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3 Abstract: When we vocalize, our brain distinguishes self-generated sounds from
4 external ones. A corollary discharge signal supports this function in animals, how-
5 ever, in humans its exact origin and temporal dynamics remain unknown. We re-
6 port Electrocorticographic (ECoG) recordings in neurosurgical patients and a novel
7 connectivity approach based on Granger-causality that reveals major neural com-
8 munications. We find a reproducible source for corollary discharge across multi-
9 ple speech production paradigms localized to ventral speech motor cortex before
10 speech articulation. The uncovered discharge predicts the degree of auditory cortex

1 suppression during speech, its well-documented consequence. These results reveal
12 the human corollary discharge source and timing with far-reaching implication for

13 speech motor-control as well as auditory hallucinations in human psychosis.
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14 Significance statement: How do organisms dissociate self-generated sounds from
15 external ones? A fundamental brain circuit across animals addresses this ques-
16 tion by transmitting a blueprint of the motor signal to sensory cortices, referred to
17 as a corollary discharge. However, in humans and non-human primates auditory
18 system, the evidence supporting this circuit has been limited to its direct conse-
19 quence, auditory suppression. Furthermore, an impaired corollary discharge circuit
20 in humans can lead to auditory hallucinations. While hypothesized to originate in
21 the frontal cortex, direct evidence localizing the source and timing of an auditory
22 corollary discharge is lacking in humans. Leveraging rare human neurosurgical
23 recordings combined with connectivity techniques, we elucidate the exact source
24 and dynamics of the corollary discharge signal in human speech.

25 One-sentence summary: We reveal the source and timing of a corollary discharge
26 from speech motor cortex onto auditory cortex in human speech.
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» 1 Introduction

2s  How does the brain dissociate self-generated stimuli from external ones? Any motor act directly
29 activates associated sensory systems. This constant flow of sensory information, while useful
s as feedback, can desensitize the sensory system or be confused with external sensations (/, 2).
31 A fundamental brain circuit solves this problem by transmitting a blueprint of the motor signal
22 to sensory cortices, referred to as corollary discharge (3). The corollary discharge signals are
33  established in many species and multiple sensory modalities (/, 2, 4—6). In the human auditory
s« system, a corollary discharge is hypothesized to increase sensitivity to self-generated speech
35 during production (7—9) and when impaired can lead to auditory hallucinations (0, 11).

36 Corollary discharge signals decrease the sensory processing load and increase sensitivity
37 during vocalization by suppressing sensory cortices (/2, 13). For example, an inter-neuron in
ss the cricket motor system inhibits their auditory system during loud chirping to avoid desensi-
s9 tization (2). In non-human primates, vocalization suppresses auditory neurons, supporting an
s auditory corollary discharge circuit (/2). Similarly, self-produced human speech suppresses
41 auditory cortex (/4—18) and schizophrenia patients with auditory hallucinations have impaired
22 suppression (10, 11). In primates and humans, the source of the corollary discharge signal and
a3 its dynamics remain virtually unknown (14, 19).

44 Recent neuroscience approaches focus on the study of connectivity and information flow
s between cortical regions (20-22). However, many leverage non-invasive neuroimaging data
s with a limited temporal (i.e. fMRI) or spatial (i.e M/EEG) resolution and typically do not as-
47 sess the directionality of information flow (e.g. functional connectivity). Here, we leverage rare
s human neurosurgical recordings from motor and auditory related cortical sites during speech
a9 production tasks providing both a high spatial and temporal resolution. Leveraging directed

so connectivity approaches based on Granger-causality combined with unsupervised learning we
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st identify the source, target, and temporal dynamics of information flow across cortices. A dis-
s2 charge signal before speech onset is transmitted from ventral motor cortex to auditory cortex,
ss and is reproducible across multiple speech tasks and patients. This directed signal from motor
s« cortex predicts the degree of suppression across auditory sites, providing the first direct evidence

ss for a corollary discharge signal and its temporal dynamics in humans.

s 2 Results

57 To investigate the corollary discharge (CD) signal in human speech, we employed a paradigm
ss that directly measures the CD signal’s outcome, i.e., speech induced auditory suppression (/4).
ss  We acquired electrocorticographic (ECoG) recordings from eight neurosurgical patients while
s they performed an auditory word repetition task. We focused on high-gamma broadband (70-
st 150 Hz), a marker of neural activity. We first established the temporal and spatial neural recruit-
e2 ment during auditory perception (Fig. 1A) and production (Fig. 1B). Neural activity commenced
es 1n auditory cortices (i.e. superior temporal gyrus; STG) shortly after stimulus onset (see 100ms
s« 1in Fig. 1A, see Table S1) followed by inferior frontal cortices (Fig. 1, A and C). Prior to speech
65 onset, activity arises in inferior frontal gyrus (IFG) followed by sensorimotor cortices (pre-
e and post- central gyri; Fig. 1, B and D). During articulation there is a marked suppression of
o7 auditory activity (compared with perception), a commonly reported consequence of a corollary
es discharge (Fig. 1, B to D, and Fig. S1). While these results raise potential candidates for a corol-
eo lary discharge before speech production across frontal cortices (e.g. IFG, MFG, sensorimotor
70 cortex), local neural activity does not elucidate the exact source and dynamics of the corollary
71 discharge signal.

72 The corollary discharge signal, by nature, is a blueprint of the motor commands sent to
73 auditory cortex. Hence, a technique is necessary which can measure both the degree of com-

74 munication between brain regions as well as the direction of information flow. To this end, we

4


https://doi.org/10.1101/2022.09.12.507590

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.12.507590; this version posted September 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

75 developed a directed connectivity analysis framework based on Granger-causality that describes
76 the causal predictive relationships between signals across different electrodes. Unlike previous
77 approaches (e.g. directed transfer function (23), partial directed coherence (24)) we distilled
7s the large neural connectivity patterns into the dominant communication patterns using an unsu-
7o pervised clustering technique (orthogonal non-negative matrix factorization (25)). Our analysis
so framework summarizes the dynamics of directed connectivity across cortical regions using a
st set of connectivity temporal prototypes with corresponding clustering assignment weights (see
s2 Fig. 2 and section 4.5 as well as Fig. S2 for methodological details). These prototypes depict
g3 typical temporal variation patterns of directed connectivity and their corresponding assignment
s« weights show cortical sources and targets.

