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Smoothness of directed chain stochastic differential

equations”
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Abstract

We study the smoothness of the solution of the directed chain stochastic differential
equations, where each process is affected by its neighborhood process in an infinite
directed chain graph, introduced by Detering et al. (2020). Because of the auxiliary
process in the chain-like structure, classic methods of Malliavin derivatives are not
directly applicable. Namely, we cannot make a connection between the Malliavin
derivative and the first order derivative of the state process. It turns out that the
partial Malliavin derivatives can be used here to fix this problem.
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1 Introduction

The main objective of this paper is to study the existence and regularity of the densi-
ties of the directed chain stochastic differential equations: given a filtered probability
space (€2, F, (Ft)i>0, ), the directed chain McKean-Vlasov stochastic differential equa-

tion (or directed chain SDE for short) for a pair (X,g, X.) of N-dimensional stochastic
processes considered here is of the form

t d t
Xf:9+/ Vo(s,Xf,Law(Xg),Xs)ds—i—Z/ Vi(s, X% Law(X?), X,)dB!,  (1.1)
0 i=1 70

for t > 0 with the distributional constraint

[X?,t > 0] := Law(X?,t > 0) = Law(X;, ¢ > 0) =: [X;, ¢ > 0],
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Smoothness on directed chain SDEs

where V;, i = 0,1,...,d are some smooth coefficients, B. := (B!,..., B%) is a standard
d-dimensional Brownian motion independent of the initial state X§ = 6 and of X, and
X8 is independent of Xo. Throughout the paper, [£] denotes the law of a generic random
element £. Here, each coefficient V; in (1.1) depends on time s, the value Xf, its law
Law(X?) =: [X?] and the other X, of the pair for s > 0. The law [X?] depends on the law
[)? .] through (1.1) and they are the same marginal law. We show that the above directed
chain SDE has a unique weak solution in section 2.

This kind of directed chain structure was first proposed by [13] in a simpler form.
Schematically, this structure can be written as an infinite chain of stochastic equations
for (Xl_’.,XQY., .. .),

Xmst = b(t7X1,t7 Fl,t) dt + dBl,t7
dXos = b(t, Xot, Fo ) dt + dBay

: (1.2)
dX;: =0(t, X, ¢, Fir) dt + dB; 4,

where F;; := udx,,,, + (1 — u)u;; is the mixture distribution term of the measure-
dependent drift coefficient b with the marginal law p; ; := Law(X, ;) of X;, for t >0,
dx,,, . is the Dirac measure at X; 1, a fixed constant u € [0, 1] measures the common
amount of dependency of X;. on its neighborhood value X;,,., and B; ., B, . . are
independent standard Brownian motions. We also assume that the initial value X; g is
independent of B; ., and X;;. and B;. are independent for: = 1,2,.... In particular,
the drift b in [13] has the following form b(¢, x, ) := ng(t, x,y)u(dy) with some Lipschitz
continuous function b. See also Figure 1 in section 4.

The stochastic processes on infinite graphs including the directed chain structure
have drawn much attention recently (e.g., see [28] for their application to the generative
adversarial network). Stochastic Differential Games on the directed chain have been
studied in [14] and on the extended version of random directed networks in [15] as
well as on the general random graph (e.g., [25]). [24] discuss the Markov random field
property over both finite and countably infinite graphs with local interactions through
the drift coefficients. Another related topic is the Graphon particle system. There are a
sequence of works on Graphon particle system and Graphon Mean Field Games, [1, 4, 5]
just to name a few. [2] introduced the uniform-in-time exponential concentration bounds
related to the graphon particle system and its finite particle approximations. Here, we
are interested in the existence and smoothness of the density of the directed chain
SDE (2.1)-(2.2). It should be emphasized here that in this problem, we need notions of
derivatives in the space of measures, which is used frequently in the theory of Mean
Field Games.

In most cases, Malliavin calculus is a foundation for analyzing the smoothness of
the density of stochastic differential equations. It has been widely used in investigating
the density of diffusions [20], [22], [23] and then applied into many different scenarios.
The authors in [8] use Malliavin calculus to derive smoothing properties of solution to
stochastic differential equations with jumps. The smoothing properties of McKean-Vlasov
SDEs have been studied in [10], which is closely related to our purpose. However, be-
cause of the appearance of the auxiliary process X, the crucial step making connections
between the Malliavin derivative and the first-order derivative of the state process fails,
please see Question 3.3 for the details. To our best knowledge, we did not find any
work studying the smoothness property of such weak solutions of stochastic differential
equations.
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Smoothness on directed chain SDEs

For the purpose of resolving this problem and using the Malliavin derivatives, we
should freeze the auxiliary process X. This inspired us to consider another closely
related and well-developed tool, the partial Malliavin calculus. Partial Malliavin calculus
is first introduced by [18] for the constant case, where the projections are taken on
a fixed Hilbert subspace, and applied to prove some regularity results in non-linear
filtering theory. Another work developing the partial Malliavin calculus is [16], by which
the authors were able to complete the proof of some results in [27] on the long-time
asymptotic of stochastic oscillatory integrals. We mainly adopt the framework from
a later work by Nualart and Zakai [30], where the projection is taken on a family of
subspaces which are defined as the orthogonal complement to the subspaces generated
by X in (1.1). We remark that our method is potentially applied to analyze the smoothness
of the (conditional) law of weak solutions of stochastic differential equations in a similar
setting. For example, the study of nonlinear filtering problem and the corresponding
stochastic partial differential equations.

This paper is structured as follows. In section 2, we first introduce the differentiation
in the space of measures and multi-index notation in section 2.1, and then prove the ex-
istence, uniqueness and some regularity results on the solutions of generalized directed
chain SDEs in Propositions 2.2-2.3. In section 3, we prepare the notions of the partial
Malliavin calculus and give the Kusuoka-Stroock process for the proof of our smoothness
of densities, which will be stated in section 4. Our proofs follow the idea of [10], where
we first derive integration by parts formulae for the directed chain SDEs via the partial
Malliavin derivatives, instead of the Malliavin derivatives, as in [10]. The main result is
stated in Theorem 4.11 with some applications in section 4.

2 Preliminaries and directed chain SDEs

In this section, we first prepare some notations and the notion of differentiation in
Po(RY), where P2 (RY) is the space of all measures on R" with finite second moments,
and then establish the weak solutions of the directed chain SDEs.

2.1 Notations and basic setup

Rather than the directed chain SDE of the type given in [13], we consider the SDE in a
more general setup, allowing the diffusion coefficients non-constant. Given a probability
space (2, F,F = (Fi)i>0, P), the directed chain McKean-Vlasov SDE (or directed chain
SDE for short) is of the form

Xf:0+/ Vo(s, X0 [X9), X ds+Z/ (s, X9, [X?], X,)dB:, (2.1)
0

with the constraint  [X?,¢ > 0] = [X,,¢ > 0], (2.2)
where B, := (B!,...,B%) is a standard d dimensional Brownian motion and X, €

L?(Qx[0,T],RY) is an adapted random process independent of all the Brownian motions
B’ i=1,...,d and initial state 6.

Moreover, we assume that Vg, V; : [0, 7] x RN x Po(RY) x RY — RY, where Py(RY)
is the set of measures on R" with finite second moments. We equip P2(R") with the
2-Wasserstein metric, W,. For a general metric space (M, d), we define the 2-Wasserstein
metric on P (M) by

1/2
Walpv) = inf ( [ dwarnas, dy>) ,
M x M

MEP, .

where P, , denotes the class of measures on M x M with marginals ¢ and v.
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We denote LP norm on (2, F,P) by || - ||, p > 1 and for every ¢ > 0, we also introduce
the space S? of continuous IF adapted process ¢ on [0, t], satisfying

lpllsy = (B sup fi,]") """ < oo.
s€[0,t]

Let us introduce more notations in accordance with [10]. We will write [6] = J, if the
initial state of this SDE is a fixed real vector z € R". We use Cf‘fi’S(IRJF x RY x Py(RN) x
RY;RY) for the class of functions, with a precise definition given in Definition 2.1, where
the notion of derivatives with respect to measure is adopted from P.-L. Lions’ lecture
notes at the Collége de France, recorded in a set of notes [6], very well exposed in [7]
and also adopted by [10].

