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ABSTRACT

In this paper, we present PRECISE, a novel privacy preserving data
sharing framework for connected autonomous vehicles (CAVs).
PRECISE allows users to define the objects or parts that they wish
to protect privacy before sharing data with other vehicles. It lever-
ages secure segmentation and inpainting technologies to protect
sensitive data of vehicles. PRECISE explores the edges to offload
resource-intensive deep learning workloads. To ensure data pri-
vacy in the processing on edge, PRECISE leverages additive secret
sharing theory to define secure functions for deep neural networks
(DNNs). Two secure DNN models, Secure SegNet and Secure Con-
text Encoder, are introduced, along with detailed explanations of
how to develop secure CNN layers and the secure functions used in
building these layers. We have implemented a prototype of PRECISE
and evaluated its performance. The experimental results demon-
strate that PRECISE is lightweight, achieving secure segmentation
in 3.47 seconds and secure inpainting in 0.99 seconds. The infer-
ence outputs from PRECISE remain the same as those from the
original DNNs, while data privacy is protected. To the best of our
knowledge, PRECISE is the first of its kind to provide user-defined
privacy protection for sensor data sharing among CAVs.
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1 INTRODUCTION

Connect Autonomous Vehicle (CAV) technology has witnessed
widespread adoption, owing to its benefits across various domains.
CAVs are equipped with a diverse range of sensors including LiDAR,
radar, cameras, GPS, etc., enabling them to collect and interpret
a wealth of information. A key aspect of CAV technology is the
ability to facilitate data sharing among vehicles. By engaging in col-
laborative data sharing, CAVs can effectively extend their sensing
range and enhance the accuracy of their perception systems. This
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enables CAVs to exchange real-time information, encompassing crit-
ical factors such as traffic conditions, road hazards, and accidents.
As a result, CAVs can leverage this shared data to make more in-
formed decisions, leading to improved overall performance, safety,
efficiency, and reliability in autonomous driving applications.

Existing approaches to data sharing between vehicles present
certain limitations, either by sharing raw data without adequate pri-
vacy protection or by sharing encrypted data to other vehicles. Both
approaches have their drawbacks. When raw data is shared, privacy
protection becomes a major concern as sensitive information is ex-
posed. On the other hand, when encrypted data is shared, only a
few sensitive objects in the data may need protection, but the entire
images (2D or 3D) are encrypted. This lack of selectivity makes it
difficult to discern which specific objects contain privacy-sensitive
information and wastes computing resources. The encryption and
decryption of complete images in transit may not fully address
data privacy concerns, as sensitive content could still be at risk of
exposure to receiver vehicles. Given these challenges, there is a
critical need for novel approaches that enable user-defined data
sharing, allowing for the protection of sensitive objects within the
collected sensor data while ensuring the necessary collaboration
and information exchange among vehicles.

Deep neural networks (DNNs) offer an effective solution to the
issue, leveraging their ability to process vast volumes of sensor
data rapidly. We utilize DNNs to identify user-defined privacy-
sensitive objects effectively, remove them from the sensor data,
and subsequently reconstruct the modified data using inpainting
techniques. This involves leveraging segmentation and inpainting
DNN models for object identification and data inpainting. The
segmentation DNN operates at the pixel level, enabling it to detect
objects in raw data, including potentially sensitive objects. On the
other hand, the inpainting DNN reconstructs the privacy removed
data, resulting in a modified version of the data that is suitable for
sharing. By integrating these two models, we allow users to define
the classification of sensitive objects within the data and enable
effective data sharing while safeguarding privacy in CAV systems.

The continuous execution of DNN models puts a significant
strain on the computing resources of autonomous vehicles, includ-
ing CPU and memory. This strain becomes particularly challenging
when vehicles encounter a high volume of data within a limited
timeframe. To prioritize critical functions like driving and ensure
the operational reliability and safety of the vehicle, CAVs must care-
fully allocate their finite resources. However, the emergence of Edge
computing technology [26] and the advancements in 5G wireless
network transportation offer a promising solution. By offloading
the computationally intensive DNN tasks to edge servers, CAVs
can effectively alleviate their computational burden and leverage
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the benefits of edge computing. This approach enables distributed
processing, facilitating efficient data analysis and task execution
while preserving the essential resources of the CAV itself.

However, edge servers cannot always be trusted as they have the
potential to be compromised in certain scenarios. Thus, sending raw
data to edge servers raises concerns about data privacy and security.
Traditional data encryption methods offer protection only during
data transmission, leaving the stored data vulnerable to unautho-
rized access or breaches at the edge servers. While technologies
like homomorphic encryption [14, 17, 28, 29, 37] can enable secure
cipher text processing, they often suffer from long latency, making
them impractical for real-time applications.

Existing Multi-party computation (MPC) techniques [4, 5, 34]
primarily protect privacy during sensor data processing. However,
in certain scenarios, it is beneficial to share the original image while
ensuring the removal of sensitive content. For example, in situations
where edge devices need to evaluate road conditions or gather
weather information for an area, preserving privacy while granting
access to the original image can be highly valuable. There is a clear
need for innovative approaches that offer fine-grained control over
data privacy, enabling secure data sharing in a customizable manner,
and has satisfied performance for real world applications.

In this paper, we present PRECISE (Privacy Preserving Data Shar-
ing with Segmentation and Inpainting for CAV), a novel approach
that leverages the power of encoder and decoder DNN models to
address the challenges of privacy preservation in data sharing for
CAVs. By harnessing the exceptional performance of these mod-
els in image segmentation and inpainting tasks, PRECISE enables
CAVs to identify sensitive objects within collected sensor data and
construct inpainted images where the sensitive objects are removed.
These privacy preserving inpainted images are then securely trans-
mitted to receivers, facilitating privacy preserved data sharing in
both CAV-only and CAV-Edge collaboration scenarios.

To mitigate the risk of private data leakage to edge servers, PRE-
CISE incorporates additive secret sharing, a well-established theory,
to enhance the security of the context encoder and decoder DNN
models. This enhancement enables the secure DNN models to pro-
cess ciphertext, ensuring the privacy of the sensitive information.
During the execution of PRECISE on edge servers, each server gen-
erates a partial segmentation and inpainted image result. These
results are then transmitted to the receivers, who can combine and
retrieve the privacy-removed data from the distributed outputs of
the edge servers. By employing deep learning, edge computing, and
secret sharing technologies, PRECISE provides an effective solution
for user-defined privacy preserving data sharing among vehicles.

