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Abstract

We study the smoothness of the solution of the directed chain stochastic differential

equations, where each process is affected by its neighborhood process in an infinite

directed chain graph, introduced by Detering et al. (2020). Because of the auxiliary

process in the chain-like structure, classic methods of Malliavin derivatives are not

directly applicable. Namely, we cannot make a connection between the Malliavin

derivative and the first order derivative of the state process. It turns out that the

partial Malliavin derivatives can be used here to fix this problem.
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1 Introduction

The main objective of this paper is to study the existence and regularity of the densi-

ties of the directed chain stochastic differential equations: given a filtered probability

space (Ω,F , (Ft)t≥0,P), the directed chain McKean-Vlasov stochastic differential equa-

tion (or directed chain SDE for short) for a pair (Xθ
· , X̃·) of N -dimensional stochastic

processes considered here is of the form

Xθ
t = θ +

∫ t

0

V0(s,X
θ
s ,Law(X

θ
s ), X̃s) ds+

d∑

i=1

∫ t

0

Vi(s,X
θ
s ,Law(X

θ
s ), X̃s) dB

i
s, (1.1)

for t ≥ 0 with the distributional constraint

[Xθ
t , t ≥ 0] := Law(Xθ

t , t ≥ 0) = Law(X̃t, t ≥ 0) =: [X̃t, t ≥ 0],
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Smoothness on directed chain SDEs

where Vi, i = 0, 1, . . . , d are some smooth coefficients, B· := (B1
· , . . . , B

d
· ) is a standard

d-dimensional Brownian motion independent of the initial state Xθ
0 = θ and of X̃·, and

Xθ
0 is independent of X̃0. Throughout the paper, [ξ] denotes the law of a generic random

element ξ. Here, each coefficient Vi in (1.1) depends on time s, the value Xθ
s , its law

Law(Xθ
s ) =: [Xθ

s ] and the other X̃s of the pair for s ≥ 0. The law [Xθ
· ] depends on the law

[X̃·] through (1.1) and they are the same marginal law. We show that the above directed

chain SDE has a unique weak solution in section 2.

This kind of directed chain structure was first proposed by [13] in a simpler form.

Schematically, this structure can be written as an infinite chain of stochastic equations

for (X1,·, X2,·, . . .),

dX1,t = b(t,X1,t, F1,t) dt+ dB1,t,

dX2,t = b(t,X2,t, F2,t) dt+ dB2,t

...

dXi,t = b(t,Xi,t, Fi,t) dt+ dBi,t,

...

(1.2)

where Fi,t := uδXi+1,t + (1 − u)µi,t is the mixture distribution term of the measure-

dependent drift coefficient b with the marginal law µi,t := Law(Xi,t) of Xi,t for t ≥ 0 ,

δXi+1,t is the Dirac measure at Xi+1,t, a fixed constant u ∈ [0, 1] measures the common

amount of dependency of Xi,· on its neighborhood value Xi+1,·, and B1,·, B2,·,... are

independent standard Brownian motions. We also assume that the initial value Xi,0 is

independent of Bi,·, and Xi+1,· and Bi,· are independent for i = 1, 2, . . .. In particular,

the drift b in [13] has the following form b(t, x, µ) :=
∫
R
b̃(t, x, y)µ(dy) with some Lipschitz

continuous function b̃. See also Figure 1 in section 4.

The stochastic processes on infinite graphs including the directed chain structure

have drawn much attention recently (e.g., see [28] for their application to the generative

adversarial network). Stochastic Differential Games on the directed chain have been

studied in [14] and on the extended version of random directed networks in [15] as

well as on the general random graph (e.g., [25]). [24] discuss the Markov random field

property over both finite and countably infinite graphs with local interactions through

the drift coefficients. Another related topic is the Graphon particle system. There are a

sequence of works on Graphon particle system and Graphon Mean Field Games, [1, 4, 5]

just to name a few. [2] introduced the uniform-in-time exponential concentration bounds

related to the graphon particle system and its finite particle approximations. Here, we

are interested in the existence and smoothness of the density of the directed chain

SDE (2.1)-(2.2). It should be emphasized here that in this problem, we need notions of

derivatives in the space of measures, which is used frequently in the theory of Mean

Field Games.

In most cases, Malliavin calculus is a foundation for analyzing the smoothness of

the density of stochastic differential equations. It has been widely used in investigating

the density of diffusions [20], [22], [23] and then applied into many different scenarios.

The authors in [8] use Malliavin calculus to derive smoothing properties of solution to

stochastic differential equations with jumps. The smoothing properties of McKean-Vlasov

SDEs have been studied in [10], which is closely related to our purpose. However, be-

cause of the appearance of the auxiliary process X̃, the crucial step making connections

between the Malliavin derivative and the first-order derivative of the state process fails,

please see Question 3.3 for the details. To our best knowledge, we did not find any

work studying the smoothness property of such weak solutions of stochastic differential

equations.
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Smoothness on directed chain SDEs

For the purpose of resolving this problem and using the Malliavin derivatives, we

should freeze the auxiliary process X̃. This inspired us to consider another closely

related and well-developed tool, the partial Malliavin calculus. Partial Malliavin calculus

is first introduced by [18] for the constant case, where the projections are taken on

a fixed Hilbert subspace, and applied to prove some regularity results in non-linear

filtering theory. Another work developing the partial Malliavin calculus is [16], by which

the authors were able to complete the proof of some results in [27] on the long-time

asymptotic of stochastic oscillatory integrals. We mainly adopt the framework from

a later work by Nualart and Zakai [30], where the projection is taken on a family of

subspaces which are defined as the orthogonal complement to the subspaces generated

by X̃ in (1.1). We remark that our method is potentially applied to analyze the smoothness

of the (conditional) law of weak solutions of stochastic differential equations in a similar

setting. For example, the study of nonlinear filtering problem and the corresponding

stochastic partial differential equations.

