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METTL23 Variants and Patients With Normal-Tension Glaucoma
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IMPORTANCE This research confirms and further establishes that pathogenic variantsin a
fourth gene, METTL23, are associated with autosomal dominant normal-tension glaucoma
(NTG).

OBJECTIVE To determine the frequency of glaucoma-causing pathogenic variants in the
METTL23 gene in a cohort of patients with NTG from lowa.

DESIGN, SETTING, AND PARTICIPANTS This case-control study took place at a single tertiary
care center in lowa from January 1997 to January 2024, with analysis occurring between
January 2023 and January 2024. Two groups of participants were enrolled from the
University of lowa clinics: 331 patients with NTG and 362 control individuals without
glaucoma. Patients with a history of trauma; steroid use; stigmata of pigment dispersion
syndrome; exfoliation syndrome; or pathogenic variants in MYOC, TBK1, or OPTN were also
excluded.

MAIN OUTCOMES AND MEASURES Detection of an enrichment of METTL23 pathogenic variants
in individuals with NTG compared with control individuals without glaucoma.

RESULTS The study included 331 patients with NTG (mean [SD] age, 68.0 [11.7] years; 228
[68.9%] female and 103 [31.1%] male) and 362 control individuals without glaucoma (mean
[SD] age, 64.5 [12.6] years; 207 [57.2%] female and 155 [42.8%] male). There were 5
detected instances of 4 unique METTL23 pathogenic variants in patients with NTG. Three
METTL23 variants—p.Ala7Val, p.Pro22Arg, and p.Arg63Trp—were judged to be likely
pathogenic and were detected in 3 patients (0.91%) with NTG. However, when all detected
variants were evaluated with either mutation burden analysis or logistic regression, their
frequency was not statistically higher in individuals with NTG than in control individuals
without glaucoma (1.5% vs 2.5%; P = .27).

CONCLUSION AND RELEVANCE This investigation provides evidence that pathogenic variants
in METTL23 are associated with NTG. Within an NTG cohort at a tertiary care center,
pathogenic variants were associated with approximately 1% of NTG cases, a frequency similar
to that of other known normal-tension glaucoma genes, including optineurin (OPTN),
TANK-binding kinase 1(TBKT), and myocilin (MYOC). The findings suggest that METTL23
pathogenic variants are likely involved in a biologic pathway that is associated with glaucoma
that occurs at lower intraocular pressures.
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rimary open-angle glaucoma (POAG) is the most

common form of glaucoma that is defined by charac-

teristic optic disc damage (cupping) and correspond-
ing patterns of visual field defects.' High intraocular
pressure (IOP) is a strong risk factor for POAG,?* although
disease can occur at any IOP. Normal-tension glaucoma
(NTG) is a subset of POAG that occurs with IOP of 21 mm Hg
or less. In the Baltimore Eye Survey,* half of patients with
glaucoma had a screening IOP measurement of 20 mm Hg
or less. Of the patients with definite open-angle glaucoma
identified in the Beaver Dam Eye Study,® 32% had IOP of 21
mm Hg or less. Moreover, population-based studies®® of
Japanese, Chinese, and Malay people have suggested that a
large proportion (80% to 92%) of patients with POAG in the
groups in these studies have IOP measurements of 21 mm
Hg or less. NTG is a common form of glaucoma.

Most cases of POAG have a complex genetic basis and are
due to the combined actions of many (perhaps hundreds) of
genes.'>!! However, approximately 5% of POAG cases are
caused by pathogenic variants in single genes, including myo-
cilin (MYOC),'? optineurin (OPTN),'* and TANK-binding ki-
nase 1 (TBK1).'* Pathogenic variants in each of these 3 genes
have been associated with POAG that occurs with maximum
I0P of 21 mm Hg or less—that is, NTG. Although MYOC patho-
genic variants are more typically detected in patients with high
I0P, 1 MYOC variant (GIn368Ter) was detected in 0.6% of NTG
cases in cohorts of patients from Iowa and Massachusetts.®
The most commonly detected NTG-associated OPTN patho-
genic variant (Glu50Lys) has been detected in 1% to 2% of NTG
cases.'®>1%17 Finally, TBK1 gene duplications and triplications
have been associated with 0.4% to 1.3% of NTG cases.'®