The main contributions of this paper are as follows.

e We present PRECISE, a privacy-preserving data sharing
framework for connected autonomous vehicles. We describe
the design details, showcasing the integration of SegNet and
Context Encoder DNN models, known for their performance
in segmentation and inpainting tasks.

e We demonstrate how DNN models in PRECISE can be en-
hanced with secure functions, ensuring privacy preservation
on edge servers. One of the key components of PRECISE is
the adoption of additive secret sharing based secure func-
tions within the secure layers. We delve into the details of
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these secure functions, explaining their roles in preserving
privacy during data processing on edge and sharing among
vehicles.

e We have conducted a comprehensive series of experiments to
assess the effectiveness and performance of PRECISE using
a vehicle-edge test platform. In-vehicle operations were car-
ried out on AStuff Spectra, while on-edge operations were
performed on edge servers equipped with AMD Ryzen 7
processors. On the sender vehicle, we measured the time
required to create secret shares from sensor data and en-
crypt those shares. On the receiver vehicle, we evaluated
the time needed to combine outputs from edge servers and
generate shared sensor data with sensitive objects removed.
On the edge servers, we compared the execution times of in-
dividual layers in a deep neural network (DNN) - specifically,
the layers with secure functions versus their original non-
secure versions - and assessed the overall time and storage
complexity.

2 BACKGROUND

2.1 Image Segmentation

Image segmentation [10] is a fundamental task in computer vision
that plays a crucial role in various applications. It involves clustering
pixels belonging to the same object in an image, providing a fine-
grained understanding of the scene. Unlike object detection, which
focuses on identifying objects using bounding boxes or region
proposals, image segmentation operates at the pixel level, precisely
delineating the location, boundaries, and classification of objects in
images.

Image segmentation offers numerous advantages, and the field
has witnessed significant advancements through the utilization of
deep learning techniques, such as [9, 18, 36, 40, 41]. Firstly, it enables
scene understanding by providing pixel-level object boundaries,
facilitating high-level interpretation of images. This fine-grained
localization and classification of objects are valuable for various
computer vision tasks, including autonomous driving, object recog-
nition, and medical image analysis.

Moreover, image segmentation enhances the performance of
downstream tasks by enabling more precise object localization and
reducing ambiguity. For example, in autonomous driving, accu-
rate segmentation helps identify lane markings, traffic signs, and
pedestrians, enabling safer and more reliable decision-making by
autonomous vehicles. Additionally, segmentation results can serve
as a crucial preprocessing step for higher-level vision tasks, such as
object tracking, instance segmentation, and semantic understand-
ing. It provides a semantic map of the scene, allowing subsequent
algorithms to reason about objects, their interactions, and their
contextual relationships.

2.2 Image Impainting

Image inpainting [6] is an essential task in computer vision that
focuses on reconstructing damaged or missing pixels within an
image. In the past, traditional approaches in computer vision relied
on techniques such as texture synthesis and patch synthesis to
repair damaged images. For instance, methods like Navier-Stokes



Figure 1: Images with secure segmentation and secure in-
painting.

[11] and Fast marching [39] have been commonly used in this
context.

In recent years, there has been a growing interest in leveraging
deep learning approaches for image inpainting tasks [24, 25, 42, 43].
This surge in research has resulted in the development of various
image inpainting convolutional neural networks (CNNs), including
notable examples such as GLCIC [2], Patch-based Image Inpainting
with GANs [13], and Deep Learning-based Copy-and-Paste [21].
Among these approaches, the Context Encoder [32] has gained
particular prominence as an exceptional image inpainting CNN.

The advancements in deep learning-based image inpainting have
opened up new possibilities in various applications, including photo
restoration, image editing, and video processing. These techniques
offer efficient and effective solutions for repairing damaged images
and filling in missing regions, significantly improving the visual
quality and usability of the inpainted images.

3 SYSTEM ARCHITECTURE

In an illustrating scenario (see Figure 1), a vehicle captures an
image that includes various elements, such as buildings in the
background, a pedestrian, and cars on the road. This information
is of significant value to other CAVs within the infrastructure as it
provides crucial insights into the current road conditions. Vehicle 1
recognizes the importance of sharing the captured image with other
vehicles; however, it also acknowledges the presence of sensitive
information, such as human faces or house numbers, within the
image. To ensure privacy, Vehicle 1 aims to selectively protect this
sensitive content and prevent its disclosure during data sharing.
In this section, we will explain how the PRESICE framework can
empower Vehicle 1 to define and safeguard the privacy of specific
content within the captured image through the privacy preserved
data sharing process.

3.1 PRECISE Architecture and Execution Flow

In a vehicle-only scenario, where Vehicle 1 possesses ample com-
putational resources, Vehicle 1 takes the initiative to define the
classification of sensitive objects, such as pedestrians, within the
captured image. Subsequently, Vehicle 1 transmits the classified
information to the PRECISE framework. Within Vehicle 1’s local
PRECISE module, an image segmentation deep neural network
(DNN) is employed to detect objects present in the image. Based
on the detection results, if any sensitive objects are identified, their
pixel values are effectively removed. Subsequently, the PRECISE
impainting CNN model generates a reconstructed image that ex-
cludes the sensitive data, which is then forwarded to the intended
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Figure 2: Image segmentation and image inpainting with
privacy protection.

receivers. Through this process, Vehicle 1 is able to customize the
privacy preservation of sensitive objects and securely share the
modified image with other vehicles.

In the vehicle-edge platform, the PRECISE framework becomes
more intricate as it necessitates protecting data privacy during edge
server processing. The architecture of the PRECISE framework in
the vehicle-edge platform comprises various components: the data
owner (Vehicle 1, responsible for capturing the image), the receivers
(other interested CAVs), the edge server (responsible for performing
secure image segmentation and inpainting), and the trusted server
(providing secure protocols and key generation). This architecture,
as illustrated in Fig. 2, ensures the privacy and confidentiality of
the image data at every stage of processing and transmission. It
establishes robust data protection within the framework, ensuring
that sensitive information remains secure throughout the entire
process.

PRECISE consists of the following key components.

Data Owner (Vehiclel): This represents the vehicle that captures
and owns the image data.

Receivers (other vehicles): These connected autonomous vehicles
(CAVs) are interested in the captured image. Their objective is to
utilize the shared data from Vehiclel to gather information about
the surrounding environment.

Edge Servers (E1, Ez): the edge server is a vital component of the
PRECISE framework, performing essential functions. It receives
the input data from CAV; and utilizes two secure deep learning
neural networks: secure segmentation and secure inpainting. Then
the edge server transmits the processed output to the intended
receivers for further use.