This paper is structured as follows. In section 2, we first introduce the differentiation

in the space of measures and multi-index notation in section 2.1, and then prove the ex-

istence, uniqueness and some regularity results on the solutions of generalized directed

chain SDEs in Propositions 2.2-2.3. In section 3, we prepare the notions of the partial

Malliavin calculus and give the Kusuoka-Stroock process for the proof of our smoothness

of densities, which will be stated in section 4. Our proofs follow the idea of [10], where

we first derive integration by parts formulae for the directed chain SDEs via the partial

Malliavin derivatives, instead of the Malliavin derivatives, as in [10]. The main result is

stated in Theorem 4.11 with some applications in section 4.

2 Preliminaries and directed chain SDEs

In this section, we first prepare some notations and the notion of differentiation in

P2(R
N ), where P2(R

N ) is the space of all measures on RN with finite second moments,

and then establish the weak solutions of the directed chain SDEs.

2.1 Notations and basic setup

Rather than the directed chain SDE of the type given in [13], we consider the SDE in a

more general setup, allowing the diffusion coefficients non-constant. Given a probability

space (Ω,F ,F = (Ft)t≥0,P), the directed chain McKean-Vlasov SDE (or directed chain

SDE for short) is of the form

Xθ
t = θ +

∫ t

0

V0(s,X
θ
s , [X

θ
s ], X̃s) ds+

d∑

i=1

∫ t

0

Vi(s,X
θ
s , [X

θ
s ], X̃s) dB

i
s, (2.1)

with the constraint [Xθ
t , t ≥ 0] = [X̃t, t ≥ 0], (2.2)

where Bs := (B1
s , . . . , B

d
s ) is a standard d dimensional Brownian motion and X̃s ∈

L2(Ω× [0, T ],RN ) is an adapted random process independent of all the Brownian motions

Bi, i = 1, . . . , d and initial state θ.

Moreover, we assume that V0, Vi : [0, T ]×RN × P2(R
N )×RN → RN , where P2(R

N )

is the set of measures on RN with finite second moments. We equip P2(R
N ) with the

2-Wasserstein metric, W2. For a general metric space (M,d), we define the 2-Wasserstein

metric on P2(M) by

W2(µ, ν) = inf
Π∈Pµ,ν

(∫

M×M

d(x, y)2Π(dx, dy)

)1/2

,

where Pµ,ν denotes the class of measures on M ×M with marginals µ and ν.
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Smoothness on directed chain SDEs

We denote Lp norm on (Ω,F ,P) by ‖ · ‖p, p ≥ 1 and for every t ≥ 0, we also introduce

the space Sp
t of continuous F adapted process ϕ on [0, t], satisfying

‖ϕ‖Sp
t
=

(
E sup

s∈[0,t]

|ϕs|p
)1/p

< ∞.

Let us introduce more notations in accordance with [10]. We will write [θ] = δx if the

initial state of this SDE is a fixed real vector x ∈ RN . We use Ck,k,k
b,Lip (R

+ ×RN ×P2(R
N )×

RN ;RN ) for the class of functions, with a precise definition given in Definition 2.1, where

the notion of derivatives with respect to measure is adopted from P.-L. Lions’ lecture

notes at the Collège de France, recorded in a set of notes [6], very well exposed in [7]

and also adopted by [10].

Differentiability in P2(R
N ) Lion’s notion of differentiability with respect to measure

of functions U : P2(R
N ) → R is to define a lifted function U ′ on the Hilbert space

L2(Ω′;RN ) over probability space (Ω′,F ′,P′), where Ω′ is a Polish space and P′ is an

atomless measure, such that U ′(X ′) = U([X ′]) for X ′ ∈ L2(Ω′;RN ) and [X ′] = [X].

Thus, we are able to express the derivative of U w.r.t. measure µ = [X] term as

the Fréchet derivative of U ′ w.r.t. X ′ whenever it exists, which can be written as an

element of L2(Ω′;RN ) by identifying L2(Ω′;RN ) and its dual. This gradient in a direction

γ′ ∈ L2(Ω′;RN ) is given by

DU ′(X ′)(γ′) = 〈DU ′(X ′), γ′〉 = E′
[
DU ′(X ′) · γ′

]
,

where E′ is the expectation under P′. By [6, Theorem 6.2], the distribution of this

gradient depends only on the measure µ, exists uniquely and can be written as

∂µU(µ,X ′) := DU ′(X ′) = ξ(X ′) ∈ L2(Ω′;RN ).

This definition of the derivative with respect to measure can be extended to higher

orders by thinking of ∂µU(µ, ·) : P2(R
N ) ×RN → RN as a function, and the derivative

is well defined for each of its components as in the following. For each µ ∈ P2(R
N ),

there exists a unique version of such function ∂µU(µ, ·) which is assumed to be a priori

continuous (see the discussion in [10]).

Multi-index To get a more general result, we extend the derivatives to higher order.

