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Abstract: When we vocalize, our brain distinguishes self-generated sounds from3

external ones. A corollary discharge signal supports this function in animals, how-4

ever, in humans its exact origin and temporal dynamics remain unknown. We re-5

port Electrocorticographic (ECoG) recordings in neurosurgical patients and a novel6

connectivity approach based on Granger-causality that reveals major neural com-7

munications. We find a reproducible source for corollary discharge across multi-8

ple speech production paradigms localized to ventral speech motor cortex before9

speech articulation. The uncovered discharge predicts the degree of auditory cortex10

suppression during speech, its well-documented consequence. These results reveal11

the human corollary discharge source and timing with far-reaching implication for12

speech motor-control as well as auditory hallucinations in human psychosis.13
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Significance statement: How do organisms dissociate self-generated sounds from14

external ones? A fundamental brain circuit across animals addresses this ques-15

tion by transmitting a blueprint of the motor signal to sensory cortices, referred to16

as a corollary discharge. However, in humans and non-human primates auditory17

system, the evidence supporting this circuit has been limited to its direct conse-18

quence, auditory suppression. Furthermore, an impaired corollary discharge circuit19

in humans can lead to auditory hallucinations. While hypothesized to originate in20

the frontal cortex, direct evidence localizing the source and timing of an auditory21

corollary discharge is lacking in humans. Leveraging rare human neurosurgical22

recordings combined with connectivity techniques, we elucidate the exact source23

and dynamics of the corollary discharge signal in human speech.24

One-sentence summary: We reveal the source and timing of a corollary discharge25

from speech motor cortex onto auditory cortex in human speech.26
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1 Introduction27

How does the brain dissociate self-generated stimuli from external ones? Any motor act directly28

activates associated sensory systems. This constant flow of sensory information, while useful29

as feedback, can desensitize the sensory system or be confused with external sensations (1, 2).30

A fundamental brain circuit solves this problem by transmitting a blueprint of the motor signal31

to sensory cortices, referred to as corollary discharge (3). The corollary discharge signals are32

established in many species and multiple sensory modalities (1, 2, 4–6). In the human auditory33

system, a corollary discharge is hypothesized to increase sensitivity to self-generated speech34

during production (7–9) and when impaired can lead to auditory hallucinations (10, 11).35

Corollary discharge signals decrease the sensory processing load and increase sensitivity36

during vocalization by suppressing sensory cortices (12, 13). For example, an inter-neuron in37

the cricket motor system inhibits their auditory system during loud chirping to avoid desensi-38

tization (2). In non-human primates, vocalization suppresses auditory neurons, supporting an39

auditory corollary discharge circuit (12). Similarly, self-produced human speech suppresses40

auditory cortex (14–18) and schizophrenia patients with auditory hallucinations have impaired41

suppression (10, 11). In primates and humans, the source of the corollary discharge signal and42

its dynamics remain virtually unknown (14, 19).43

Recent neuroscience approaches focus on the study of connectivity and information flow44

between cortical regions (20–22). However, many leverage non-invasive neuroimaging data45

with a limited temporal (i.e. fMRI) or spatial (i.e M/EEG) resolution and typically do not as-46

sess the directionality of information flow (e.g. functional connectivity). Here, we leverage rare47

human neurosurgical recordings from motor and auditory related cortical sites during speech48

production tasks providing both a high spatial and temporal resolution. Leveraging directed49

connectivity approaches based on Granger-causality combined with unsupervised learning we50
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identify the source, target, and temporal dynamics of information flow across cortices. A dis-51

charge signal before speech onset is transmitted from ventral motor cortex to auditory cortex,52

and is reproducible across multiple speech tasks and patients. This directed signal from motor53

cortex predicts the degree of suppression across auditory sites, providing the first direct evidence54

for a corollary discharge signal and its temporal dynamics in humans.55

2 Results56

To investigate the corollary discharge (CD) signal in human speech, we employed a paradigm57

that directly measures the CD signal’s outcome, i.e., speech induced auditory suppression (14).58

We acquired electrocorticographic (ECoG) recordings from eight neurosurgical patients while59

they performed an auditory word repetition task. We focused on high-gamma broadband (70-60

150 Hz), a marker of neural activity. We first established the temporal and spatial neural recruit-61

ment during auditory perception (Fig. 1A) and production (Fig. 1B). Neural activity commenced62

in auditory cortices (i.e. superior temporal gyrus; STG) shortly after stimulus onset (see 100ms63

in Fig. 1A, see Table S1) followed by inferior frontal cortices (Fig. 1, A and C). Prior to speech64

onset, activity arises in inferior frontal gyrus (IFG) followed by sensorimotor cortices (pre-65

and post- central gyri; Fig. 1, B and D). During articulation there is a marked suppression of66

auditory activity (compared with perception), a commonly reported consequence of a corollary67

discharge (Fig. 1, B to D, and Fig. S1). While these results raise potential candidates for a corol-68

lary discharge before speech production across frontal cortices (e.g. IFG, MFG, sensorimotor69

cortex), local neural activity does not elucidate the exact source and dynamics of the corollary70

discharge signal.71

The corollary discharge signal, by nature, is a blueprint of the motor commands sent to72

auditory cortex. Hence, a technique is necessary which can measure both the degree of com-73

munication between brain regions as well as the direction of information flow. To this end, we74
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developed a directed connectivity analysis framework based on Granger-causality that describes75

the causal predictive relationships between signals across different electrodes. Unlike previous76

approaches (e.g. directed transfer function (23), partial directed coherence (24)) we distilled77

the large neural connectivity patterns into the dominant communication patterns using an unsu-78

pervised clustering technique (orthogonal non-negative matrix factorization (25)). Our analysis79

framework summarizes the dynamics of directed connectivity across cortical regions using a80

set of connectivity temporal prototypes with corresponding clustering assignment weights (see81

Fig. 2 and section 4.5 as well as Fig. S2 for methodological details). These prototypes depict82

typical temporal variation patterns of directed connectivity and their corresponding assignment83

weights show cortical sources and targets.84

We first employed our approach in a representative participant (spatiotemporal high gamma85

activity shown in Fig. 3, A and B), revealing three major connectivity prototypes locked to86

auditory stimulus onset (Fig. 3C). The first prototype (blue, prototype I Fig. 3C), peaking at87

