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IMPORTANCE This research confirms and further establishes that pathogenic variants in a
fourth gene,METTL23, are associated with autosomal dominant normal-tension glaucoma
(NTG).

OBJECTIVE To determine the frequency of glaucoma-causing pathogenic variants in the
METTL23 gene in a cohort of patients with NTG from Iowa.

DESIGN, SETTING, AND PARTICIPANTS This case-control study took place at a single tertiary
care center in Iowa from January 1997 to January 2024, with analysis occurring between
January 2023 and January 2024. Two groups of participants were enrolled from the
University of Iowa clinics: 331 patients with NTG and 362 control individuals without
glaucoma. Patients with a history of trauma; steroid use; stigmata of pigment dispersion
syndrome; exfoliation syndrome; or pathogenic variants inMYOC, TBK1, orOPTNwere also
excluded.

MAIN OUTCOMES ANDMEASURES Detection of an enrichment ofMETTL23 pathogenic variants
in individuals with NTG compared with control individuals without glaucoma.

RESULTS The study included 331 patients with NTG (mean [SD] age, 68.0 [11.7] years; 228
[68.9%] female and 103 [31.1%] male) and 362 control individuals without glaucoma (mean
[SD] age, 64.5 [12.6] years; 207 [57.2%] female and 155 [42.8%]male). There were 5
detected instances of 4 uniqueMETTL23 pathogenic variants in patients with NTG. Three
METTL23 variants—p.Ala7Val, p.Pro22Arg, and p.Arg63Trp—were judged to be likely
pathogenic and were detected in 3 patients (0.91%) with NTG. However, when all detected
variants were evaluated with either mutation burden analysis or logistic regression, their
frequency was not statistically higher in individuals with NTG than in control individuals
without glaucoma (1.5% vs 2.5%; P = .27).

CONCLUSION AND RELEVANCE This investigation provides evidence that pathogenic variants
inMETTL23 are associated with NTG.Within an NTG cohort at a tertiary care center,
pathogenic variants were associated with approximately 1% of NTG cases, a frequency similar
to that of other known normal-tension glaucoma genes, including optineurin (OPTN),
TANK-binding kinase 1 (TBK1), andmyocilin (MYOC). The findings suggest thatMETTL23
pathogenic variants are likely involved in a biologic pathway that is associated with glaucoma
that occurs at lower intraocular pressures.
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P rimary open-angle glaucoma (POAG) is the most
common form of glaucoma that is defined by charac-
teristic optic disc damage (cupping) and correspond-

ing patterns of visual field defects.1 High intraocular
pressure (IOP) is a strong risk factor for POAG,2,3 although
disease can occur at any IOP. Normal-tension glaucoma
(NTG) is a subset of POAG that occurs with IOP of 21 mm Hg
or less. In the Baltimore Eye Survey,4 half of patients with
glaucoma had a screening IOP measurement of 20 mm Hg
or less. Of the patients with definite open-angle glaucoma
identified in the Beaver Dam Eye Study,5 32% had IOP of 21
mm Hg or less. Moreover, population-based studies6-9 of
Japanese, Chinese, and Malay people have suggested that a
large proportion (80% to 92%) of patients with POAG in the
groups in these studies have IOP measurements of 21 mm
Hg or less. NTG is a common form of glaucoma.

Most cases of POAG have a complex genetic basis and are
due to the combined actions of many (perhaps hundreds) of
genes.10,11 However, approximately 5% of POAG cases are
causedbypathogenic variants in single genes, includingmyo-
cilin (MYOC),12 optineurin (OPTN),13 and TANK-binding ki-
nase 1 (TBK1).14 Pathogenic variants in each of these 3 genes
have been associated with POAG that occurs with maximum
IOP of 21mmHg or less—that is, NTG. AlthoughMYOC patho-
genicvariants aremore typicallydetected inpatientswithhigh
IOP, 1MYOCvariant (Gln368Ter)wasdetected in0.6%ofNTG
cases in cohorts of patients from Iowa and Massachusetts.15

The most commonly detected NTG-associated OPTN patho-
genic variant (Glu50Lys) hasbeendetected in 1% to2%ofNTG
cases.13,16,17 Finally, TBK1 gene duplications and triplications
have been associated with 0.4% to 1.3% of NTG cases.18