Trusted Server T: The trusted server in the PRECISE framework
assumes the responsibility of generating encryption and decryption
keys for data security. Additionally, it generates a set of random bit
arrays that are utilized by the secure protocol implemented in the
deep learning models of the edge server. This random bit arrays
play a crucial role in maintaining the security and privacy of the
data throughout the computational process.

During the secure data sharing process, the following steps occur:

The edge server transmits a set of object classes G to the data
owner Vehiclel. G contains commonly found object classes in street
views.

Vehiclel takes the initiative to select a specific class of objects,
denoted as P, from the captured image that it considers private.



This selection process is similar to the vehicle-only scenario, where
Vehicle 1 defines the classification of sensitive objects.

The captured image I is then randomly split into two secret
shares, denoted as I1 and 12, following the I»: I = I} + L.

Vehiclel employs a predetermined data encryption scheme, such
as AES256 or RSA, along with encryption keys acquired from the
trusted server T, to encrypt the secret shares into ciphertext C; and
Cy. CAV1 then transmits these encrypted shares to their respective
edge servers Ej and Ej.

Upon receiving the encrypted shares and data from CAV1, each
edge server applies the decryption key obtained from the trusted
server T to decrypt the shares and retrieve the secret share as well
as the selected privacy object class P.

The edge servers perform secure segmentation on the decrypted
shares and obtain partial segmentation results. These partial results
are exchanged between the edge servers to identify the location of
pixels belonging to the privacy object class P. If no pixels are found
in P, the edge server directly sends the partial segmentation output
and the secure share to the intended receivers.

If there are pixels belonging to the privacy object class P, the
edge server removes the corresponding pixel values from the secret
share. The privacy-removed secret share is then processed using
secure inpainting, which generates a partial inpainting result.

Finally, edge servers send the partial inpainting results to the
receivers. The receivers can combine the partial outputs received
from the edge servers to reconstruct a privacy-removed image that
was captured by Vehiclel.

The secure segmentation and inpainting flow guarantees the
preservation of selected objects’ privacy while facilitating the shar-
ing of Vehiclel’s image data with other entities. Through encryp-
tion, secure processing, and distributed computation, PRECISES
achieves customized privacy-preserving data sharing among CAVs.

3.2 Attack Model

In our framework, the edge servers (E; and E») are classified as "Cu-
rious But Honest" entities. This implies that although they carry out
their computational tasks diligently, there is a possibility of them
attempting to explore user information. In other words, an edge
server may analyze the input image with malicious intent to extract
details regarding the user’s privacy. This behavior could involve
examining specific patterns or features in the image to uncover
sensitive information, even if it hasn’t been explicitly shared or
identified as private. Such actions would violate the user’s privacy
and compromise the confidentiality of their data.

Moreover, in scenarios where multiple edge servers collaborate,
there is an increased risk of privacy breaches. These edge servers
have the potential to collude and share information obtained from
various stages of the computation process. Through the sharing of
intermediate results or exchanging knowledge about the data, they
could collectively deduce the private information contained within
the image. This collusion among edge servers poses a significant
threat to privacy and can compromise the confidentiality of the
user’s data.

To mitigate the aforementioned concerns, the PRECISE frame-
work incorporates secure segmentation and secure inpainting con-
volutional neural networks (CNNs) that rely on additive secret
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Figure 3: SegNet and Context Encoder Decoder.
sharing-based secure functions. These functions guarantee the pro-
tection of the image data and private information during compu-
tation. PRECISE also allows the CAV to execute some CNN layers
locally and send only the encrypted feature map secrets to the edge
servers. This approach limits the collaboration and inference among
the edge servers, enhancing privacy protection. The HBC scenario
emphasizes the need for robust privacy-preserving mechanisms,
including secure computation and secure protocols, to safeguard
sensitive information against privacy breaches by curious but hon-
est edge servers.

4 PRIVACY PROTECTION FOR IMAGE
SEGMENTATION AND INPAINTING DNNS

4.1 Segmentation and Impainting DNNs

One prominent deep learning approach for image segmentation
is SegNet[3]. SegNet’s architecture (Figure 3top)is built upon the
popular VGG16 model, employing a similar topology but excluding
the fully connected layers. The SegNet encoders comprise 13 convo-
lutional layers, 13 leaky ReLU activations, 13 batch normalization
layers, and 5 max pooling layers. Conversely, the decoders con-
sist of 13 secure transposed convolutional layers, 13 secure ReLU
activations, 13 batch normalization layers, and 5 max unpooling
layers.

This design choice results in a lightweight encoder that improves
training efficiency, making it well-suited for real-time and resource-
constrained applications. By leveraging the encoder-decoder struc-
ture, SegNet enables efficient and accurate segmentation by captur-
ing and reconstructing detailed spatial information.

The Context Encoder [32] CNN (Figure 3 bottom) comprises an
encoder and a decoder component. Encoder consists of 5 convo-
lutional layers, 4 batch normalization and 5 leaky RELU. Decoder
consists of 5 transpose Convolutional layers, 4 batch normaliza-
tion, and 4 leaky RELU. The role of the encoder is to transform the
input image into a condensed latent feature representation. This
latent representation captures crucial information about the image,
enabling the model to grasp the content and context of the input.
The decoder, on the other hand, takes this latent representation as
input and generates the missing or damaged pixels to complete the
inpainting process. Also one channel-wise fully-connected layer
are injected to connect encoder and decoder.

By harnessing the power of deep learning techniques, Context
Encoder can generate inpainted images that exhibit enhanced real-
ism and visual appeal. The model has the ability to learn intricate
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patterns and structures from large datasets, enabling them to pro-
duce coherent and semantically meaningful image inpainting.

The selection of SegNet and Context Encoder as the base models
for image segmentation and inpainting in the PRECISE framework
is driven by several factors:

High Accuracy: Both SegNet and Context Encoder have demon-
strated good accuracy in their respective tasks. They achieve this
by employing the encoder-decoder pattern, which allows them to
capture detailed spatial information and reconstruct accurate out-
puts. The accurate segmentation and inpainting results are crucial
for preserving privacy while maintaining the quality and integrity
of the shared images.

Lightweight Architecture: SegNet and Context Encoder are de-
signed with a lightweight architecture, making them suitable for
real-time applications and resource-constrained environments. The
efficient encoder-decoder structure enables faster training and infer-
ence times, ensuring that the privacy-preserving operations can be
performed efficiently even on devices with limited computational
resources.