120 msec, showed information flow from STG onto IFG as well as speech motor cortex. The88

second prototype (yellow, prototype II Fig. 3C), peaking at 340 msec, showed information89

flow from STG and IFG onto speech motor cortex. The third prototype (purple, prototype III†90

Fig. 3C), peaking at 690 msec, showed information flow from speech motor cortex onto STG.91

Unlike the high-gamma activity patterns (Fig. 3A), the directed connectivity analysis reveals the92

source, target, and temporal dynamics of statistically significant information flow (permutation93

test, p < 0.05, see method section 4.5) across cortical regions. Prototypes I and II peak during94

early auditory processing (while still hearing the auditory stimulus) and exhibit sources from95

auditory cortex (i.e. STG) implicating these components in auditory comprehension. However,96

the third prototype shows information flow from speech motor cortex onto auditory cortex and97

peaks before mean articulation onset (Fig. 3C horizontal violin plot). Neural information flow98

from motor cortex onto auditory cortex before articulation onset is consistent with the timing99
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and directionality of a corollary discharge signal, providing the first provisional evidence for100

such a discharge in human speech.101

To ascertain the exact timing of information flow related to speech production, we repeated102

our analysis framework locked to articulation onset. The first connectivity prototype replicated103

our previous analysis matching information flow from STG and IFG onto speech motor cortex104

during auditory comprehension (i.e. prototypes II and II† in Fig. 3C and D). The next prototype105

(purple, prototype III Fig. 3D) shows information flow from speech motor cortex onto audi-106

tory cortex peaking at -70 msec prior to articulation onset. Lastly, a third prototype (green,107

prototype IV Fig. 3D) peaking at 210 msec shows information flow from motor cortex onto108

temporal and inferior frontal areas during speech articulation. Our directed connectivity anal-109

ysis locked to stimulus and articulation onset reveal multiple prototypes from stimulus onset110

through production. These prototypes include two related to auditory comprehension (I and II),111

a pre-articulatory prototype (III) and a speech production prototype (IV). We then replicated this112

finding across eight participants (clustering the directed connectivity from all the participants113

together, see Fig. 3, E and F, and Fig. S3 as well as Fig. S4 for variability across participants).114

To further control for task effects, three of the eight participants performed a passive listening115

version of the task providing a replication of the two prototypes associated with comprehension116

(Fig. S5 E, blue and yellow) in overall timing and spatial distribution. Importantly, the passive117

listening data did not reveal a pre-articulatory prototype (see Fig. S5). The timing before articu-118

lation and directionality from motor to auditory cortex of the pre-articulatory prototype (purple,119

Fig. 3F) establishes a corollary discharge signal replicated across participants.120

To verify that the uncovered corollary discharge prototype is not specific to an auditory121

repetition task, we leveraged a battery of speech production tasks performed by the same par-122

ticipants. These tasks were designed to elicit the same set of matched words during articulation123

while using various stimulus modalities and word retrieval routes. Participants were instructed124
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to name visual images, read written words, complete auditory sentences, and name auditory125

descriptions. By clustering the directed connectivity measures across participants for each task,126

we replicated the corollary discharge temporal prototype and corresponding information flow127

across all tasks (projected on a template brain shown in Fig. 4, A to E). To investigate how128

the source varied across sensorimotor cortex and tasks, we analyzed the variance of the corol-129

lary discharge’s outflow weights. The source did not differ statistically across tasks (ANOVA130

main effect of task F(4,369)=1.02, p=0.397). However, we found a significant main effect of131

region indicating a difference in weight distribution across sensorimotor cortex (dorsal and ven-132

tral divisions of precentral and postcentral gyri; ANOVA main effect of region F(3,369)=12.48,133

p=9.04e-8; no significant interaction F=0.53, p=0.896). The majority of outflow weights origi-134

nated in ventral precentral gyrus (see Fig. S6 for a post-hoc analysis). To verify the robustness135

of the corollary discharge temporal profile across participants we clustered the directed connec-136

tivity temporal patterns for each participant and task separately. Across participants, we found137

similar peak timing relative to articulation onset which was not statistically significant across138

tasks (Kruskal-Wallis test χ2=6.86, p=0.14), providing an overall mean estimate of, µ = -107.5139

msec, and peak directed connectivity value, µ = 0.1049 (Fig. 4, G and H). Together, these results140

provide strong evidence across participants and retrieval routes for a corollary discharge signal141

peaking prior to articulation (-107.5 msec) with neural communication from ventral speech142

motor cortex onto auditory cortex (Fig. 4F).143

To date, there was a lack of direct evidence for a corollary discharge signal and its exact144

location, although its consequence – a suppression of auditory cortex during speech production145

– has been reported (4,14,26). To verify that the novel prototype we discovered is the source of146

a corollary discharge we sought to show a direct link to speech induced auditory suppression.147

Previous human (14) and non-human primates (12) studies reported a wide range of suppressed148

responses in auditory cortex. We hypothesized that the degree of information flow from the149

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2022.09.12.507590doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507590


corollary discharge source should predict the intensity of suppression across auditory cortex150

recording sites. We first quantified the level of neural activity for each electrode anatomically151

located within auditory cortex (i.e. within participant parcellation of superior temporal gyrus,152

see Fig. 5, A and B) and quantified the level of suppression by computing a normalized index153

(varying between 1 for completely suppressed and -1 for completely enhanced, see Fig. 5, C154

and D). We then quantified the degree of information flow into each electrode in auditory cortex155

(i.e. inflow connectivity weights see Fig. 5E; see methods 4.6) from the sources in our corollary156

discharge prototype (temporal prototype III in Fig. 3F). To test our hypothesis, we correlated157

the degree of information flow into each auditory electrode with its level of suppression and158

found a significant relationship (Pearson correlation coefficient r=0.430, p=1.45e-4, see Fig.159

5F; see methods 4.6). This further establishes that information flow from speech motor cortex160

before articulation promotes auditory suppression during speech. A majority of the outflow over161

speech motor cortex originated in ventral motor cortex (Fig. 5G). To verify the timing of this162

suppression signal, we repeated the correlation analysis across multiple time windows while163

ensuring that the information flow originated from ventral motor cortex and found significant164

correlations (Permutation test, p< 0.05; see methods 4.6) peaking before speech articulation165