Recently,Panandcolleagues19 identifiedamissensepatho-
genic variant, c.A83G p.Glu28Gly, in themethyltransferaselike
23 (METTL23) gene in an NTG pedigree. This variant results in
aberrant splicing of METTL23 messenger RNA, haploinsuffi-
ciency, and abnormal cellular localization of the encoded
METLL23 protein, a histone argininemethyltransferase.More-
over, pathogenic variants in METTL23 recapitulate glaucoma
phenotypes in genetically engineered mice. Finally, METTL23
isabundantlyproduced inretinalganglioncells,whichareapri-
mary site of NTG pathology. Together, these data have estab-
lishedMETTL23 as another gene associatedwith NTG.

METTL23 encodes a protein that regulates transcription
via its interactionswithGA-bindingprotein transcription fac-
tor α subunit (GABPA).20 Previous reports have demon-
strated thatMETTL23 variantsmay be associatedwith cogni-
tive impairment.21,22 The mechanism by which METTL23
variants may cause NTG are unknown. However, loss of
METTL23 function was shown to promote aberrant histone
methylation (H3R17) and dysregulation of NF-kB signaling,
which may contribute to retinal ganglion cell death and NTG
pathogenesis.19,23

The prevalence of METTL23 pathogenic variants among
patients with NTG is unknown, and only 1 NTG pedigree has
been reportedwith aMETTL23 variant.We sought to confirm
the association between METTL23 variants and NTG as well
as estimate the prevalence of potential disease-causing vari-
ants in a cohort of patients with NTG.

Methods

Study Population
Approval for this studywasprovidedby theUniversityof Iowa
institutional reviewboard, andall patientsor theirparentspro-
vided written informed consent for participation. Partici-
pants received no stipends or other incentives to participate.
The Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline was followed.

Patient Cohort
A total of 331 patients with NTG seen at the University of Iowa
were examined by board certified ophthalmologists at the
University of Iowawith glaucoma fellowship training andwere
judged to have NTG based on standard criteria as previously
described.14,15,24,25 Optic nerve criteria for glaucoma are cup-
disc ratiosgreater than0.7, thinningof theneural rim,asymme-
try of the optic nerve cup-to-disc ratio of 0.2 or greater, or pro-
gressive increase in cupping.Visual field evidenceof glaucoma
was based on the Collaborative Normal-Tension Glaucoma
Treatment Trial criteria.26 Patients tested with manual kinetic
perimetrywererequiredtoexhibitarcuatedefectsornasalsteps.
Maximum recorded IOPs of 21mmHgor lesswere required for
adiagnosisofNTG.Patientswithahistoryoftrauma,steroiduse,
or stigmataofpigmentdispersionsyndromeorexfoliationsyn-
drome were excluded. Patients with pathogenic variants in
MYOC, TBK1, orOPTNwere also excluded.

Glaucoma-Free Control Cohort
Atotal of 362control individualswithoutglaucomaseenat the
University of Iowawere examinedbyboard certified ophthal-
mologists andwere judgednot tohave glaucomaor ocular hy-
pertension.Patientswithahistoryofocularhypertension (IOP
>21mmHg)or stigmataofpigmentdispersion syndromeorex-
foliation syndrome were excluded.

Molecular Genetic Testing
Whole-Exome Analysis
Whole-exome data were collected using standard methods.
Eighty patientswithNTGhadwhole-exome sequencingdone

Key Points
Question What is the prevalence ofMETTL23 pathogenic variants
in patients with normal-tension glaucoma (NTG) within 1 tertiary
care center?

Findings In this case-control study, 3 of 331 patients (0.91%) with
NTG hadMETTL23 pathogenic variants judged likely to be
pathogenic based on analysis with mutation algorithms, protein
modeling, and sequence conservation, while no such pathogenic
variants were detected in in matched control individuals without
glaucoma (n = 362).

Meaning METTL23 pathogenic variants at this tertiary care center
were associated with NTG and had a prevalence among patients
with NTG (approximately 1%) similar to pathogenic variants in
other known glaucoma-causing genes, including optineurin
(OPTN), TANK-binding kinase 1 (TBK1), andmyocilin (MYOC).