85 We first employed our approach in a representative participant (spatiotemporal high gamma
g activity shown in Fig. 3, A and B), revealing three major connectivity prototypes locked to
s7 auditory stimulus onset (Fig. 3C). The first prototype (blue, prototype I Fig. 3C), peaking at
ss 120 msec, showed information flow from STG onto IFG as well as speech motor cortex. The
ss second prototype (yellow, prototype II Fig. 3C), peaking at 340 msec, showed information
o flow from STG and IFG onto speech motor cortex. The third prototype (purple, prototype IIIf
o1 Fig. 3C), peaking at 690 msec, showed information flow from speech motor cortex onto STG.
o2 Unlike the high-gamma activity patterns (Fig. 3A), the directed connectivity analysis reveals the
93 source, target, and temporal dynamics of statistically significant information flow (permutation
s test, p < 0.05, see method section 4.5) across cortical regions. Prototypes I and II peak during
os early auditory processing (while still hearing the auditory stimulus) and exhibit sources from
9 auditory cortex (i.e. STG) implicating these components in auditory comprehension. However,
o7 the third prototype shows information flow from speech motor cortex onto auditory cortex and
s peaks before mean articulation onset (Fig. 3C horizontal violin plot). Neural information flow

9 from motor cortex onto auditory cortex before articulation onset is consistent with the timing
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10 and directionality of a corollary discharge signal, providing the first provisional evidence for
101 such a discharge in human speech.

102 To ascertain the exact timing of information flow related to speech production, we repeated
13 our analysis framework locked to articulation onset. The first connectivity prototype replicated
104 our previous analysis matching information flow from STG and IFG onto speech motor cortex
105 during auditory comprehension (i.e. prototypes II and II' in Fig. 3C and D). The next prototype
106 (purple, prototype III Fig. 3D) shows information flow from speech motor cortex onto audi-
107 tory cortex peaking at -70 msec prior to articulation onset. Lastly, a third prototype (green,
10s prototype IV Fig. 3D) peaking at 210 msec shows information flow from motor cortex onto
100 temporal and inferior frontal areas during speech articulation. Our directed connectivity anal-
110 ysis locked to stimulus and articulation onset reveal multiple prototypes from stimulus onset
111 through production. These prototypes include two related to auditory comprehension (I and II),
112 a pre-articulatory prototype (I1II) and a speech production prototype (IV). We then replicated this
113 finding across eight participants (clustering the directed connectivity from all the participants
11a  together, see Fig. 3, E and F, and Fig. S3 as well as Fig. S4 for variability across participants).
115 To further control for task effects, three of the eight participants performed a passive listening
116 version of the task providing a replication of the two prototypes associated with comprehension
117 (Fig. S5 E, blue and yellow) in overall timing and spatial distribution. Importantly, the passive
1s listening data did not reveal a pre-articulatory prototype (see Fig. S5). The timing before articu-
119 lation and directionality from motor to auditory cortex of the pre-articulatory prototype (purple,
120 Fig. 3F) establishes a corollary discharge signal replicated across participants.

121 To verify that the uncovered corollary discharge prototype is not specific to an auditory
122 repetition task, we leveraged a battery of speech production tasks performed by the same par-
123 ticipants. These tasks were designed to elicit the same set of matched words during articulation

124 while using various stimulus modalities and word retrieval routes. Participants were instructed
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125 to name visual images, read written words, complete auditory sentences, and name auditory
126 descriptions. By clustering the directed connectivity measures across participants for each task,
127 we replicated the corollary discharge temporal prototype and corresponding information flow
128 across all tasks (projected on a template brain shown in Fig. 4, A to E). To investigate how
120 the source varied across sensorimotor cortex and tasks, we analyzed the variance of the corol-
130 lary discharge’s outflow weights. The source did not differ statistically across tasks (ANOVA
131 main effect of task F(4,369)=1.02, p=0.397). However, we found a significant main effect of
132 region indicating a difference in weight distribution across sensorimotor cortex (dorsal and ven-
133 tral divisions of precentral and postcentral gyri; ANOVA main effect of region F(3,369)=12.48,
134 p=9.04e-8; no significant interaction F=0.53, p=0.896). The majority of outflow weights origi-
135 nated in ventral precentral gyrus (see Fig. S6 for a post-hoc analysis). To verify the robustness
136 of the corollary discharge temporal profile across participants we clustered the directed connec-
137 tivity temporal patterns for each participant and task separately. Across participants, we found
138 similar peak timing relative to articulation onset which was not statistically significant across
130 tasks (Kruskal-Wallis test x?=6.86, p=0.14), providing an overall mean estimate of, ;. = -107.5
140 msec, and peak directed connectivity value, ;o =0.1049 (Fig. 4, G and H). Together, these results
141 provide strong evidence across participants and retrieval routes for a corollary discharge signal
12 peaking prior to articulation (-107.5 msec) with neural communication from ventral speech
143 motor cortex onto auditory cortex (Fig. 4F).

144 To date, there was a lack of direct evidence for a corollary discharge signal and its exact
145 location, although its consequence — a suppression of auditory cortex during speech production
16— has been reported (4, 14, 26). To verify that the novel prototype we discovered is the source of
147 a corollary discharge we sought to show a direct link to speech induced auditory suppression.
18 Previous human (/4) and non-human primates (/2) studies reported a wide range of suppressed

129 responses in auditory cortex. We hypothesized that the degree of information flow from the
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150 corollary discharge source should predict the intensity of suppression across auditory cortex
151 recording sites. We first quantified the level of neural activity for each electrode anatomically
152 located within auditory cortex (i.e. within participant parcellation of superior temporal gyrus,
1sa see Fig. 5, A and B) and quantified the level of suppression by computing a normalized index
15« (varying between 1 for completely suppressed and -1 for completely enhanced, see Fig. 5, C
155 and D). We then quantified the degree of information flow into each electrode in auditory cortex
156 (i.e. inflow connectivity weights see Fig. SE; see methods 4.6) from the sources in our corollary
157 discharge prototype (temporal prototype III in Fig. 3F). To test our hypothesis, we correlated
158 the degree of information flow into each auditory electrode with its level of suppression and
159 found a significant relationship (Pearson correlation coefficient r=0.430, p=1.45e-4, see Fig.
10 SF; see methods 4.6). This further establishes that information flow from speech motor cortex
161 before articulation promotes auditory suppression during speech. A majority of the outflow over
&2 speech motor cortex originated in ventral motor cortex (Fig. 5G). To verify the timing of this
163 suppression signal, we repeated the correlation analysis across multiple time windows while
16« ensuring that the information flow originated from ventral motor cortex and found significant
s correlations (Permutation test, p< 0.05; see methods 4.6) peaking before speech articulation

166 (Flg 5H)
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Figure 1: Spatiotemporal distribution of neural activity during speech perception and production.