For a function f : P2(R
N ) → RN , we can apply the above discussion straightforwardly

to each component f = (f1, . . . , fN ). Then the derivatives ∂µf
i, 1 ≤ i ≤ N takes values

in RN , and we denote (∂µf
i)j : P2(R

N )×RN → R for j = 1, . . . , N . For a fixed v ∈ RN ,

we are able to differentiate P2 3 µ 7→ (∂µf
i)j(µ, v) ∈ R again to get the second order

derivative. If the derivative of this mapping exists and there is a continuous version of

P2(R
N )×RN ×RN 3 (µ, v1, v2) 7→ ∂µ(∂µf

i)j(µ, v1, v2) ∈ RN ,

then it is unique. It is natural to have a multi-index notation ∂
(j,k)
µ f i := (∂µ(∂µf

i)j)k to

ease the notation. Similarly, for higher derivatives, if for each (i0, . . . , in) ∈ {1, . . . , N}n+1,

∂µ(∂µ . . . (∂µ︸ ︷︷ ︸
n times

f i0)i1 . . . )in

exists, we denote this ∂α
µf

i0 with α = (i1, . . . , in) and |α| = n. Each derivative in µ is a

function of an extra variable with ∂α
µf

i0 : P2(R
N )× (RN )n → R. We always denote these

variables, by v1, . . . , vn, i.e.,

P2(R
N )× (RN )n 3 (µ, v1, . . . , vn) 7→ ∂α

µf
i0(µ, v1, . . . , vn) ∈ R.
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When there is no confusion, we will abbreviate (v1, . . . , vn) to v ∈ (RN )n, so that

∂α
µf

i0(µ,v) = ∂α
µf

i0(µ, v1, . . . , vn),

and use notation

|v| := |v1|+ · · ·+ |vn|,
with | · | the Euclidean norm on RN . Then it makes sense to discuss the derivatives of

the function ∂α
µf

i0 with respect to the variables v1, . . . , vn.

If, for some j ∈ {1, . . . , N} and all (µ, v1, . . . , vj−1, vj+1, . . . , vn) ∈ P2(R
N )× (RN )n−1,

RN 3 vj 7→ ∂α
µf

i0(µ, v1, . . . , vn) ∈ R

is l-times continuously differentiable, we denote the derivatives ∂
βj
vj ∂

α
µf

i0 , for βj a multi-

index on {1, . . . , N} with |βj | ≤ l. Similar to the above, we will denote by β the n-tuple of

multi-indices (β1, . . . , βn). We also associate a length to β by

|β| := |β1|+ · · ·+ |βn|,

and denote #β := n. Then we denote by Bn the collection of all such β with #β = n,

and B := ∪n≥1Bn. Again, to lighten the notation, we use

∂β
v ∂

α
µf

i(µ,v) := ∂βn
vn · · · ∂β1

v1
∂α
µf

i(µ, v1, . . . , vn).

The coefficients V0, . . . , Vd : [0, T ] × RN × P2(R
N ) × RN → RN depend on a time

variable, two Euclidean variables as well as the measure variable. So whether the order

of taking derivatives matters is a question. Fortunately, a result from [3, Lemma 4.1]

tells us that derivatives commute when the mixed derivatives are Lipschitz continuous.

However, it should be emphasized that we could not interchange the order of ∂µ and ∂v,

since the coefficients would not depend on the extra variable v before taking derivatives

with respect to measure.

Definition 2.1 (Ck,k,k
b,Lip ). We have the following definitions:

(a) We use ∂x, ∂̃ to denote the derivative with respect to the second and fourth Eu-

clidean variables in V0, Vi’s, respectively.

(b) Let V : R+ ×RN ×P2(R
N )×RN → RN with components V 1, . . . , V N : R+ ×RN ×

P2(R
N )×RN → R. We say V ∈ C1,1,1

b,Lip([0, T ]×RN×P2(R
N )×RN ;RN ) if the following

is true: for each i = 1, . . . , N , ∂µV
i, ∂xV

i and ∂̃V i exist. Moreover, assume the

boundedness of the derivatives for all (t, x, µ, y, v) ∈ [0, T ]×RN×P2(R
N )×RN×RN ,

|∂xV i(t, x, µ, y)|+ |∂̃V i(t, x, µ, y)|+ |∂µV i(t, x, µ, y, v)| ≤ C.

In addition, suppose that ∂µV
i, ∂xV

i and ∂̃V i are all Lipschitz in the sense that for

all (t, x, µ, y, v), (t, x′, µ′, y′, v′) ∈ [0, T ]×RN × P2(R
N )×RN ×RN ,

∣∣∂µV i(t, x, µ, y, v)− ∂µV
i(t, x′, µ′, y′, v′)

∣∣ ≤ C(|x− x′|+ |y − y′|+ |v − v′|
+W2(µ, µ

′)),∣∣∂xV i(t, x, µ, y)− ∂xV
i(t, x′, µ′, y′)

∣∣ ≤ C(|x− x′|+ |y − y′|+W2(µ, µ
′)),

∣∣∂̃V i(t, x, µ, y)− ∂̃V i(t, x′, µ′, y′)
∣∣ ≤ C(|x− x′|+ |y − y′|+W2(µ, µ

′)).