Research Original Investigation METTL23 Variants and PatientsWith Normal-Tension Glaucoma

E2 JAMAOphthalmology Published online September 26, 2024 (Reprinted) jamaophthalmology.com

© 2024 American Medical Association. All rights reserved.

Downloaded from jamanetwork.com by University of Iowa user on 09/28/2024

http://www.equator-network.org/reporting-guidelines/strobe/
http://www.jamaophthalmology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2024.3829


in collaboration with the Yale Center for Mendelian Diseases
Genomicsaspreviouslydescribed,27while anadditional 55pa-
tients with NTG had whole-exome sequencing done at the
Universityof Iowaaspreviously reported.28Whole-exomedata
including the coding sequence of theMETTL23 gene was ob-
tained from our cohort of control individuals without glau-
coma as part of a previously reported study of pigmentary
glaucoma.29Variantsdetectedwithwhole-exomeanalysiswere
confirmed with Sanger sequencing. RefSeq transcript
NM_001378349.1 was used to interpret the coding conse-
quence of the variants.

Sanger Sequencing Analysis
An additional 196 patients with NTG from Iowa were
tested for pathogenic variants in the coding sequences
of METTL23 with Sanger sequencing as previously
reported.30,31 DNA spanning each of the transcribed exons
ofMETTL23was polymerase chain reaction–amplified using
standard reactions and analyzed with Sanger sequencing
on a 3730 automated capillary sequencer (Applied
BioSystems).

Variant Analysis
Variantspresent at 1%orgreater in theEuropeancohorts in the
GenomeAggregationDatabase (gnomAD)wereexcluded from
analysis. Identified sequence changes were evaluated for po-
tential pathogenicity using mutation analysis algorithms
Polymorphism Phenotyping version 2 (PolyPhen-2),32 sort-
ing intolerant from tolerant (SIFT),33 MutationTaster,34 com-
bined annotationdependent depletion (CADD),35 Blocks Sub-
stitutionMatrix 62 (BLOSUM62),36 and AlphaMissense.37We
also examined conservationof theMETTL23 aminoacids that
are altered by detected variants using the University of Cali-
fornia, Santa Cruz, genome browser. Finally, we investigated
the effects of detected variations onMETTL23 protein struc-
ture by developing a model of wild-type METTL23 protein
structureusingAlphaFold38 followedbyourphysics-basedpro-
tocol as described previously.39 Thenwe extended our analy-
sisbyaddingdetectedsequencevariations to the refinedstruc-
ture, followedby repackingofnearby residuesusinga rotamer
optimizationalgorithm40,41 andapotential energy functionde-
fined by the atomic multipole optimized energetics for bio-
molecular applications (AMOEBA) force field42 in the pro-
gram Force Field X43 as previously described.44

Fibroblast Cell Culture
Weobtained 4-mmskin biopsies fromnon–sun-exposed skin
on the forearm.We then isolated skin fibroblast cells from the
biopsy using methods previously described.14

Real-Time Polymerase Chain Reaction
ComplementaryDNAwasproduced fromfibroblastRNAusing
standard techniques.14 Primersweredesigned to amplify full-
lengthMETTL23complementaryDNA–spanning introns flank-
ing the exon containing detected pathogenic variants.
Polymerasechain reactionproductswereassessed for sizewith
agarose gel electrophoresis andvisualizedwith ethidiumbro-
mide staining.

Statistical Analysis
Age at enrollment was compared between patients with NTG
and control individuals without glaucoma using a t test. Sex
was compared between groups using a χ2 test. Variant fre-
quencies in the NTG and glaucoma-free control cohorts were
compared with age and sex as covariates using Firth logistic
regression for rare variants andoptimized sequencekernel as-
sociation test (SKAT-O) as a variant burden analysis.45

Results
A cohort of 331 patients with NTG (mean [SD] age, 68.0 [11.7]
years; 228 [68.9%] female and 103 [31.1%]male) and 362 con-
trol individualswithout glaucoma (mean [SD] age, 64.5 [12.6]
years; 207 [57.2%] female and 155 [42.8%] male) were as-
sembledtostudytheroleofMETTL23variants inNTG(Table 1).
Themeanageat enrollmentofpatientswithNTGwas3.5years
older than the mean age at enrollment of control individuals
(P < .001). The proportion of female participants in the NTG
group was higher than in the control group (P = .002).