Differentiability in Pg(]RN ) Lion’s notion of differentiability with respect to measure
of functions U : Py(RY) — R is to define a lifted function U’ on the Hilbert space
L2(Q; RY) over probability space (Q/, F',P’), where ' is a Polish space and PP’ is an
atomless measure, such that U'(X’) = U([X']) for X' € L*(Q;RY) and [X'] = [X].
Thus, we are able to express the derivative of U w.rt. measure y = [X] term as
the Fréchet derivative of U’ w.r.t. X’ whenever it exists, which can be written as an
element of L2(Q2'; R") by identifying L?(Q’; R"V) and its dual. This gradient in a direction
v € L*(SY;RY) is given by

DU'(X")(y') = (DU'(X'),+") = E'[DU'(X") - /'],

where [ is the expectation under P’. By [6, Theorem 6.2], the distribution of this
gradient depends only on the measure p, exists uniquely and can be written as

9,U(u, X') :=DU'(X') = £(X') € L*(V; RM).

This definition of the derivative with respect to measure can be extended to higher
orders by thinking of 9,U(u, ) : Po(RY) x RN — RY as a function, and the derivative
is well defined for each of its components as in the following. For each u € Py(RY),
there exists a unique version of such function 9,,U(y, -) which is assumed to be a priori
continuous (see the discussion in [10]).

Multi-index To get a more general result, we extend the derivatives to higher order.
For a function f : Po(RY) — RY, we can apply the above discussion straightforwardly
to each component f = (f!,..., f). Then the derivatives 8#fi, 1 <i < N takes values
in RV, and we denote (9, f%); : Po(RY) x RN - Rforj =1,...,N. For a fixed v € RY,
we are able to differentiate Py > p +— (0, H j(i,v) € R again to get the second order
derivative. If the derivative of this mapping exists and there is a continuous version of

Po(RY) x RN x RY > (p,v1,v2) = 0p(0, f*)j (s v1,v2) € RY,

then it is unique. It is natural to have a multi-index notation 6,(} k) pi— (0,0, 1))k to
ease the notation. Similarly, for higher derivatives, if for each (ig, . ..,i,) € {1,..., N}**1,

0u(Op ... (Op %, i
n times

exists, we denote this 9% f* with a = (i1,...,i,) and |a| = n. Each derivative in y is a
function of an extra variable with 95 f% : P,(R") x (R")" — R. We always denote these
variables, by vq,...,v,, i.e.,

Po(RY) x BRNM)" 3 (p, 01, ... vp) = 07 f°(pyv1, .., 0n) € R.
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When there is no confusion, we will abbreviate (vy,...,v,) to v € (R¥)", so that

A% [ (1 0) = g f (01, 0n),
and use notation
o] == o1 + -+ + |unl,
with | - | the Euclidean norm on RY. Then it makes sense to discuss the derivatives of
the function 9;; f* with respect to the variables vy,. .., v,.

If, for some j € {1,...,N} and all (4, v1,...,0j—1,0j41,-..,05) € P2(RY) x (RV)"~!

RY > H@afzo(u,vl,...,vn) eR

is [-times continuously differentiable, we denote the derivatives 85; ag fo, for B; a multi-
index on {1,..., N} with |5;| < l. Similar to the above, we will denote by 3 the n-tuple of
multi-indices (1, ..., 8,). We also associate a length to 3 by

18] == 11|+ + Bl

and denote #3 := n. Then we denote by B,, the collection of all such 8 with #3 = n,
and B := U,>1B,. Again, to lighten the notation, we use

050 [ (p,v) := 0 -+ O 0 f* (01, -, ).

v

The coefficients Vo, ..., Vy : [0,T] x RY x Py(RY) x RY — RY depend on a time
variable, two Euclidean variables as well as the measure variable. So whether the order
of taking derivatives matters is a question. Fortunately, a result from [3, Lemma 4.1]
tells us that derivatives commute when the mixed derivatives are Lipschitz continuous.
However, it should be emphasized that we could not interchange the order of 9, and 9,
since the coefficients would not depend on the extra variable v before taking derivatives

with respect to measure.

Definition 2.1 (Cff{l]j). We have the following definitions:

(a) We use 835,5 to denote the derivative with respect to the second and fourth Eu-
clidean variables in V;y, V;’s, respectively.

(b) Let V : Rt x RN x Po(RY) x RY — RY with components V! ... VN : Rt x RV x
%mNWRNaRJWaWVe@ﬂhpﬂﬂﬁ%%&WﬁRMR%ﬁmwwwmg
is true: for eachi = 1,...,N, 8,V?, 8,V? and V' exist. Moreover, assume the
boundedness of the derivatives for all (t, =, j1,y,v) € [0,T] x RY x Po(RY) x RN xRY,

0.Vt z, p,y)| + OVt @, 1y y)| + |0,V @, 1, y,0)| < C.

In addition, suppose that d,V?, 3,V and dV'* are all Lipschitz in the sense that for
all (t, 2, p,y,0), (t,2', 1y, 0') € [0,T] x RN x Po(RY) x RN x RN,

0.V (b, pyy,0) = 0,V (4! iy )| S Clw = 2| + |y — o | + v — 0|

+ Wa(p, 1)),
|azvz(t7xnuﬂy) av txvuay,| ‘$7I|+|y y|+W2(:U‘ [L))
OV (t, s p,y) — OV (12! )| < Cllw — &/ + [y — | + Walp, 1))

(c) We write V € C,’if{ﬁ([O,T] x RN x Po(RY) x RY;RY), if the following holds true:
foreachi=1,...,N, and all multi-indices o, ¥ andyon {1,...,N} and all B € B

0OV (b, 2, 1,y v)
exists and is bounded, Lipschitz continuous with respect to x, i,y and v uniformly

int e [0,T].
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(d) We write h € C{ffip([(), T] x RN x RN;RY), if the mapping h does not depend on a
measure variable and all the other conditions are satisfied in (c).

2.2 Solutions of directed chain SDEs

The existence and uniqueness of weak solutions of directed chain SDEs are given
in Proposition 2.2. The constraint (2.2) plays an essential role here in governing the
uniqueness.

Proposition 2.2. Suppose that V;,i = 0,1,...,d are Lipschitz in the sense that for every
T > 0, there exists a constant Cr such that

sup |Vi(t, z1, pa, y1) — Vit 22, p2,y2)| < Cr(lo — x| + [y1 — yo + Wa(pr, p2)), 0<t<T.
K3

(2.3)
With the same constant Cr, let us also assume that V;’s have at most linear growth, i.e.

sup |Vi(t,z, p,y)| < Cr(1+ [z] + |y[ + Wa(p, o)) (2.4)
0<t<T

where py € Po(RY ) is fixed. Then there exists a unique weak solution to the stochastic
differential equation of the directed chain (2.1)-(2.2).

The proof is similar to the proof for [13, Proposition 2.1] with a small generalization.
Due to the appearance of the neighborhood process, we cannot expect a strong solution
of the directed chain SDEs (2.1) (cf. Proposition 2.1 of [13]).

Proof. We shall evaluate the Wasserstein distance between two probability measures
p1, 12 on the space C([0, 7], RY) of continuous functions, namely

1/2
Dy(p1, p2) := inf { /( sup | Xq(w1) — Xe(wa)|> A1) du(wl,wg)} (2.5)

0<s<t

for 0 <t < T, where the infimum is taken over all the joint measure p on C([0, 7], RY) x
C([0,T],RN) such that their marginals are p, 2, and the initial joint distribution is
the product measure 0 ® 6, the initial marginals are 6. Here, X (w) = w(s),0 < s <
T is the coordinate map of w € C([0,T],RY). Dr(-,-) defines a complete metric on
M(C(]0,T],RY)), which gives the weak topology to it.

Given the distribution m = Law(X) € M(C([0,T], R")) of X that is independent of B
and Xy, it is well known that the following stochastic differential equation

d
AXT" = Volt, X" me, Xo) dt + > Vi(t, X", my, X,) dB; (2.6)

i=1

has a unique solution, based on the Lipschitz and linear growth condition on coefficients,
thanks to the iteration scheme for the stochastic equation with random coefficients
Vi(t, -,mt,)zt), 1=0,...,d,0 <t <T. Note that since X is independent of Brownian
motion B, we can only expect the solution to exist in the weak sense.

Define a map ¢ : M(C([0,T],RY)) — M(C([0,T],R")) by ®(m) := Law(X™). We
shall find a fixed point m* for the map ® such that ®(m*) = m™* to show the uniqueness
of the solution in the weak sense.