The spatiotemporal distribution of neural activity compared to baseline when participants (N=8) listen to auditory
stimuli (A) and subsequently repeat the same word (B). The color code represents percent change from pre-stimulus
baseline. A region of interest approach averaging activity in superior temporal, inferior frontal, pre-central, and
post-central gyri are shown when trials are aligned to (C) stimulus onset and (D) articulation onset. Shaded regions
around the curves depict standard error of the mean across participants. Participants were instructed to repeat the
auditory word freely when ready and the reaction time distribution is shown in a horizontal violin plot (C). The
stimulus onset relative to articulation onset is shown in the horizontal violin plot in (D).
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Figure 2: Overview of the signal processing and directed connectivity analysis framework.

(A) Electrocorticographic signals are recorded and high-gamma analytic amplitude signal (70-150 Hz) is extracted
via band-pass filtering and Hilbert transformation. The signal for each electrode and trial is then extracted locked
to perception or articulation onsets. (B) Directed connectivity (based on Granger-causality) is measured using an
autoregressive model for successive overlapping time periods, providing the connectivity between different elec-
trodes as a function of time (3D matrix in the purple box). The connectivity patterns are then represented by a few
temporal prototypes via an unsupervised clustering technique (orthogonal non-negative matrix factorization; green
box). This process reveals the major temporal connectivity patterns via prototypes and their corresponding assign-
ment weights projected on cortex (cortical sources in red and targets in blue). An example of the unsupervised
clustering algorithm with connectivity computed for five electrodes is shown. Unsupervised clustering summa-
rizes the connectivity temporal profiles into a few temporal prototypes that represent the temporal changes of those
connections. The corresponding assignment weights show cortical sources and targets (connections sourcing from
an electrode targeting another).
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Figure 3: Directed connectivity reveals sources and targets of neural communication during speech per-
ception and production.

The spatiotemporal distribution of neural activity compared to baseline in a representative participant is shown
during (A) listening to auditory word stimuli and (B) subsequent word repetition. Results of directed connectiv-
ity modeling in this participant (temporal prototypes plotted as temporal curves and corresponding information
sources in red and targets in blue plotted on cortical surface) are shown locked to (C) stimulus and (D) articulation
onset. Colored segments of the curves indicate the portions of the temporal curves that are statistically signifi-
cant compared to random permutation (p < 0.05, see method section 4.5 for details). (E,F) Directed connectivity
analysis repeated for eight participants shows similar prototypical patterns and information sources and targets (vi-
sualized on a normal brain). Prototypes I and II (in C and E) show distinct information flow during comprehension
part of the task. Prototype II" (in D and F) shows similar timing and information flow related to comprehension and
is colored similar to prototype II. Prototype III (in D and F; similar to IIIf in C and E) is related to pre-articulation,
while prototype IV (in D and F) is associated with speech production.
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Figure 4: Corollary discharge prototypes are replicated across tasks.

The corollary discharge temporal prototype and its corresponding information source (red) and target (blue) are
shown for all participants across five different speech production tasks (clustered separately) locked to articula-
tion onset: (A) auditory repetition, (B) auditory naming, (C) sentence completion, (D) picture naming, and (E)
visual word reading. (F) An overall representation of the corollary discharge prototype is shown by clustering the
combined connectivity results from all tasks and participants. Colored regions of the curve represent statistically
significant directed connectivity compared to random permutation (p < 0.05). The distribution across participants
of the peak time (G) and magnitude (H) of the corollary discharge prototype is shown for each task (clustered for
each participant separately; circles are color-coded per participant; Box-plots show minimum, maximum, quad-
rants, and median). The combined peak time and magnitude are established by clustering within participant but
combining all the task data for the last column of G, H.
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Figure 5: Corollary discharge predicts speech-induced auditory suppression.

Average neural activity when participants (A) hear auditory stimuli and (B) speak during an auditory repetition
task. (C) Most auditory responses are suppressed during speech production, quantified by a normalized suppression
index (SI) shown for all active auditory electrodes (i.e. within participant anatomical label of Superior Temporal
Gyrus) across all participants. Electrodes are sorted according to their mean SI over trials (error-bars represent
SEM across trials) and vary from 1 (completely suppressed) to -1 (completely enhanced). Spatial distribution of
mean SI for auditory electrodes across participants (D) and of the inflow weights onto auditory electrodes (E) in
the corollary discharge prototype III (purple curve in Fig. 3F). (F) The correlation between mean SI and the inflow
weights of the corollary discharge for all auditory electrodes. (G) Spatial distribution of the outflow weights (i.e.
source) of the corollary discharge prototype in pre- and post-central gyri. (H) The dynamics of the correlation
coefficient between mean SI and directed connectivity from sources in ventral motor cortex onto auditory cortex
as a function of time (solid curve is obtained using all electrodes across participants and dashed lines show the
analysis per participant; red shading denotes statistical significance from a permutation test p < 0.05).
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« 3 Discussion

1es Corollary discharge signals from motor onto auditory neural populations are a hallmark of neu-
1o ral circuitry in animals and convey information on impending actions (4, 27, 28). In humans
170 however, the exact source and dynamics of the signal remained unknown. We leveraged the
171 excellent spatiotemporal resolution of electrocorticography recordings from neurosurgical pa-
172 tients and developed a novel signal analysis framework to study the dynamics of corollary dis-
173 charge signal in human speech. Our analysis of neural connectivity dynamics revealed four
174 distinct stages during auditory repetition likely representing comprehension (two stages), pre-
175 articulatory preparation, and speech production per se. A cardinal connectivity temporal pro-
176 totype during the pre-articulatory stage showed information flow from speech motor cortex
177 onto auditory cortex before articulation onset. This prototype was replicated across participants
178 and speech production tasks even when varying stimulus modality and routes of word retrieval
179 (i.e. repetition, naming, completion), highlighting ventral pre-central gyrus as the source of the
180 corollary discharge. Lastly, we directly linked the information flowing from this discharge with
1s1  the degree of auditory cortical suppression in each electrode. Together, these findings depict the
1.2 timing, source, and consequence of the corollary discharge signal in human speech.

183 We designed a novel directed connectivity analysis framework to study the cortical infor-
18 mation flow by fusing techniques that analyze the causal relationships between time-series
1ss based on Granger-causality measures (23, 29—34) and unsupervised clustering (orthogonal non-
186 negative matrix factorization (25)). Only a select few previous ECoG publications have lever-
157 aged similar effective connectivity between brain regions during language tasks (35, 36), re-
188 vealing the role of Broca’s area in coordinating articulately preparation (22) as well as frontal
189 orthographic processing during word reading (37). In addition to replicating previous find-

190 ings, we are able to do so on the single participant level. In addition to previous findings of
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191 early temporal to inferior frontal flow (22) we find additional temporal to Rolandic cortex in-
192 formation flow, albeit not causing downstream suppression. A major limitation of previous
193 connectivity approaches is the large set of revealed connections rendering the results difficult
194 to interpret and test statistically without averaging across cortical regions. Our unsupervised
155 clustering approach circumvents this issue by finding a select few source-and-target pairs of in-
196 formation flow representing the prototypical temporal dynamics of connectivity across cortex.
197 Our approach identified cortical communication supporting speech preparation (22), within a
19s  single and across participants. Further, it revealed a novel corollary discharge signal, possibly
199 obscured in the past due to limited cortical coverage as well as averaging across regions and
200 participants.