Genetic Testing
We tested patients with NTG and control individuals without
glaucoma from Iowa for METTL23 gene variants. First, we
searched whole-exome sequences available from our cohort
of 135 patients with NTG (cohort 1) and 362 control individu-
als without glaucoma from Iowa for potential glaucoma-
causing variants in theMETTL23 gene. All of theNTGexomes
wereobtainedwith at least 30× coverage across the coding se-

Table 1. Demographic Features of the Normal-Tension Glaucoma (NTG) and Glaucoma-Free Control Cohortsa

Characteristic NTG (n = 331) Control (n = 362) P value
Age, mean (SD), y 68.0 (11.7) 64.5 (12.6) <.001

Sex, No. (%)

Female 228 (68.9) 207 (57.2)
.002

Male 103 (31.1) 155 (42.8)
a Ages were compared between patients with NTG and control individuals
without glaucoma using an unpairedWilcoxon test and sex was compared
with χ2 analyses. All patients with NTG and control individuals self-reported
non-Hispanic European ancestry. Ancestry data were collected because it is

need to ensure proper matching of control cohorts and because of known
differences in the genetics of glaucoma between populations with disparate
ancestry.
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quence of METTL23, and 99.4% (360/362) of the glaucoma-
free control samples were sequenced to 30× depth across the
coding sequence of METTL23. We detected a rare, heterozy-
gous variant—c.187C>T, p.Arg63Trp (rs370752836)—in 1 of 135
patientswithNTG (0.74%) (Table2). This variantwasnot iden-
tified in the control individuals without glaucoma from Iowa
and was rarely detected in the gnomAD database, the pub-
licly available genetic database of whole-exome and whole-
genome sequences frommore than800000people of differ-
ent ancestries,46 with an overall allele frequency of 0.0019%
amongnon-FinnishEuropean individuals (Table 2). Three ad-
ditional variantsweredetected in thecontrol individualswith-
out glaucoma from Iowa that were absent from the NTG co-
hort 1 (eTable in Supplement 1): p.Ala31Ala (rs377529542),
p.Asp166Asn (rs138247613), and p.Leu190Pro (rs147321492).
Two of these variants, p.Ala31Ala and p.Leu190Pro, were de-
tectedata frequencyofmore than1%ofpopulations in thegno-
mAD database or were synonymous coding sequence vari-
ants and met exclusion criteria for analysis.

We tested an additional 196 patients with NTG from Iowa
(cohort 2) for METTL23 variants with automated Sanger se-
quencing. A total of 4 instances of 3 uniqueMETTL23hetero-
zygousmissense variantswere detected, including 1 instance
of c.20C>T, p.Ala7Val (rs201999820); 1 instance of c.65C>G,
p.Pro22Arg (rs368889510);and3),and2 instancesofc.496G>A,
p.Asp166Asn.

Variant Analyses
TheMETTL23 gene encodes a histone argininemethyl trans-
ferase that demethylates histone proteins and may activate
transcription via its effects on chromatin.20,22 The methyl-
transferase domain of METTL23 is located within amino ac-
ids26 through120,47 and it encompasses 1of thedetectedvari-
ants, p.Arg63Trp.