(c) We write V ∈ Ck,k,k
b,Lip ([0, T ] × RN × P2(R

N ) × RN ;RN ), if the following holds true:

for each i = 1, . . . , N , and all multi-indices α, γ̃ and γ on {1, . . . , N} and all β ∈ B
satisfying |α|+ |β|+ |γ|+ |γ̃| ≤ k, the derivative

∂γ
x ∂̃

γ̃∂β
v ∂

α
µV

i(t, x, µ, y,v)

exists and is bounded, Lipschitz continuous with respect to x, µ, y and ν uniformly

in t ∈ [0, T ].
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(d) We write h ∈ Ck,k
b,Lip([0, T ]×RN ×RN ;RN ), if the mapping h does not depend on a

measure variable and all the other conditions are satisfied in (c).

2.2 Solutions of directed chain SDEs

The existence and uniqueness of weak solutions of directed chain SDEs are given

in Proposition 2.2. The constraint (2.2) plays an essential role here in governing the

uniqueness.

Proposition 2.2. Suppose that Vi, i = 0, 1, . . . , d are Lipschitz in the sense that for every

T > 0, there exists a constant CT such that

sup
i

|Vi(t, x1, µ1, y1)−Vi(t, x2, µ2, y2)| ≤ CT (|x1 − x2|+ |y1 − y2|+W2(µ1, µ2)), 0 ≤ t ≤ T.

(2.3)

With the same constant CT , let us also assume that Vi’s have at most linear growth, i.e.

sup
0≤t≤T

|Vi(t, x, µ, y)| ≤ CT (1 + |x|+ |y|+W2(µ, µ0)) (2.4)

where µ0 ∈ P2(R
N ) is fixed. Then there exists a unique weak solution to the stochastic

differential equation of the directed chain (2.1)-(2.2).

The proof is similar to the proof for [13, Proposition 2.1] with a small generalization.

Due to the appearance of the neighborhood process, we cannot expect a strong solution

of the directed chain SDEs (2.1) (cf. Proposition 2.1 of [13]).

Proof. We shall evaluate the Wasserstein distance between two probability measures

µ1, µ2 on the space C([0, T ],RN ) of continuous functions, namely

Dt(µ1, µ2) := inf

{∫
( sup
0≤s≤t

|Xs(ω1)−Xs(ω2)|2 ∧ 1) dµ(ω1, ω2)

}1/2

(2.5)

for 0 ≤ t ≤ T , where the infimum is taken over all the joint measure µ on C([0, T ],RN )×
C([0, T ],RN ) such that their marginals are µ1, µ2, and the initial joint distribution is

the product measure θ ⊗ θ, the initial marginals are θ. Here, Xs(ω) = ω(s), 0 ≤ s ≤
T is the coordinate map of ω ∈ C([0, T ],RN ). DT (·, ·) defines a complete metric on

M(C([0, T ],RN )), which gives the weak topology to it.

Given the distribution m = Law(X̃) ∈ M(C([0, T ],RN )) of X̃ that is independent of B

and X0, it is well known that the following stochastic differential equation

dXm
t = V0(t,X

m
t ,mt, X̃t) dt+

d∑

i=1

Vi(t,X
m
t ,mt, X̃t) dB

i
t (2.6)

has a unique solution, based on the Lipschitz and linear growth condition on coefficients,

thanks to the iteration scheme for the stochastic equation with random coefficients

Vi(t, ·,mt, X̃t), i = 0, . . . , d, 0 ≤ t ≤ T . Note that since X̃ is independent of Brownian

motion B, we can only expect the solution to exist in the weak sense.

Define a map Φ : M(C([0, T ],RN )) → M(C([0, T ],RN )) by Φ(m) := Law(Xm
· ). We

shall find a fixed point m∗ for the map Φ such that Φ(m∗) = m∗ to show the uniqueness

of the solution in the weak sense.

Assume m1 = Law(X̃1) and m2 = Law(X̃2), then by rewriting (2.6) we have

Xmi

t = θ +

∫ t

0

V0(t,X
mi

t ,mi,t, X̃
i
t) ds+

d∑

i=1

∫ t

0

Vi(t,X
mi

t ,mi,t, X̃
i
t) dB

i
s, i = 1, 2.
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Note that here we fix the initial state to be the same θ for both Xm1 and Xm2 . Let m

be a joint distribution of m1,m2 and Em be the expectation under m. Then

Em
[
sup

0≤s≤t
(Xm1

s −Xm2
s )2

]

≤ 2Em

[
sup

0≤s≤t

∫ s

0

(
V0(v,X

m1
v ,m1,v, X̃

1
v )− V0(v,X

m2
v ,m2,v, X̃

2
v )
)2

dv

]

+ 2d
d∑

i=1

Em

[
sup

0≤s≤t

∫ s

0

(
Vi(v,X

m1
v ,m1,v, X̃

1
v )− Vi(v,X

m2
v ,m2,v, X̃

2
v )
)2

dv

]

≤ 2d+3(d+ 1)C2
TE

m

[
sup

0≤s≤t

∫ s

0

(
(Xm1

v −Xm2
v )2 +W2(m1,v,m2,v)

2 + (X̃1
v − X̃2

v )
2
)
∧ 1 dv

]

≤ C · Em

[ ∫ t

0

sup
0≤v≤s

(Xm1
v −Xm2

v )2 ∧ 1 ds

]
+ C

∫ t

0

W2(m1,s,m2,s)
2 ∧ 1 ds

+ C · Em

[ ∫ t

0

sup
0≤v≤s

(X̃1
v − X̃2

v )
2 ∧ 1 ds

]

= C

∫ t

0

Em
[

sup
0≤v≤s

(Xm1
v −Xm2

v )2 ∧ 1
]
ds+ C

∫ t

0

W2(m1,s,m2,s)
2 ∧ 1 ds

+ C

∫ t

0

Em
[

sup
0≤v≤s

(X̃1
v − X̃2

v )
2 ∧ 1

]
ds (2.7)

where we replace 2d+3(d+ 1)CT by C. Note that by construction,

W2(m1,s,m2,s)
2 ∧ 1 ≤ Ds(m1,m2)

2.