Assume m; = Law()?l) and mo = Law()?z), then by rewriting (2.6) we have

t d t
Xtmi:9+/ Vo(t,Xf“,mu,XZ)ds—i-Z/ Vit, X" mi g, X§)dBE, i =1,2.
0 =170
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Note that here we fix the initial state to be the same 6 for both X" and X™2. Let m
be a joint distribution of m1, mo and IE™ be the expectation under m. Then

Em[ sup (X" — X;”Q)Q]
0<s<t

S
§2Em{ sup / (%(U,X;” mlv,X) Vo(v, X2 mgﬂ,,Xf))2dv}
0

0<s<t

QdZEm{ sup/ (Vi(v,Xi’)”l,va,)?i)—\/;(U,X;"Q,mg,v,)?f))zdv]

0<s<t

< 2d+3(d+ 1)C%Em[ sup / ((X;m _ X;nz)2 —+ Wg(ml,v,mz,y)Q + (Xz]; - 23)2) A ldv]
0<s<t J0o

¢ ¢
<C-E™ [/ sup (X — X™M2)2 A 1ds} + C/ Wa(my s, ma.s)? Alds
0 0

0<v<s
t
+C’-]Em{/ sup (X} — X2)% A lds}
0 0<v<ls

¢
_C’/ E™[ sup (X" — X"2)*> A 1] ds+C’/ Wa(my s, mas)? Alds
0

0<v<s

+C/ E™[ sup ( )?3)2/\1] ds (2.7)

0<U<€
where we replace 293(d 4 1)Cr by C. Note that by construction,
Wa(ma s, m275)2 ANl < Ds(ml,mg)2.
By taking infimum over all m such that its marginals are mi, mo, the third term

in (2.7) is bounded by
t

C | Di(my,msy)*ds.
0

Hence we get

Dy(®(my), B(ms))? < C/o Ds(é(ml),<1>(m2))2ds+20/0 D, (my, ma)? ds.

Then by applying Gronwall’s lemma, we get
t
Dy(®(my), ®(ms))? < QCeCT/ D,(my,ms)? ds. (2.8)
0

For every m € M(C([0,T],RY)), let m; = m, my = ®(m), we get by iterating (2.8),

(2CTeCT)k

Dr(®4+) (m), 84 (m) < /5

Dp(®(m),m), VkeN. (2.9)
This implies that {®(*)(m), k € IN} forms a Cauchy sequence converging to a fixed

point m*. This m* is the weak solution to directed chain SDE (2.1)-(2.2). O

Proposition 2.3 (Regularity). If§ € L%(f2), the solution of directed chain SDE (2.1)-(2.2)
satisfies
1X°]s2. < C(L+110]]2),

where C' = C(T'), under the assumption of Proposition 2.2.

Proof. The proof follows from a similar procedures as [13, Proposition 2.2]. O
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2.3 Flow property

In the last part of this section, we discuss the flow property of directed SDEs infor-
mally. After establishing the weak solution to the exact directed chain SDE (2.1), we also
consider the auxiliary process X" ) that satisfies

. d .
X.””’[‘”za:+/ %(&X?”%[Xﬁ]Jh)dHZ/ Vi(s, X219 [X9), X,)dBL,  (2.10)
0 = Jo

where z € RY is a fixed initial point and X. is the neighborhood process satisfying the
constraints (2.2), i.e., Law(X.) = Law(X?) = [X?]. Note that X% in (2.10), driven by
the same Brownian motion B, is solvable with pathwise uniqueness, given the (fixed)
unique, weak solution (X9, X ., B.) in Proposition 2.2, for each z € R". Thus we consider
the weak solution (X", X? X, B.) for the system (2.1) and (2.10).

Proposition 2.4 (Regularity). Under the assumption in Proposition 2.2, for every 6 €
L*(Q), T > 0 and p > 2, there exists a constant C = C(T,p) such that the solution
of (2.10) satisfies

X gz < C(1L+10]]2 + |]).

Proof. The proof follows from the Burkholder-Davis-Gundy inequality and Proposition 2.3,
which is also satisfied by X. O

For the explanation purpose, we will add a superscript 6 such that X/ L Xy (6]
and Xf := X; to emphasize the neighborhood process start at 6, independent of 6. This
notation is only used in this subsection. Thus, with the notation B? =t t>0,(2.10) is
read as

_ d t B . 4
Xl — gy Z/ Vi(s, X200 X9 X% dB!, t>0. (2.11)
i=0 Y0

018 ang x =" 1010

For different initial points z, 2’ and the corresponding solutions X
we have the following estimate: there exists a constant C' > 0 such that

]E[ sup |)(;t,[9],49~ _ Xgl’[0]7§’2:| S C|Jj _ $/|2
t<s<T

again by the Lipschitz continuity and the Burkholder-Davis-Gundy inequality. By the
pathwise uniqueness of X*'??, given the pair (X9, X9), it follows

x=l0.6 =X% 0<s<T. (2.12)

Now, with some abuse of notations, we denote by X t2,(6],9 the solution to (2.11) with

Xf’x’[o]’é = z, denote by (X.t"e,)?’é) the solution to (2.1) with (Xf’e,)?f’é) = (0,0). It
follows from (2.12) that by the strong Markov property, for 0 <t < s <r < T, we have
the flow property

S7Xt,z,[0],9.’Xf,9 7)?§,§ 5, X100 ~S,)}z,é bz 1010 ~t.0 Tto
X, (X571 Xg X3 X ) = (Xr’z’[ 1 L XL0 X1, (2.13)

(X

We close section 2 at this point. After the introduction of the partial Malliavin

derivatives, we will revisit the directed chain SDE and study the regularities of its
derivatives.
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3 Partial Malliavin calculus

In this section, we will briefly review the Malliavin calculus, following [29], and
introduce the partial Malliavin derivatives for our problem.

Malliavin Calculus Let H := L2([0,7],R%) be the Hilbert space, where we define
Gaussian process, and S be the set of smooth functionals of the form

( / hi(t) - dBy(w / hn(t) - dBy( ))

where f € C°(R™;R), hi,...,h, € H and fo i(t) - dBy =30 1f0 hj )dB;.
Then the Malliavin derivative of F', denoted by DF € L?(Q; H) is given by:

DF = Zaz (/ hy(t) - dBt(w),...,/OThn(t)~dBt(w)>hi. (3.1)

As stated in [29], because of the isometry L?(Q x [0, T]; R%) ~ L?(Q2; H), we are able
to identify DF with a process (D, F),co,7) taking values in R?. Moreover, the set of
smooth functionals, denoted by S, is dense in LP(Q2) for any p > 1 and D is closable as
an operator from LP(Q) to LP(Q; H). We define D? as the closure of the set S within
LP(Q; R?) with respect to the norm

1
1Flprr = (BIF]” + E|DF|[E)?

The higher order Malliavin derivatives are defined similarly, denoted by D*) F', which
is a random variable with values in H®* defined as

n T T
pOr= Y ot ([ ano [ ) a8 b b,
0 0

11,0 =1

We define D*P to be the closure of the set of smooth functions S with respect to the
norm:

k
. 1
1Fllpre = (E[F[” + Y E[DYF|7)7.
j=1
The Malliavin derivative is also well defined for the general E-valued random vari-
ables, where E is some separable Hilbert space, and we write D!?(E) as the clo-

sure of S under some appropriate metric with respect to £. We will use the notation
D! = n,~,D'?. The adjoint operator of D is introduced as follows.

Definition 3.1 (Definition 1.3.1, [29]). We denote by § the adjoint of the operator D.
That is, 0 is an unbounded operator on L*(Q; H) with values in L?(f2) such that

1. The domain of §, denoted by Dom 6, is the set of H-valued square integrable random
variables u € L*(Q; H) such that

[E(DF,u)u]| < cl|F|

for all F € D2, where c is a constant depending on .
2. Ifu belongs to Dom 6, then 6(u) is the element of L?(2) characterized by

E[Fé(u)] = E[(DF,u) ]

for any F € D2,
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3.1 Partial Malliavin calculus
The following remark motivates us to use the partial Malliavin calculus.

Remark 3.2. Because of the appearance of a neighborhood process X., we propose the
following problem. We note that almost everything satisfied by the McKean-Vlasov SDE
in [10] is also satisfied by our directed chain SDE. However, we cannot directly apply
their approach to argue the existence, continuity and differentiability of the density
function of X}’ ¥ The reason is that a key step connecting the Malliavin derivative and
0. X, ’[0], which is defined in (2.10), may not hold in our case, that is, in general, the
identity:

0, X7 = D, x0T (60 T) 7 i, X2 [X0), X,)0, X210 (3.2)

does not hold for any » < t. Thus, we cannot directly make use of the integration by
parts formulae in [10], and hence, we cannot argue the smoothness of X’ 101,

Question 3.3. How can we make connections between the first order derivative 8fo o[6]
and the Malliavin derivatives similar to (3.2), which would render us to apply integration
by parts formula?