(Fig. 5H).166
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Figure 1: Spatiotemporal distribution of neural activity during speech perception and production.
The spatiotemporal distribution of neural activity compared to baseline when participants (N=8) listen to auditory
stimuli (A) and subsequently repeat the same word (B). The color code represents percent change from pre-stimulus
baseline. A region of interest approach averaging activity in superior temporal, inferior frontal, pre-central, and
post-central gyri are shown when trials are aligned to (C) stimulus onset and (D) articulation onset. Shaded regions
around the curves depict standard error of the mean across participants. Participants were instructed to repeat the
auditory word freely when ready and the reaction time distribution is shown in a horizontal violin plot (C). The
stimulus onset relative to articulation onset is shown in the horizontal violin plot in (D).
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Figure 2: Overview of the signal processing and directed connectivity analysis framework.
(A) Electrocorticographic signals are recorded and high-gamma analytic amplitude signal (70-150 Hz) is extracted
via band-pass filtering and Hilbert transformation. The signal for each electrode and trial is then extracted locked
to perception or articulation onsets. (B) Directed connectivity (based on Granger-causality) is measured using an
autoregressive model for successive overlapping time periods, providing the connectivity between different elec-
trodes as a function of time (3D matrix in the purple box). The connectivity patterns are then represented by a few
temporal prototypes via an unsupervised clustering technique (orthogonal non-negative matrix factorization; green
box). This process reveals the major temporal connectivity patterns via prototypes and their corresponding assign-
ment weights projected on cortex (cortical sources in red and targets in blue). An example of the unsupervised
clustering algorithm with connectivity computed for five electrodes is shown. Unsupervised clustering summa-
rizes the connectivity temporal profiles into a few temporal prototypes that represent the temporal changes of those
connections. The corresponding assignment weights show cortical sources and targets (connections sourcing from
an electrode targeting another).
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Figure 3: Directed connectivity reveals sources and targets of neural communication during speech per-
ception and production.
The spatiotemporal distribution of neural activity compared to baseline in a representative participant is shown
during (A) listening to auditory word stimuli and (B) subsequent word repetition. Results of directed connectiv-
ity modeling in this participant (temporal prototypes plotted as temporal curves and corresponding information
sources in red and targets in blue plotted on cortical surface) are shown locked to (C) stimulus and (D) articulation
onset. Colored segments of the curves indicate the portions of the temporal curves that are statistically signifi-
cant compared to random permutation (p < 0.05, see method section 4.5 for details). (E,F) Directed connectivity
analysis repeated for eight participants shows similar prototypical patterns and information sources and targets (vi-
sualized on a normal brain). Prototypes I and II (in C and E) show distinct information flow during comprehension
part of the task. Prototype II† (in D and F) shows similar timing and information flow related to comprehension and
is colored similar to prototype II. Prototype III (in D and F; similar to III† in C and E) is related to pre-articulation,
while prototype IV (in D and F) is associated with speech production.
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Figure 4: Corollary discharge prototypes are replicated across tasks.
The corollary discharge temporal prototype and its corresponding information source (red) and target (blue) are
shown for all participants across five different speech production tasks (clustered separately) locked to articula-
tion onset: (A) auditory repetition, (B) auditory naming, (C) sentence completion, (D) picture naming, and (E)
visual word reading. (F) An overall representation of the corollary discharge prototype is shown by clustering the
combined connectivity results from all tasks and participants. Colored regions of the curve represent statistically
significant directed connectivity compared to random permutation (p < 0.05). The distribution across participants
of the peak time (G) and magnitude (H) of the corollary discharge prototype is shown for each task (clustered for
each participant separately; circles are color-coded per participant; Box-plots show minimum, maximum, quad-
rants, and median). The combined peak time and magnitude are established by clustering within participant but
combining all the task data for the last column of G, H.
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Figure 5: Corollary discharge predicts speech-induced auditory suppression.
Average neural activity when participants (A) hear auditory stimuli and (B) speak during an auditory repetition
task. (C) Most auditory responses are suppressed during speech production, quantified by a normalized suppression
index (SI) shown for all active auditory electrodes (i.e. within participant anatomical label of Superior Temporal
Gyrus) across all participants. Electrodes are sorted according to their mean SI over trials (error-bars represent
SEM across trials) and vary from 1 (completely suppressed) to -1 (completely enhanced). Spatial distribution of
mean SI for auditory electrodes across participants (D) and of the inflow weights onto auditory electrodes (E) in
the corollary discharge prototype III (purple curve in Fig. 3F). (F) The correlation between mean SI and the inflow
weights of the corollary discharge for all auditory electrodes. (G) Spatial distribution of the outflow weights (i.e.
source) of the corollary discharge prototype in pre- and post-central gyri. (H) The dynamics of the correlation
coefficient between mean SI and directed connectivity from sources in ventral motor cortex onto auditory cortex
as a function of time (solid curve is obtained using all electrodes across participants and dashed lines show the
analysis per participant; red shading denotes statistical significance from a permutation test p < 0.05).
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3 Discussion167

Corollary discharge signals from motor onto auditory neural populations are a hallmark of neu-168

ral circuitry in animals and convey information on impending actions (4, 27, 28). In humans169

however, the exact source and dynamics of the signal remained unknown. We leveraged the170

excellent spatiotemporal resolution of electrocorticography recordings from neurosurgical pa-171

tients and developed a novel signal analysis framework to study the dynamics of corollary dis-172

charge signal in human speech. Our analysis of neural connectivity dynamics revealed four173

distinct stages during auditory repetition likely representing comprehension (two stages), pre-174

articulatory preparation, and speech production per se. A cardinal connectivity temporal pro-175

totype during the pre-articulatory stage showed information flow from speech motor cortex176

onto auditory cortex before articulation onset. This prototype was replicated across participants177

and speech production tasks even when varying stimulus modality and routes of word retrieval178

(i.e. repetition, naming, completion), highlighting ventral pre-central gyrus as the source of the179

corollary discharge. Lastly, we directly linked the information flowing from this discharge with180

the degree of auditory cortical suppression in each electrode. Together, these findings depict the181

timing, source, and consequence of the corollary discharge signal in human speech.182