By taking infimum over all m such that its marginals are m1,m2, the third term

in (2.7) is bounded by

C

∫ t

0

Ds(m1,m2)
2 ds.

Hence we get

Dt(Φ(m1),Φ(m2))
2 ≤ C

∫ t

0

Ds(Φ(m1),Φ(m2))
2 ds+ 2C

∫ t

0

Ds(m1,m2)
2 ds.

Then by applying Gronwall’s lemma, we get

Dt(Φ(m1),Φ(m2))
2 ≤ 2CeCT

∫ t

0

Ds(m1,m2)
2 ds. (2.8)

For every m ∈ M(C([0, T ],RN )), let m1 = m, m2 = Φ(m), we get by iterating (2.8),

DT (Φ
(k+1)(m),Φ(k)(m)) ≤

√
(2CTeCT )k

k!
DT (Φ(m),m), ∀k ∈ N. (2.9)

This implies that {Φ(k)(m), k ∈ N} forms a Cauchy sequence converging to a fixed

point m∗. This m∗ is the weak solution to directed chain SDE (2.1)-(2.2).

Proposition 2.3 (Regularity). If θ ∈ L2(Ω), the solution of directed chain SDE (2.1)-(2.2)

satisfies

‖Xθ‖S2
T
≤ C(1 + ‖θ‖2),

where C = C(T ), under the assumption of Proposition 2.2.

Proof. The proof follows from a similar procedures as [13, Proposition 2.2].
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2.3 Flow property

In the last part of this section, we discuss the flow property of directed SDEs infor-

mally. After establishing the weak solution to the exact directed chain SDE (2.1), we also

consider the auxiliary process X
x,[θ]
· that satisfies

X
x,[θ]
· = x+

∫ ·

0

V0(s,X
x,[θ]
s , [Xθ

s ], X̃s) ds+

d∑

i=1

∫ ·

0

Vi(s,X
x,[θ]
s , [Xθ

s ], X̃s) dB
i
s, (2.10)

where x ∈ RN is a fixed initial point and X̃· is the neighborhood process satisfying the

constraints (2.2), i.e., Law(X̃·) = Law(Xθ
· ) = [Xθ

· ]. Note that X
x,[θ]
· in (2.10), driven by

the same Brownian motion B, is solvable with pathwise uniqueness, given the (fixed)

unique, weak solution (Xθ
· , X̃·, B·) in Proposition 2.2, for each x ∈ RN . Thus we consider

the weak solution (X
x,[θ]
· , Xθ

· , X̃·, B·) for the system (2.1) and (2.10).

Proposition 2.4 (Regularity). Under the assumption in Proposition 2.2, for every θ ∈
L2(Ω), T > 0 and p ≥ 2, there exists a constant C = C(T, p) such that the solution

of (2.10) satisfies

‖Xx,[θ]‖Sp
T
≤ C(1 + ‖θ‖2 + |x|).

Proof. The proof follows from the Burkholder-Davis-Gundy inequality and Proposition 2.3,

which is also satisfied by X̃.

For the explanation purpose, we will add a superscript θ̃ such that X
x,[θ],θ̃
t := X

x,[θ]
t

and X̃ θ̃
t := X̃t to emphasize the neighborhood process start at θ̃, independent of θ. This

notation is only used in this subsection. Thus, with the notation B0
t ≡ t, t ≥ 0, (2.10) is

read as

X
x,[θ],θ̃
t = x+

d∑

i=0

∫ t

0

Vi(s,X
x,[θ],θ̃
s , [Xθ

s ], X̃
θ̃
s ) dB

i
s, t ≥ 0. (2.11)

For different initial points x, x′ and the corresponding solutions X
x,[θ],θ̃
· and X

x′,[θ],θ̃
· ,

we have the following estimate: there exists a constant C > 0 such that

E
[

sup
t≤s≤T

∣∣Xx,[θ],θ̃
s −Xx′,[θ],θ̃

s

∣∣2] ≤ C|x− x′|2

again by the Lipschitz continuity and the Burkholder-Davis-Gundy inequality. By the

pathwise uniqueness of X
x,[θ],θ
· , given the pair (Xθ

· , X̃
θ̃
· ), it follows

Xx,[θ],θ̃
s

∣∣∣∣
x=θ

= Xθ
s , 0 ≤ s ≤ T. (2.12)

Now, with some abuse of notations, we denote by X
t,x,[θ],θ̃
· the solution to (2.11) with

X
t,x,[θ],θ̃
t = x, denote by (Xt,θ

· , X̃
t,θ̃
· ) the solution to (2.1) with (Xt,θ

t , X̃
t,θ̃
t ) = (θ, θ̃). It

follows from (2.12) that by the strong Markov property, for 0 ≤ t ≤ s ≤ r ≤ T , we have

the flow property

(X
s,Xt,x,[θ],θ̃

s ,[Xt,θ
s ],X̃t,θ̃

s
r , X

s,Xt,θ
s

r , X̃
s,X̃t,θ̃

s
r ) = (Xt,x,[θ],θ̃

r , Xt,θ
r , X̃t,θ̃

r ). (2.13)

We close section 2 at this point. After the introduction of the partial Malliavin

derivatives, we will revisit the directed chain SDE and study the regularities of its

derivatives.
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3 Partial Malliavin calculus

In this section, we will briefly review the Malliavin calculus, following [29], and

introduce the partial Malliavin derivatives for our problem.