Recently, Pan and colleagues'® identified a missense patho-
genic variant, c.A83G p.Glu28Gly, in the methyltransferaselike
23 (METTL23) gene in an NTG pedigree. This variant results in
aberrant splicing of METTL23 messenger RNA, haploinsuffi-
ciency, and abnormal cellular localization of the encoded
METLL23 protein, a histone arginine methyltransferase. More-
over, pathogenic variants in METTL23 recapitulate glaucoma
phenotypes in genetically engineered mice. Finally, METTL23
isabundantly produced in retinal ganglion cells, which are a pri-
mary site of NTG pathology. Together, these data have estab-
lished METTL23 as another gene associated with NTG.

METTL23 encodes a protein that regulates transcription
via its interactions with GA-binding protein transcription fac-
tor a subunit (GABPA).2° Previous reports have demon-
strated that METTL23 variants may be associated with cogni-
tive impairment.?"22 The mechanism by which METTL23
variants may cause NTG are unknown. However, loss of
METTL23 function was shown to promote aberrant histone
methylation (H3R17) and dysregulation of NF-kB signaling,
which may contribute to retinal ganglion cell death and NTG
pathogenesis.'®-23

The prevalence of METTL23 pathogenic variants among
patients with NTG is unknown, and only 1 NTG pedigree has
been reported with a METTL23 variant. We sought to confirm
the association between METTL23 variants and NTG as well
as estimate the prevalence of potential disease-causing vari-
ants in a cohort of patients with NTG.
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Key Points

Question What is the prevalence of METTL23 pathogenic variants
in patients with normal-tension glaucoma (NTG) within 1 tertiary
care center?

Findings In this case-control study, 3 of 331 patients (0.91%) with
NTG had METTL23 pathogenic variants judged likely to be
pathogenic based on analysis with mutation algorithms, protein
modeling, and sequence conservation, while no such pathogenic
variants were detected in in matched control individuals without
glaucoma (n = 362).

Meaning METTL23 pathogenic variants at this tertiary care center
were associated with NTG and had a prevalence among patients
with NTG (approximately 1%) similar to pathogenic variants in
other known glaucoma-causing genes, including optineurin
(OPTN), TANK-binding kinase 1(TBKT), and myocilin (MYOC).

Methods

Study Population

Approval for this study was provided by the University of Towa
institutional review board, and all patients or their parents pro-
vided written informed consent for participation. Partici-
pants received no stipends or other incentives to participate.
The Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline was followed.

Patient Cohort

A total of 331 patients with NTG seen at the University of lowa
were examined by board certified ophthalmologists at the
University of lowa with glaucoma fellowship training and were
judged to have NTG based on standard criteria as previously
described.'*1>-24:25 Qptic nerve criteria for glaucoma are cup-
discratios greater than 0.7, thinning of the neural rim, asymme-
try of the optic nerve cup-to-disc ratio of 0.2 or greater, or pro-
gressive increase in cupping. Visual field evidence of glaucoma
was based on the Collaborative Normal-Tension Glaucoma
Treatment Trial criteria.2® Patients tested with manual kinetic
perimetry were required to exhibit arcuate defects or nasal steps.
Maximum recorded IOPs of 21 mm Hg or less were required for
adiagnosis of NTG. Patients with a history of trauma, steroid use,
or stigmata of pigment dispersion syndrome or exfoliation syn-
drome were excluded. Patients with pathogenic variants in
MYOC, TBK1, or OPTN were also excluded.

Glaucoma-Free Control Cohort

Atotal of 362 control individuals without glaucoma seen at the
University of lowa were examined by board certified ophthal-
mologists and were judged not to have glaucoma or ocular hy-
pertension. Patients with a history of ocular hypertension (IOP
>21 mm Hg) or stigmata of pigment dispersion syndrome or ex-
foliation syndrome were excluded.