We designed a novel directed connectivity analysis framework to study the cortical infor-183

mation flow by fusing techniques that analyze the causal relationships between time-series184

based on Granger-causality measures (23,29–34) and unsupervised clustering (orthogonal non-185

negative matrix factorization (25)). Only a select few previous ECoG publications have lever-186

aged similar effective connectivity between brain regions during language tasks (35, 36), re-187

vealing the role of Broca’s area in coordinating articulately preparation (22) as well as frontal188

orthographic processing during word reading (37). In addition to replicating previous find-189

ings, we are able to do so on the single participant level. In addition to previous findings of190
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early temporal to inferior frontal flow (22) we find additional temporal to Rolandic cortex in-191

formation flow, albeit not causing downstream suppression. A major limitation of previous192

connectivity approaches is the large set of revealed connections rendering the results difficult193

to interpret and test statistically without averaging across cortical regions. Our unsupervised194

clustering approach circumvents this issue by finding a select few source-and-target pairs of in-195

formation flow representing the prototypical temporal dynamics of connectivity across cortex.196

Our approach identified cortical communication supporting speech preparation (22), within a197

single and across participants. Further, it revealed a novel corollary discharge signal, possibly198

obscured in the past due to limited cortical coverage as well as averaging across regions and199

participants.200

Theoretical models of speech production all assume a corollary discharge or a motor ini-201

tiation signal, presumably originating from frontal cortex and targeting the auditory sensory202

areas (38–40). However, the exact source and timing dynamics of this signal is variable and203

unclear due to the lack of direct evidence in neural recordings. Evidence for corollary discharge204

has been limited to two major results in both human and non-human primates: suppression of205

auditory cortex during vocalization (4, 13–15, 41–45), and enhanced auditory responses during206

altered feedback (7, 8, 12, 46, 47). Our results showed a distinct source of information flow207

originating in ventral pre-central gyrus before articulation irrespective of task modality. While208

we cannot rule out sub-cortical sources that were not recorded, we did not find other sources209

across cortical peri-sylvian sites. Specifically, inferior frontal gyrus showed major information210

flow during the comprehension prototypes but critically, not during the pre-articulatory proto-211

type. While IFG has been implicated as a major cortical source of connectivity during stimulus212

comprehension and pre-articulation (22,37), our data would rule out its involvement as a corol-213

lary discharge source. This is further supported by our consistent corollary discharge proto-214

type across tasks, in face of previous reports of attenuated activity during visual tasks (37, 48).215
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Further, our reported location and timing are consistent with the hypothesized communica-216

tion across theoretical frameworks, as well as neuronal suppression which has been reported217

prior to vocalization (4). In stark contrast to prior studies which failed to link motor neural218

responses with auditory suppression (8, 14, 16), our results clearly establish that the target of219

information flow correlates with the degree of suppression. This correlation peaks during the220

pre-articulatory period and levels out during speech production. While this link is a critical lit-221

mus test for corollary discharge, the correlation timing suggests that a local circuit mechanism222

may sustain suppression during production.223

Neurons supporting a corollary discharge circuit have been established in the cricket (2),224

songbird (49), and several other mammals (1). In humans, a corollary discharge signal is in-225

volved in speech production as well as the ability to distinguish between self- and external-226

generated thoughts and actions (10, 50). A dysfunctional corollary discharge circuit is the ma-227

jor model explaining auditory hallucinations in schizophrenia patients (10, 51–55). Auditory228

suppression is impaired in schizophrenia (10, 11, 52), but no direct corollary discharge signal229

source has been identified. Our novel framework and results provide a missing link in the human230

auditory system and elucidate the source, target and timing of the corollary discharge network231

with major implications for dysfunction of speech and psychosis.232
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4 Methods233

4.1 Participant information234

A total of 8 neurosurgical patients (7 female, all with left hemisphere coverage, mean age: 38235

with range 19 to 55 years) were implanted with electrocorticography electrodes and provided236

informed consent to participate in this research. All consent was obtained in writing and then237

requested again orally prior to the beginning of the experiment. Electrode implantation and lo-238

cation were guided solely by clinical requirements. Five of the participants were implanted with239

standard clinical electrode grid with 10 mm spaced electrodes (Ad-Tech Medical Instrument,240

Racine, WI). Three participants consented to a research hybrid grid implant (PMT corporation,241

Chanassen, MN) that included 64 additional electrodes between the standard clinical contacts242

(with overall 10 mm spacing and interspersed 5 mm spaced electrodes over select regions).243

This provided denser sampling of underlying cortex but was positioned solely based on clini-244

cal needs. The superior temporal gyrus (STG) region is sampled for all participants, and other245

cortical regions (including Broca’s area and motor cortex) are also sampled. The study protocol246

was approved by the NYU Langone Medical Center Committee on Human Research.247

4.2 Experiment setup248

The participants were instructed to complete five tasks to pronounce the target words in re-249

sponse to certain auditory or visual stimuli. These five tasks consisted of: auditory repetition250

(i.e., repeat an auditory presented word), auditory naming (i.e., naming a word based on an251

auditory presented description), sentence completion (i.e., complete the last word of an audi-252

tory presented sentence), visual word reading (i.e., read out loud a visually presented written253

words), and picture naming (i.e., name a word based on a visually presented line drawing). All254

tasks consisted of the same 50 target words. Each trial began with the stimulus presentation255

and participants were instructed to respond freely when they were ready. For each task and trial256
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the stimulus was randomly presented. Each target item appeared twice in the auditory repeti-257

tion, picture naming, and visual word reading tasks and once in auditory naming and sentence258

completion.259

4.3 Data collection and general pre-processing260

The ECoG recordings were collected as the participant performed each task. As an initial in-261

spection, we rejected electrodes with epileptiform activity, line-noise artifacts, poor contact,262

and high amplitude-shifts. These initial criteria were used based on the input from the clin-263

ical team to remove electrodes that are visually and obviously problematic and outliers. The264

exclusion of electrodes with epileptiform activity was done based on the characterization pro-265

vided by the clinical team as interictal population or seizure onset zone. ECoG recordings were266

referenced using the common average reference approach by averaging the signal across all267

electrodes and subtracted from each individual electrode signal. The raw voltage signal from268

each electrode was then filtered to high gamma broadband range (70-150 Hz) and the analytic269

amplitude (envelope) signal was then extracted by a Hilbert transform. The envelope signal270

was then downsampled to 200 Hz (see Fig. S7 for an exemplar electrode). The high-gamma271

analytic amplitude (envelope signal) has a band limit of 80 Hz, so down-sampling to 200 Hz272

