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Abstract—In this paper we present Sniffer Faster R-CNN
(SFR-CNN), a novel camera-LiDAR sensor fusion framework
for fast and accurate object detection in autonomous driving
scenarios. The proposed detection framework architecture uses
both LiDAR point clouds and Camera RGB images to generate
region proposals. Current implementation of the regional pro-
posal network (RPN) requires the generation of a large number
of region proposals, majority of which are unproductive. As
such, we devise a novel proposal refinement algorithm, to jointly
optimize and filter a number of proposals in RPN through
the combined application of both sets of LiDAR and image-
based proposals thereby accelerating the LiDAR-Camera fusion
algorithm without sacrificing detection precision and accuracy.
Our experiments show that number of proposals is a comple-
mentary factor in determining the computational overhead in
a detection network. Our proposed architecture is shown to
produce state of art results on the KITTI joint object detection
benchmark with the comparison being based on the execution
time. While maintaining efficient detection accuracy we decrease
the computational overhead by more than 20 % on the KITTI
dataset.

Index Terms—faster r-cnn, mmdetection, execution-time, re-
gion proposal network, regression, classification, axis-aligned
bounding boxes, connected component labeling, proposal refine-
ment algorithm.

I. INTRODUCTION

Object detection is a fundamental task in autonomous
driving technology or in computer vision domain in general
that deals with generating bounding boxes for specified object
categories along with assigning class such as car, pedestrian,
aeroplane, chair, etc to those categories in digital images
or videos. Apart from autonomous driving, it has many
practical application in video/image indexing [1], surveillance
[2], object tracking, face detection and recognition, medical
imaging, sports and so on. In autonomous driving object
detection can be used for localization, obstacle avoidance,
vehicle control, mapping, perception and planning[3]. Current
object detection approaches are mainly divided into two
types, i.e. single-stage approaches and two-stage appraches.
As illustrated in Fig. 1, one stage detectors such as RetinaNet
[4], FCOS [5], YOLO [6], SSD [7] etc. treat object detection
as a simple regression problem by taking an input image and
learning object classification and bounding-box regression
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Fig. 1: Overview of One Stage and Two Stage Object Detec-
tion.

[8]. Since they are independent of additional CNN'’s, they
are much faster then two-stage object detectors but generally
reach lower accuracy rates. On the other hand, two stage
detectors such as Mask R-CNN(Region-based Convolutional
Neural Networks) [9] and Faster R-CNN [10] use a Region
Proposal Network in the first stage to generate region of
interest or simply proposals followed by sending the region
proposals down the pipeline for learning the class probabilities
and bounding box regression. These models typically reach
the highest accuracy, but are slower due to overhead caused
by the complex architecture of the multiple neural networks.
In this context, finding a model that provides the optimal
trade-off between accuracy and speed is not an easy task.
Although there are quite a few approaches that have
been successfully implemented for accelerating the detection
process in two-stage detectors there are very few methods that
have addressed this problem from the perspective of region
proposal network(RPN). Current implementation of Region
Proposal Network requires generation of massive number
of region proposals, majority of which are unproductive.
Based on this principle, we hypothesize that pruning the
proposal numbers in RPN, will provide an optimal trade-off
between accuracy and speed. In order to improve execution
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Fig. 2: Overview of Two Stage Object Detection with Camera
and LiDAR.

time, we optimize the Faster R-CNN model, by replacing
the proposals in regional proposal network with our own
proposals named as sniffer proposals. We generate sniffer
proposals through the joint application of LiDAR point cloud
and camera data. We optimize the original Faster R-CNN
method especially the region proposal network of the model
and build our own architecture based on our hypothesis.The
proposed architecture delivers the following contributions:

e a Proposal Generation approach for transforming 3D
proposals obtained from LiDAR Point Cloud to 2D proposals.
* a novel Proposal Refinement Algorithm for refining and
pruning proposals in the RPN network, through the combined
application of both sets of LIDAR and image-based proposals.
* evaluation on the KITTI dataset shows we outperform state-
of-the-art image-based methods and LiDAR-based method
in terms of execution time and even manage to get higher
accuracy at some instances of IoU.