To address Question 3.3, we consider the partial Malliavin derivative in [30]. Let
g .= a({)?ti ,Vt; € Qr}) be the sigma algebra generated by the neighborhood process at
all rational times, where Q7 = Q N [0, 7] denotes the collection of all rational numbers in
[0,T]. Due to the continuity of X, considering all rational time stamps is equivalent to
considering the whole time interval [0, 7], that is, G = o(X,,0 < s < T). We associate
with G the family of subspaces defined by the orthogonal complement to the subspace
generated by {DX,, (w),t; € Qr}, i.e.,

K(w) = (DX, (w),t; € Q)"

Since G is generated by countably many random variables, we say it is countably
smoothly generated. Then the family # := {K(w),w € 2} has a measurable projection
by this countably smoothness of G. We define the partial Malliavin derivative operator as
D™,

Definition 3.4 (Definition 2.1, [30]). We define the partial derivative operator D™ :
D2 — L?(Q,H) as the projection of D on H, that is, for any F € D'2,
D*F = Projy (DF) = Projg . (DF)(w).

This operator, similar to D, admits an identification with a process (Dﬂ)TE[O,T].
Moreover, we define the norm associated with D™ by

Flg = (B1FF + 3 BIDO R
j=1
where DU) is defined as
D*UF = Proj; (DY F) = Proj (DY F)(w).
Now we have the important fact that DH.;Q = 0. This is because )Z't is G measurable
and hence equivalently
DX, € (DX,,,t; € QrU{t}); telo,T). (3.3)

Then the projection of DX, onto the orthogonal of <D)Z'ti ,ti € QrU{t}) must be zero.
Similar to the common Malliavin calculus, we have an adjoint operator of D™, which
is denoted by d;, as well as the integration by parts formula for the partial Malliavin
calculus.
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Smoothness on directed chain SDEs

Definition 3.5 (Definition 2.3, [30]). Set Domdy = {u € L?>(Q; H) : Projyu € Domé}.
For any u € Dom dy, set 0y (u) = §(Projyu).
Following Definition 3.4 and 3.5, we have the integration by parts formula for D*
and oy
E[(h, D" F)] = E[(Projyh, DF)] = E[Fdy(h)]. (3.4)

Kusuoka-Stroock Processes In order to derive the differentiability of the density
function, we mimic the procedure in [10] and need to develop the integration-by-parts
formulae introduced in the works of [21] and [19].

Definition 3.6 (Definition 2.8 in [10]). Let E be a separable Hilbert space and let r € R,
¢, M € IN. We denote by K%(E, M) the set of processes ¥ : [0,T] x RY x Po(RY) —
D} (E) satisfying the following:

1. For any multi-indices «, 3, satisfying |a| + |8| + |y| < M, the function
[0, 7] x RN x Py (RY) > (t,,[0]) — 870505 (t, x,[0],v) € LP(Q)

exists and is continuous for all p > 1.
2. For anyp > 1 and m € N with |a| + |8] + |y| + m < M, we have

sup sup t~"/?

NOLITV(t, x,[0],v)
ve(RN)#B te(0,T)

< C (14 [z + [0]2)%
D (E)

In our discussion, we do not consider the differentiability of the process X with
respect to the initial state of its neighborhood X. This above definition of K4(E) is
almost the same as the definition in [10, Definition 2.8], except for the norm. The reason
is that we only care about the existence and smoothing properties of the density function
of X* [l and have to use the partial Malliavin calculus. We note that although the norms
are different, all the regularity results under the norm || - |pr,» also hold under our norm
Il pk» because of the Hélder’s inequality. We also define ]D?fo = ﬁpzlﬂ)?f . To obtain
the smoothness of density functions of a process starting from a fixed initial point, we use
K2(R, M) as the class of Kusuoka-Stroock processes which do not depend on a measure
term. By [10, Lemma 2.11], if ¥ € K(E, M), then ®(¢,z,y) := U(t,x,0,,y) € KI(E,M).

4 Smoothness of densities

4.1 Regularities of solutions of directed chain SDEs

For the purpose of establishing the integration by parts formulae for the directed
chain SDEs and applying the results in [10, Theorem 6.1], we only need to check all the
regularities conditions with respect to the parameters (8, x) contained in [10, Section 3].

Proposition 4.1 (First-order derivatives). Suppose that V;,...,V; € C;”i;;(IRJ“ x RN x
Po(RY) x RN;RYN). Then the following statements hold:

1. There exists a modification of X*°) such that for all t € [0, T], the map x + th,[e]

is P-a.s. differentiable. We denote the derivative by 9, X*°! and note that it solves
the following SDE

d t
O, X2 = Idy + Z/ {6%(5, x=10 [x0), Xs)ﬁfo*M} dB! 4.1)
i=0 70
for every t € [0,T].
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Smoothness on directed chain SDEs

2. Forallt € [0,T], the maps 0 — X/ and 6 th,[o] are Fréchet differentiable in
L?(Q), i.e. there exists a linear continuous map DX! : L?(Q2) — L*(Q) such that for
all y € L(Q),

0
1X; ™ = X7 = DX?(V)ll2 = ollll2) as 7]z =0,

(0]

and similarly for X;”""’. These processes satisfy the following stochastic differential

equations

d t
DX () = Z/O [avz-(s, X0, [x0), X)DX2) ()
1=0

+aVi(s, X2 [X9], X,)DX(v) + DV (5, X2, X8 X,)(DX? (7)) | dBL,

4.2)
d t _ ~ _ _
DX/ (V) =7+ i {avzv(a X0, (X0, X)DX!(v) + 0Vi(s, X0, [X0), X.)DX,(7)
1=0
+DV/ (s, X0, X, X,)(DX!(v))| dB: (4.3)

where V/ is the lifting of V;. Moreover, for each x € RY, t € [0,T], the map
Py 3 [0] — X1 € L2(Q) is differentiable. So, 9, X" (v) exists and it satisfies the
following equation

0uXi " (0) = Zd: At {3‘4' (s, X2 [x9), X,)0, X210 (v)
i=0
+ Vi (s, X211, [XT], X,) 0, X (v)
+E [aﬂvi (s, X2 (X0, X, (X211)) 0, ( Xg[e])/]
+E [6,%(5, X200, [x0), X, <X§’>')a,i<xg%w1y<v>} } B, (4.4)
where (X?)" is a copy of X! on the probability space (€, F',P'). Similarly,

9,(X”Y is a copy of 9,X""” and 6H(Xgl’[9])’ = 8#(X§’[9])’|;E Finally, the
following representation holds for all v € L*():

=0’
DX () = B0, X7 (0)7]. (4.5)

1<G<N

3. Forallt e [0,T], X!, X¢ € D>, Moreover, D¥*X®0] = <D2fw‘ (Xr»[ﬂ)i>
1<i<d

satisfies, for0 <r <t

d t

DIXP = o (r, X2 (X0, X))+ / (ams, X [x7), X»DZ"X;“[‘”) dBL,
i=0""

(4.6)

where o (r, x& (X7, )?7.) is the N x d matrix with columns Vi, ..., V.

Proof. 1. The SDE of X% satisfies a classical SDE with adapted coefficients, by
[17, Theorem 7.6.5] there exists a modification of X} 1 which is continuously
differentiable in x, and the first derivative satisfies (4.1).

EJP 29 (2024), paper 127. https://www.imstat.org/ejp
Page 12/28



Smoothness on directed chain SDEs

2. The maps 0 — X! and 0 — X, ”! are Fréchet differentiable in a similar fashion
of [10, Proposition 3.1], where we can construct the proof through an iterative
scheme as in [9, Lemma 4.17]. Then (4.2) and (4.3) follow from direct computation.