Malliavin Calculus Let H := L2([0, T ],Rd) be the Hilbert space, where we define

Gaussian process, and S be the set of smooth functionals of the form

F (ω) = f

(∫ T

0

h1(t) · dBt(ω), . . . ,

∫ T

0

hn(t) · dBt(ω)

)
,

where f ∈ C∞
p (Rn;R), h1, . . . , hn ∈ H and

∫ T

0
hi(t) · dBt =

∑d
j=1

∫ T

0
h
j
i (t) dB

j
t .

Then the Malliavin derivative of F , denoted by DF ∈ L2(Ω;H) is given by:

DF =

n∑

i=1

∂if

(∫ T

0

h1(t) · dBt(ω), . . . ,

∫ T

0

hn(t) · dBt(ω)

)
hi. (3.1)

As stated in [29], because of the isometry L2(Ω× [0, T ];Rd) ' L2(Ω;H), we are able

to identify DF with a process (DrF )r∈[0,T ] taking values in Rd. Moreover, the set of

smooth functionals, denoted by S, is dense in Lp(Ω) for any p ≥ 1 and D is closable as

an operator from Lp(Ω) to Lp(Ω;H). We define D1,p as the closure of the set S within

Lp(Ω;Rd) with respect to the norm

‖F‖D1,p =
(
E|F |p + E‖DF‖pH

) 1
p .

The higher order Malliavin derivatives are defined similarly, denoted by D(k)F , which

is a random variable with values in H⊗k defined as

D(k)F :=

n∑

i1,...,ik=1

∂(i1,...,ik)f

(∫ T

0

h1(t) · dBt(ω), . . . ,

∫ T

0

hn(t) · dBt(ω)

)
hi1 ⊗ · · · ⊗ hik .

We define Dk,p to be the closure of the set of smooth functions S with respect to the

norm:

‖F‖Dk,p =
(
E|F |p +

k∑

j=1

E‖D(j)F‖pH
) 1

p .

The Malliavin derivative is also well defined for the general E-valued random vari-

ables, where E is some separable Hilbert space, and we write D1,p(E) as the clo-

sure of S under some appropriate metric with respect to E. We will use the notation

D
1,∞ = ∩p≥1D

1,p. The adjoint operator of D is introduced as follows.

Definition 3.1 (Definition 1.3.1, [29]). We denote by δ the adjoint of the operator D.

That is, δ is an unbounded operator on L2(Ω;H) with values in L2(Ω) such that

1. The domain of δ, denoted by Dom δ, is the set ofH-valued square integrable random

variables u ∈ L2(Ω;H) such that

∣∣E[〈DF, u〉H ]
∣∣ ≤ c‖F‖2

for all F ∈ D1,2, where c is a constant depending on u.

2. If u belongs to Dom δ, then δ(u) is the element of L2(Ω) characterized by

E[Fδ(u)] = E[〈DF, u〉H ]

for any F ∈ D1,2.
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3.1 Partial Malliavin calculus

The following remark motivates us to use the partial Malliavin calculus.

Remark 3.2. Because of the appearance of a neighborhood process X̃·, we propose the

following problem. We note that almost everything satisfied by the McKean-Vlasov SDE

in [10] is also satisfied by our directed chain SDE. However, we cannot directly apply

their approach to argue the existence, continuity and differentiability of the density

function of X
x,[θ]
t . The reason is that a key step connecting the Malliavin derivative and

∂xX
x,[θ]
t , which is defined in (2.10), may not hold in our case, that is, in general, the

identity:

∂xX
x,[θ]
t = DrX

x,[θ]
t σ>

(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)∂xX

x,[θ]
r (3.2)

does not hold for any r ≤ t. Thus, we cannot directly make use of the integration by

parts formulae in [10], and hence, we cannot argue the smoothness of X
x,[θ]
t .

Question 3.3. How can we make connections between the first order derivative ∂xX
x,[θ]
t

and the Malliavin derivatives similar to (3.2), which would render us to apply integration

by parts formula?

To address Question 3.3, we consider the partial Malliavin derivative in [30]. Let

G := σ({X̃ti , ∀ti ∈ QT }) be the sigma algebra generated by the neighborhood process at

all rational times, where QT = Q ∩ [0, T ] denotes the collection of all rational numbers in

[0, T ]. Due to the continuity of X̃, considering all rational time stamps is equivalent to

considering the whole time interval [0, T ], that is, G = σ(X̃s, 0 ≤ s ≤ T ). We associate

with G the family of subspaces defined by the orthogonal complement to the subspace

generated by {DX̃ti(ω), ti ∈ QT }, i.e.,

K(ω) = 〈DX̃ti(ω), ti ∈ QT 〉⊥.

Since G is generated by countably many random variables, we say it is countably

smoothly generated. Then the family H := {K(ω), ω ∈ Ω} has a measurable projection

by this countably smoothness of G. We define the partial Malliavin derivative operator as

DH.