Several approaches were used to assess the pathogenic-
ity of the detected METTL23 variants. First, the frequencies
ofvariantswerecomparedbetweenpatientswithNTGandcon-
trol individuals without glaucoma. One heterozygous vari-
ant, p.Asp166Asn, was present in 2.5% of control individuals
(9 of 363) and 0.6% of patients with NTG (2 of 331). The other
3METTL23variantswere absent from the glaucoma-free con-
trol cohort and were observed at extremely low frequency in
a large public database, gnomAD (Table 2).When cohort 1 and
2 were combined—these 3 rare missense variants, p.Ala7Val,
p.Pro22Arg, and p.Arg63Trp—were detected in a total of 3
(0.91%) of 331 patients with NTG and in none of the 362 con-
trol individuals. However, when analyzed as a group, the fre-
quencies of all 4 detectedMETTL23 variants in patients with
NTGwere not significantly higher than in control individuals
using either logistic regression or the mutation burden test
SKAT-O (1.5% vs 2.5%; P = .27). Second, we analyzed each of
the 4 METTL23 variants with 6 different algorithms (Poly-
Phen2, SIFT, Blosum62, MutationTaster, CADD, and Alpha-
Missense) to estimate their likely pathogenicity (Table 2). All
6 variant analysis algorithms suggested that p.Ala7Val is likely
pathogenic, and 4 of 6 algorithms suggested p.Arg63Trp is
pathogenic. Conversely,most algorithms suggested the other
2 variants (p.Pro22Arg andp.Asp166Asn) are likelynonpatho-Ta
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genic. Third, we analyzed the conservation of the amino ac-
ids affectedby the4variants across 10different species of ver-
tebrate animals (eFigure 1 in Supplement 1). The amino acids
altered by the p.Ala7Val and p.Pro22Arg variants were highly
conserved among vertebrate species, suggesting theymay be
vital for METTL23 function. The amino acids altered by
p.Arg63Trpandp.Asp166Asnwere also conservedamongver-
tebrate species, but to a lesser degree.Notably, the aminoacid
at position63 in theprotein encodedby ratMETTL23 is a tryp-
tophan that matches the variant allele in the human gene.

We also investigated the potential pathogenicity of vari-
ants by modeling their effects on the molecular structure of
METTL23protein. Thep.Ala7Val variant doesnot alter any lo-
cal interactions in the METTL23 structure (Figure 1A). Con-
versely, thep.Pro22Arg variant adds ahydrogenbond inplace
of the proline backbone bond, whichmight cause a change in
protein stability (Figure 1B). Thep.Arg63Trpvariant alters hy-
drogen bonding with neighboring amino acids and intro-
duces a tryptophan at the surface of METTL23, which in-
creases its hydrophobicity48 and may be associated with an
increased propensity for protein aggregation49-51 (Figure 2A).
Thep.Asp166Asnvariantdoesnot appear to alter protein fold-
ing and structure (Figure 2B). The molecular modeling of
METTL23 provides some additional support for the pathoge-
nicity of 2 variants, namely, p.Pro22Arg and p.Arg63Trp.

Family members were available for study from the pa-
tientwithap.Ala7ValMETTL23variant,whohadasiblingwith
NTGwhoalsohad thep.Ala7Val variant.Overall, a rangeofdif-
ferent variant analyses provide support for the pathogenicity
of thep.Ala7Val andp.Arg63Trpvariants andmixed results for
thep.Pro22Argvariant. The control population frequencyand
variant analyses suggest that thep.Asp166Asnvariant is likely
benign. Using American College of Medical Genetics and
Genomics and the Association for Molecular Pathology
criteria,52 3of theMETTL23variantsmaybeclassifiedasavari-
ant of unknown significance, p.Ala7Val (PM2, PP1, and PP3),
p.Pro22Arg (PM2 and BP4), p.Arg63Trp (PM2 and PP3), while
1 variant is likely benign, namely, p.Asp166Asn (BS1 andBP4).

Splicing Analyses
Apreviously reportedMETTL23variant, p.Glu28Gly, is known
to alter splicing and cause NTG. Consequently, we sought to
determine if the variantswedetectedmight also lead to alter-
native splicing. Fibroblast cells had been previously col-
lected via a skin biopsy from each patient with NTG with a
METTL23pathogenicvariantaswell as fromage-andethnicity-
matched control individualswithout glaucoma.RNAwas iso-
lated from the fibroblast cells and real-timepolymerase chain
reaction experiments detected noMETTL23 splicing variants
(data not shown).