II. RELATED WORKS

In the present context, there are plenty of methods that
have been implemented for the object detection task in
autonomous vehicles. If we consider both accuracy and
inference time, then it is an arduous task to pick only one
model as the best one. Some models such as [4][5][6][7]
are much faster, but provide less accurate results, while
others [8][9] are more accurate, but are very fast in terms
of execution speed. Therefore, finding the optimal trade off
between accuracy and inference speed is a very complicated
task in object detection domain. Specially, in two-stage
methods that has established convolutions neural network
as the state-of-the-art for detection in images [11]. In the
paper [12] by Huang et al., the author studied the trade-off
between accuracy and execution time for object detection
model with modern convolutional neural network concept
and argued that by changing various parameters such as
varying meta-architecture, feature extractor, image resolution
and deployment on mobile devices, the trade off can be
minimized. Different from their approach, we treat Region
Proposal Network as one of the principle factor for decreasing
the execution time. Instead of manually changing the number
of proposal without any underlying basis as proposed in
[12], we showcase that through joint application of LiDAR
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proposals and camera image 2D proposals, we can prune the
number of proposals, without removing the important ones,
that will eventually impact the speed and precision.

On the other hand, [13] proposes anchor pruning methods
for object detection to reduce the computational cost of the
convolutional neural network. They also tend to focus on op-
timizing the backbone network for improving execution time.
Similarly, in [14][15], the authors discuss about pruning the
deep convolutional neural network to minimize the trade-off
between speed and accuracy. Furthermore, [16][17] discusses
about configuration of hardware component for speeding up
the execution time. While these approaches have advantages
on their own ways, we view the trade-off problem from a
different perspective. We argue that there are far too many
region proposals being generated in the region proposal layer
that eventually lead to a overload in computation. We propose,
by carefully removing the unproductive proposals, we can
decrease the computation overhead.

Fig. 3: Illustration on projecting LiDAR point clouds on a
camera image.

III. PROPOSED FRAMEWORK ARCHITECTURE

In this section, we develop an efficient structure-aware
two-stage joint detection network for object detection and
classification in autonomous vehicles.The proposed method,
depicted in Figure 4, uses a subset of proposals from both
LiDAR point cloud (3D proposals) and original Faster R-
CNN (2D proposals). Section A introduces the mechanism
we used for obtaining 2D proposals from LiDAR point cloud.
Section B introduces our novel proposal refinement algorithm
for filtering proposals. Similarly in Section C we will introduce
our network architecture including the backbone network,
feature pyramid network, Rol head and Soft Non-maximum
Suppression algorithm we used for improving the detection
accuracy. We aim to reduce the total number of proposals
used in RPN network of Faster R-CNN or any two-stage
methods and eventually decrease the execution time through
the application of our architecture.

A. Multi-Sensor Fusion

In the proposed two-stage multi-sensor detector we take
two frames, one from a LiDAR point clouds and another
from an RGB image as input. These two sensors go through
an alignment process for fusion in order to compensate for
each other. The basic camera-lidar cordinate transformation
and calibration have been provided by the KITTI dataset [26]
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Fig. 4: The overall architecture of our proposed joint 2D and 3D object detection framework with proposal refinement.

and we use these existing tools for projecting image captured
from cameras onto the LiDAR data as shown in Fig. 3.

B. LiDAR Proposal Generation

To showcase possible objects in the sensing data, connected
components are extracted from the point clouds as shown
in Fig. 5. We obtain 3D proposals with the application of
the Axis-Aligned Bounding Boxes (AABB) method from the

2D proposal 3D proposal

LiDAR data [19]. As shown in the Fig. 5 we project 3D : : : : /3D propos
. . Top left corner (x.y) : : .~ with orientation 6
proposals onto a front-view camera image. We then select on im@age ¥ : : 8
front, middle and rear cross sections on 3D proposals. These ' — Proposal Sniffer
vertexes are transformed to image coordinates to draw 2D " Car

boxes (coloured in 3 levels of black color as shown in Fig. 5).  Seeeer

In a connected component environment where there are
multiple points cloud segmented together we obtain connected
components from LiDAR data. In point clouds data there are
multiple points that are segmented into smaller parts which
are separated by a minimum distance. Each part is a set
of connected points. We have derived this approached from
the classic image processing algorithm, called Connected

Fig. 5: Relations between 3D and 2D proposals illustrated in
the LiDAR Proposal Generation module.