4.2 DNN Models in PRECISE

In PRECISE, we utilize four privacy preserving DNN models, com-
prising two SegNet models and two Context Encoder models. The
two secure SegNet models and two secure Context Encoder mod-
els are identical in structure. One set of secure SegNet and secure
Context Encoder is deployed on one edge server, while the other
set is deployed on a separate edge server. These secure segmenta-
tion and inpainting models maintain the same architecture as the
original SegNet and Context Encoder, including the same types,
number, and sequence of CNN layers. However, each CNN layer
is enhanced with secure functions, transforming them into secure
CNN layers capable of processing secret shared values instead of
the original inputs. In the subsequent section, we will provide a
detailed explanation of each secure CNN layer, accompanied by its
respective implementation methodology.

Figure 4 shows the processing flow of secure SegNet and secure
Context Encoder models for an image containing sensitive data.
The image, denoted as F, is captured by a Connected Autonomous
Vehicle (CAV), and the data owner has specified that the privacy
classification is pedestrian. The data owner does not want this in-
formation to be accessed by other parties, while other non-sensitive
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information in the image can be shared with other CAVs within the
infrastructure.

To protect the privacy of the pedestrian information, Image F is
randomly split into two secret shares, f; and f,. The secure SegNet
models on the edge servers, Eq and Es, process the respective secret
shares independently. They exchange partial segmentation results,
secseg(f1) and secseg(f2), and combine them to retrieve the overall
segmentation result, seg(f) = secseg(f1) + secseg(f2).

Next, E1 and Ej scan the segmentation result, seg(f), to iden-
tify the locations of pixels belonging to humans. They mark these
locations and remove the corresponding values from secret shares.

The privacy-removed secret shares are then sent to the secure
Context Encoder. E1 and Ez generate inpainting outputs, o; and
02, respectively, as well as the segmentation result, seg(f). These
results are sent to the receivers.

The receivers can simply combine the inpainting outputs, o =
01 + 02, to recover the privacy-removed image, which no longer
contains the sensitive pedestrian information.

5 USER-DEFINED PRIVACY PROTECTION FOR
SEGMENTATION AND IMPAINTING DNNS

The PRECISE framework incorporates two deep learning models:
secure Segmentation and secure Inpainting, both of which rely
on CNN layers as their fundamental building blocks. To ensure
accurate computations using ciphertext as input, secure versions of
SegNet and Context Encoder, known as secure SegNet and secure
Context Encoder, are employed. In PRECISE, the additive secret
sharing relationship in the input data necessitates the independent
implementation of each secure CNN layer. Consequently, for a given
secure CNN layer on edge server Ej, it takes input f; and produces
output 0;. The overall input f and output o of the secure CNN layers
can be expressed as the summation of their respective components,
f =2, fiand o = ¥, 0;. This formulation ensures that the
input and output of the secure CNN layers remain equivalent to
those of traditional CNN layers.

The design of secure CNN layers for secure object segmentation
and secure image inpainting is a crucial and intricate aspect of the
PRECISE framework. The primary objective is to develop secure
layers that yield identical output to their traditional CNN layer
counterparts. This necessitates the utilization of secure functions
to execute additive secret sharing schema-based CNN linear and
non-linear computations.

The CNN layers utilized in the SegNet and Context Encoder mod-
els can be classified into two groups based on their computation
type: linear computation layers and non-linear computation lay-
ers. Linear computation layers encompass the convolutional layer,
transpose convolutional layer, and fully connected layer, and do
not require any modifications. On the other hand, the non-linear
computation layers, including leaky ReLU, max pooling, batch nor-
malization, and max unpooling layers, necessitate the implemen-
tation of specially designed secure CNN layers. In the subsequent
paragraphs, we will provide a comprehensive explanation of each
individual secure CNN layer, highlighting their correspondence to
their counterparts in the original CNN model.



5.1 Secret Sharing

Secret sharing [35] is a widely used cryptographic scheme in mod-
ern privacy preservation applications. It serves as a key-less method
to protect the privacy of data. The scheme revolves around two
primary operations: dividing and combining.

The dividing function is responsible for generating secret shares
from the original secret. It takes the secret as input and produces
a set of shares: d(s) = s1, S2, ..., sp. Each participant in the scheme
holds one of these shares. The combining function, in the case
of additive secret sharing, employs addition as the operation. It
defines how the secret can be reconstructed from the secret shares:
s = $1+S2+...+sp. To recover the original secret, a minimum required
number of secret shares must be collected and provided to the
combining function. The original secret can only be reconstructed
when the minimum required number of shares is gathered and
combined. In additive secret sharing, this minimum number is
equal to the total number of participants involved in the scheme.
Secret sharing theory has been extensively utilized in research
to construct privacy-preserving Convolutional Neural Networks
(CNNs) [1, 16, 23, 27, 37].

Secure functions play a vital role in the PRECISE CNN models,
as they adhere to the additive secret sharing philosophy. These
secure functions are the building blocks of the PRECISE frame-
work, particularly in the design of secure CNN layers for object
segmentation and image inpainting. The primary objective of these
secure layers is to produce the same output as their traditional
CNN counterparts. To achieve this, secure functions are utilized to
implement the linear and non-linear computations of CNN layers
within the additive secret sharing scheme. This ensures the privacy
preservation of data while maintaining the desired functionality of
the CNN models.

5.2 Secure Leaky ReLU

Leaky ReLU derives from ReLU, a classic activation layer in CNN.
Among various neurons in deep learning neural networks, not all
neurons are needed to be activated and involved in the computation.
An activation layer decides whether a neuron will be activated or
not. Leaky ReLU enforces negative feature values to be replaced
with a predefined small coefficient to multiply with the feature
values while positive feature values remain the same.

Algorithm 1 Secure Leaky ReLU

. Input: feature map secret share F;, Nj, B;, a, t;, yi, u;
. Output: F’s leaky ReLU result on F;

T R

. Edge server receives secure parametersN;, B;, a, t;, y;, u; from
trusted server

5: for each feature f in feature map secret share F; do

6: Si = SSE(Fi,Ni,Bi, a, ti, yi, ui)

7: Edge servers exchange s; to compute s = 51 €P s2.. P sp
8: if s == 1 then

9: return negativeslope * f

10: end if

11: return f

12: end for
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In the PRECISE framework, the secure Leaky ReLU operation is
defined in Algorithm 1. While the computation of Leaky ReLU is
straightforward in a regular CNN, in PRECISE, the input of secure
Leaky ReLU must be the secret share of the raw data. To ensure
the confidentiality of the raw data during computation, a secure
symbol extraction (SSE) technique is introduced. SSE generates
a partial result s; on each edge server, and by exchanging s; and
computing s = s; P s2.. €P sn, the first symbol digit of the bitwise
representation of the raw data can be obtained without leaking
the actual data value. If the symbol digit is equal to one, indicating
a negative value, the secret share is multiplied by a predefined
negative slope coefficient. This ensures that the secure Leaky ReLU
operation preserves the privacy of the raw data while performing
the required computations.