Molecular Genetic Testing

Whole-Exome Analysis

Whole-exome data were collected using standard methods.
Eighty patients with NTG had whole-exome sequencing done
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Table 1. Demographic Features of the Normal-Tension Glaucoma (NTG) and Glaucoma-Free Control Cohorts?

Characteristic NTG (n = 331) Control (n = 362) Pvalue
Age, mean (SD), y 68.0 (11.7) 64.5 (12.6) <.001
Sex, No. (%)

Female 228 (68.9) 207 (57.2)

Male 103 (31.1) 155 (42.8) 002

@ Ages were compared between patients with NTG and control individuals
without glaucoma using an unpaired Wilcoxon test and sex was compared
with x2 analyses. All patients with NTG and control individuals self-reported
non-Hispanic European ancestry. Ancestry data were collected because it is

need to ensure proper matching of control cohorts and because of known
differences in the genetics of glaucoma between populations with disparate
ancestry.

in collaboration with the Yale Center for Mendelian Diseases
Genomics as previously described,?” while an additional 55 pa-
tients with NTG had whole-exome sequencing done at the
University of lowa as previously reported.?® Whole-exome data
including the coding sequence of the METTL23 gene was ob-
tained from our cohort of control individuals without glau-
coma as part of a previously reported study of pigmentary
glaucoma.?® Variants detected with whole-exome analysis were
confirmed with Sanger sequencing. RefSeq transcript
NM_001378349.1 was used to interpret the coding conse-
quence of the variants.

Sanger Sequencing Analysis

An additional 196 patients with NTG from Iowa were
tested for pathogenic variants in the coding sequences
of METTL23 with Sanger sequencing as previously
reported.3%-3! DNA spanning each of the transcribed exons
of METTL23 was polymerase chain reaction-amplified using
standard reactions and analyzed with Sanger sequencing
on a 3730 automated capillary sequencer (Applied
BioSystems).

Variant Analysis

Variants present at 1% or greater in the European cohorts in the
Genome Aggregation Database (gnomAD) were excluded from
analysis. Identified sequence changes were evaluated for po-
tential pathogenicity using mutation analysis algorithms
Polymorphism Phenotyping version 2 (PolyPhen-2),3* sort-
ing intolerant from tolerant (SIFT),** MutationTaster,3* com-
bined annotation dependent depletion (CADD),3> Blocks Sub-
stitution Matrix 62 (BLOSUMG62),%¢ and AlphaMissense.>” We
also examined conservation of the METTL23 amino acids that
are altered by detected variants using the University of Cali-
fornia, Santa Cruz, genome browser. Finally, we investigated
the effects of detected variations on METTL23 protein struc-
ture by developing a model of wild-type METTL23 protein
structure using AlphaFold>® followed by our physics-based pro-
tocol as described previously.2® Then we extended our analy-
sis by adding detected sequence variations to the refined struc-
ture, followed by repacking of nearby residues using a rotamer
optimization algorithm*®#! and a potential energy function de-
fined by the atomic multipole optimized energetics for bio-
molecular applications (AMOEBA) force field*? in the pro-
gram Force Field X*3 as previously described.**

jamaophthalmology.com

Fibroblast Cell Culture

We obtained 4-mm skin biopsies from non-sun-exposed skin
on the forearm. We then isolated skin fibroblast cells from the
biopsy using methods previously described.*

Real-Time Polymerase Chain Reaction

Complementary DNA was produced from fibroblast RNA using
standard techniques.'* Primers were designed to amplify full-
length METTL23 complementary DNA-spanning introns flank-
ing the exon containing detected pathogenic variants.
Polymerase chain reaction products were assessed for size with
agarose gel electrophoresis and visualized with ethidium bro-
mide staining.