C. Proposal Refinement Algorithm

Component Labeling (CCL) [20]. Given a set of point In this section we showcase our novel proposal refinement
cloud this algorithm is used to detect connected regions. algorithm. The proposal refinement algorithm as shown in
Once the first point of a connected component is identified, Algorithm 1 inputs two types of proposals. First, set if 2D Li-

it is easy to find and gather all the other points in that DAR proposals obtained from the Section D "LiDAR Proposal
particular connected component and this is the primary generation”. There are less than 100 LiDAR proposals per
reason why this method is effective as well as efficient. images. Second, original 2D proposals obtained via Regional
The next step is to generate 3D proposals and for that we Proposal Network of Faster R-CNN model( 1000 proposals per
use a 3D grid to extract these connected components. We image) as R. Clearly the number of proposal in original RPN is
collect this grid from the octree structure which divides a substantial. On the other hand, 2D LiDAR proposals generated
given 3D space into at most eight part in order to store from the proposal generation part are inadequate as seen in
points. We can control how small the minimum gap can be Fig. 7 where white color proposal are the missing proposal that
between the adjacent connected component by selecting a eventually leads to those objects being undetected if only the
different octree level. Finally, to speed up the generation of 2D LiDAR proposals are used in the detection network. Hence
3D proposals, components with points less than a specific our novel proposal refinement algorithm prudently chooses
number are ignored. Next we perform segmentation of only the best proposals from both sets of proposals. For a given
LiDAR point cloud into disconnected components, where image, we compare each proposal from LiDAR proposal(L)

each box indicates a candidate object in the given sensing data. with each proposal from original proposal(R) i.e for each
bbox( proposal) with coordinates (ri,7r2,73,74) in R, we
Once the 3D segmentation is completed, we use our align- compare each bbox (proposal) with coordinates (1,2, l3, l4)in

ment approach discussed in Section A, B, and C to produce 2D L for a given image. And if the difference between the all the
bounding boxes from LiDAR point clouds, these are termed adjacent bbox coordinate meets the given threshold then we
as LiDAR Proposals denoted by L. keep both the proposals. However if it fails to meets the given
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Algorithm 1: Main Algorithm of Proposal Refinement

Input: set of RGB proposal r’ € R, 0 < i < 1000.
set of LiDAR proposal #/ € L, 0 < j < 100.
Output: Final sniffer proposals S*.
r1,...,T4 are vertex coordinates in r, RGB proposal.
ly, ..., 44 are vertex coordinates in ¢, LIDAR proposal.
for each i and j do
if |4 — ¢ |and |rs — € |and | — £} |and|r,
— (3 |< X then
‘ Keep r and £ as sy;
else
‘ Filter out r and 7 ;
end
end
get sniffer proposals S = {s1, s2, ..., Sk}, k < 600.
remove repeated proposals from S.
2 return sniffer proposals S* = {s1, 52, ..., 5}, n < k.

A W R =
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threshold value A we filter out or simply remove the proposal
set from both sniffer and original proposal. We evaluate this
algorithm for two different cases. In first case we keep the
threshold to a less then or equal to value to address the problem
related with the small LiDAR proposals. For instance, for a
very small LiDAR proposals which is unable to contain any
object within itself will meet the threshold with the larger
original proposals which will be kept in the final proposal set
thus producing good detection result. Similarly, In second case
we keep the threshold to a greater then or equal to value to
address the problem related with the large LiDAR proposals.
For instance, for a very large LiDAR proposals which is able
to contain object but will be eventually disregarded due to
IoU threshold will meet the threshold with the smaller original
proposals which will be kept in the final proposal set thus again
contributing to good detection result. Both the cases can be
achieved through the application of absolute subtraction of the
bounding boxes. From both cases, we obtain certain number of
proposals for a given image but there are multiple repetition
due to the fact that same proposal meets the threshold for
multiple other proposals and as result of this, it will be output
multiple times. We remove the repeated proposals by manually
checking the repeated appearance of each proposals to finally
obtain final sniffer proposals as illustrated in Algorithm 1.
We conduct this experiment for different threshold value to
eventually obtain the best threshold for our algorithm. The
number of final sniffer proposals (~600) as shown in algorithm
is based on the best threshold value which we have discussed
in Section E.