5.2.1 Secure Symbol Extraction. Secure symbol extraction plays a
crucial role in the secure RELU layer of the PRECISE framework.
Its purpose is to obtain the symbol digit of the input feature value
without revealing the actual feature value itself. Secure symbol
extraction serves as the foundation for the secure RELU layer, which
replaces negative feature values with zero and activates neurons
corresponding to positive values.

To perform secure symbol extraction, each edge server utilizes
the secret share of the feature map, denoted as F;, along with addi-
tional secure bit arrays from the trusted server. Since the feature
value is divided among the edge servers using additive secret shar-
ing, the original feature value can be represented as F = .7 F;.
The objective of the secure symbol extraction function is to return a
boolean value based on whether F is greater than zero or not. This
enables the secure RELU layer to make decision on activating or
deactivating neurons while preserving the privacy of the original
feature values.

In Algorithm 2, the trusted server first generates three sets of
random bit arrays: N, B, and V. These arrays have a length of
L, which corresponds to the bit-wise length of the feature value.
Each set contains n random values, where n is the total number of
secret shares. The random values in N and B are correlated in the
following manner: Ni @ N».. @ Ny = X7 B;. The edge servers
involved in the computation are indexed from 1 to n, representing
the total number of secret shares. The trusted server randomly
selects an index value, denoted as a, to designate a specific edge
server for a different computation schema. This selected edge server
will generate bit arrays for the subsequent secure operations using
this alternate schema.

The remaining edge servers (those not selected) compute c;
by subtracting B; from their corresponding secret share F; and
generate a random value X;. The edge servers then send the values
X, c to the selected server, which computes X; by performing bit-
wise addition on all the received X, ¢ values, as well as numeric
addition. As a result, each edge server produces its own Xj, and
the feature map value F is divided into two parts: the generated bit
arrays X, N.

The randomness present in the X, N arrays ensures that even
identical feature values can produce different intermediate secure
parameters. This characteristic enhances PRECISE’s resistance to
cipher text-based attacks and strengthens its overall security.



Algorithm 2 Secure Symbol Extraction

1: Input: Feature map secret share F;, random value N, B;, index
number a, random value t;, y;, u;

2: Output: F partial symbol value

3:

4: if index of server is not equals to a then

5: compute ¢; = F; — B; and generate a random bit array Xj,
then forward to edge server with index a

6: else

7 compute X; = (cl+cz..+cn)@X1@X2“@X(n—l)

8: end if

9: if index of server is not equals to a then

10: o0; = secure multiplication(Xj, Nj, t;, y;, uj, true)

11: else

12: 0; = secure multiplication(X;, N, t;, yi, u;, false)

13: end if

14: edge servers collaborate compute 0 = .1, 0;

15: §; = Xi @ Nl’

16: while 0; # 0 do

17: computes s; = s; P o;

18: if index of server is not equals to a then

19: o0; = secure multiplication(s;, 0;, t;, y;, u;, true)

20: else

21: o0; = secure multiplication(s;, 0;, t;, yi, ui, false)

22: end if

23: end while

24: if s; < 0 then

25: return 1

26: end if

27: return 0

The SSE is designed to retrieve the symbol digit value of F using
intermediate parameters X, N without exposing F to any parties.
Let’s examine the relationship between F and X, c. We can ob-
serve that X and c are the results of bit-wise addition ((P)ofX;
and c; respectively. The relationship between F and X, ¢ can be
expressed as follows: F = Fi + Fo + -+ + F, = (c1 + B1) + (c2 +
By) + -+ + (cn + By) Here, X7, ¢i = X3 PxXo PP Xn and
Y% Bi = NitED N2 P - D Ny. Consequently, we have: F =
(X B Xo D+~ ) Xo) + (N1 D N B+ D N

Each edge server E; possesses a pair of arrays X; and Nj, enabling
them to efficiently compute s; = X; € Nj. However, due to security
concerns, the secure protocol prevents the exchange of N; between
edge servers. This precaution is necessary to thwart potential at-
tacks where an adversary eavesdrops on the network and combines
X with N to recover the original feature value. Therefore, the SSE
aims to compute F solely based on bit-wise operations, allowing
each edge server to independently compute the result without the
need for exchanging Nj.

Indeed, the carry digit value plays a crucial role in the Secure
Symbol Extraction process. Bitwise addition (XOR operation) does
not consider carry values from previous locations, so the correct
carry value must be determined and added to each digit before
moving to a higher index position.

To replace the numeric addition X + N with bit-wise addition
X 6B N, we need to compute the correct carry values between the
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combined bit arrays X and N. The carry value for X and N can be
obtained through the expression X (X) N.

When performing the bit-wise addition in the Secure Symbol
Extraction algorithm, it is necessary to maintain the updated carry
value for each iteration (lines 16 to 23) if the carry value is not
empty. This ensures the correctness of the Secure Symbol Extrac-
tion process at every digit’s location and guarantees the accurate
retrieval of the symbol digit without revealing the original feature
value.

In the Secure Multiplication, a secure protocol is employed to
enable the exchange of transformed bit arrays X; and N; without
compromising privacy. The approach is inspired by the work of
Damgard et al [12]. The algorithm takes two sets of input data. The
first set consists of H;, G;, which are the two bit arrays obtained from
the Secure Symbol Extraction algorithm, representing the computed
carry value H ® G. The second set includes random values t;, y;, u;
generated by the trusted server. These random values are injected
into the input arrays H; and G; to introduce data randomization
and prevent the leakage of input array privacy during the exchange
of intermediate computation parameters.

By leveraging this secure protocol, the PRECISE framework en-
sures that the transformed bit arrays X; and N; can be exchanged
between edge servers without revealing any sensitive information.
This allows for the computation of X (X) N while maintaining the
confidentiality of the original feature values and protecting against
potential privacy breaches.

5.3 Secure Max Pooling

The max pooling layer serves two key purposes in a deep learning
neural network: first, it identifies the most significant feature values
within a pooling region, and second, it reduces the magnitude of a
given feature map by eliminating redundant features. In traditional
max pooling, a straightforward maximum operation is used to select
the maximum feature. In the context of secure max pooling 3, a two-
dimensional array is constructed to store the pairwise differences
between values in the flattened pooling region f for each secret
share F; on the respective edge servers. Specifically, the array t;
(created on the iy, edge server) with indices x and y represents the
value f[x] - f[y]. The edge servers then exchange and combine the
difference arrays, resulting in the combined array t = t;+t2+. . .+15.
For the g, row in ¢, the values represent the differences between
flq] and all other feature values. If all these differences are positive,
it indicates that f[q] is the maximum element within the pooling
region. It is worth noting that the array #; captures the differences
between the secret share’s values (F;) on edge server i, while the
combined array ¢ represents the differences between the actual
feature values F.