Statistical Analysis

Age at enrollment was compared between patients with NTG
and control individuals without glaucoma using a t test. Sex
was compared between groups using a x? test. Variant fre-
quencies in the NTG and glaucoma-free control cohorts were
compared with age and sex as covariates using Firth logistic
regression for rare variants and optimized sequence kernel as-
sociation test (SKAT-0) as a variant burden analysis.*’

. |
Results

A cohort of 331 patients with NTG (mean [SD] age, 68.0 [11.7]
years; 228 [68.9%] female and 103 [31.1%] male) and 362 con-
trol individuals without glaucoma (mean [SD] age, 64.5[12.6]
years; 207 [57.2%] female and 155 [42.8%] male) were as-
sembled to study the role of METTL23 variants in NTG (Table 1).
The mean age at enrollment of patients with NTG was 3.5 years
older than the mean age at enrollment of control individuals
(P < .001). The proportion of female participants in the NTG
group was higher than in the control group (P = .002).

Genetic Testing

We tested patients with NTG and control individuals without
glaucoma from Iowa for METTL23 gene variants. First, we
searched whole-exome sequences available from our cohort
of 135 patients with NTG (cohort 1) and 362 control individu-
als without glaucoma from Iowa for potential glaucoma-
causing variants in the METTL23 gene. All of the NTG exomes
were obtained with at least 30x coverage across the coding se-
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quence of METTL23, and 99.4% (360/362) of the glaucoma-
free control samples were sequenced to 30x depth across the
coding sequence of METTL23. We detected a rare, heterozy-
gous variant—c.187C>T, p.Arg63Trp (rs370752836)—in 1 0f 135
patients with NTG (0.74%) (Table 2). This variant was not iden-
tified in the control individuals without glaucoma from Iowa
and was rarely detected in the gnomAD database, the pub-
licly available genetic database of whole-exome and whole-
genome sequences from more than 800 000 people of differ-
ent ancestries,*® with an overall allele frequency of 0.0019%
among non-Finnish European individuals (Table 2). Three ad-
ditional variants were detected in the control individuals with-
out glaucoma from Iowa that were absent from the NTG co-
hort 1 (eTable in Supplement 1): p.Ala31Ala (rs377529542),
p.Aspl66Asn (rs138247613), and p.Leul90Pro (rs147321492).
Two of these variants, p.Ala31Ala and p.Leul90Pro, were de-
tected at a frequency of more than 1% of populations in the gno-
mAD database or were synonymous coding sequence vari-
ants and met exclusion criteria for analysis.

We tested an additional 196 patients with NTG from Iowa
(cohort 2) for METTL23 variants with automated Sanger se-
quencing. A total of 4 instances of 3 unique METTL23 hetero-
zygous missense variants were detected, including 1 instance
of ¢.20C>T, p.Ala7Val (rs201999820); 1 instance of ¢.65C>G,
p.Pro22Arg (rs368889510); and 3), and 2 instances of c.496G>A,
p-Aspl66Asn.

Variant Analyses

The METTL23 gene encodes a histone arginine methyl trans-
ferase that demethylates histone proteins and may activate
transcription via its effects on chromatin.?°-?2 The methyl-
transferase domain of METTL23 is located within amino ac-
ids 26 through 120,%” and it encompasses 1 of the detected vari-
ants, p.Arg63Trp.