201 Theoretical models of speech production all assume a corollary discharge or a motor ini-
202 tiation signal, presumably originating from frontal cortex and targeting the auditory sensory
203 areas (38—40). However, the exact source and timing dynamics of this signal is variable and
204 unclear due to the lack of direct evidence in neural recordings. Evidence for corollary discharge
205 has been limited to two major results in both human and non-human primates: suppression of
206 auditory cortex during vocalization (4, 13—15, 41-45), and enhanced auditory responses during
207 altered feedback (7, 8, 12, 46, 47). Our results showed a distinct source of information flow
208 originating in ventral pre-central gyrus before articulation irrespective of task modality. While
200 We cannot rule out sub-cortical sources that were not recorded, we did not find other sources
210 across cortical peri-sylvian sites. Specifically, inferior frontal gyrus showed major information
211 flow during the comprehension prototypes but critically, not during the pre-articulatory proto-
212 type. While IFG has been implicated as a major cortical source of connectivity during stimulus
213 comprehension and pre-articulation (22, 37), our data would rule out its involvement as a corol-
214 lary discharge source. This is further supported by our consistent corollary discharge proto-

215 type across tasks, in face of previous reports of attenuated activity during visual tasks (37, 48).
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216 Further, our reported location and timing are consistent with the hypothesized communica-
217 tion across theoretical frameworks, as well as neuronal suppression which has been reported
218 prior to vocalization (4). In stark contrast to prior studies which failed to link motor neural
219 responses with auditory suppression (8, 14, 16), our results clearly establish that the target of
220 information flow correlates with the degree of suppression. This correlation peaks during the
221 pre-articulatory period and levels out during speech production. While this link is a critical lit-
222 mus test for corollary discharge, the correlation timing suggests that a local circuit mechanism
223 may sustain suppression during production.

224 Neurons supporting a corollary discharge circuit have been established in the cricket (2),
225 songbird (49), and several other mammals (/). In humans, a corollary discharge signal is in-
226 volved in speech production as well as the ability to distinguish between self- and external-
227 generated thoughts and actions (/0, 50). A dysfunctional corollary discharge circuit is the ma-
228 jor model explaining auditory hallucinations in schizophrenia patients (/0, 5/-55). Auditory
229 suppression is impaired in schizophrenia (70, 11, 52), but no direct corollary discharge signal
230 source has been identified. Our novel framework and results provide a missing link in the human
231 auditory system and elucidate the source, target and timing of the corollary discharge network

232 with major implications for dysfunction of speech and psychosis.
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= 4 Methods

= 4.1 Participant information

235 A total of 8 neurosurgical patients (7 female, all with left hemisphere coverage, mean age: 38
236 with range 19 to 55 years) were implanted with electrocorticography electrodes and provided
237 informed consent to participate in this research. All consent was obtained in writing and then
238 requested again orally prior to the beginning of the experiment. Electrode implantation and lo-
239 cation were guided solely by clinical requirements. Five of the participants were implanted with
240 standard clinical electrode grid with 10 mm spaced electrodes (Ad-Tech Medical Instrument,
241 Racine, WI). Three participants consented to a research hybrid grid implant (PMT corporation,
242 Chanassen, MN) that included 64 additional electrodes between the standard clinical contacts
2e3  (with overall 10 mm spacing and interspersed 5 mm spaced electrodes over select regions).
244 This provided denser sampling of underlying cortex but was positioned solely based on clini-
25 cal needs. The superior temporal gyrus (STG) region is sampled for all participants, and other
246 cortical regions (including Broca’s area and motor cortex) are also sampled. The study protocol

247 was approved by the NYU Langone Medical Center Committee on Human Research.

«s 4.2 Experiment setup

249 The participants were instructed to complete five tasks to pronounce the target words in re-
250 sponse to certain auditory or visual stimuli. These five tasks consisted of: auditory repetition
251 (i.e., repeat an auditory presented word), auditory naming (i.e., naming a word based on an
252 auditory presented description), sentence completion (i.e., complete the last word of an audi-
253 tory presented sentence), visual word reading (i.e., read out loud a visually presented written
254 words), and picture naming (i.e., name a word based on a visually presented line drawing). All
255 tasks consisted of the same 50 target words. Each trial began with the stimulus presentation

256 and participants were instructed to respond freely when they were ready. For each task and trial
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257 the stimulus was randomly presented. Each target item appeared twice in the auditory repeti-
258 tion, picture naming, and visual word reading tasks and once in auditory naming and sentence

259 completion.

= 4.3 Data collection and general pre-processing

261 The ECoG recordings were collected as the participant performed each task. As an initial in-
262 spection, we rejected electrodes with epileptiform activity, line-noise artifacts, poor contact,
263 and high amplitude-shifts. These initial criteria were used based on the input from the clin-
264 1ical team to remove electrodes that are visually and obviously problematic and outliers. The
265 exclusion of electrodes with epileptiform activity was done based on the characterization pro-
266 vided by the clinical team as interictal population or seizure onset zone. ECoG recordings were
267 referenced using the common average reference approach by averaging the signal across all
268 electrodes and subtracted from each individual electrode signal. The raw voltage signal from
269 each electrode was then filtered to high gamma broadband range (70-150 Hz) and the analytic
270 amplitude (envelope) signal was then extracted by a Hilbert transform. The envelope signal
271 was then downsampled to 200 Hz (see Fig. S7 for an exemplar electrode). The high-gamma
272 analytic amplitude (envelope signal) has a band limit of 80 Hz, so down-sampling to 200 Hz
273 (above the Nyquist rate) after amplitude extraction does not affect the frequency content (see
274 Fig. S7 C). This down-sampling procedure reduces computational complexity and enhances the
275 numerical stability of the autoregressive models (35, 36). The continuous data stream was di-
276 vided into epochs based on the onset of stimulus (locked to stimulus) or onset of speech (locked
277 to articulation). We restricted our analysis to a subset of active electrodes that showed strong
278 event-related activity when averaged over trials (see supplemental text B for detailed explana-
279 tion of the selection criteria as well as Fig. S8 and Fig. SO for examples of active electrodes and