5.4 Secure Batch Normalization

Batch normalization [20] is a technique used to normalize the out-
put of previous CNN layers by subtracting the mean value and
dividing by the standard deviation of the batch. It enables inde-
pendent learning of each CNN layer and accelerates the training
process. The mean of the batch values, denoted as E(F), can be

easily computed by adding the means of the two secret shares:
E(F) — Zi:n1Fi — Eileli Zi:,leZi

n

+ . However, directly combining



Algorithm 3 Secure Max Pooling

Algorithm 4 Secure Batch Normalization

1: Input: feature map secret share F;

2: Output: partial maximum feature values

3:

4: for each pooling region f in F; do

5 Create t; with a size [w(f) * h(f)]?

6 Flatten pooling region feature values into single dimension
7 for each feature value in f do

8 array ti[x][y] = f[x] = flyl x,y € [0, [w(f) * h(f)]°]
9 end for
10: E; exchanges t; with other edge servers to compute t =
Ziciti

for each row with index q in t do
if all values in the row are greater than 0 then

11:
12:

13: return f[q]
14: break;

15: end if

16: end for

17: end for

the results of the edge servers does not provide the batch variation.
To address this, edge server E; computes var(F;) and E; computes
var(F;). The difference between var(F) and var(Fy) + var(F;) is
given by 2(F; * F5) — (nE(F))?. In algorithm 4, lines 9-23 aim to
compensate for this difference while preserving the secret sharing
principle. Intermediate parameters u are created and exchanged
between the two servers. u is derived from F, by adding random
numbers based on the ratio in F;. The random value d is eliminated
when combining 2F; [I] s u[l] + 2F; [l + 1] = u[l + 1]. Additionally,
E; and E; exchange v; and v; to compute the batch normalization.

5.5 Secure Max Unpooling

Max unpooling is a technique in CNNs that recovers the original
input size from a downsampled feature map. In secure max un-
pooling, the indices of the maximum secret share values obtained
during secure max pooling are preserved and utilized to accurately
reconstruct the original positions of the pooled values. This ensures
that the spatial information is preserved throughout the process.

6 PERFORMANCE EVALUATION

We have implemented a prototype of the PRECISE. To evaluate
the performance of privacy-preserving perception networks using
PRECISE, we conducted experiments on a vehicle-edge testbed.
The testbed includes a Polaris GEM e4 electric vehicle equipped
with Sekonix cameras, a Velodyne LiDAR, a Delphi radar, GPS, and
IMU sensors. The on-vehicle processing unit utilized is the AStuff
Spectra. Each edge server in the testbed is equipped with an AMD
Ryzen 7 processor with 6 cores running at 3.2 GHz, 16 GB DRAM,
and operates on Ubuntu Linux v20.04 and Python v3.8.

For our experimental evaluation, we employed the widely-used
COCO dataset [22], which is commonly used for object detection
tasks. The COCO dataset contains 118,000 images spanning over
80 object categories. We selected a subset of 1,200 images from
the training dataset. Within this subset, we used over 50 distinct
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: Edge server Ej, i € 1,2
: Input: feature map secret share F;
: Output: F batch normalization

1S N

: E; compute mean c¢; # where n is total number of
element in F;

6: Edge server collaborate compute ¢ = c1 + ¢

7: E3 computes vy = Zinlfizer (570)2

8: Eq, Eo flatten Fy, Fo

9: for for element with in F; with index m;m < n;m=m+ 2 do

10: R=Fi[m] + Fi[m+1]

11: end for

12: Eq forward R to E;

13: Ep create array d with random number with size %
14: for for element with in F» with index j; j < n; j = j+2 do
5 ulj]=Flj]+d[2]

16 ulj+1=Flj+ 1]+ (~d[2]) «R[4]

17: end for

18: Eo sends u to Eq

19: Eq createz =0

20: for each element in F1, u with index [ do

21: z=2z+2*F[l] =ull]

22: end for

23: Ey computes o1 = 31, (f2 - ) —-nxc+z

24: Eq, Eg collaborate compute V = w/w

25: return fize

categories, with a specific focus on commonly encountered road-
side objects, such as pedestrians, vehicles, and traffic lights. The
images were preprocessed by cropping into a size of 224x224 pixels
with 3 channels and applying padding as needed.

In the training phase, the models were trained for 120 epochs,
with a batch size of 32 and a learning rate of 0.01. These training
parameters were carefully selected to ensure effective learning and
convergence of the models. The trained models were tested on
a vehicle equipped with cameras. Evaluation of the models was
conducted using both captured images and videos. The testing
scenarios encompassed a diverse range of environments, including
residential areas, local roads, intersections, and highways. More
specifically, our dataset consists of 50 high-resolution videos, each
with an average duration of 10 minutes. We extracted 500 frames
from these videos. For each video, we identified object classes that
were considered privacy-sensitive, including humans, street name
signs, and houses. These object classes were then encoded into
metadata tags, with a unique ID and a description of the sensitive
objects.

6.1 Perception Accuracy

To access inference accuracy of the PRECISE framework, we con-
ducted an evaluation on a wide range of object classifications in the
COCO dataset, comprising over 40 categories. The segmentation
results generated by PRECISE demonstrate precise and accurate
outputs, as depicted in Figure 5. Additionally, we are comparing the



Figure 5: User-defined privacy protection by PRECISE.
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Figure 6: Execution time of secure bit multiplication.

difference between the original CNN model and PRECISE secure
CNN model. The difference is in scale of e~ which is negligible to
impact the inference result.

6.2 Security

The threat model introduced in section III emphasizes two signifi-
cant risks: first, the edge server is Honest But Curious, so executing
segmentation and impainting with raw image will leak the privacy
of CAV captured data.

Second, an attacker is assumed to be capable of effectively moni-
toring the network transmission data or even further able to read
data on edge servers. PRECISE sends encrypted secret shares to edge
servers instead of raw images. The randomness in secret share en-
hances PRECISE’s resistance to cryptography attacks, for example,
chosen ciphertext attacks and eavesdropping attacks. Additionally,
additive secret sharing-based secure operation schema does not
rely on key-based encryption but splits and hides plain text infor-
mation into secret shares. Thus PRECISE does not suffer from key
management risks.