Let us first rewrite the equation for DX/ () in terms of the lifting V",
DXI(v) =7+ Z / [W 5 X, [X. X)X (3) + 9Vils, XY, [X{], X)DX. ()

+ B [0,V (s, X0, [X0), X, (XD))(D(XE) ()] | dBL. (4.7)

We then consider the equation that we are going to prove for aqu Y (v), evaluated
at v = 0” and multiplied by +" with both random variables defined on a probability
space (Q”, F” P"). Then taking expectation with respect to P”, we get

]E”[f) X ",16] 9// // Z/ {av s, XG X} NS)E//[(?#XS,’[G](9”)’)///}
+ a‘/’i(57 Xsea [Xf]v ~S)EH[8H‘),ZS’YH]
BB [0,Vi(s, X X2, Koy (X0 00,6

+E[8,Vi(s, X0, [X0], X, (X ) )E"[0,(X211Y (0" )y “]]}dB;‘.
(4.8)

Note that since (7”,0") are defined on a separate probability space, we have
E"[0,Xs7"] = DX(v) and

E"E'[9,Vi(s, X¢, [X7), X, (X200, (X810 =
E'[0,Vi(s, X%, (X7, X5, (X))0, (X1,

Then the dynamic of E”[@MXE/’[G] (0")~"] reduces to
E"[9,x; " (0")7"] Z / { (s, X2, (X7, X (0, X0 (0")"]
+ OVi(s, X{, [X], X)DX(9)

+ B [0, Vi(s, X0, [X7], X, (X0)) [0 (XTI + B0, (XY (0")7"] } dB;.
4.9)

By (4.1), we can evaluate the equation at z = 6, multiply by x, and derive a dynamic
of 81Xf’[0]'y. It can be seen that &EXS’[H]W + E”[&HXS 0] (0")4"] is equal to

v+Z/ {‘W (5, X0, [X0), XOE"[0, X2 00" )y"] + OVi(s, X0, [X?), X)DX.(7)

+E[9,Vi(s, X2, [X0], X, (X0)) [00 (XY + B [0,(X 1) (0")y"]] } dB..
(4.10)
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Smoothness on directed chain SDEs

We observe that this dynamic is identical to the dynamic for DX?(v) in (4.7)
and hence they are identical by uniqueness. Similarly, by using this result for
DX/ (v) and the same procedures, we are able to derive that £ [8HXf’[0] (0")v"] is
equal to DXf’[G} (7). So (4.5) is proved. Moreover, 8#Xf’[9] (v) exists and satisfies
equation (4.4) by its definition.

3. We first deduce the Malliavin derivative for X?. Consider the Picard iteration given
by

X0 =9,

d t
XP =043 [ vis, X4 RE, X4 B
1=0 0

where X* is a copy of X?¥ independent of the Brownian motion and 6. We have
shown that such an iteration induces a Cauchy sequence {®*)(Law(X??)), k € IN}
in Proposition 2.2 and a weak solution of the directed chain SDE. Since Vj, V; are
bounded and continuously differentiable, we have

DMV (s, XOF [XF), XF)) = 0V DI X0*,

where we omit the arguments in V;’s for notation simplicity. Note that V| < K
for some constant K > 0. We can then deduce V/ (s, X?* [X*], X¥) € D1> by [29,
Proposition 1.5.5]. Moreover, the Ito integral

t
/ V7 (s, XOF [ XF), X"y aB:, i=1,...,d
0
belongs to D2 and for r < ¢, we have
D] [ Vi X0 R0, ) 4] = V7 X0 1, B

t
+ [ DRIV (5, X0 (4, X)) B
On the other hand, the Lebesgue integral [, V7 (s, X®*, [X¥], X¥) ds is also in the
space D!? and have the dynamics

t t
D[ [V e, X558, 5] = [ DIV 0, X0 15, T s
0 0
Therefore, the dynamic of D}*![X/"*'] has exactly the form of (4.6) by the
chain rule of the Malliavin derivative. Due to the reason that X* and X% has the
same distribution, by Doob’s maximal inequality and Burkholder’s inequality,

B[ sup |DJATX0*

0<s<t

p] S C1,

where c; is a constant that depends only on K, d, p for p > 2. Moreover, we define a
metric similar to (2.5) but raise the power to general p > 1,

Duglpnspe) =t { [ sup [X.len) = Xl 1)dl~t(w1»w2)}1/p-

0<s<t

We then have the following,

t t
Dy p(m**,m*)? < Cl/ Ds,p(LaW(Xe’k%Law(Xg”“_l))ds+02/ Dy(mF,mF1)? ds,
0 0
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Smoothness on directed chain SDEs

by a similar approach as in the proof of Proposition 2.2, where ¢y, co are positive
constants depending on K, d,p and m* = Law(D}*!X%*). By iteration, we find that
{m*, k € N} forms a Cauchy sequence in space M(C([0,T], R¥*?)) and has a limit.
We have now proved that

d t
DIX{ =o(r, X!, (X0, X)) + Z/ (8%(3,X§, [Xf],XQDZ*Xf) dB!, (4.11)
i=0 "

and the solution of D X! exists uniquely in the weak sense. In the iteration, it
can easily be proved by induction that X%* € D> and the sequence DX/ is
uniformly bounded in L?(§); H) for p > 2. Therefore, we have X{ € lD%{"”. The proof

for X1 is similar, we can set X"’ = ¢ add another equation for X"!”'** into
the above Picard iteration
d t . N
XPIOI = 3 / Vi(s, XPIE, X, X0F) By
i=0 70
Then the procedures are the same as the deduction for D} X,
O

For the purpose of more general applications, we want to make sure that the density
for directed chain SDE is at least second order differentiable in (x, [f]), hence we need
to extend the above first order regularities to higher orders. Following [10], we provide
a result for the general case, which characterizes X’ ) a5 a Kusuoka-Stroock process.

Theorem 4.2. Suppose Vy,...,Vq € cff;lf([o, TI xRN xPy(RN)xRN; RY), then it follows
t,z,[0) — X" € KYRYN, k). If in addition, Vy, ..., Vy are uniformly bounded, then
(t,,[0)) = X7 € KY(RN ).

Note that [10, Proposition 6.7 and 6.8] can be extended to our directed chain case,
since the coefficients V; : [0, 7] x RY x Po(RY) x RN — RY in the directed chain SDEs can
be written as a map of the form Q x [0, 7] x RN x Po(RY) > (w,t,z, u) = a(w,t,z,u) € RY.
This is because the auxiliary dependence on the neighborhood in the coefficients can be
thought of as the dependence on an initial state x, initial distribution i and independent
Brownian motions, which are implied in the term w. Moreover, we are able to take care
of the extra term with DX s due to the differentiability and regularity of V;.

Similarly to Proposition 4.1, each type of derivative (w.r.t. =, 1 or v) of X,”"" satisfies
a linear equation. We will introduce a general linear equation, derive some a priori LP
estimates on the solution, and then show that this linear equation is again differentiable
under some conditions in the next lemma. Whenever we say ax, kK = 1,2, 3, we also mean
aq.

:[0]

Lemma 4.3. Let v, be one element of the tuple v = (v, . ..,v4,) and Y% (v) solve the
following SDE

¥ ) = ao + Z/o {( )Y (0) + @ (5,2, [0)Va(w) + ab(s.z, 0], 0)

=0

#v
+ E/ [al (s, @, [0, 0) (Y1) (w) + Y al (s, 2, [0, 0) (V) (w)] } dB,

(4.12)
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where, for alli = 1,...,d, the coefficients (t, z, [0],v) — ax(t, z, [#],v) are continuously in
P Q) Vp>1,k=1,2,3 and

ap € RV,

ar,ar: Q x[0,T] x RN x Py(RYN) — RV

ag : Q x [0,T] x RN x Py(RY) x (RV)#¥ — RV

ab Q' x Qx[0,T] x RN x Po(RN) x RN — RV*N,

In (4.12), (Y1) is a copy of Y on the probability space (X, ', ') where the initial
state is 0. Similarly, (Y*~l%) is a copy of Y*!%] on the probability space (', F',IP)
where the initial state is v,.. Y is the neighborhood process, which has the same law as
Y? and is independent of Brownian motion B and . We make the following boundedness
assumptions

1. SUPLeRrN [g]ePy(RY) we®N)#v [laz(:, 2, [0],v)[|lsp < oo,
2. a1,a1 and ag are uniformly bounded,

3. SUPLeRN [g]ePy (RN ), ve (RN )#v az (-, z, [ﬂ»”)”s% <0

and then we have the following estimate for C = C(p,T, a1, a3)
1Y ()55 < Cllao| + llaz (-, 6], 0) sz + las( 2, [6] v) | s2).
Moreover, we also get that the mapping
0,7) x RN x P, (RY) x (RN)#* 5 (¢, 2, [0),v) — V" (v) € LP(Q)
is continuous.

