i. shows the projection

of LiDAR proposals only, Fig b,f,j. shows the projection of original proposals form base network of Faster R-CNN. And, Fig

c,g,k. shows the projection of our sniffer proposals and Fig d,h,l. shows the detection results with our Sniffer Faster R-CNN.
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According to these figures, our proposed framework Sniffer R-

CNN has been very successful in proposing accurate bounding

boxes. In our experiments, Proposal Refinement algorithm was

able to generate proposals with numbers significantly lower in

comparison to the original number of proposals. As mentioned

earlier, total number of proposals in region proposal network

is one of the contributing factor in execution time of the

object detection framework.We maintained the accuracy of

the detection and reduced the execution time by reducing the

number of proposal as seen in the real word object detection

results. Some proposals missed by the LiDAR proposal are

incorporated from original set of proposals to maintain the

accuracy.

V. CONCLUSION

In this paper, we presented a novel Region Proposal Net-

work for object detection that inherently performs as a sensor

fusion algorithm, combining the data obtained from LiDAR

with vision data to obtain faster and accurate object detection

results. Our Proposal Refinement algorithm is able to produce

accurate region proposals while significantly decreasing the

number of proposal at the same time and maintain the accuracy

of the detection. Experiments on the KITTI dataset show the

superiority of our proposed architecture over the state of art in

terms of inference time by decreasing the execution time by

20 %. Similarly, testing results of the real trace dataset from

KITTI show that, number of proposals in RPN is one of the

important factor in execution delay. We studied that current

state-of-art RPN contains and depend on substantial number

of proposal for detection, majority of which are unavailing.

Through joint application of proposals from both 2D and 3D

approach we decrease the number of proposals in RPN by

more then 40 % in comparision to original methods and when

the value of IoU is high, our method is able to achieve a much

better average precision as well.
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