Figure 1. Protein Structure ofMETTL23 Part 1

Ala7 and Ala7ValA Pro22 and Pro22ArgB

Wildtype (Ala7) Wildtype (Pro22)

Variant (Ala7Val) Variant (Pro22Arg)

Enlargement Enlargement

Enlargement Enlargement

A, In the top subpanel, the wildtypeMETTL23 protein contains an alanine (blue)
at position 7 that has 2 hydrogen bonds (black dashed lines) to neighboring
amino acids (orange) in an α helix. Enlargement of the boxed region shows the
alanine and its hydrogen bonds. In the bottom subpanel, the Ala7Val variant
introduces a valine residue (green). Enlargement of the boxed region shows
that the variant valine (green) does not change the hydrogen bonding pattern
relative to the nativeMETTL23 structure and likely does not alter the stability of

the protein structure. B, In the top subpanel, the wildtypeMETTL23 protein
contains a proline (blue) at position 22 that is surface exposed and has no
hydrogen bonds. Enlargement of the boxed region shows the surface exposed
proline amino acid. In the bottom subpanel, the Pro22Arg variant introduces an
arginine residue (green). Enlargement of the boxed region shows that the
variant arginine (green) adds a hydrogen bond to a neighboring amino acid
(orange), altering the stability of the protein at that site.
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Clinical Features of PatientsWith NTG andMETTL23Variants
Theclinical featuresof theNTGassociatedwiththeseMETTL23
pathogenic variants aredescribed in theeAppendix inSupple-
ment 1.All 4patientshadasymmetric glaucoma,with the right
side greater than the left.

Discussion
This case-control studywas conductedbecause, even though
glaucoma is known to have a major genetic component,53,54

the specific genetic factors involved inmost cases of NTG are
unknown. Several risk factor genes that contribute to cases of
polygenic forms of NTG have been discovered, including
CDKN2B-AS1,55-57 TLR4,58 ELOVL5, SRBD1,59 and a chromo-
some9q21 locus.56,60,61 Single pathogenic variants in any of 4
genes may independently cause NTG. Missense variants in
OPTN (p.Gln50Lys)13 andMYOC (p.Gln368Ter)15 andTBK1gene
duplication or gene triplications24 have each been shown to
cause approximately 1%ofNTGcases.More recently, Pan and
colleagues19 showed that a missense variant in METTL23
(p.Glu28Gly) caused NTG in a 3-generation glaucoma pedi-
gree with 9 affected familymembers. This cohort study from
a tertiary care center in Iowa provides confirmation that
METTL23 pathogenic variants are associated with NTG. This

report of 3disease-associatedMETTL23pathogenic variants—
p.Ala7Val, p.Pro22Arg, and p.Arg63Trp—strengthens the as-
sociationbetweenthisgeneandglaucomapathogenesis.These
additional variantswere present in patientswithNTG, absent
fromcontrol individualswithoutglaucoma,andonly rarelyde-
tected in large public exome databases. Multiple mutation
analyses also suggested their pathogenicity. These analyses
suggest that as many as 1 in 100 cases of NTGmay be caused
byMETTL23pathogenicvariants. TheprevalenceofMETTL23
pathogenic variants in patientswithNTG from Iowawas simi-
lar to that ofOPTN,MYOC, andTBK1pathogenic variants, sug-
gesting that variants in the METTL23 gene may be 1 of the 4
most common causes of NTG. More studies with larger and
more diverse patient populations are needed to determine if
these findings in Iowa cohorts are generalizable.

All 4 patients with plausible NTG-causing variants had
asymmetric disease that was worse in the right eye than the
left eye (eFigure 2 in Supplement 1). Asymmetry is a common
feature inexfoliationglaucoma,62,63 andprior studieshavealso
suggested the presence of some asymmetry in POAG,64 per-
haps related in part to asymmetric intraocular pressure.65-67

Somereports suggestedPOAGmayhavesomeasymmetry that
is worse in the left eye, while others did not.68 The potential
causes of asymmetry in POAG are unknown, although some
have suggested that differences in vascular anatomy might

Figure 2. Protein Structure ofMETTL23 Part 2

Arg63 and Arg63TrpA Asp166 and Asp166AsnB

Wildtype (Arg63) Wildtype (Asp166)

Variant (Arg63Trp) Wildtype (Asp166Asn)