D. Simplified Network Architecture

We emulate the Faster R-CNN model as our base model and
make necessary changes in both test configuration especially
regional proposal network(RPN), and regional convolutional
neural network (RCNN).In Fig. 6 we illustrate the simplified
architecture of our entire framework.
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Fig. 6: Network architecture of our proposed solution.
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Backbone Convolutional Neural Network or simply CNN
are normally composed of multiple convolutional network
layers and pooling layers. While convolutional layers are used
to extract an over-complete representation of the input feature,
pooling layers on the other hand are used to downsample
the feature map size to minimize the execution and assist in
creating more robust representation. Backbone is the part that
transforms an image to feature maps, such as a ResNet-50
without the last fully connected layer [20] . We are using
ResNet-50 as our backbone network as it is proven to have
achieved the best performance in classes car and pedestrian
[22].0Our backbone network contains four convolutional blocks
with depth 50.Each convolution is followed by a batch nor-
malization. As a result, the backbone network produces multi-
stage feature maps at different spatial resolutions[23].
Feature Pyramid Network Neck is the part that connects
the backbone and heads. It performs some refinements or
reconfiguration on the raw feature maps produced by the
backbone. We adopt Feature Pyramid Network "FPN” with
256 output channels in our base model as it can be trained
end-to-end with all scales and is used consistently a train/test
time. FPN are able to achieve higher accuracy than all the
existing state-of-art methods for feature refinement [23].
Proposal Layer The goal of the Proposal Layer is to prune
the list of proposals produced by the LiDAR and refine
them with original 2D proposals again with the application
of proposal refinement algorithm and produce class more
accurate bounding boxes to be used to test the classification
layer to produce good classification and regression results.
Leveraging proposals generated from proposal layer, ROI
on corresponding images can be effectively identified, hence
accelerating the detection process with a low computational
cost.

Region of Interest RolExtractor is the part that extracts
Rolwise features from a single or multiple feature maps with
RolPooling-like operators. Similarly, RoIHead is the part that
takes Rol features as input and make Rol-wise task specific
predictions, such as bounding box classification/regression,
mask prediction[20]. We adopt SingleRolExtractor for this
purpose.

Soft Non-Maximum Suppression One indispensable compo-
nent of object detection is non-maximum suppression (NMS),
a post-processing algorithm responsible for merging all detec-
tions that belong to the same object [23]. In NMS detection,
box with the maximum score is selected and all the other
detection boxes with a significant overlap are suppressed for
a given threshold value. However, there is one problem with
this approach. As per the design of the algorithm, if an object
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lies within the predefined overlap threshold, it leads to a miss.
The simple yet efficient way to deal with this case is to use
Soft-NMS which instead of completely removing proposals
with low score, assigns a reduced confidence score to these
proposals so that they are still under consideration for the
presence of other object belonging to a different class. Soft-
NMS obtains consistent improvements for the coco-style mAP
metric on standard datasets like PASCAL VOC 2007 (1.7 %
for both RFCN and Faster-RCNN) and MS-COCO (1.3 % for
R-FCN and 1.1 % for Faster-RCNN) by just changing the
NMS algorithm without any additional hyper-parameters[25].

IV. EXPERIMENTS AND RESULTS

To prove experimentally the viability of our proposed frame-
work we evaluate the performance of our model on KITTI
dataset [26]. In this section we will mainly discuss about our
experimental setting, implementation details and then analyze
the effect and performance of our framework in the real world
environment and compare it with the existing state-of-the-art
methods.