Proof. Note that ||V (v)|| sn = II(YSG/’[O])/('U)” s». since they have the same distribution.
The rest proof is identical to [10, Lemma 6.7] by using Gronwall’s lemma and the
Burkholder-Davis-Gundy inequality a couple times. O

We now consider the differentiability of the generic process satisfying the linear
equation in Lemma 4.3. To ease the burden on notation, we omit the (¢, z, [6]) in as, and

write ay |, _,, to denote ax(s,z,[0],0'), for example.
Proposition 4.4. Suppose that the process Y% (v) is as in Lemma 4.3. In addition to

the assumptions of Lemma 4.3, we introduce the following differentiability assumptions:

(a) Fork =1,2,3, all (s,[0],v) € [0,T] x Po(RY) x (RV)#¥ and eachp > 1, RN > z
ak(s,z,[0],v) € LP(R) is differentiable.
(s,

(b) Fork =1,2,3, all (s,[0],z) € [0,T] x Po(RY) x R and eachp > 1, (RV)#* 5 v
ax (s, x, [0], ) € LP(R) are differentiable.

(c) For all (s,z,v) € [0,T] x RN x (RN)#* the mapping L?(2) > 0 + as(s,z,[0],v) €
L?(Q) is Fréchet differentiable.

(d) ax(s,z,[0],v) € D3, fork =1,2,3 and all (s, z, [0],v) € [0,T] x Po(RN) x (RV)#?.
Moreover, we assume the following estimates on the Malliavin derivatives hold.

sup E| sup |DXay(s,z,[0],v)]P| <oo, k=0,1,2,3.
ref0,7]  Lselo,1)

Then, for all t € [0,T] the following hold:
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1. Under assumption (a), © — Yf’[g] (v) is differentiable in LP(Q) for all p > 1 and
20601, 1 z+h,[9] AL

where the limit is taken in LP sense, satisfies

0,V (v Z/ {a al Y2 (v) + at 9, Y7 (v) + 0,4,

+E/[8 a3| (Y2 ey +Za a3|v v Y20y (v )}}dB;

r=1

2. Under assumption (b), v + Y, [9]( ) is differentiable in LP(Q) for allp > 1 and

8, V" (v) £ lim ! <Y [0](v+h)Yf’[9](v)>

h—0 |h]

satisfies
By, Y (w Z/ {alav YO (v) + @18, Y,(v) + B,
+FE {8 a3| Y”J’[e]) (v )] +F [aé|U_U/v5x(ngj’[9])'(v)
a0, (V) +Za3|,, 2 (2 )]z

3. Under assumption (a), (b) and (c), the maps 0 — Yto,[e] (v) and 0 — th,[e] (v) are
Fréchet differentiable for all (x,v) € RY x (RY)#*, so 0,Y,"!"(v) exists and it
satisfies

0, Y (v, 0 Z / {8 Y20 (v) + al0,Y20) (v, 0) + 8,8 Vi (v) + 010, Vs(v,9)
+ Ouah + B {@aéw"[@])’(v)+avag<xf’[9]>( + a3,y 0 (Y @,m}
L E {agyw (V) +Za3\v LY )f@,@)}}wg.

Moreover, we have the representation, for all v € L*(Q),

D (YW (v)) (7) = (amyf’[” (0)y + B [0, o, 9")7”})

=0

4. Under assumption (d), Y;"!” € D> and D*v;"") satisfies

DIV o) = (¥ + T, +af + B V) (0]
j=1,...,d

d t
+) / {Df-*a’iY;“’["] (v) + DJaiY, + o, DY U (v) + @ DY,

+ DIay + B [DIad| _,, (VU (v)] } dB:.
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Moreover, the following bound holds:

supE[D?l@’”’W(v)lp} < CsuplE{ sup (|DMa | + |DMas |P) (4.13)

r<t r<t r<t<T

The limits in the above are taken in the LP sense. When we say k = 1,2, 3 for the
assumptions, we also mean a;.

Proof. See Propositions 4.1 and [10, Proposition 6.8] for the proof. O

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. The proof follows identically the proof of [10, Theorem 3.2], where
we apply Lemma 4.3 and Proposition 4.4. O

4.2 Integration by parts formulae

Now we introduce some operators acting on the Kusuoka-Stroock processes. These
operators will be used later in the integration by parts formulae. We first make the
following common assumption on uniform ellipticity.

Assumption 4.5 (Uniform Ellipticity). Let o : [0,7] x RY x Po(RM) x RV — RV*4 be
given by

o(t,z,p,2) == [Vit, 2z, 11, 2), ..., Valt, z, s, 2))].

We assume that there exists ¢ > 0 such that, forall ¢ € RY, z ¢ RN and p € Po,(RY),
T otz p 2)o(t, 2,1, 2) 7€ > elé]”.

For a function ¥ : [0,T] x RY x Py(RY) — D™, the following operators acting
on Kusuoka-Stroock processes in K9(R,n) with multi-index « = (i) and (¢,z,[f]) €
[0, 7] x RN x Po(RY) are given by

-1

i

I(li)(\Il)(t, z,[0]) == %57{ (r — W (t, z, [0])(0T (O’O’T)

N

18y (W)t . 6]) = D _ 1, ((%XZ”’W);@@, , [91))7
j=1

(r, X210, [X7), X,)0, X21) )

I3y (W) (t, @, [0]) = 1} (V) (t, 2, [6]) + VEO' U (t, 2, [0]),

I(li)(\ll)(t,sc, [0],v1) := \%JH (r — (UT(UUT)—l(r, x>l [Xf],;(r)

0, X219 (0, X719, X7 (1)) w(t, z, [eb) ,

I(Si)(\Il)(tvx’ [0]71)1) = I(li)(ql)(tvxv [9]7'01) + \/%(a#ql)i(tvmv [0]701)'

For a general multi-index « = (a1, ..., a,), we inductively define
Ié = Iin OI;‘n—l O OI01¢17

the definition of the other operators are analogue to I}. The following proposition follows
directly from our previous discussion and the definition of the Kusuoka-Stroock process.
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Proposition 4.6. IfV;,...,V, € Cffi’s([(),T] x RY x Po(RY) x RY; RY), Assumption 4.5
holds and ¥ € K4(R,n), then I}(V¥) and I3(V), are all well-defined for |o| < (k A n).
I2(9),Z} (V) and Z2 (V) are well defined for || < n A (k — 2). Moreover,

Lo (0), I3(V) € KIPU(R, (k An) —|al),
[3(9) € KEFPIIR, [n A (k = 2)] - al),
To (V) Zo(¥) € KEIUR, [n A (k — 2)] — |al).

If ¥ € KYR,n) and Vy, . .., V, are uniformly bounded, then
I(];L(\Il)v-[i(\:[l) € IKE(]R, (k A ’fL) - |OZD,
() e KXR, [n A (k= 2)] = |al),

L (W), T3(¥) € KO(R, [n A (k - 2)] - |a]).

From now on, the Integration by Parts Formulae (IBPF) follow in the same way as [10,
Sec 4.] by replacing D, § by D*, 5, and using integral by parts for this partial Malliavin
derivative.

Integration by parts formulae in the space variable are established in the following
Proposition.

Proposition 4.7 (Proposition 4.1, [10]). Let f € C°(RY,R) and ¥ € K4(RR,n), then
1. If o] < n Ak, then

B0 (F (X)) (t,2,(0)] = e~ 1V2B[F (X7 ) 1L (0) (1, 2, [6))].

2. If || <nA(k—2), then

E[0°f) (X7 )W (t, 2, 10)] = t71V2E[£ (XY 12(0) (¢, 2, [6])].

3. If|a| <n Ak, then

E[f (XN w(t,z,[0])] = ¢~ 2R £ (X7 1B (W) (¢, 2, 0])].

4. If|a| + |8] < n A (k —2), then
fe x,[0 —(|ex x,[0
OE[(07F)(X7 ) W(t, 2, [0))] = ¢~ DR (X7 13 (12 5W)) (1, [6))].
Proof. 1. First, we note that Equation (4.1) satisfied by ame [0] and Equation (4.6)

satisfied by DX X} 1! are the same except their initial condition. It therefore
follows from our discussion of partial Malliavin derivative that

0, X7 = DHXT 6T (66T) 7 (r, X219, [ X9), X,)0, X210, (4.14)

EJP 29 (2024), paper 127. https://www.imstat.org/ejp
Page 19/28



Smoothness on directed chain SDEs

We are then allowed to compute the followings for f € C*(RY,R),

[0, (f(X7)w(t,, 0)] = B[of (X710, X7 Chw(t,, 0])]
r t
:%IE) /8f(Xf’[0])8IXf’[0}\I!(t,x, 16]) dr
LJO
r t
:%E / of (X DEXT 6T (00T) 7 (r, X2, (X0, X,)
0

r

x 8, XTONw(t, 2, 16)) dr}

= 18] [ Do (o) XL X0, K,
X 8, XN (¢, 2, 10)) dr}
_ 1E{f(Xf’[9])5H (r s U(t, 2, [0])
x (o7 (o0 (r X2, 1X]), X’»@XW))} :

where we have applied partial Malliavin calculus integration by parts from Equa-
tion (3.4) in the last equality. This proves the result for || = 1. By Proposition 4.6,
IL(¥) € KIT2(R, (kAn)—1) when |a| = 1. We can then repeat the above procedures
iteratively to get to desired result.