Several approaches were used to assess the pathogenic-
ity of the detected METTL23 variants. First, the frequencies
of variants were compared between patients with NTG and con-
trol individuals without glaucoma. One heterozygous vari-
ant, p.Aspl66Asn, was present in 2.5% of control individuals
(9 of 363) and 0.6% of patients with NTG (2 of 331). The other
3 METTL23 variants were absent from the glaucoma-free con-
trol cohort and were observed at extremely low frequency in
alarge public database, gnomAD (Table 2). When cohort 1 and
2 were combined—these 3 rare missense variants, p.Ala7Val,
p.-Pro22Arg, and p.Arg63Trp—were detected in a total of 3
(0.91%) of 331 patients with NTG and in none of the 362 con-
trol individuals. However, when analyzed as a group, the fre-
quencies of all 4 detected METTL23 variants in patients with
NTG were not significantly higher than in control individuals
using either logistic regression or the mutation burden test
SKAT-O (1.5% vs 2.5%; P = .27). Second, we analyzed each of
the 4 METTL23 variants with 6 different algorithms (Poly-
Phen2, SIFT, Blosum62, MutationTaster, CADD, and Alpha-
Missense) to estimate their likely pathogenicity (Table 2). All
6 variant analysis algorithms suggested that p.Ala7Valis likely
pathogenic, and 4 of 6 algorithms suggested p.Arg63Trp is
pathogenic. Conversely, most algorithms suggested the other
2 variants (p.Pro22Arg and p.Aspl66Asn) are likely nonpatho-
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Figure 1. Protein Structure of METTL23 Part 1

E Ala7 and Ala7Val

Variant (Ala7Val) Enlargement

Pro22 and Pro22Arg

Enlargement

Enlargement

A. In the top subpanel, the wildtype METTL23 protein contains an alanine (blue)
at position 7 that has 2 hydrogen bonds (black dashed lines) to neighboring
amino acids (orange) in an a helix. Enlargement of the boxed region shows the
alanine and its hydrogen bonds. In the bottom subpanel, the Ala7Val variant
introduces a valine residue (green). Enlargement of the boxed region shows
that the variant valine (green) does not change the hydrogen bonding pattern
relative to the native METTL23 structure and likely does not alter the stability of

the protein structure. B, In the top subpanel, the wildtype METTL23 protein
contains a proline (blue) at position 22 that is surface exposed and has no
hydrogen bonds. Enlargement of the boxed region shows the surface exposed
proline amino acid. In the bottom subpanel, the Pro22Arg variant introduces an
arginine residue (green). Enlargement of the boxed region shows that the
variant arginine (green) adds a hydrogen bond to a neighboring amino acid
(orange), altering the stability of the protein at that site.

genic. Third, we analyzed the conservation of the amino ac-
ids affected by the 4 variants across 10 different species of ver-
tebrate animals (eFigure 1in Supplement 1). The amino acids
altered by the p.Ala7Val and p.Pro22Arg variants were highly
conserved among vertebrate species, suggesting they may be
vital for METTL23 function. The amino acids altered by
p-Arg63Trp and p.Aspl66Asn were also conserved among ver-
tebrate species, but to alesser degree. Notably, the amino acid
at position 63 in the protein encoded by rat METTL23 is a tryp-
tophan that matches the variant allele in the human gene.
We also investigated the potential pathogenicity of vari-
ants by modeling their effects on the molecular structure of
METTL23 protein. The p.Ala7Val variant does not alter any lo-
cal interactions in the METTL23 structure (Figure 1A). Con-
versely, the p.Pro22Arg variant adds a hydrogen bond in place
of the proline backbone bond, which might cause a change in
protein stability (Figure 1B). The p.Arg63Trp variant alters hy-
drogen bonding with neighboring amino acids and intro-
duces a tryptophan at the surface of METTL23, which in-
creases its hydrophobicity*® and may be associated with an
increased propensity for protein aggregation*-! (Figure 2A).
The p.Aspl66Asn variant does not appear to alter protein fold-
ing and structure (Figure 2B). The molecular modeling of
METTL23 provides some additional support for the pathoge-
nicity of 2 variants, namely, p.Pro22Arg and p.Arg63Trp.

jamaophthalmology.com

Family members were available for study from the pa-
tient with a p.Ala7Val METTL23 variant, who had a sibling with
NTG who also had the p.Ala7Val variant. Overall, a range of dif-
ferent variant analyses provide support for the pathogenicity
of the p.Ala7Val and p.Arg63Trp variants and mixed results for
the p.Pro22Arg variant. The control population frequency and
variant analyses suggest that the p.Aspl66Asn variant is likely
benign. Using American College of Medical Genetics and
Genomics and the Association for Molecular Pathology
criteria,>? 3 of the METTL23 variants may be classified as a vari-
ant of unknown significance, p.Ala7Val (PM2, PP1, and PP3),
p.Pro22Arg (PM2 and BP4), p.Arg63Trp (PM2 and PP3), while
1variant is likely benign, namely, p.Aspl166Asn (BS1and BP4).