A. Dataset

KITTI Dataset [26] is one of the most popular dataset of
2D as well as 3D detection for autonomous driving. In KITTI
dataset there are usually 7, 481 training samples and 7, 518 test
samples.For experiment studies we split the official training
set into three different sets;a training set of 4600 samples,
a validation set of 1481 samples and a mini-test set of 200
samples. The KITTI benchmark requires detections of cars,
pedestrians and cyclist. However, for the ease of experiments
and easy accessibility of groundtruth for cars and pedestrians,
we trained our model based on these two classes only.

B. Training and Inference Details.

We use MMDetection toolbox for training, validation and
testing purposes.This is an object detection toolbox that con-
tains a rich set of object detection and instance segmentation
methods as well as related components and modules [21].Our
joint 2d and 3d framework is trained emulating the Faster
R-CNN method in an end-to-end manner with the SGD
optimizer. For the KITTI dataset, we train the entire network
with the batch size 24, learning rate 0.0025 for 4 epochs
on Intel Core i9 10th Gen Processor, which takes around 7
hrs.Similarly, under the same environment we test 200 samples
of images in different scenarios.

C. Evaluation Metric.

We adopt standard evaluation metrics for PASCAL VOC
dataset evaluating the results using two widely used metrics
namely mean average precision(mAP) and recall. The mAP
value is calculated with a rotated IoU threshold 0.5 for cars
and pedestrian. The mean average precision on the test set is
calculated with 40 recall positions on the official KITTI test
server. Similarly, in addition to the evaluation metrics we also
assess the execution of our Proposal Refinement Algorithm
and visualize the impact of the algorithm by providing the
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graphical representation of number of proposal kept and
removed from both original and LiDAR sets of proposals. We
will thoroughly discuss about this evaluation in Section E ”
Result of Proposal Refinement”.

D. Comparison with state-of-the-art methods.

We report the performance on our KITTI test set and
compare it with other state-of-art methods. Table 1 shows
the performance of our framework on the KITTI test set
that we extracted from the original test set. As expected the
performance is very good in original Faster R-CNN method.
The region proposal network of the original Faster R-CNN
method consists of 2D proposals only. On the other hand,
for Faster R-CNN (LiDAR Only) method we use proposals
only from the LiDAR. The inference result based on LiDAR
only method clearly shows that the 3D proposals are not
sufficient for accurate object detection results. Although the
latency is low in comparison to the original Faster R-CNN,
the mAP at different instances of IoU is significantly lower.
This is due to the very small number of proposals used in
LiDAR only detection method. Like mentioned earlier in the
section "LiDAR Proposal Generation”, we used Axis-aligned
Bounding Boxes followed by Connected Component Labeling
method to convert 3D LiDAR proposals to 2D LiDAR pro-
posals. In comparison to the original proposals, the number of
proposals generated through this method is significantly lower
as a result of which they fail to encapsulate the entirety of the
image. In Fig. 8, the gray bounding boxes are the projection
of LiDAR proposals and the white boxes are the ground-
truth bounding boxes. We can clearly see that the there are
no LiDAR proposals for some of the object in each of the test
images. Hence, we can conclude that only LiDAR proposals
are not enough for accurate object detection as they have
missed out on several ground truth objects. On the other hand
2D proposals from the original method yields a fairly accurate
results with around 1000 proposals per image, majority of
which are ineffectual. Our Sniffer Faster R-CNN framework,
utilizes only the most useful sets of proposals from both
sets of proposals and even manages to outperform Original
Faster-RCNN in some instances of IoU. It also outperforms
Faster R-CNN (LiDAR only) method by a significant margin
as shown in Table 1. Similarly, as indicated by our results
in Table 1, Sniffer Faster R-CNN represents a significant
improvement in terms of inference runtime. The latency for
Sniffer Faster-RCNN is 0.1737 which is 20 % improvement
over the original Faster-RCNN, which has latency of 0.2149
seconds per frame.The inference time is based on our KITTI
input test samples consisting of 200 images.Similarly, we also
evaluate the performance of our model for other two-stage
methods and we can clearly see that the approach can be
extended to any two-stage methods such as Cascade R-CNN
as seen in the Table I.