. By the chain rule,

N 3y

B[00 ) Wit .10)]) = S fon, (706 ) (06 ) )

N Jst
- z,[0 z,[0]\ —1
= ¢1/2 ZE[f(Xt N <<(Xt 11y ) U(t,m, [e])ﬂ
j=1
= B[ (X7 17 () (2,2, 0))],
where we apply the result in part 1 to the second equality. From Proposition 4.6,
12 (V) € KIT3(R, (n A (k —2)) — 1), so since |a| < (n A (k - 2)), the proof follows

from applying the same arguments for another |a| — 1 times.
. By part 1 and direct computation,

QE[f (XN w(t, 2, [0])] = B[00 F (X7 )0 (t,2,[0) + £(X7 )0 (t, 2, [6])]
= 7B | £ (X ) {1 W) ¢, 60) + VEOL Ut )} ]
which proves the result for |a| = 1. Again, we have I3 (V) € K¢™2(R, (k An) — 1)

when |«| = 1. Then the proof follows from iterative implementation of the above
procedure.

4. This part follows from parts 2 and 3 directly.

O

Similarly to integration by parts in the space variable, we can also derive integration

by parts in the measure variable as follows.
Proposition 4.8 (Proposition 4.2, [10]). Let f € C;°(R",R) and ¥ € K¢(R,n), then
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1. If || <nA(k—2), then

E[07 (f(X7) () W(t,a,0))] = t71PV2E[F (X7 YL (W) (¢, 2, (6], )]

2. If|B| < nA(k—2), then

OPE[f (X7 W(t,2,18)] (v) = ¢ PI2PE[f (X7 ZE(W) (¢, 2, [6], v)].
3. Ifla| + |B8] < nA(k—2), then

OPE[(0°F) (X)W (t, 2, 18)] (v) = t~(HIED2R | f (XN T3 (12(0)) (1, 2, (6], 0) |

Proof. The proofs use the same idea as Proposition 4.7 and Equation (4.14). O

We now consider the integration by parts formulae for the derivatives of the mapping:
z,05
x = BIf(X77)].

Let us introduce the following operator acting on K4(R, M), the set of the Kusuoka-
Stroock processes that do not depend on measure p. For a = (i),

Ji) (®)(t, ) := I3 (®) (¢, , 6.) + I3, (D) (t, 2, 02)

and for a = (o, ..., ap), Jo(P) := Jy, 00 Jy, (D).
Theorem 4.9. Let f € C;°(R™;R). For all multi-indices « on {1,..., N} with |a| < k —2,

OSB[f (X)) =t PR (X70) Ja(1)(t,2)].
In particular, we get the following bound,
OB (XT)]| < Cllflloct ™21 + )1
Proof. Since 4, depends on z, we have
O[S (X7%)] = OB (X7 )] .y + L )] O] g2, e

then for || = 1 the result yields by Proposition 4.7 and 4.8. The proof is completed by
repeating this procedure for another |a| — 1 times. O

The following corollary is useful for the smoothness of densities of directed-chain
SDEs.

Corollary 4.10. Let f € C;°(RY;R), o and 3 be multiindices on {1,..., N} with |a| +
|8] < k — 2. Then,

OUE[(0°f)(X7)] =t B[ f(XP) I3 (Ja(1) (¢ 2)]
and I3(J,(1)) € KPR, & — 2 — o] - [3)).

Proof. The proof is derived from Theorem 4.9 and Proposition 4.7. O
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4.3 Smooth densities
We are now ready to prove the main theorem of this section.
Theorem 4.11. We assume that Assumption 4.5 holds and V,,...,V; € Cffi’s([(),T] X
RY x Py (RY)xRY; RY). Let a, 3 be multiindices in {1,..., N} and letk > |a|+|8]|+ N +2.
1. Assume also the initial state for directed chain SDE is § = z, i.e. [0] = 0,. Then
the directed chain SDE (2.1) coincides with the alternative SDE (2.10). For all
t € [0,T), X has a density p(t,z,-) such that (z,z) — 8°0°p(t,z,z) exists and
is continuous. Moreover, there exists a constant C' which depends on T, N and
bounds on the coefficients, such that for all t € (0,T]

0002p(t, @, 2)] < C(1 + ||yl +3IBH3N =3 (NHal+IBD - 0 e RV 2 e RN, (4.15)
IfVy,...,Vy are bounded, then the following estimate holds, for allt € (0,T]

o pf N+l 4B g (- o122
|020p(t, z,2)| < Ct™2 exp(—C

), zeRN, zeR"N.

2. The alternative SDE (2.10) has a density py(t,z,-) such that (z,z) — 020%py(t,x, 2)
exists and is continuous. Moreover, there exists a constant C which depends on
T, N and bounds on the coefficients, such that for all t € (0,T)

020 pg(t, , 2)| < C(1 + |a|)2leIH3IBIH3N =3 (N+lal+18) 5 e RN 2 e RN, (4.16)

IfVy,...,Vy are bounded, then the following estimate holds, for all t € (0,T]

2

|z~ 2| ), reRY, zeRVN.

10208 pa(t, 2, 2)| < Ct—H(VHal+8D e (— O

Proof. 1. The proof is verbatim to Theorem 6.1 of [10] by applying our integration by
parts formulae established in Corollary 4.10 and Lemma 3.1 in [31].

2. The inequality (4.16) is similar to the inequality (4.15) but with a different exponent.
The procedures to derive this exponent is briefly discussed and the rest procedures
are the same as Theorem 6.1 of [10].

Letn=(1,2,3,...,N)and I{...) := vazl l,ic.sy. Forany g € CS° (RN, R) define
the function f as

f(ZO) = /IRN g(z)]l{z<zo} dz

is in C;,’O(]RN ,R) and we have 9" f = g. Therefore,

E[(0°9) (X)) = 2B [(07 7 1) (X7
_ - lotlplen E[f (X713 (12,,(1) (¢ 2, 0)]
=R K /]RN 9L, xztony dz) Lo (T, (1) (1,2, 6])

= t_w /]RN g(Z)E[l{z<Xf*[9]}Ii (Ig*n(l))(t’ L, [QD} dz,
(4.17)

where we have used 9" f = g, Proposition 4.7, and Fubini’s theorem. The exponent
2|a|+3|8]+3N comes from Proposition 4.6 and I3 (13,, (1)) (t, z, [f]) being a Kusuoka-
Stroock process.

O
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Theorem 4.11 presents the smoothness result for X/’ 2 and it can be generalized to
X? with a general initial distribution [¢].
Corollary 4.12. Suppose Assumption 4.5 holds and V,...,Vy € Ci’fi’g([O,T] x RY x
Py (RY) x RV;RY). Let § be a random variable in R with finite moments of all orders.
For any multi-index § on {1,..., N} such that k > ||+ N +2, we see that for allt € [0,T],
X! has a density py(t,-) such that z — 92py(t, 2) exists and is continuous.

Proof. If § is degenerate and 0 = z, then the results follow directly from Theorem 4.11
part 1. If 6 is non-degenerate, we use the relation

polt, ) = /pg(t,m,z)[ﬁ](dx),

and hence, the existence and regularities of py(t, z, z) is given in Theorem 4.11 part 2.
The proof is done by taking the expectation on both sides of the inequality (4.16) with
respect to the initial distribution # and applying the dominated convergence theorem,
where we use the assumption that 6 has finite moments. O

The above existence and smoothness results on the marginal density of a single

object can be extended to the joint distribution for any number of adjacent particles.
Namely, for a fixed integer m > 1, we may construct the system of stochastic processes
(X0, X! X2, ..., X™) such that (X™ !, X™) = (X% X.)in (1.1), and X’ depends on the
adjacent process X‘*! and Brownian motion B!, independent of X‘*!, in the same
fashion as (X?, X.) in (1.1) fori =0,...,m — 1.
Corollary 4.13. Suppose that Assumption 4.5 holds and Vy, ..., V; € cff;l’j([o, T] x RN x
Po(RY) ><~IRN;IE{]X) and 0 has finite moments. Then the joint density of the process
(X9 X! X2 ..., X™) exists and is continuous at any t € [0,T], where X! = X. and X'
depend on X1 in the same way as (X%, X.) in (1.1).