Definition 3.4 (Definition 2.1, [30]). We define the partial derivative operator DH :

D
1,2 → L2(Ω,H) as the projection of D on H, that is, for any F ∈ D1,2,

DHF = ProjH(DF ) = ProjK(ω)(DF )(ω).

This operator, similar to D, admits an identification with a process (DH
r )r∈[0,T ].

Moreover, we define the norm associated with DH by

‖F‖
D

k,p
H

=
(
E|F |p +

k∑

j=1

E‖DH,(j)F‖pH
) 1

p ,

where DH,(j) is defined as

DH,(j)F = ProjH(D(j)F ) = ProjK(ω)(D
(j)F )(ω).

Now we have the important fact that DHX̃t = 0. This is because X̃t is G measurable

and hence equivalently

DX̃t ∈ 〈DX̃ti , ti ∈ QT ∪ {t}〉; t ∈ [0, T ]. (3.3)

Then the projection of DX̃t onto the orthogonal of 〈DX̃ti , ti ∈ QT ∪{t}〉 must be zero.

Similar to the common Malliavin calculus, we have an adjoint operator of DH, which

is denoted by δH, as well as the integration by parts formula for the partial Malliavin

calculus.
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Definition 3.5 (Definition 2.3, [30]). Set Dom δH = {u ∈ L2(Ω;H) : ProjHu ∈ Dom δ}.
For any u ∈ Dom δH, set δH(u) = δ(ProjHu).

Following Definition 3.4 and 3.5, we have the integration by parts formula for DH

and δH
E[〈h,DHF 〉] = E[〈ProjHh,DF 〉] = E[FδH(h)]. (3.4)

Kusuoka-Stroock Processes In order to derive the differentiability of the density

function, we mimic the procedure in [10] and need to develop the integration-by-parts

formulae introduced in the works of [21] and [19].

Definition 3.6 (Definition 2.8 in [10]). Let E be a separable Hilbert space and let r ∈ R,

q,M ∈ N. We denote by Kq
r(E,M) the set of processes Ψ : [0, T ] × RN × P2(R

N ) →
D

M,∞
H (E) satisfying the following:

1. For any multi-indices α,β, γ satisfying |α|+ |β|+ |γ| ≤ M , the function

[0, T ]×RN × P2(R
N ) 3 (t, x, [θ]) 7→ ∂γ

x∂
β
v ∂

α
µΨ(t, x, [θ], v) ∈ Lp(Ω)

exists and is continuous for all p ≥ 1.

2. For any p ≥ 1 and m ∈ N with |α|+ |β|+ |γ|+m ≤ M , we have

sup
v∈(RN )#β

sup
t∈(0,T ]

t−r/2

∥∥∥∥∂
γ
x∂

β
v ∂

α
µΨ(t, x, [θ], v)

∥∥∥∥
D

m,p
H (E)

≤ C (1 + |x|+ ‖θ‖2)q.

In our discussion, we do not consider the differentiability of the process X with

respect to the initial state of its neighborhood X̃. This above definition of Kq
r(E) is

almost the same as the definition in [10, Definition 2.8], except for the norm. The reason

is that we only care about the existence and smoothing properties of the density function

of Xx,[θ] and have to use the partial Malliavin calculus. We note that although the norms

are different, all the regularity results under the norm ‖ · ‖Dk,p also hold under our norm

‖ · ‖
D

k,p
H

because of the Hölder’s inequality. We also define D
k,∞
H := ∩p≥1D

k,p
H . To obtain

the smoothness of density functions of a process starting from a fixed initial point, we use

Kq
r(R,M) as the class of Kusuoka-Stroock processes which do not depend on a measure

term. By [10, Lemma 2.11], if Ψ ∈ Kq
r(E,M), then Φ(t, x, y) := Ψ(t, x, δx, y) ∈ Kq

r(E,M).

4 Smoothness of densities

4.1 Regularities of solutions of directed chain SDEs

For the purpose of establishing the integration by parts formulae for the directed

chain SDEs and applying the results in [10, Theorem 6.1], we only need to check all the

regularities conditions with respect to the parameters (θ, x) contained in [10, Section 3].

Proposition 4.1 (First-order derivatives). Suppose that V0, . . . , Vd ∈ C1,1,1
b,Lip(R

+ × RN ×
P2(R

N )×RN ;RN ). Then the following statements hold:

1. There exists a modification of Xx,[θ] such that for all t ∈ [0, T ], the map x 7→ X
x,[θ]
t

is P-a.s. differentiable. We denote the derivative by ∂xX
x,[θ] and note that it solves

the following SDE

∂xX
x,[θ]
t = IdN +

d∑

i=0

∫ t

0

{
∂Vi(s,X

x,[θ]
s , [Xθ

s ], X̃s)∂xX
x,[θ]
s

}
dBi

s (4.1)

for every t ∈ [0, T ].
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2. For all t ∈ [0, T ], the maps θ 7→ Xθ
t and θ 7→ X

x,[θ]
t are Fréchet differentiable in

L2(Ω), i.e. there exists a linear continuous map DXθ
t : L2(Ω) → L2(Ω) such that for

all γ ∈ L2(Ω),

‖Xθ+γ
t −Xθ

t −DXθ
t (γ)‖2 = o(‖γ‖2) as ‖γ‖2 → 0,

and similarly for X
x,[θ]
t . These processes satisfy the following stochastic differential

equations

DX
x,[θ]
t (γ) =

d∑

i=0

∫ t

0

[
∂Vi(s,X

x,[θ]
s , [Xθ

s ], X̃s)DXx,[θ]
s (γ)