E. Result of Proposal Refinement

In this section we showcase the impact of our novel Proposal
Refinement algorithm for filtering proposals. The original
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Car Pedestrian
Method @04 [ @05 | @06 | @07 | @04 [ @05 | @06 | @07 | teney(s/h | GFLOPs
Faster R-CNN 002 [ 091 | 0892 [ 087 | 0815 | 0.795 | 0689 | 0571 | 02149 306.76
Cascade R-CNN 0028 [ 092 | 0.903 | 0.864 | 0.788 | 0.761 | 0.724 | 0.517 | 03147 73447
Sniffer Cascade RICNN | 092 | 0.014 | 0.898 | 0.859 | 0.764 | 0.747 | 0.715 | 0.514 | 0.1989 33477
Sniffer Faster RRCNN | 0,012 | 0.903 | 0.804 | 0.857 | 0.817 | 0.798 | 0.708 | 0.55 | 0.1737 306.67

TABLE I: A comparision of the performance of Sniffer Faster R-CNN with the state of the art object detectors evaluated on
the KITTI test set. The results are evaluated by the mean Average Precision with 40 recall positions.

Fig. 7: Projection of 2D LiDAR proposals on KITTI test set ( white bounding boxes are missing candidate boxes/proposals in
the image whereas black bounding boxes are the LiDAR proposals.

Faster R-CNN accommodated large number of proposal, ma-
jority of which are ineffectual. On the other hand, Faster R-
CNN with LiDAR proposals in RPN has inadequate number
of proposals. Our Proposal Refinement algorithm sorts out
and utilizes only the most useful proposals from both sets
of proposals. Fig. 9 and Fig. 10 demonstrate total number
of proposal kept and removed for a given number of objects
in test images after the application of our algorithm. It can
be observed that for test images consisting of few number of
objects, the number of proposals removed from both original
and LiDAR proposals is significantly high. This is mainly due
to the fact that less number of proposals can be considered
for presence of small number of objects. For instance, let’s
consider a scenario where there is only one car in the vicinity,
that means we do not have to draw proposals in every single
part of the image. The proposals can be concentrated only to
the part of the image that contains the car and this can be
achieved by fewer proposals in comparison to the scenario
of having large number of cars or pedestrian in the vicinity,
where we will definitely need more proposals to encompass
the entirety of the image so that no objects are left undetected.
This is again visible in the graph given below. For instance, in
images having number of object equal to 2, significant number
of proposals are removed and very few proposals are kept.
Similarly, in images having number of object equal to 10,
few proposals are removed and large number of original as
well as LiDAR proposals are kept. This is consistent with
our expectation that neither an excessive, overly populated
proposals nor a deficient proposals is required for good object
detection result. Our algorithm yields only the useful sets of
proposals that are required for object detection.This evaluation
is based on threshold lambda value equal to 20. We gradually
increase the value of lambda as seen in Fig. 9 to find the
optimal value and as visible in the Fig. 9 the accuracy seems
to be stable beginning at lambda value equal to 50. We will
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further discuss about the varying value of lambda in section
below.

FE. Ablation Studies

To further validate the effectiveness of our proposed frame-
work, we evaluate the performance of our model on varying
value of lambda()\). As mentioned earlier, we have defined a
lambda threshold value in our proposal refinement algorithm.
We conducted separate set of test experiments for Ao to Ajgp.
As seen in Fig. 10. the mAP is very low at the initial stage
but as the value of lambda increases, mAP also increases
and becomes stable at value \y5. With increasing value of A
the total number of our final sniffer proposals in RPN also
increases and the execution time also increases as seen in
Fig. 11. This meets the expectation of our proposal refinement
algorithm because as the threshold value increases additional
or more number of proposals will the criteria and this results in
more number of proposals being kept or selected from original
and LiDAR proposal set. While there are 32636 proposal
selected for Mgy value there are around 60794 proposals
selected for A3g value. From the above numbers we can
conclude that latency is directly proportional to the value of A
which is directly proportional to the number of proposals. This
means the latency is also directly proportional to the number
of proposals. The latency for Ay is 0.164 second per frame
which is lower in comparison to the latency for Asg which
stands at 0.17 second per frame. While number of proposal is
not the most significant factor for decreasing the latency it is
very clear that it is one of the useful factor for a accelerated
execution result. This is also visible in the Fig. 11 that show
the runtime analysis. TABLE II on the other hand illustrates
the performance of our model when compared to the base
network in terms of number of parameter used and GFLOPs.