(above the Nyquist rate) after amplitude extraction does not affect the frequency content (see273

Fig. S7 C). This down-sampling procedure reduces computational complexity and enhances the274

numerical stability of the autoregressive models (35, 36). The continuous data stream was di-275

vided into epochs based on the onset of stimulus (locked to stimulus) or onset of speech (locked276

to articulation). We restricted our analysis to a subset of active electrodes that showed strong277

event-related activity when averaged over trials (see supplemental text B for detailed explana-278

tion of the selection criteria as well as Fig. S8 and Fig. S9 for examples of active electrodes and279

the overall spatial distribution).280
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4.4 Neural activity visualization281

When plotting the neural activity (mainly shown in Fig. 1, Fig. 3 A-B, and Fig. 5 A-B), we282

presented the data in units of percent change from baseline activity. We performed the general283

pre-processing steps introduced in section 4.3. We then normalized each trial by the mean284

activity in that trial’s baseline (250 msec before stimulus presentation). In Fig. 1, A and B,285

this normalized signal (presented in units of percent change from baseline) for each electrode286

is averaged over trials and time in a 50 msec window centered at each marked time-stamp and287

projected onto a normal brain with a Gaussian kernel of size 50 mm (we restrict the spread of the288

Gaussian kernel to within the boundaries of the associated cortical region for each electrode).289

Similarly, when showing a representative participant in Fig. 3, A and B, the same procedure is290

performed for the electrodes and Cortical surface model of the participant’s brain. In Fig. 1, C291

and D, the normalized broadband high-gamma envelope signal (in units of percent change from292

baseline) is averaged over electrodes within a region of interest and trials for each time-point293

and participant. We show mean and standard error of the mean across participants for each294

region of interest. The distribution of articulation onset relative to stimulus onset (Fig. 1C, Fig.295

3C and E) and stimulus onset relative to articulation onset (Fig. 1D, Fig. 3 D and F) over trials296

and participants are shown as horizontal violin plots.297

4.5 Directed connectivity analysis framework298

Here, we first provide a brief overview of the steps used for directed connectivity analysis299

framework. We then provide detailed explanation of each step in the following subsections.300

For directed connectivity analysis, we performed the general pre-processing steps intro-301

duced in section 4.3. We z-scored the signal from each electrode by the mean and standard302

deviation from all the time-points and trials. For each participant and task, we used the trial303

information to fit a multivariate autoregressive (MVAR) model to 100 msec overlapping time304
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windows with hops of 10 msec (see section 4.5.1 for details of model fit). For each window we305

measured the directed connectivity (Granger-causal sense) between electrodes by computing306

the partial directed coherence (PDC) (24) from the fitted MVAR model coefficients (see section307

4.5.2 for details). We focused our analysis on temporal changes of PDC as the resulting connec-308

tivity showed the information flow between any two given electrodes as a function of time. Our309

goal was to summarize the data into a few prototypes that represent the major temporal changes310

of connectivity. To derive the prototypical temporal connectivity patterns, we used orthogonal311

non-negative matrix factorization (ONMF) (25) as an unsupervised clustering technique. Sim-312

ilar to other dimentionality reduction algorithms such as principal component analysis (PCA),313

ONMF summarized the temporal connectivity patterns. However, a distinct feature of ONMF,314

in contrast to PCA, is that each connection is associated with one and only one prototype re-315

sulting in a clustering algorithm. We gathered the measured directed connectivity signals into a316

matrix (the dimensions of which are number of time-windows by number of connections) and317

applied the ONMF, representing each connection as a scaled version of one of a prototypical318

patterns (each connection can only be assigned to one prototype; see section 4.5.3 for details).319

Consequently, ONMF clustered the temporal PDC changes into a few clusters. For each cluster,320

a temporal prototype represents the temporal behavior (“when”, K × T matrix in Fig. S10) of321

that cluster , and assignment weights show which connections belong to that cluster (“where”,322

M(M − 1) × K in Fig. S10). The assignment weights associated with each cluster are then323

visualized on participant or Montreal Neurological Institute (MNI) brain with a Gaussian kernel324

of size 50 mm (restricting the spread to within the boundaries of the associated cortical region325

for each electrode).326
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4.5.1 Multivariate autoregressive model327

We denote by xm(t) ∈ R≥0 the envelope of the high-gamma broadband extracted from the328

ECoG recordings, downsampled to 200 Hz, and Z-scored based on mean and standard de-329

viation per electrode. The subscript m denotes the active electrode index m ∈ {1, · · · ,M}330

and t the time-step t ∈ {1, · · · , T}. The signal xi Granger causes the signal xj if knowl-331

edge of xi(τ) for τ ≤ t improves the prediction of xj(t). To assess Granger causality be-332

tween multichannel ECoG data, we fitted a multivariate autoregressive (MVAR) model. Let333

x(t) = [x1(t), · · · , xM(t)]T ∈ RM
≥0 be the multichannel high-gamma analytic amplitude signal334

at time t with M total active electrodes (M total channels). The MVAR model assumes that the335

signal at each time point, x(t) can be estimated as a linear combination of the signal at previ-336

ous time-points and a random innovation signal ϵ(t). Consequently, we can write the MVAR337

formulation as338

x(t) =
P∑

p=1

A(p)x(t− p) + ϵ(t), (1)

where A(p) ∈ RM×M are coefficient matrices for which the element aij(p) shows the depen-339

dency of xi(t) on xj(t−p) for electrodes i, j = 1, · · · ,M and time-lags p = 1, · · · , P . The ran-340

dom innovation signal ϵ(t) is assumed to be composed of white uncorrelated noises with covari-341

ance matrix Q. Causality relations are found when the relevant interaction is active in (1). More342

formally, we can say xj Granger causes xi if aij(p) ̸= 0 at least one p ∈ {1, · · · , P}. This is343

consistent with the definition of direct causality as in (56). The parameters of the MVAR model344

in (1), Θ = {A(p),Q}, are estimated using the Expectation-maximization algorithm (36, 57).345

The AR process is a linear model with an inherent stationarity assumption on the signal x.346

We follow the recommendation of Ding et al. to model short windows of signal with separate347

AR models (57). We used short overlapping windows of 100 msec with hops of 10 msec and348

used the available trial data to fit an MVAR model for each window. This allowed us to look at349
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dynamic changes of connectivity across larger time-scales of the entire trial.350

We followed the recommendations in (35, 58) for choosing the model order (based on351

AIC/BIC criterion). Specifically, for each 100 msec window (non-overlapping windows were352

used for model order selection), we separately computed the model order that minimizes AIC353

and BIC criteria (tested over range 1 to 10) and picked the median across windows. In the event354

that the median from AIC and BIC did not match, we chose the overall median. We typically355

found the model order of P = 4 corresponding to delays up to 20 msec. We check the stability356

of the estimated MVAR model for each window by computing the roots of the characteristic357

polynomial358

det
(
αPI + αP−1A(1) + · · ·+ αA(P − 1) +A(P )

)
= 0.