280 the overall spatial distribution).
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» 4.4 Neural activity visualization

222 When plotting the neural activity (mainly shown in Fig. 1, Fig. 3 A-B, and Fig. 5 A-B), we
253 presented the data in units of percent change from baseline activity. We performed the general
234 pre-processing steps introduced in section 4.3. We then normalized each trial by the mean
285 activity in that trial’s baseline (250 msec before stimulus presentation). In Fig. 1, A and B,
285 this normalized signal (presented in units of percent change from baseline) for each electrode
257 1s averaged over trials and time in a 50 msec window centered at each marked time-stamp and
288 projected onto a normal brain with a Gaussian kernel of size 50 mm (we restrict the spread of the
289 Gaussian kernel to within the boundaries of the associated cortical region for each electrode).
200 Similarly, when showing a representative participant in Fig. 3, A and B, the same procedure is
201 performed for the electrodes and Cortical surface model of the participant’s brain. In Fig. 1, C
292 and D, the normalized broadband high-gamma envelope signal (in units of percent change from
203 baseline) is averaged over electrodes within a region of interest and trials for each time-point
204+ and participant. We show mean and standard error of the mean across participants for each
205 region of interest. The distribution of articulation onset relative to stimulus onset (Fig. 1C, Fig.
206 3C and E) and stimulus onset relative to articulation onset (Fig. 1D, Fig. 3 D and F) over trials

207 and participants are shown as horizontal violin plots.

25 4.5 Directed connectivity analysis framework

209 Here, we first provide a brief overview of the steps used for directed connectivity analysis
a0 framework. We then provide detailed explanation of each step in the following subsections.

301 For directed connectivity analysis, we performed the general pre-processing steps intro-
sz duced in section 4.3. We z-scored the signal from each electrode by the mean and standard
s03 deviation from all the time-points and trials. For each participant and task, we used the trial

s+ information to fit a multivariate autoregressive (MVAR) model to 100 msec overlapping time
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s0s windows with hops of 10 msec (see section 4.5.1 for details of model fit). For each window we
ss measured the directed connectivity (Granger-causal sense) between electrodes by computing
a7 the partial directed coherence (PDC) (24) from the fitted MVAR model coefficients (see section
sos  4.5.2 for details). We focused our analysis on temporal changes of PDC as the resulting connec-
e tivity showed the information flow between any two given electrodes as a function of time. Our
a0 goal was to summarize the data into a few prototypes that represent the major temporal changes
a1 of connectivity. To derive the prototypical temporal connectivity patterns, we used orthogonal
sz non-negative matrix factorization (ONMF) (25) as an unsupervised clustering technique. Sim-
a3 ilar to other dimentionality reduction algorithms such as principal component analysis (PCA),
31« ONMF summarized the temporal connectivity patterns. However, a distinct feature of ONME,
315 1n contrast to PCA, is that each connection is associated with one and only one prototype re-
a6 sulting in a clustering algorithm. We gathered the measured directed connectivity signals into a
317 matrix (the dimensions of which are number of time-windows by number of connections) and
sts applied the ONMEF, representing each connection as a scaled version of one of a prototypical
st9  patterns (each connection can only be assigned to one prototype; see section 4.5.3 for details).
s20 Consequently, ONMEF clustered the temporal PDC changes into a few clusters. For each cluster,
321 a temporal prototype represents the temporal behavior (“when”, K x T" matrix in Fig. S10) of
a2 that cluster , and assignment weights show which connections belong to that cluster (“where”,
sa M(M — 1) x K in Fig. S10). The assignment weights associated with each cluster are then
324 visualized on participant or Montreal Neurological Institute (MNI) brain with a Gaussian kernel
a5 of size 50 mm (restricting the spread to within the boundaries of the associated cortical region

326 for each electrode).
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sz 4.5.1 Multivariate autoregressive model

s We denote by z,,(t) € Rs( the envelope of the high-gamma broadband extracted from the
320 ECoG recordings, downsampled to 200 Hz, and Z-scored based on mean and standard de-
w0 viation per electrode. The subscript ,, denotes the active electrode index m € {1,--- , M}
s and ¢ the time-step ¢ € {1,---,7T}. The signal z; Granger causes the signal z; if knowl-
sz edge of x;(7) for 7 < ¢ improves the prediction of z,(¢). To assess Granger causality be-
a3 tween multichannel ECoG data, we fitted a multivariate autoregressive (MVAR) model. Let
we x(t) = [21(t), - ,2a(t)]T € RY] be the multichannel high-gamma analytic amplitude signal
335 at time ¢ with M total active electrodes (M total channels). The MVAR model assumes that the
s signal at each time point, x(¢) can be estimated as a linear combination of the signal at previ-
a7 ous time-points and a random innovation signal €(¢). Consequently, we can write the MVAR

sss  formulation as
P

x(t) = A(p)a(t—p) +€(t), (1)

p=1

s where A(p) € R are coefficient matrices for which the element a;;(p) shows the depen-
a0 dency of z;(t) on x;(t —p) for electrodes ¢, j = 1, --- , M and time-lags p = 1,--- , P. The ran-
a1 dom innovation signal €(t) is assumed to be composed of white uncorrelated noises with covari-
a2 ance matrix ). Causality relations are found when the relevant interaction is active in (1). More
s formally, we can say x; Granger causes z; if a;;(p) # O at least one p € {1,---, P}. This is
a4 consistent with the definition of direct causality as in (56). The parameters of the MVAR model
us in (1), © = {A(p), Q}, are estimated using the Expectation-maximization algorithm (36, 57).

346 The AR process is a linear model with an inherent stationarity assumption on the signal x.
a7 We follow the recommendation of Ding et al. to model short windows of signal with separate
s AR models (57). We used short overlapping windows of 100 msec with hops of 10 msec and

a9 used the available trial data to fit an MVAR model for each window. This allowed us to look at
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30 dynamic changes of connectivity across larger time-scales of the entire trial.

351 We followed the recommendations in (35, 58) for choosing the model order (based on
sz AIC/BIC criterion). Specifically, for each 100 msec window (non-overlapping windows were
ss3 used for model order selection), we separately computed the model order that minimizes AIC
ss4  and BIC criteria (tested over range 1 to 10) and picked the median across windows. In the event
355 that the median from AIC and BIC did not match, we chose the overall median. We typically
sse  found the model order of P = 4 corresponding to delays up to 20 msec. We check the stability
a7 of the estimated MVAR model for each window by computing the roots of the characteristic
sss  polynomial

det ("I +a” A1)+ -+ aA(P — 1)+ A(P)) = 0.