Splicing Analyses

A previously reported METTL23 variant, p.Glu28Gly, is known
to alter splicing and cause NTG. Consequently, we sought to
determine if the variants we detected might also lead to alter-
native splicing. Fibroblast cells had been previously col-
lected via a skin biopsy from each patient with NTG with a
METTL23 pathogenic variant as well as from age- and ethnicity-
matched control individuals without glaucoma. RNA was iso-
lated from the fibroblast cells and real-time polymerase chain
reaction experiments detected no METTL23 splicing variants
(data not shown).
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Figure 2. Protein Structure of METTL23 Part 2

E Arg63 and Arg63Trp

Variant (Arg63Trp)

Enlargement

Asp166 and Asp166Asn

Enlargement

Wildtype (Asp166Asn) Enlargement

A, In the top subpanel, the wildtype METTL23 protein contains an arginine
(blue) at position 63, which hydrogen bonds (black dashed lines) to neighboring
amino acids (orange). Enlargement of the boxed region shows 3 hydrogen
bonds between the native arginine and neighboring leucine, glutamic acid, and
glutamine residues. In the bottom subpanel, the Arg63Trp variant introduces a
tryptophan residue (green). Enlargement of the boxed region shows that the
variant tryptophan (green) disrupts the original arginine-glutamic acid
hydrogen bond. It also increases hydrophobicity at the protein surface, which

may promote hydrophobic aggregation. B, In the top subpanel, the wildtype
METTL23 protein contains an aspartic acid (blue) at position 166 that is solvent
exposed. Enlargement of the boxed region shows the surface exposed aspartic
acid has no hydrogen bonds to neighboring amino acids in the native structure.
In the bottom subpanel, the Asp166Asn variant introduces an asparagine
residue (green). Enlargement of the boxed region shows that the variant
asparagine (green) remains solvent exposed and introduces no hydrogen bonds
or significant changes to the protein structure.

Clinical Features of Patients With NTG and METTL23 Variants
The clinical features of the NTG associated with these METTL23
pathogenic variants are described in the eAppendix in Supple-
ment 1. All 4 patients had asymmetric glaucoma, with the right
side greater than the left.

|
Discussion

This case-control study was conducted because, even though
glaucoma is known to have a major genetic component,>3>*
the specific genetic factors involved in most cases of NTG are
unknown. Several risk factor genes that contribute to cases of
polygenic forms of NTG have been discovered, including
CDKN2B-AS1,>>>” TLR4,>® ELOVL5, SRBDI,>° and a chromo-
some 921 locus.>®-¢%-¢! Single pathogenic variants in any of 4
genes may independently cause NTG. Missense variants in
OPTN (p.GIn50Lys)" and MYOC (p.GIn368Ter)" and TBKI gene
duplication or gene triplications?* have each been shown to
cause approximately 1% of NTG cases. More recently, Pan and
colleagues' showed that a missense variant in METTL23
(p.Glu28Gly) caused NTG in a 3-generation glaucoma pedi-
gree with 9 affected family members. This cohort study from
a tertiary care center in Iowa provides confirmation that
METTL23 pathogenic variants are associated with NTG. This
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report of 3 disease-associated METTL23 pathogenic variants—
p-Ala7Val, p.Pro22Arg, and p.Arg63Trp—strengthens the as-
sociation between this gene and glaucoma pathogenesis. These
additional variants were present in patients with NTG, absent
from control individuals without glaucoma, and only rarely de-
tected in large public exome databases. Multiple mutation
analyses also suggested their pathogenicity. These analyses
suggest that as many as 1in 100 cases of NTG may be caused
by METTL23 pathogenic variants. The prevalence of METTL23
pathogenic variants in patients with NTG from Iowa was simi-
lar to that of OPTN, MYOC, and TBK1 pathogenic variants, sug-
gesting that variants in the METTL23 gene may be 1 of the 4
most common causes of NTG. More studies with larger and
more diverse patient populations are needed to determine if
these findings in Iowa cohorts are generalizable.