We made sure that the roots satisfied |α| < 1 for each window. In the very rare event that this359

condition is not satisfied the model order is decreased and the model fit repeated. We performed360

the Ljung-Box portmanteau test for whiteness and the Kendall’s τ test for independence (59)361

on the resulting MVAR model residual ϵ(t) to ensure temporally uncorrelated residual.362

4.5.2 Measuring directed connectivity from model coefficients363

We used partial directed coherence (PDC), a frequency-domain approach to describing the re-364

lationships (direction of information flow) between multivariate time series (24), to measure365

directed connectivity. We computed the PDC from the fitted MVAR coefficients of each win-366

dow as367

γij(f) =
Āij(f)√

Ā
H
.j (f)Ā.j(f)

where (2)

368

Āij(f) =

{
1−

∑p
τ=1 Aij(τ) exp (−2πifτ ) , if i = j

−
∑p

τ=1 Aij(τ) exp (−2πifτ ) otherwise.

To obtain a picture of how the connectivity changes across time-windows, we followed (36)369

and defined γij =
∑

f |γij(f)| (summing the PDC values over frequency for each window) and370

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2022.09.12.507590doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507590


focused on the temporal changes of γij over the shifted windows. We note that PDC satisfies371

0 ≤ |γij(f)|2 ≤ 1 and
∑M

i=1 |γij(f)|2 = 1 ∀1 ≤ j ≤ M (normalized interaction strengths372

with respect to a given signal source).373

4.5.3 Clustering the temporal patterns of directed connectivity374

We were interested in changes of PDC values as a function of time. We used unsupervised375

clustering, performed by orthogonal non-negative matrix factorization (ONMF), to find and376

group connections with similar temporal patterns of PDC changes into one cluster. For each377

time window t ∈ {1, · · · , T}, let γt
i,j be the PDC computed from node i ∈ {1, · · · ,M} to node378

j ∈ {1, · · · ,M}. We formed the matrix Γ ∈ R(M2−M)×T
≥0 such that each row represents the379

temporal changes of PDC between a particular pair of electrodes; i.e. γt
i,j for the connection380

from node i to node j with i ̸= j. To cluster similar temporal PDC profiles (i.e. similar rows in381

Γ) into the same group, we used orthogonal non-negative matrix factorization (ONMF). For a382

desired number of clusters K, the ONMF objective function can be written as,383

minimize
U∈R(M2−M)×K ,

V ∈RK×T

∥Γ−UV ∥2F

subject to : U⊤U = IK , U ≥ 0, V ≥ 0,

(3)

where the constraints U ≥ 0 and U⊤U = Ik imply that each rows of U can have at most one384

non-zero entry, hence the clustering nature of this objective function. Each cluster k is repre-385

sented by its corresponding row vk in V , which we refer to as the k-th temporal connectivity386

prototype.387

We used the EM-ONMF algorithm (25) to solve for the matrices U and V . This algorithm388

finds a set of disjoint clusters, πk, k = 1, 2, . . . , K, such that each cluster πk contains rows in Γ389

that are as similar to each other as possible. If the temporal connectivity profile from node n to390

node m is clustered to cluster k, then it can be approximated by Γl(n,m) ≈ uk
l(n,m)vk. We call the391

weight uk
nm the assignment weight for prototype k from n to m. We define the inflow weight392
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for each electrode m in cluster πk as ι(m,πk) =
∑

n uk
l(n,m)

|πk|
, where |πk| indicates the number393

of connections in cluster πk. Similarly we define the outflow weight for each electrode n as394

o(n,πk) =
∑

m uk
l(n,m)

|πk|
. To visualize the source and target locations associated with each prototype,395

we defuse the inflow (negatively weighted; blue color) and outflow (positively weighted; red396

color) weight associated with each electrode into the surrounding area in the same anatomical397

region using a Gaussian kernel on a patient or standard brain map.398

We assessed the statistical significance of prototypes with a permutation test (60), where we399

randomized the cluster assignments and recomputed the prototypes for 1000 repetitions. We400

tested each time-point of the prototype against the randomized projection distribution (with an401

alpha criterion of 0.05) and to control for multiple comparisons error only continuous range of402

values (longer than 100 msec, corresponding to 5 windows) showing statistical significance was403

accepted. The number of clusters (corresponding to total number prototypes) were determined404

based on the relative reconstruction error ∥Γ−UV ∥2F
∥Γ∥2F

for different number of clusters. We empir-405

ically found that this error term plateaued at four components for the time windows considered406

in our experiments (see Fig. S11). One of the resulting prototypes always showed “noise-like”407

activity and was removed from analysis (see Fig. S3).408

4.6 Speech induced auditory suppression409

For each electrode anatomically located in the auditory cortex (i.e. STG) we obtain the broad-410

band high-gamma signal by applying the general pre-processing steps in section 4.3. To quan-411

tify the level of suppression for each auditory electrode, we compute the average broadband412

high-gamma signal in 300 msec after the stimulus onset (x̄hear) and 300 msec after articulation413

onset (x̄speak) in the auditory repetition task. For each auditory electrode (total of 73 across414

all participants) we compute the suppression index (SI) defined as SI =
x̄hear−x̄speak

x̄hear+x̄speak
(varying415

between 1 for completely suppressed and -1 for completely enhanced; distribution shown in416
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Fig. 5, C and D). We quantify the information inflow to each auditory electrode by the cluster417

assignment weight associated with the corollary discharge prototype from auditory repetition418

task (distribution shown in Fig. 5E). To assess the link between suppression and corollary dis-419

charge we use Pearson correlation across all auditory electrodes for all participants (Fig. 5F).420