39 We made sure that the roots satisfied |a| < 1 for each window. In the very rare event that this
s0 condition is not satisfied the model order is decreased and the model fit repeated. We performed
st the Ljung-Box portmanteau test for whiteness and the Kendall’s 7 test for independence (59)

sz on the resulting MVAR model residual €(t) to ensure temporally uncorrelated residual.
33 4.5.2 Measuring directed connectivity from model coefficients

a4 We used partial directed coherence (PDC), a frequency-domain approach to describing the re-
ses lationships (direction of information flow) between multivariate time series (24), to measure
ses directed connectivity. We computed the PDC from the fitted MVAR coefficients of each win-

7 dow as
Ai(f)
AT (HA(f)

A(f) = 1—37_ Aj(r)exp(=2mifr), if i=j
! —> P | Aj(1)exp(—2mifT) otherwise.

v (f) = where (2)

368

a9 To obtain a picture of how the connectivity changes across time-windows, we followed (36)

a0 and defined ;; = > ¢ [7i;(f)| (summing the PDC values over frequency for each window) and
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a1 focused on the temporal changes of ;; over the shifted windows. We note that PDC satisfies
72 0 < |y (AP < Tand ¥, |, (FH)? =1 V1 < j < M (normalized interaction strengths

a3 with respect to a given signal source).
a7« 4.5.3 Clustering the temporal patterns of directed connectivity

a5 We were interested in changes of PDC values as a function of time. We used unsupervised
a7 clustering, performed by orthogonal non-negative matrix factorization (ONMF), to find and

a7 group connections with similar temporal patterns of PDC changes into one cluster. For each

s time window ¢ € {1,---, T}, let v/ ; be the PDC computed from node i € {1,---, M} to node
ars j € {1,---,M}. We formed the matrix I € R(;gQ_M)XT such that each row represents the

a0 temporal changes of PDC between a particular pair of electrodes; i.e. yf’j for the connection
ss1  from node ¢ to node j with ¢ # j. To cluster similar temporal PDC profiles (i.e. similar rows in
sz I') into the same group, we used orthogonal non-negative matrix factorization (ONMF). For a
ss3 desired number of clusters A, the ONMEF objective function can be written as,

minimize |T - UV ||%

UecRM?—M)xK
VeRKXT (3)

subjectto: U'U =1Ig, U>0, V >0,

s where the constraints U > 0 and U ' U = I, imply that each rows of U can have at most one
a5 non-zero entry, hence the clustering nature of this objective function. Each cluster k is repre-
s sented by its corresponding row vy in V', which we refer to as the k-th temporal connectivity
37 prototype.

388 We used the EM-ONMEF algorithm (25) to solve for the matrices U and V. This algorithm
ss9  finds a set of disjoint clusters, 7, k = 1,2, ..., K, such that each cluster 7, contains rows in I"
s that are as similar to each other as possible. If the temporal connectivity profile from node n to
so1  node m is clustered to cluster k, then it can be approximated by I';, ,,,) &~ uf(n’m)v k- We call the

sz weight u”  the assignment weight for prototype k from n to m. We define the inflow weight
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k
Zn ul(n,'m)

> where || indicates the number

s for each electrode m in cluster 7 as t(yr,) =
se4 of connections in cluster 7;. Similarly we define the outflow weight for each electrode n as

k
%. To visualize the source and target locations associated with each prototype,

395 O(n,wk) =
sss  we defuse the inflow (negatively weighted; blue color) and outflow (positively weighted; red
a7 color) weight associated with each electrode into the surrounding area in the same anatomical
ses region using a Gaussian kernel on a patient or standard brain map.

399 We assessed the statistical significance of prototypes with a permutation test (60), where we
a0 randomized the cluster assignments and recomputed the prototypes for 1000 repetitions. We
a1 tested each time-point of the prototype against the randomized projection distribution (with an
a2 alpha criterion of 0.05) and to control for multiple comparisons error only continuous range of

a3 values (longer than 100 msec, corresponding to 5 windows) showing statistical significance was

a4 accepted. The number of clusters (corresponding to total number prototypes) were determined

IT-UV]|%

405 based on the relative reconstruction error I
F

for different number of clusters. We empir-
a6 ically found that this error term plateaued at four components for the time windows considered
a7 1n our experiments (see Fig. S11). One of the resulting prototypes always showed “noise-like”

a8 activity and was removed from analysis (see Fig. S3).

w0 4.6 Speech induced auditory suppression

a0 For each electrode anatomically located in the auditory cortex (i.e. STG) we obtain the broad-
411 band high-gamma signal by applying the general pre-processing steps in section 4.3. To quan-
412 tify the level of suppression for each auditory electrode, we compute the average broadband
413 high-gamma signal in 300 msec after the stimulus onset (Zp,,) and 300 msec after articulation
a1a onset (Tgpeak) 1n the auditory repetition task. For each auditory electrode (total of 73 across
Thear~Tspeak

a5 all participants) we compute the suppression index (SI) defined as SI = A (varying

a6 between 1 for completely suppressed and -1 for completely enhanced; distribution shown in
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s17 Fig. 5, C and D). We quantify the information inflow to each auditory electrode by the cluster
s18 assignment weight associated with the corollary discharge prototype from auditory repetition
419 task (distribution shown in Fig. SE). To assess the link between suppression and corollary dis-
s20 charge we use Pearson correlation across all auditory electrodes for all participants (Fig. SF).
221 To show the temporal dynamics of this correlation, for each auditory electrode we compute the
a2 average directed connectivity of the connections represented by the corollary discharge proto-
«23 type sourcing from electrodes located anatomically in ventral pre-central gyrus in overlapping
s24  windows of 300 msec with hops of 10 msec. We then correlate the suppression index and the
a5 average directed connectivity for each time-window across all auditory electrodes (solid curve
226 1n Fig. 5SH). We repeat the same analysis only considering the auditory electrodes for each par-
27 ticipant (dashed curves in Fig. SH; two participants were removed from this analysis due to
228 limited number of auditory electrodes). We assess the statistical significance by a permuta-
«29 tion test (randomizing the suppression index assignment for each window a total of 1000 times
a0 and comparing each time point to this distribution; alpha of 0.05; multiple comparisons error

a1 corrected with only accepting continuous range longer than 100 msec).
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(A) Average signal activity per Rol — Trials aligned to articulation onset
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(B) Distribution of signal activity — Trials aligned to articulation onset

Figure S1: Spatiotemporal distribution of neural activity before and after speech production.