Enlargement Enlargement

Enlargement Enlargement

A, In the top subpanel, the wildtypeMETTL23 protein contains an arginine
(blue) at position 63, which hydrogen bonds (black dashed lines) to neighboring
amino acids (orange). Enlargement of the boxed region shows 3 hydrogen
bonds between the native arginine and neighboring leucine, glutamic acid, and
glutamine residues. In the bottom subpanel, the Arg63Trp variant introduces a
tryptophan residue (green). Enlargement of the boxed region shows that the
variant tryptophan (green) disrupts the original arginine-glutamic acid
hydrogen bond. It also increases hydrophobicity at the protein surface, which

may promote hydrophobic aggregation. B, In the top subpanel, the wildtype
METTL23 protein contains an aspartic acid (blue) at position 166 that is solvent
exposed. Enlargement of the boxed region shows the surface exposed aspartic
acid has no hydrogen bonds to neighboring amino acids in the native structure.
In the bottom subpanel, the Asp166Asn variant introduces an asparagine
residue (green). Enlargement of the boxed region shows that the variant
asparagine (green) remains solvent exposed and introduces no hydrogen bonds
or significant changes to the protein structure.
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have a role in promoting asymmetric disease, ie, worse in the
left eye.69 It is possible that the asymmetry of disease ob-
served in our report (worse in the right eye) is a random oc-
currence related to the small number of patients evaluated
(n = 4). In the first report ofMETTL23 related glaucoma, Pan
et al19madenonote of asymmetric disease, and the severe vi-
sual field defects presented from 1 patient with NTG with a
METTL23pathogenic variantwere symmetric. Larger studies
of patients with METTL23-related NTG are needed to deter-
mine if worse disease in the right eye is a feature of this type
of glaucoma.

Several homozygous, truncatingMETTL23 variants have
previously been associated with autosomal recessive inheri-
tance of developmental delay and intellectual disability.20,22

Pan et al19 identified a heterozygousMETTL23missense vari-
ant, p.Glu28Gly, that is linked with autosomal dominant in-
heritanceofNTG ina large Japanesepedigree.Weconfirm this
finding by identifying 3 novel heterozygous METTL23 mis-
sense pathogenic variants in patients with NTG from Iowa.
While truncatingMETTL23 variants are associated with cen-
tralnervous systemabnormalities, somemissensevariants are
associatedwithNTG. The p.Glu28Gly pathogenic variantwas
shown to cause METTL23 splicing abnormalities, which re-
sulted in loss ofMETTL23 protein production and dysregula-
tionof its transcriptional function.19Themechanismbywhich
the novelMETTL23 pathogenic variants in the current report
may cause NTG is unclear. However, our preliminary studies
suggest that METTL23 function is not dysregulated through
splicing abnormalities in the patients in this cohort. Further
studies of these novel pathogenic variants with animal mod-
els and cell culture models of disease are warranted to con-
firm their pathogenicity, to investigate the mechanisms by

which they may cause disease, and to explore new potential
variant-specific therapies.

Limitations
This study has limitations. First, this analysis involved indi-
viduals of non-Hispanic, European ancestry and the results
may not be generalizable to populations of patients of other
races and ethnicities. Similarly, this analysis was made with
patients fromatertiarycarecenter andmaynot representwhat
would be observed in other patient populations. Second, the
relatively small sizeof theNTGcohortmayhavebiased thede-
tected frequency of METTL23 pathogenic variants. More-
over, the small cohort size limited the power of this study to
detect a statistically significant enrichmentofpathogenicvari-
ants among patients with NTG. Third, the cohort of patients
with NTG was slightly older and had a greater proportion of
female participants than the cohort of control individuals.
Thesedifferencesmightbeasourceofbias in thevariantanaly-
ses. Fourth, the analyses in this report support the pathoge-
nicity of severalMETTL23 variants, but functional studies or
transgenic animal studies are needed to provide the stron-
gest evidence for their role in glaucoma.

Conclusions
This case-control studyprovidesmoreevidence thatMETTL23
variants are associated with NTG. Moreover, the study esti-
mated aprevalence of pathogenicMETTL23variants to be ap-
proximately 1% in patientswithNTG from a tertiary care cen-
ter in Iowa. Replication and functional studies to confirmand
extend these results are warranted.
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