In vehicular edge computing infrastructure, edge servers could
be compromised simultaneously and collaborate to detect private
information. PRECISE could increase its privacy protection resis-
tance by letting CAV conduct partial segmentation CNN layers. In
such a way, CAV produces secret shares of feature maps instead of
the raw captured image. Even if edge servers collaborate to combine
secret shares from CAV, only feature map data could be revealed.
Thus, the privacy of raw image data remains protected.
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6.3 Execution Time

In the context of secure bit multiplication, the execution time is
depicted in Figure 6. The fundamental computations involved in
secure bit multiplication primarily revolve around the secure manip-
ulation of parameters through bitwise addition and bitwise multi-
plication. Notably, bitwise operations demonstrate a relatively swift
execution, thereby mitigating the substantial growth in overall la-
tency as the number of invocations escalates. This characteristic
highlights the efficiency and scalability of secure bit multiplica-
tion, allowing for seamless processing even in scenarios involving
numerous invocations by Secure Symbol Extraction.

The relationship between input feature map size and execution
time in secure leaky ReLU is illustrated in Figure 8. The primary
computation involved in secure leaky ReLU is secure symbol ex-
traction, which internally relies on secure bit multiplication. As the
size of the input feature map increases, the execution time of secure
leaky ReLU exhibits an exponential growth pattern. However, it is
worth noting that the model structure remains fixed, and the input
image size is defined as 128x128x3 (height, width, and channel).
Consequently, the overall execution latency remains predictable
and feasible for real-time inference. It is important to consider that,
while the attainment of a higher level of security comes at a cost,
the extended computation latency of secure leaky ReLU still allows
for timely inference.

Due to the additive nature of secret sharing in the PRECISE
framework, secure convolutional layers and secure transpose con-
volutional layers exhibit identical computational characteristics to
their original counterparts in models such as SegNet and Context
Encoder. Figure 7 presents the execution time comparison between
convolutional layers and transpose convolutional layers. It is worth
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noting that convolutional layers are the primary contributors to
performance latency in the original CNN model.

Additionally, Figure 9, 11, and 10 demonstrate the execution time
of secure maxpooling, secure max unpooling, and secure batch nor-
malization, respectively. Secure maxpooling exhibits linear execu-
tion time growth as the input feature map size increases, which can
be attributed to the iterative computation implementation of the
secure function. On the other hand, secure max unpooling demon-
strates minimal execution time due to the utilization of saved in-
dexes from secure maxpooling, where only zero value filling within
the stride is necessary. Secure batch normalization involves mul-
tiple computation steps but does not require looping, resulting in
relatively small computation time complexity.

The comparison of inference times between the original CNN
models and the PRECISE secure CNN models is depicted in Figure
12 and 13. The experiments were conducted solely on CPU due to
the presence of sequential computation logic and complex bitwise
computations within certain secure functions, which may result
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SegNet secure SegNet
convolutional 0.54s secure 0.57s
and transpose convolutional and
convolutional secure transpose

convolutional
leaky ReLU 0.017s secure leaky 1.9s
ReLU
max pooling 0.021s secure max 0.12s
pooling
max 0.0002s secure max 0.0002s
unpooling unpooling
batch 0.0031s secure batch 0.884s
normalization normalization
total 0.6092s total 3.4742s

Figure 12: Comparison of execution time between Secure

SegNet and the original SegNet.

Context secure Context
Encoder Encoder
convolutional 0.034 s secure 0.034s
and transpose convolutional and
convolutional secure transpose
convolutional
leaky ReLU 0.004s secure leaky 0.747s
ReLU
batch 0.0058s secure batch 0.21s
normalization normalization
total 0.0438s total 0.991s

Figure 13: Comparison of execution time between secure
Context Encoder and the original Context Encoder.

in slower performance if GPU utilization is attempted without
algorithm optimization.

Among the various secure CNN layers, secure Leaky ReLU stands
out as the dominant factor contributing to execution time latency.
In secure SegNet, secure Leaky ReLU accounts for 1.9 seconds, rep-
resenting 54% of the total execution time, while in secure Context
Encoder, it amounts to 0.747 seconds, comprising 75.3% of the to-
tal execution time. This can be attributed to the intricate secure
computation logic involved in secure symbol extraction, which ne-
cessitates bitwise computations, looping over outputs from secure
bit multiplication, and secure parameter generation.

The total execution time for secure SegNet is 3.4742 seconds,
surpassing that of secure Context Encoder at 0.991 seconds. This
discrepancy can be attributed to the more complex and deeper
neural network architecture employed in secure SegNet. With 13
convolutional layers and 13 transpose convolutional layers, as well
as larger intermediate feature map sizes, secure SegNet offers a
greater number and variety of CNN layers compared to secure Con-
text Encoder, which includes 6 convolutional layers and 5 transpose
convolutional layers. Additionally, secure SegNet incorporates max-
pooling and max unpooling layers, which are absent in the context
encoder model.

Due to the limited existing research on secure data sharing in-
corporating privacy-preserved segmentation and inpainting, we
conducted a comparative analysis of PRECISE’s secure segmen-
tation and inpainting functionalities against previous works, as



Object Removal time
Edge mask 1.16s
Flores et al. 31.6s
Nodari et al. 21.4s
PRECISE 0.991s
Secure Segmentation
HSI 46s
BUNET 1078s
PRECISE 3.47s

Figure 14: Top: Performance comparison between PRECISE
and existing object removal approaches: Flores [15], Nodari
[30], and Edge Mask [38]. Bottom: Performance compari-
son between PRECISE and secure object segmentation ap-
proaches: HSI [7], and BUNET [8].

bytes

Secure Context Encoder

secure SegNet

Figure 15: Storage overhead from data produced by secure
functions (in bytes).

illustrated in Figure 14. The top table presents the results, high-
lighting the effectiveness and efficiency of PRECISE’s inpainting
technique. It successfully removes sensitive objects from images
and achieves faster execution times compared to the works of Flo-
res [15] and Nodari [30]. While edge mask achieves the shortest
execution time, it directly processes on the raw image, whereas
PRECISE operates exclusively on cipher text, ensuring enhanced
privacy preservation.

The bottom table provides a performance comparison of PRE-
CISE’s secure segmentation approach with HSI [7] and BUNET [8].
It is evident that PRECISE exhibits significantly shorter execution
times compared to the other methods. While it is important to note
that the execution time difference may not solely reflect efficiency,
considering that HSI and BUNET are based on more complex CNN
segmentation models, PRECISE remains a more practical choice for
secure data sharing in CAV edge infrastructure.

