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Abstract: We experimentally demonstrate a recurrent optical neural network based on 
a nanophotonic optical parametric oscillator fabricated on thin-film l ithium n iobate. Our 
demonstration paves the way for realizing optical neural networks exhibiting ultra-low la-
tencies. 

The rise of artificial intelligence (AI) and its widespread implementation in the past decade has led to disruptive
advances in a variety of fields ranging from fundamental sciences to everyday life technologies. In particular,
deep neural networks [1] have enabled a plethora of exciting functionalities such as self-driving cars and natural
language processing. Nevertheless, costly and time-consuming computations required for training is known to
impede the scalability of the majority of AI models. In this regard, certain models such as extreme learning
machines (ELMs) and reservoir computers (RCs) offer major advantages, since only the output layer is trained
while other connection weights in the network remain untrained. This makes these models more suitable for
implementation in analog physical arrangements, where the internal parameters of the underlying physical system
can be left unaltered. Yet, despite their simple training, ELMs and RCs can provide powerful tools when dealing
with sequential data [2, 3].

Here, we experimentally demonstrate an ultrafast recurrent optical neural network based on a nanophotonic
optical parametric oscillator (OPO) fabricated on a thin-film lithium niobate (TFLN) chip [4], which we call
OPO-RNN. Remarkably, we demonstrate an operating clock rate of ∼ 10GHz, a quantity that is only limited by
the electronic sources responsible for generating the input signal. In our scheme, the masked sequential data is
generated by modulating the optical pulses emitted from an electro-optic (EO) frequency comb, which is used to
synchronously pump the OPO. In response, the OPO, which is designed to operate under degenerate conditions,
emits signal pulses at half-harmonic frequency with respect to the input pump. The resulting signal pulses that
are coupled to one another via the nonlinear delayed dynamics of the OPO, form the internal nodes of the net-
work, similar to the neurons within a nonlinear reservoir network (Fig. 1). The output of the OPO-RNN is then
determined by taking a linear weighted sum of the electronically detected signal pulses at the output of the TFLN
chip. We use the OPO-RNN for chaotic time series prediction, compensating for nonlinear distortions in a noisy
communication channel, as well as demonstrating waveform classification.

Fig. 1: RNN based on on-chip OPO. (a) Schematic diagram of the experimental setup. (b) Implemented recurrent neural
network architecture, where only the output weights Wout are trained.

Figure 1 shows a schematic of our experimental setup. We use an EO comb to generate optical pulses at 10 GHz
repetition rate and center wavelength of 1045 nm with a pulsewidth of ∼ 2ps to synchronously pump the on-chip
OPO. These pulses are then passed through a booster optical amplifier (BOA), wave shaper, and Ytterbium-doped
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fiber amplifier (YDFA) for amplification and dispersion compensation. The sequential data at the input layer is
prepared by modulating the pump pulses using an intensity modulator driven by an arbitrary waveform generator
(AWG) operating at 10 GSa/s. The modulated pump pulses are then amplified using a second YDFA before being
coupled into the chip. Our on-chip OPO is fabricated on an x-cut, 700-nm-thick TFLN wafer with a silica buffer
layer (Fig. 1(a)). It comprises two input/output adiabatic couplers before and after the periodically poled section
in the middle which are designed to only allow the degenerate signal/idler modes to resonate within the cavity.
The emitted signal pulses at 2090 nm are resolved using a fast detector, thus forming the output layer (Fig. 1(b)).

We first perform time-series prediction on the chaotic signal associated with the Lorenz model. The input
sequence u(n) is provided by the modulated pump and the goal is to predict u(n+ 1) at each timestep using
previous instances u(n− i) where i ∈ 0,1, ...,M. Figure 2(a) shows the target sequence and the experimentally
measured predicted one. Here, we use the first 750 timesteps to train the output weights and the following 750
timesteps to test the network, experimentally observing a normalized error of NMSE = 0.07±0.017.

The next task involves equalizing nonlinear distortions that typically occur in a noisy communication channel
[5]. Here, the original signal S(n) comprises symbols chosen randomly from four discrete levels {−3,−1,1,3}.
While propagating through the communication channel, the signal experiences inter-symbol interference (ISI),
nonlinear effects, as well as random additive noise. Hence, the transmitted signal is given by T (n) = Q(n) +
0.036×Q(n)2 − 0.011×Q(n)3 +R(n), where R(n) is a random Gaussian noise and Q(n) = ∑

7
i=−2 αiS(n− i).

Without any equalization and assuming a signal to noise ratio (SNR) of 30dB, our experimental measurements
indicate a symbol error rate (SER) of SER = 19.3±1.6%. In contrast, by using the OPO-RNN to compensate for
the nonlinear distortions, we were able to suppress the error to SER = 7.1±2.3%.

Fig. 2: Experimental results for different benchmark tasks using OPO-RNN. (a) Chaotic time series prediction of the
Lorenz model. (b) Waveform classification involving three different noisy waveforms, the figure shows typical waveforms used
as input pump (left) and detected at the output (right). (c) Using only three output nodes, we achieved 100% accuracy (d) .

Finally, we utilize OPO-RNN to classify noisy waveforms randomly chosen from three different classes of
sinusoid, sawtooth and square signals. Figure 2(b) shows three instances of input signals belonging to each of
these classes that we experimentally measured. Every waveform consists of N = 50 samples constituting two
consecutive cycles. At the output, the sub-harmonic signal generated by the OPO is sampled at three equidistant
points, forming K = 3 output neurons (Fig. 2(c)). We use 300 waveforms (100 from every class) to train the output
weights according to a winner-takes-all approach, and then use a different set of 300 waveforms for testing. Using
this scheme, the OPO-RNN was able to achieve 100% accuracy for this classification task (Fig. 2(d)).

In conclusion, we demostrated an ultrafast recurrent neural network based on an on-chip OPO operating at
10GHz clock rates. This paves the way for all-optical neural networks using nonlinear photonic integrated circuits.
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