To show the temporal dynamics of this correlation, for each auditory electrode we compute the421

average directed connectivity of the connections represented by the corollary discharge proto-422

type sourcing from electrodes located anatomically in ventral pre-central gyrus in overlapping423

windows of 300 msec with hops of 10 msec. We then correlate the suppression index and the424

average directed connectivity for each time-window across all auditory electrodes (solid curve425

in Fig. 5H). We repeat the same analysis only considering the auditory electrodes for each par-426

ticipant (dashed curves in Fig. 5H; two participants were removed from this analysis due to427

limited number of auditory electrodes). We assess the statistical significance by a permuta-428

tion test (randomizing the suppression index assignment for each window a total of 1000 times429

and comparing each time point to this distribution; alpha of 0.05; multiple comparisons error430

corrected with only accepting continuous range longer than 100 msec).431
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Figure S1: Spatiotemporal distribution of neural activity before and after speech production.
A region of interest approach averaging activity in superior temporal, inferior frontal, pre-central, and post-central
gyri are shown when trials are aligned to articulation onset (A). The spatiotemporal distribution of neural activity
compared to baseline when participants articulate are shown in (B). The color code represents percent change from
pre-stimulus baseline.
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Figure S2: Detailed overview of the proposed directed connectivity analysis framework.
Electrocorticographic signals are recorded from neurosurgical patients. We focus on the analytic amplitude of
high-gamma broadband locked to perception or production onset. Directed connectivity is measured using an au-
toregressive model for successive overlapping time windows. The connectivity patterns are then represented by a
few temporal prototypes via an unsupervised clustering technique. This process reveals the major temporal con-
nectivity patterns and their corresponding assignment weights projected on cortex. We test statistical significance
of each prototype against random permutation (p < 0.05).
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Figure S3: Temporal connectivity profiles in auditory repetition locked to articulation
(A-D) Resulting temporal connectivity prototypes when directed connectivity profiles from auditory repetition task
locked to articulation are clustered to 4 clusters for eight participants together. (E-H) The temporal connectivity
profiles, Γπk

, assigned into cluster k, represented by the corresponding prototype in A to D plotted as images.
Each row in matrices E to H shows the temporal dynamics of a specific connection between two electrodes in each
cluster. The rows of the matrices are ordered by participants. (I-L) The average normalized connectivity and cor-
responding standard error of the mean across participants (shaded region) shows robustness of the corresponding
prototypes. (M-P) Ratio count of outflow connections from each individual electrode that were assigned to each
corresponding prototype. (Q-T) Ratio count of inflow connections to each individual electrode that were assigned
to a prototype. Maximum ratio of outflow (U) and inflow (V) across prototypes for each electrode.
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Figure S4: Connectivity prototypes in auditory repetition; variability across participants.
(A) The connectivity prototypes and their corresponding source and target distributions when directed connectivity
profiles from N=8 participants are clustered together (repeated from Fig. 3E and F); (B) The mean of the con-
nectivity prototypes and corresponding average source and target distribution when directed connectivity profiles
from N=8 participants are clustered separately. Shaded area around the curves in B shows standard error of the
mean across participants.
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S.1 Passive listening as a negative control11

Three of the patients in our cohort, performed a passive listening version of the auditory rep-12

etition task. In a separate recording block, participants were instructed to passively listen to13

identical stimuli from the auditory repetition task. We first provide the average neural activity14

across STG, IFG, pre-, and post-central cortices locked to stimulus presentation for both the15

passive listening (Fig. S5 A) and the auditory repetition (Fig. S5 B) tasks. In the passive lis-16

tening task after stimulus presentation is over (range: 430 − 790 msec, mean: 583 msec from17

stimulus onset), there is a delay and the task moves to the next trial, while in the auditory rep-18

etition task articulation is engaged. For this reason, we focused our analysis on the interval19

[-250, 800] msec from stimulus onset (Fig. S5 C,D). This allows us to cover both stimulus pre-20

sentation and pre-articulatory periods while avoiding the start of the next trials in the passive21

listening condition.22

We first replicated the connectivity prototypes for the auditory repetition condition limited23

to the [-250, 800] time-interval, an analysis that is different in length and number of partici-24

pants from the results in the main text (i.e. compare Fig. 3 E to Fig. S5 F). Specifically, we25

found that clustering with the same number of components (K=4) reveals two comprehension26

prototypes (blue and yellow) followed by a pre-articulatory prototype (purple). We then applied27

the same framework to the passive listening task, however we used three cluster components28

(K=3) as our analysis revealed that this was sufficient to represent the data (Fig. S5 E). The29

two prototypes associated with comprehension (Fig. S5 E, blue and yellow) were replicated in30

the passive condition in overall timing and spatial distribution. While we did not find a pre-31

articulatory prototype during passive listening, we were concerned that it may be obscured or32

overlapping with the baseline/noise component (Fig. S5 E gray dashed line). To address this, we33

repeated clustering in the passive listening condition with four clusters (K=4). The clustering34

still revealed the first two comprehension prototypes (see yellow and blue boxes in Fig. S5 G)35
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but the third cluster was diminished showing a distinctly silent topography compared with the36

pre-articulatory prototype in the auditory repetition condition, as the reviewer suggested (see37

purple and red in Fig. S5 G).38
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Figure S5: Passive listening as a control condition
Averaged neural activity in superior temporal, inferior frontal, pre-central, and post-central gyri are shown when
trials are aligned to stimulus onset for (A) passively listening to auditory stimuli and (B) auditory repetition of the
same stimuli. We focused our analysis on a time interval [-250, 800] that is comparable between the two conditions,
which can be seen in C, D (a zoomed version of A and B, respectively). Results of directed connectivity modeling
in the passive listening condition (E), and the repetition condition (F) are shown locked to stimulus (temporal
prototypes and corresponding information sources and targets with k=3 and 4 cluster components, respectively).
Regions of cortex showing information source (red) and target (blue) are colored for each prototype (the color of the
box of each brain matches the color of the associated temporal curve in E and F). A comparison of the information
sources and targets between the two conditions is shown in (G) applying the same number of of clusters in each
analysis (k=4).
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Figure S6: The corollary discharge source.
(A) Spatial distribution of outflow weights associated with the corollary discharge prototype for the auditory repe-
tition task. (B) Post-hoc multiple comparisons test using the result of ANOVA test for outflow weights with tasks
and anatomical region (vental/dorsal pre- and post-central areas) as effects shows ventral pre-central gyrus as the
main source of outflow associated with the corollary discharge prototype.
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Figure S7: Illustration of the signal pre-processing stages.
(A) The recorded signal is first referenced by subtracting the average of all electrodes at each time-point (common
average reference), then band-pass filtered to 70-150 Hz high-gamma range and the analytic amplitude (envelope)
of the high-gamma signal is extracted by a Hilbert transform. The resulting envelope signal is down-sampled from
the original 512 Hz to 200 Hz. (B) The effect of the common average referencing is shown on the power spectral
density of the signal. The major frequencies present in the common average signal are the 60 Hz line-noise and its
harmonics, and by subtracting the effect of the line-noise is attenuated from the recorded signal. (C) The effect of
down-sampling the analytic amplitude (envelope) of the high-gamma signal from 512 Hz to 200 Hz is shown in
temporal domain (left plot) and frequency domain (power spectral density plots). High-gamma analytic amplitude
is band-limited to 80 Hz and down-sampling to 200 Hz does not have an effect on the frequency content of the
signal.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2022.09.12.507590doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507590