One of the costs associated with achieving a high level of secu-
rity through the adoption of secure protocols in PRECISE is the
generation of additional data by secure functions, which must be
stored in memory and transmitted over the network. Figure 15
illustrates the amount of extra data in bytes produced by secure
SegNet and secure Context Encoder. On average, the generation and
encryption of secret shares take 0.66 seconds, and the combining of
privacy-removed images from edge servers on the receiver vehicle
requires 0.002 seconds. Additionally, the network data transmission
times for secure SegNet and secure Context Encoder are measured
at 2.4 seconds and 1.7 seconds, respectively.
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videos.

6.4 Performance Evaluation on Videos

In addition to individual images, PRECISE can be applied to videos.
Figures 16 and 17 present the performance of PRECISE processing
a stream of video frames (30 FPS). Frames were continually sent to
PRECISE and we measured the average execution time in seconds.
The figures show that on average the Secure SegNet processed at
4.12 seconds per video frame, which is 16% longer than that for
an individual image. Similarly, the average execution time for a
video frame by the Secure Context Encoder is 1.21 seconds, i.e., 19%
slower than that for an individual image. Figure 18 plots the size
of intermediate data generated in processing videos. The extended
processing time primarily results from processor and memory con-
tention. This contention arises during the continuous processing of
frame data because each frame necessitates transformation into se-
cret shares and ongoing processing by secure DNNs. The additional
encoding and decoding of video also contributes to an increase in
the overall execution time. It’s worth noting that video compres-
sion, cannot significantly reduce transmission time, as the data
transferred between the CAV and edge servers comprises secret
shares of video frames.

6.5 Performance on More Edge Servers

In the preceding discussion, we have explained the use cases of
PRECISE on two edge servers. PRECISE can be extended to accom-
modate additional edge servers, denoted as N (where N > 2), to
further bolster privacy protection in data sharing among vehicles.
However, this may also cause additional processing time and per-
formance latency. For example, secure multiplication (Algorithm 3)
needs to calculate bitwise carries from more secret shares. Conse-
quently, this impacts the performance of secure symbol extraction
(Algorithm 2) which invokes secure multiplication multiple times.
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functions in processing videos.

From our experiments, we observed that as the number of edge
servers increased from 2 to 3, the execution time of secure multi-
plication was extended by an average of 1.43 times and the secure
symbol extraction was prolonged by 1.66 times. Additionally, in-
cluding one more secret share (edge server) resulted in an increase
of 78 bytes on average for the generated secret share data. It is
critical to find a suitable trade-off between the enhanced level of
privacy and the increased latency in real-world scenarios.

7 RELATED WORK

Blind Medical Image Segmentation Based on Secure UNET (BUNET)
[8] presents a novel framework for preserving privacy during med-
ical image segmentation. The framework utilizes a secure variant
of the UNET architecture to safeguard sensitive medical data. By
leveraging secure multi-party computation techniques, BUNET
ensures that the image data remains encrypted throughout the seg-
mentation process, preventing unauthorized access to confidential
medical information. The proposed approach enables accurate seg-
mentation results while maintaining the privacy and confidentiality
of the underlying data.

HSI [7] also achieves secure segmentation but it utilizes a hybrid
trusted execution environment (TEE). The TEE combines the bene-
fits of hardware-based and software-based approaches, offering a
secure and confidential processing environment for sensitive medi-
cal data. Both papers focus on privacy-preserving medical image
segmentation; however, the execution times reported in the studies
raise concerns regarding their feasibility in CAV edge infrastructure.
BUNET demonstrates a prolonged execution time of 1078 seconds,
while HSI takes 46 seconds to complete. These long execution times
are impractical for real-time applications. In contrast, PRECISE
offers a lightweight solution with significantly faster performance.
It achieves a speedup of 310 times compared to BUNET and 13.2
times compared to HSI in single-frame segmentation inference,
making it highly suitable for real-time deployment in CAV edge
environments.

EdgeMask [38] is a system that enables privacy-preserving video
data sharing using edge computing. It uses edge devices to pro-
cess and analyze video locally, detecting and masking sensitive
information like faces and license plates. The system distributes the
workload among edge devices to ensure efficient processing and low
latency. Users can define privacy preferences and specify regions of
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interest or objects to be preserved or masked. EdgeMask is a system
that excels in fast real-time privacy-preserving video processing. Its
architecture allows for efficient inference performance, outperform-
ing many existing solutions. However, PRECISE stands out in two
key aspects. Firstly, EdgeMask exposes raw data on edge servers,
whereas PRECISE only exposes encrypted data, enhancing data
security. Secondly, PRECISE enables data owners to define privacy
object classifications, catering to diverse real-world applications
where different users may have specific privacy requirements in
various scenarios.

Visor [33] addressed the privacy issue in video analytics by
leveraging trusted execution environments (TEE) and employing
data-oblivious primitives and communication protocols. Osia et
al. [31] introduced a hybrid user-cloud framework using a feature
extractor to remove sensitive object features. They explored the
Siamese architecture and privacy measures. PRECISE complements
these works by supporting secret shares for secure segmentation
on the edges and removing sensitive objects defined by users. Close
to the approach in [19], PRECISE allows a vehicle to offload the pro-
cessing workload, including resource-intensive convolution layers,
to the edge.

8 CONCLUSION

This paper presents a Customized Secure Image Segmentation and
Inpainting (PRECISE) framework, which addresses the privacy chal-
lenges associated with data sharing in connected autonomous vehi-
cles (CAVs). The primary goal of this research is to facilitate data
sharing among vehicles and protect data privacy, with the goal of
extending their sensing capabilities and improving the accuracy
of their perception systems. Once sensitive objects are removed
from the sender vehicle’s sensor data, sharing the segmentation
results becomes crucial for the receiver vehicle to accurately detect
objects for safety. While the segmentation results do not contain the
pixel values from the original images, thereby enhancing privacy,
it is important to note that they may still retain specific informa-
tion, such as the shapes of background and objects. This particular
type of information is essential for autonomous driving purposes.
PRECISE enables users to define the types of objects that should
be excluded prior to data sharing with other vehicles. Presently,
the object specification operates at the class level, rather than on
an individual object basis. For example, a user can designate the
“houses” class as sensitive, and PRECISE will then remove all in-
stances of houses while retaining other object types in an image.
Our future plans for PRECISE involve extending its capability to
identify and protect individual objects within a class for enhanced
privacy protection at the object level. It is worth noting that the
design of secure functions and layers in DNNs within PRECISE
is generic and can be applied to other network architectures that
handle text or audio data processing.
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