All 4 patients with plausible NTG-causing variants had
asymmetric disease that was worse in the right eye than the
left eye (eFigure 2 in Supplement 1). Asymmetry is a common
feature in exfoliation glaucoma,®%:°3 and prior studies have also
suggested the presence of some asymmetry in POAG,®* per-
haps related in part to asymmetric intraocular pressure.®>-¢”
Some reports suggested POAG may have some asymmetry that
is worse in the left eye, while others did not.®® The potential
causes of asymmetry in POAG are unknown, although some
have suggested that differences in vascular anatomy might
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have arole in promoting asymmetric disease, ie, worse in the
left eye.®® It is possible that the asymmetry of disease ob-
served in our report (worse in the right eye) is a random oc-
currence related to the small number of patients evaluated
(n = 4). In the first report of METTL23 related glaucoma, Pan
et al'® made no note of asymmetric disease, and the severe vi-
sual field defects presented from 1 patient with NTG with a
METTL23 pathogenic variant were symmetric. Larger studies
of patients with METTL23-related NTG are needed to deter-
mine if worse disease in the right eye is a feature of this type
of glaucoma.

Several homozygous, truncating METTL23 variants have
previously been associated with autosomal recessive inheri-
tance of developmental delay and intellectual disability.2°-22
Pan et al'® identified a heterozygous METTL23 missense vari-
ant, p.Glu28Gly, that is linked with autosomal dominant in-
heritance of NTG in a large Japanese pedigree. We confirm this
finding by identifying 3 novel heterozygous METTL23 mis-
sense pathogenic variants in patients with NTG from Iowa.
While truncating METTL23 variants are associated with cen-
tral nervous system abnormalities, some missense variants are
associated with NTG. The p.Glu28Gly pathogenic variant was
shown to cause METTL23 splicing abnormalities, which re-
sulted in loss of METTL23 protein production and dysregula-
tion of its transcriptional function.'® The mechanism by which
the novel METTL23 pathogenic variants in the current report
may cause NTG is unclear. However, our preliminary studies
suggest that METTL23 function is not dysregulated through
splicing abnormalities in the patients in this cohort. Further
studies of these novel pathogenic variants with animal mod-
els and cell culture models of disease are warranted to con-
firm their pathogenicity, to investigate the mechanisms by
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which they may cause disease, and to explore new potential
variant-specific therapies.

Limitations

This study has limitations. First, this analysis involved indi-
viduals of non-Hispanic, European ancestry and the results
may not be generalizable to populations of patients of other
races and ethnicities. Similarly, this analysis was made with
patients from a tertiary care center and may not represent what
would be observed in other patient populations. Second, the
relatively small size of the NTG cohort may have biased the de-
tected frequency of METTL23 pathogenic variants. More-
over, the small cohort size limited the power of this study to
detect a statistically significant enrichment of pathogenic vari-
ants among patients with NTG. Third, the cohort of patients
with NTG was slightly older and had a greater proportion of
female participants than the cohort of control individuals.
These differences might be a source of bias in the variant analy-
ses. Fourth, the analyses in this report support the pathoge-
nicity of several METTL23 variants, but functional studies or
transgenic animal studies are needed to provide the stron-
gest evidence for their role in glaucoma.

. |
Conclusions

This case-control study provides more evidence that METTL23
variants are associated with NTG. Moreover, the study esti-
mated a prevalence of pathogenic METTL23 variants to be ap-
proximately 1% in patients with NTG from a tertiary care cen-
ter in Iowa. Replication and functional studies to confirm and
extend these results are warranted.
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