Proof. We consider the process evolving in space R(™ DY defined by
Y= (X% X! X2, ... X™)

and the neighborhood process Y. := (X™+1, X™+2 X2m+1)  Now (Y.,Y.) satisfies
the directed chain structure and it can be proved that this new directed chain SDE
structure Y. also satisfies Assumption 4.5. Hence, the existence and continuity follow
from Theorem 4.11 and Corollary 4.12. In particular, if m = 1, the coupled process Y. is
defined by

2d T
Y, = Yo+ Z/ V¥ (s, Ys, Law(Y5), Y;) dBYY,
i=170

where the diffusion coefficients VY, i = 1, ..., 2d are given by
v | (Vils, X, Law(X,), X1),0)" € RN, i=1,...d
") (0,Vila(s, XY Law(X1), X2))T € R, i=d+1,...2d,

BY is independent standard Brownian motions in R*? and 0 € R” is a zero vector. O

4.4 Markov random fields

The existence of density in Theorem 4.11 is closely related to the local Markov
property (or Markov random fields) of the directed chain structure. Here, we shall briefly
elaborate the relation. A similar topic has been studied by [24] on the undirected graph
with locally interactions only on the drift terms. Their approach is to apply a change of
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measure under which the diffusion coefficients at one vertex of the undirected graph do
not depend on the diffusions at the other vertexes of the graph, to get the factorization
of the probability measure. Usually, this Markov property is only discussed for the
undirected graph or directed acyclic graph. The finite particle system that approximates
the directed chain structure discussed in [13] admits a loop structure in the finite graph.

More precisely, the finite system of n particles (X 1(7), . ,X,([f.)) is constructed in a loop
of size n so that XY_L) depends on X{f), Xz(f) depends on ng?), e X,(L"JL_ depends on

X! and X" depends on Xfff). However, when the size n of this loop is forced to be
infinity, that is, n — oo, we can then treat the dependence of the system on any finite
subgraph as the system on an acyclic graph [13, Section 3], as (1.2) in our paper. An
illustration is given in Figure 1.

Figure 1: This figure shows a finite cut of the infinite directed chain, i.e., X}, is affected
by Xy 1.

Proposition 4.14. The directed chain SDEs described in (1.2) form first-order Markov
random fields, or we say it has the local Markov property.

We follow the notation and terminology in [26]. Given a directed graph G = (V, E)

with vertices V' and edges FE, for a vertex v € V, let X, denote the generic space
of vertex v and pa(v) € V denote all its parents. In the infinite directed chain case,
pa(Xi,.) = Xpy1,.-
Definition 4.15 (Recursive Factorization). Given a directed graph G = (V, E), we say
the probability distribution P¢ admits a recursive factorization according to G, if there
exists non-negative functions, henceforth referred to as kernels, k" (-,-),v € V defined
on X, X Xya(,), such that

/ky(yuvxpa(u)),uu(dyu) =1

and P¢ has density f¢ with respect to a product measure ;, which is defined on the
product space [ | X, by u,, a measure defined on each X,,, where

fG(x) = H ky(xvaxpa(u))'

veVv

vev

Proof of Proposition 4.14. Thanks to the special structure of the chain, it can be shown
that the distribution of the chain satisfies the recursive factorization property, where
the existence and continuity of the kernel functions are given by Theorem 4.11 and
Corollary 4.12. For it, on a filtered probability space, let us consider a system of
directed chain diffusion X;;, ¢ € IN, ¢ > 0 on the infinitely graph with vertices N =
{1,2,...}. Firstly, coupled diffusion (X7 .,X5.) = (X?, X.) satisfies the directed chain
stochastic equation and has a continuous density according to Corollary 4.13 and we
denote this joint density by g(-,-) : RY x RV — R. We then construct the chain
recursively according to the following rule: Given X, ., initial state X110 and Brownian
motion Bj1,. independent of (X, .,..., Xy, Xx1+1,0), we construct X;,. according to
the distribution of (X, X.).
Defining the kernel functions in the following way

v — g(xua'rpa(y))7 ifv= X17
K Ppn) 3= { (9(@) 7 g(@0, Tpagy), iV =Xi, k22,
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i.e., the conditional density of Xj 1, given X, for £ > 2, proves the recursive factoriza-
tion property of the chain on any finite cut (X1, Xo4,..., Xm,), ¥m € IN of the infinite
chain for any ¢ € [0, 7T, as well as the local Markov property following from [26, Theorem
3.271, which is also called the first order Markov random field in the context of [24].
This result can also be verified by a filtering problem built upon this directed chains
structure, which we omit due to the page limitation. O

4.5 Relation to PDE

We have constructed the integration by parts formulae to argue that the den-
sity of directed chain SDEs is smooth in section 4.2, which is also the tool for con-
structing solutions to a related PDE problem. To simplify notation, we will omit
the time dependency in coefficients of SDEs through this section, i.e. we will write
V(Xf’[g], [X0], X,) == V(t, th,[e]’ [Xf], X,). In particular, we are interested in the function

U(t,x,[0]) = Elg(x7 P, X)),

t €[0,7], » € RY for some sufficiently smooth function g. Here X? is the solution of (2.1)-
(2.2) with random initial § and X 2:10] 4 is the solution to (2.10) with deterministic initial x.
They depend on a neighborhood process X. with an initial independent random vector 0.
Recall the flow property (2.13) in section 2.3. It follows that forevery 0 <t <t+h < T,
x € RY,

Ut + hya, [60]) = Elg (X7, [x7,D)] = BU @ X5, [x7]).

Hence
U(t+ h,z,[0) —U(t,z,[6)])
=Ul(t,z,[X]) — Ut,z,[0) + E[U X7 [XE]) - Ut 2, [X0))]
=1-E[J], (4.18)

where we define I = U(t,z,[X?]) — U(t,z,[0]) and J = U(t, X2 [X0]) — U(t, z, [X7)).
Applying the chain rule introduced in [9] to I and Ito’s formula to J, we have

- [ZVO X0 X0 X0, (b [XE). X0,

N
1 ~
+5 2 loo T (X2 [X7], X)) 00,0, (1, [XE), X2)s | .
ij=1

h N
T= [ YO X0 K0, U e X (X7 dr

1 & -
+§/ > oo T(XPULIXE), X)) 50w, 00, U (1, X2 [X7]) dr

i,j=1
h d N ) N ‘

[ e, D, K0, U e, X2, (0] B
0 j=1i=1

For the meaning of the differential operator with respect to the measure 9,, appearing
in I, we refer to Section 2.1. Then let us plug 7, J into (4.18) and take expectation, divide
by h on both sides, and send & to 0, we will end up with a PDE of the form given below

(0 — LYU(t,2,[0]) =0 for (t,z,[0]) € (0,T] x RY x Py(RV),

(4.19)
U(0,z,[0) = g(z,[0]) for (z,[0]) € RN x Py(RY),
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where g : RY x P,(RY) — R and the operator £ acts on smooth enough functions
F: RN x P2(RM) — RY defined by

N N
LF(x,[0]) =E[Z V5 (2,10, 0)0,, F(x, [0]) + % Z oo " (2, [6],0)]i,j0x, 0z, F(x, [ﬂ)]
N . ~ 1 Nm_ ~
+ ]E[Z Vi(0,[6],0)0,F(x,[6],6); + 3 > oo (0,10,0)]:;00,0, F(, [9}79)4 . (4.20)

The expectation in the first line of (4.20) is taken with respect to the random variable
6 due to the appearance of the neighborhood process in the difference J, while the
expectation in the second line is taken with respect to the joint distribution of 6, 0, as an
application of the chain rule introduced in [9] to the difference I.

Evidently, a proper condition for the initial g is needed to establish the existence of
the solution to PDE (4.19). Such a directed chain type SDE has not been considered
before, the closest works are related to the existence of solutions to Kolmogorov PDE on
the Wasserstein space; see [32, 11, 12]. In [3], g is assumed to have bounded second-
order derivatives. The smoothness on g is relaxed in [10]. In particular, they assume
g belongs to a class of functions that can be approximated by a sequence of functions
with polynomial growth, and also satisfy certain growth conditions on its derivatives.
Hence, they claim that g is not necessarily differentiable. We emphasize that a detailed
discussion on the choice of assumptions in g is beyond the scope of this paper, but we
conjecture that some similar results should also hold for our case and will include this in
our future research.
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