S.2 Active electrode selection algorithm39

Here, we introduce an unsupervised automatic algorithm to select a subset of electrodes that can40

be considered active given the ECoG data for a task. We expect active electrodes to have high41

event related responses, whereas the inactive ones to have a trial mean signals close to zero. We42

denote by xn(r, t) ∈ R the ECoG signal for electrode n ∈ {1, · · · , N} at trial r ∈ {1, · · · , R}43

and time-step t ∈ {1, · · · , T}. We aim to find a subset of electrodes which have activity related44

to the task.45

Motivated by this rationale, we first determined the trial mean signal for each electrode, i.e.46

x̄n(t) =
1
R

∑
r xn(r, t). We empirically observed that further denoising this signal via wavelet-47

thresholding is beneficial. Let W denote the forward wavelet transform, W T denote its inverse,48

and x̄n = [x̄n(1), · · · , x̄n(T )]
⊤. Let Hτ (x) = x for |x| ≥ τ and 0 otherwise, be the hard-49

thresholding operator and similarly extend for vectors by applying element-wise. Then, the50

denoised mean signal can be represented by x̂n = W THτ (W x̄n) (see examples of the signals51

xn(r, t), x̄n(t), and x̂n(t) for three different electrodes in Fig. S8(a)). We used 5 levels of52

Daubechies 8 (db8) wavelet filters and we set τ = 0.5.53

We computed the standard deviation of x̂n(t) over time, i.e. sn =
√

1
T−1

∑
t(x̂n(t)− x̂n(t))2.54

Higher values of sn indicate active electrodes and smaller values indicate the inactive ones. We55

found a threshold τs such that the electrode n is considered active only if sn > τs by fitting56

a Rayleigh-Rice mixture model (see a sample histogram of sn and fitted model and thresh-57

old in Fig. S8(b)). The Rice component represented the active electrodes, while the Rayleigh58

component represented the inactive ones.59

To describe this mixture model, let α indicate the probability that a sample s is from a60

Rayleigh distribution with parameter b2, and 1 − α the probability that s is from the Rice dis-61

tribution with parameters ν and σ2. Then, the distribution of the mixture model can be written62
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as63

f(s|Ψ) = αfRayl(s|b2) + (1− α)fRice(s|ν, σ2)64

where Ψ = {α, b2, ν, σ2} and65

fRayl(s|b2) =
s

b2
exp

(
− s2

2b2

)
, s ≥ 066

and67

fRice(s|ν, σ2) =
s

σ2
exp

(
−s2 + ν2

2σ2

)
I0

(sν
σ2

)
, s ≥ 068

with I0(·) is the 0-th order modified Bessel function of first kind. Given the samples {sn}Nn=1 we69

found the parameters of this model (Ψ = {α, b2, ν, σ2}) via Expectation-Maximization (EM)70

algorithm for each participant (61). Given the fitted model parameters we set the threshold τs71

such that,72

1− α

α
=

fRayl(τs|b2)
fRice(τs|ν, σ2)

.73
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Figure S8: Example for active electrode selection algorithm.
(A) Pictorial depiction of the signal xn(r, t), average signal over trials x̄n(t), and denoised average signal x̂n(t) for
two active and one inactive electrode. (B) Histogram of temporal changes from the mean, sn, for all the electrodes
of one patient during auditory repetition task. Fitted Rayleigh-Rice mixture model and threshold are shown.
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Figure S9: Electrode coverage and selection.
(A) Implanted electrodes for all eight participants shown on a normal brain (MNI space, color-code represents
participants). Five participants were implanted with low-density (LD) grids with 10mm spacing while three par-
ticipants consented to be implanted with a hybrid-density (HD) grid with 10 mm overall spacing and 5mm spacing
in specific areas. (B) Resulting electrodes from the active electrode selection algorithm are shown.

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2022.09.12.507590doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507590


Figure S10: Unsupervised clustering applied to temporal connectivity profiles.
A pictorial representation of the orthogonal non-negative matrix factorization (ONMF) algorithm applied to con-
nectivity measures across time windows. The connectivity tensor (of size electrode x electrode x time) is reshaped
into a matrix (of size connection-number x time). Temporal connectivity profiles (rows of the connectivity matrix
Γ) are clustered into K prototypes (rows of the matrix V) with their corresponding assignment weights to a cluster
(non-zero element in each row of the matrix U). Similar to other dimensionality reduction algorithms like principal
component analysis (PCA), the connectivity matrix Γ is approximated by the lower-dimensional matrices U and
V. Matrix factorization via ONMF, in contrast to PCA, assigns each connection to only one prototype (only one
element in each row of U can be non-zero) and thus yields a clustering algorithm.
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Figure S11: Number of clusters.
Relative recovery error, ∥Γ−UV ∥2

F

∥Γ̃∥2
F

, computed for different number of cluster components, K, and shown for
auditory repetition task locked to stimulus (black) and articulation (blue). We choose K = 4 components in our
analysis.
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Table S1: Start time of consecutive activity (above 1.96 SD of baseline; longer than 100 msec)
relative to stimulus onset across electrodes in different regions of interest during the auditory
repetition task (mean ± standard deviation across electrodes).

RoI STG IFG Pre-central Post-central
Time from stimulus (msec) 105± 37 181± 42 435± 114 845± 53
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