A region of interest approach averaging activity in superior temporal, inferior frontal, pre-central, and post-central
gyri are shown when trials are aligned to articulation onset (A). The spatiotemporal distribution of neural activity
compared to baseline when participants articulate are shown in (B). The color code represents percent change from
pre-stimulus baseline.


https://doi.org/10.1101/2022.09.12.507590

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.12.507590; this version posted September 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

> I

Perception period Articulation period i K . a1 q \
phion p P me Directed Connectivity Analysis:

Q@ e - ~

“Balloon” “Balloon” MVAR Model:
Hear the word Repeat the word Slgnal WindOWing + Model Fit
+ PDC computation

N /
Raw Signal Ve ™

)

L Connectivity Clustering:
] Temporal Prototypes +
assignment weights

densjooq jsurede
Q0UBDIJIUSIS [BONSIILIS

Electrode

(

Time

ot y,

(

signal pre-processing: gon
artifact rejection, filtering, 7o - @
envelope of high-y extraction, Eos Source  Target

active electrode selection 006/

I L . .
-200 0 200 400 600 800 1000 1200 1400 1600
Time relative to stimulus onset (msec)

Figure S2: Detailed overview of the proposed directed connectivity analysis framework.
Electrocorticographic signals are recorded from neurosurgical patients. We focus on the analytic amplitude of
high-gamma broadband locked to perception or production onset. Directed connectivity is measured using an au-
toregressive model for successive overlapping time windows. The connectivity patterns are then represented by a
few temporal prototypes via an unsupervised clustering technique. This process reveals the major temporal con-
nectivity patterns and their corresponding assignment weights projected on cortex. We test statistical significance
of each prototype against random permutation (p < 0.05).
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Figure S3: Temporal connectivity profiles in auditory repetition locked to articulation
(A-D) Resulting temporal connectivity prototypes when directed connectivity profiles from auditory repetition task
locked to articulation are clustered to 4 clusters for eight participants together. (E-H) The temporal connectivity
profiles, I';, , assigned into cluster k, represented by the corresponding prototype in A to D plotted as images.
Each row in matrices E to H shows the temporal dynamics of a specific connection between two electrodes in each
cluster. The rows of the matrices are ordered by participants. (I-L) The average normalized connectivity and cor-
responding standard error of the mean across participants (shaded region) shows robustness of the corresponding
prototypes. (M-P) Ratio count of outflow connections from each individual electrode that were assigned to each
corresponding prototype. (Q-T) Ratio count of inflow connections to each individual electrode that were assigned
to a prototype. Maximum ratio of outflow (U) and inflow (V) across prototypes for each electrode.
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(A) Connectivity prototypes (N=8) — All participants clustered together
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(B) Connectivity prototypes (N=8) — participants clustered separately
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Figure S4: Connectivity prototypes in auditory repetition; variability across participants.

(A) The connectivity prototypes and their corresponding source and target distributions when directed connectivity
profiles from N=8 participants are clustered together (repeated from Fig. 3E and F); (B) The mean of the con-
nectivity prototypes and corresponding average source and target distribution when directed connectivity profiles
from N=8 participants are clustered separately. Shaded area around the curves in B shows standard error of the
mean across participants.
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«+ S.1 Passive listening as a negative control

12 Three of the patients in our cohort, performed a passive listening version of the auditory rep-
13 etition task. In a separate recording block, participants were instructed to passively listen to
12 identical stimuli from the auditory repetition task. We first provide the average neural activity
15 across STG, IFG, pre-, and post-central cortices locked to stimulus presentation for both the
16 passive listening (Fig. S5 A) and the auditory repetition (Fig. S5 B) tasks. In the passive lis-
17 tening task after stimulus presentation is over (range: 430 — 790 msec, mean: 583 msec from
18 stimulus onset), there is a delay and the task moves to the next trial, while in the auditory rep-
19 etition task articulation is engaged. For this reason, we focused our analysis on the interval
20 [-250, 800] msec from stimulus onset (Fig. S5 C,D). This allows us to cover both stimulus pre-
21 sentation and pre-articulatory periods while avoiding the start of the next trials in the passive
22 listening condition.

23 We first replicated the connectivity prototypes for the auditory repetition condition limited
24 to the [-250, 800] time-interval, an analysis that is different in length and number of partici-
25 pants from the results in the main text (i.e. compare Fig. 3 E to Fig. S5 F). Specifically, we
26 found that clustering with the same number of components (K=4) reveals two comprehension
27 prototypes (blue and yellow) followed by a pre-articulatory prototype (purple). We then applied
2s the same framework to the passive listening task, however we used three cluster components
29 (K=3) as our analysis revealed that this was sufficient to represent the data (Fig. S5 E). The
30 two prototypes associated with comprehension (Fig. S5 E, blue and yellow) were replicated in
31 the passive condition in overall timing and spatial distribution. While we did not find a pre-
s articulatory prototype during passive listening, we were concerned that it may be obscured or
ss  overlapping with the baseline/noise component (Fig. S5 E gray dashed line). To address this, we
s« repeated clustering in the passive listening condition with four clusters (K=4). The clustering

35 still revealed the first two comprehension prototypes (see yellow and blue boxes in Fig. S5 G)

7
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s but the third cluster was diminished showing a distinctly silent topography compared with the
a7 pre-articulatory prototype in the auditory repetition condition, as the reviewer suggested (see

s purple and red in Fig. S5 G).
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Figure S5: Passive listening as a control condition

Averaged neural activity in superior temporal, inferior frontal, pre-central, and post-central gyri are shown when
trials are aligned to stimulus onset for (A) passively listening to auditory stimuli and (B) auditory repetition of the
same stimuli. We focused our analysis on a time interval [-250, 800] that is comparable between the two conditions,
which can be seen in C, D (a zoomed version of A and B, respectively). Results of directed connectivity modeling
in the passive listening condition (E), and the repetition condition (F) are shown locked to stimulus (temporal
prototypes and corresponding information sources and targets with k=3 and 4 cluster components, respectively).
Regions of cortex showing information source (red) and target (blue) are colored for each prototype (the color of the
box of each brain matches the color of the associated temporal curve in E and F). A comparison of the information
sources and targets between the two conditions is shown in (G) applying the same number of of clusters in each
analysis (k=4).
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(A) Distribution of outflow weights for auditory (B) Multiple comparisons test for ANOVA with
repetition task outflow weights in different tasks and regions
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Vent Pst —_—

Dors Pre | ——+——

Dors Pstf ————

0 0.1 0.2 0.3

3 groups have population marginal means significantly
different from Vent Pre in outflow weights

Figure S6: The corollary discharge source.

(A) Spatial distribution of outflow weights associated with the corollary discharge prototype for the auditory repe-
tition task. (B) Post-hoc multiple comparisons test using the result of ANOVA test for outflow weights with tasks
and anatomical region (vental/dorsal pre- and post-central areas) as effects shows ventral pre-central gyrus as the
main source of outflow associated with the corollary discharge prototype.
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(A) Signal pre-processing steps
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Figure S7: Illustration of the signal pre-processing stages.