Apart from the changes in the number of proposals in RPN
and some finetuning there are no major changes in the overall
architecture of our model as compared to the original Faster-
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Method Achz), 5 Pzil)ecz){(x;i'e;n Number of Parameters ~ GFLOPs
3;‘;;;:3“&%) 0.91 0.795 41.22m 206.76
?L”isl; AI\II{Etl;Vr ‘(’)‘pkosals) 0.92 0.761 41.22m 206.76
(S‘jgfir Faster RCNN ) g7 0.79 41.13m 206.67
(S'E(ff‘;' Faster RCNN ) g3 0.798 41.13m 206.67

TABLE 1II: A comparison of the performance of different
variations of hyper parameters, evaluated on the KITTI test set.
The effect of variation of hyper parameters on the GFLOPs
and number of parameters ( in million) are measured relative
to the base network.

RCNN method and this is clearly visible in TABLE II. As
shown in the table there is no significant difference in the the
number of parameter and GFLOPs value in all the cases.

G. Real World Object Detection Performance

Fig. 12 shows the three selected examples of the object
detection results, with the first image showing the projection
of LiDAR only 2D proposals, second image showing the
projection of original 2D proposals, third image showing the
projection of sniffer proposals obtained after proposal refine-
ment and the final image showing the final detection result
based on the sniffer proposal. These figures demonstrate that
while the proposals generated by LiDAR only are very few in
number they are not sufficient for accurate object detection. On
the other hand, as seen in second figure, the original method
contains far too many proposals. Some of these proposals
are repeated and some are nowhere near the object in the
image. Therefore, they are unproductive and hence can be
disregarded. This is achieved through our Proposal Refinement
algorithm and the projection of sniffer proposals in the third
figure demonstrate the usefulness of our algorithm. We can
clearly see, the counterproductive proposals have now been
disregarded and only the most useful proposal are kept and we
can observe the accurate detection result in the final image.
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Fig. 11: Projection of proposals on the KITTI test set and real world object detection results.( Fig a,e,i. shows the projection
of LiDAR proposals only, Fig b,f,j. shows the projection of original proposals form base network of Faster R-CNN. And, Fig
c,g.k. shows the projection of our sniffer proposals and Fig d,h,l. shows the detection results with our Sniffer Faster R-CNN.

8

Authorized licensed use limited to: University of North Texas. Downloaded on September 28,2024 at 14:02:28 UTC from IEEE Xplore. Restrictions apply.



According to these figures, our proposed framework Sniffer R-
CNN has been very successful in proposing accurate bounding
boxes. In our experiments, Proposal Refinement algorithm was
able to generate proposals with numbers significantly lower in
comparison to the original number of proposals. As mentioned
earlier, total number of proposals in region proposal network
is one of the contributing factor in execution time of the
object detection framework.We maintained the accuracy of
the detection and reduced the execution time by reducing the
number of proposal as seen in the real word object detection
results. Some proposals missed by the LiDAR proposal are
incorporated from original set of proposals to maintain the
accuracy.

V. CONCLUSION

In this paper, we presented a novel Region Proposal Net-
work for object detection that inherently performs as a sensor
fusion algorithm, combining the data obtained from LiDAR
with vision data to obtain faster and accurate object detection
results. Our Proposal Refinement algorithm is able to produce
accurate region proposals while significantly decreasing the
number of proposal at the same time and maintain the accuracy
of the detection. Experiments on the KITTI dataset show the
superiority of our proposed architecture over the state of art in
terms of inference time by decreasing the execution time by
20 %. Similarly, testing results of the real trace dataset from
KITTI show that, number of proposals in RPN is one of the
important factor in execution delay. We studied that current
state-of-art RPN contains and depend on substantial number
of proposal for detection, majority of which are unavailing.
Through joint application of proposals from both 2D and 3D
approach we decrease the number of proposals in RPN by
more then 40 % in comparision to original methods and when
the value of IoU is high, our method is able to achieve a much
better average precision as well.
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