(A) The recorded signal is first referenced by subtracting the average of all electrodes at each time-point (common
average reference), then band-pass filtered to 70-150 Hz high-gamma range and the analytic amplitude (envelope)
of the high-gamma signal is extracted by a Hilbert transform. The resulting envelope signal is down-sampled from
the original 512 Hz to 200 Hz. (B) The effect of the common average referencing is shown on the power spectral
density of the signal. The major frequencies present in the common average signal are the 60 Hz line-noise and its
harmonics, and by subtracting the effect of the line-noise is attenuated from the recorded signal. (C) The effect of
down-sampling the analytic amplitude (envelope) of the high-gamma signal from 512 Hz to 200 Hz is shown in
temporal domain (left plot) and frequency domain (power spectral density plots). High-gamma analytic amplitude
is band-limited to 80 Hz and down-sampling to 200 Hz does not have an effect on the frequency content of the
signal.
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» 5.2 Active electrode selection algorithm

s Here, we introduce an unsupervised automatic algorithm to select a subset of electrodes that can
41 be considered active given the ECoG data for a task. We expect active electrodes to have high
22 event related responses, whereas the inactive ones to have a trial mean signals close to zero. We
s denote by x,,(r,t) € R the ECoG signal for electrode n € {1,--- , N} attrial » € {1,--- , R}
s and time-stept € {1,--- ,T'}. We aim to find a subset of electrodes which have activity related
a5 to the task.

46 Motivated by this rationale, we first determined the trial mean signal for each electrode, i.e.
o Tn(t) = % 2, xn(r,t). We empirically observed that further denoising this signal via wavelet-
s thresholding is beneficial. Let W denote the forward wavelet transform, WT denote its inverse,
w and T, = [Z,(1), -+ ,Z,(T)]". Let H.(x) = z for |z| > 7 and 0 otherwise, be the hard-
so thresholding operator and similarly extend for vectors by applying element-wise. Then, the
51 denoised mean signal can be represented by z,, = WTH,, (Wx,,) (see examples of the signals
s2 Tn(r,t), T,(t), and 7, (t) for three different electrodes in Fig. S8(a)). We used 5 levels of

s3 Daubechies 8 (db8) wavelet filters and we set 7 = 0.5.

54 We computed the standard deviation of Z,, () over time, i.e. s, = \/ 7 > (Tn(t) — ()2
ss Higher values of s,, indicate active electrodes and smaller values indicate the inactive ones. We
ss found a threshold 7, such that the electrode n is considered active only if s,, > 7, by fitting
57 a Rayleigh-Rice mixture model (see a sample histogram of s,, and fitted model and thresh-
ss old in Fig. S8(b)). The Rice component represented the active electrodes, while the Rayleigh
s9 component represented the inactive ones.

60 To describe this mixture model, let « indicate the probability that a sample s is from a
st Rayleigh distribution with parameter 5%, and 1 — « the probability that s is from the Rice dis-

s2 tribution with parameters v and . Then, the distribution of the mixture model can be written
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63 as
64 f(s|¥) = afRayl(s|b2) + (1 — @) frice (8|1, 02)

s where ¥ = {a, b*,v,0%} and

) = > ol >0
66 fRayl(S\ ) = ﬁexp _2_b2 , SZ2
67 and
o S s* 4+ 12 sv
68 frice(s]v, 07) = ;exp <—T'2> Iy (;) , §20

eo  with Iy(+) is the 0-th order modified Bessel function of first kind. Given the samples {s, })_, we
70 found the parameters of this model (¥ = {«,b? v, 0?}) via Expectation-Maximization (EM)
71 algorithm for each participant (67). Given the fitted model parameters we set the threshold 7

72 such that,
-« _ fRayl(Ts|b2)
(07 fRice(Ts‘V7O-2)'

73
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(A) Depiction of signal activity in example electrodes  (B) Histogram of standard deviation of mean signal
and fitted Rayleigh-Rice mixture model

T T T
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Figure S8: Example for active electrode selection algorithm.

(A) Pictorial depiction of the signal x,, (r, t), average signal over trials Z,, (t), and denoised average signal Z,, (¢) for
two active and one inactive electrode. (B) Histogram of temporal changes from the mean, s,,, for all the electrodes
of one patient during auditory repetition task. Fitted Rayleigh-Rice mixture model and threshold are shown.
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(A) All electrodes across participant (B) Selected active electrodes

@ Participant 1 (HD)
@ Participant 2 (HD)
() Participant 3 (HD)
@ Participant 4 (LD)
@ Participant 5 (LD)
@ Participant 6 (LD)
() Participant 7 (LD)
(© Participant 8 (LD)

Figure SO: Electrode coverage and selection.

(A) Implanted electrodes for all eight participants shown on a normal brain (MNI space, color-code represents
participants). Five participants were implanted with low-density (LD) grids with 10mm spacing while three par-
ticipants consented to be implanted with a hybrid-density (HD) grid with 10 mm overall spacing and 5Smm spacing
in specific areas. (B) Resulting electrodes from the active electrode selection algorithm are shown.
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Figure S10: Unsupervised clustering applied to temporal connectivity profiles.

A pictorial representation of the orthogonal non-negative matrix factorization (ONMF) algorithm applied to con-
nectivity measures across time windows. The connectivity tensor (of size electrode x electrode x time) is reshaped
into a matrix (of size connection-number x time). Temporal connectivity profiles (rows of the connectivity matrix
T') are clustered into K prototypes (rows of the matrix V') with their corresponding assignment weights to a cluster
(non-zero element in each row of the matrix U). Similar to other dimensionality reduction algorithms like principal
component analysis (PCA), the connectivity matrix I' is approximated by the lower-dimensional matrices U and
V. Matrix factorization via ONMEF, in contrast to PCA, assigns each connection to only one prototype (only one
element in each row of U can be non-zero) and thus yields a clustering algorithm.
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Figure S11: Number of clusters.

p— 2 .

Relative recovery error, %, computed for different number of cluster components, K, and shown for
F

auditory repetition task locked to stimulus (black) and articulation (blue). We choose K = 4 components in our

analysis.
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Table S1: Start time of consecutive activity (above 1.96 SD of baseline; longer than 100 msec)
relative to stimulus onset across electrodes in different regions of interest during the auditory
repetition task (mean + standard deviation across electrodes).

Rol STG IFG Pre-central | Post-central
Time from stimulus (msec) | 105 =37 | 181 £42 | 435+ 114 845 + 53
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