+ ∂̃Vi(s,X
x,[θ]
s , [Xθ

s ], X̃s)DX̃s(γ) +DV ′
i (s,X

x,[θ]
s , Xθ

s , X̃s)(DXθ
s (γ))

]
dBi

s,

(4.2)

DXθ
t (γ) = γ +

d∑

i=0

∫ t

0

[
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)DXθ

s (γ) + ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+DV ′
i (s,X

θ
s , X

θ
s , X̃s)(DXθ

s (γ))

]
dBi

s (4.3)

where V ′
i is the lifting of Vi. Moreover, for each x ∈ RN , t ∈ [0, T ], the map

P2 3 [θ] 7→ X
x,[θ]
t ∈ L2(Ω) is differentiable. So, ∂µX

x,[θ]
t (v) exists and it satisfies the

following equation

∂µX
x,[θ]
t (v) =

d∑

i=0

∫ t

0

{
∂Vi

(
s,Xx,[θ]

s , [Xθ
s ], X̃s

)
∂µX

x,[θ]
s (v)

+ ∂̃Vi

(
s,Xx,[θ]

s , [Xθ
s ], X̃s

)
∂µX̃s(v)

+ E′

[
∂µVi

(
s,Xx,[θ]

s , [Xθ
s ], X̃s, (X

v,[θ]
s )′

)
∂x(X

v,[θ]
s )′

]

+ E′

[
∂µVi

(
s,Xx,[θ]

s , [Xθ
s ], X̃s, (X

θ′

s )′
)
∂µ(X

θ′,[θ]
s )′(v)

]}
dBi

s, (4.4)

where (Xθ′

s )′ is a copy of Xθ
s on the probability space (Ω′,F ′,P′). Similarly,

∂x(X
v,[θ]
s )′ is a copy of ∂xX

v,[θ]
s and ∂µ(X

θ′,[θ]
s )′ = ∂µ(X

x,[θ]
s )′

∣∣
x=θ′ . Finally, the

following representation holds for all γ ∈ L2(Ω):

DX
x,[θ]
t (γ) = E′[∂µX

x,[θ]
t (θ′)γ′]. (4.5)

3. For all t ∈ [0, T ], X
x,[θ]
t , Xθ

t ∈ D1,∞. Moreover, DH
r Xx,[θ] =

(
DH,j

r (Xx,[θ])i
)

1≤j≤N
1≤i≤d

satisfies, for 0 ≤ r ≤ t

DH
r X

x,[θ]
t = σ

(
r,Xx,[θ]

r , [Xθ
r ], X̃r

)
+

d∑

i=0

∫ t

r

(
∂Vi(s,X

x,[θ]
s , [Xθ

s ], X̃s)D
H
r Xx,[θ]

s

)
dBi

s,

(4.6)

where σ
(
r,X

x,[θ]
r , [Xθ

r ], X̃r

)
is the N × d matrix with columns V1, . . . , Vd.

Proof. 1. The SDE of Xx,[θ] satisfies a classical SDE with adapted coefficients, by

[17, Theorem 7.6.5] there exists a modification of X
x,[θ]
t which is continuously

differentiable in x, and the first derivative satisfies (4.1).
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2. The maps θ 7→ Xθ
t and θ 7→ X

x,[θ]
t are Fréchet differentiable in a similar fashion

of [10, Proposition 3.1], where we can construct the proof through an iterative

scheme as in [9, Lemma 4.17]. Then (4.2) and (4.3) follow from direct computation.

Let us first rewrite the equation for DXθ
t (γ) in terms of the lifting V ′,

DXθ
t (γ) = γ +

d∑

i=0

∫ t

0

[
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)DXθ

s (γ) + ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+ E′
[
∂µV

′
i (s,X

θ
s , [X

θ
s ], X̃s, (X

θ′

s )′)(D(Xθ′

s )′(γ′))
]]

dBi
s. (4.7)

We then consider the equation that we are going to prove for ∂µX
θ′,[θ]
s (v), evaluated

at v = θ′′ and multiplied by γ′′ with both random variables defined on a probability

space (Ω′′,F ′′,P′′). Then taking expectation with respect to P′′, we get

E′′
[
∂µX

θ′,[θ]
t (θ′′)γ′′

]
=

d∑

i=0

∫ t

0

{
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)E

′′[∂µX
θ′,[θ]
s (θ′′)γ′′]

+ ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)E

′′[∂µX̃sγ
′′]

+ E′′E′

[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′′,[θ]
s )′)∂x(X

θ′′,[θ]
s )′γ′′

]

+ E′
[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′

s )′)E′′[∂x(X
θ′,[θ]
s )′(θ′′)γ′′]

]}
dBi

s.

(4.8)

Note that since (γ′′, θ′′) are defined on a separate probability space, we have

E′′[∂µX̃sγ
′′] = DX̃s(γ) and

E′′E′
[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′′,[θ]
s )′)∂x(X

θ′′,[θ]
s )′γ′′

]
=

E′[∂µVi(s,X
θ
s , [X

θ
s ], X̃s, (X

θ′

s )′)∂x(X
θ′,[θ]
s )′γ′].

Then the dynamic of E′′[∂µX
θ′,[θ]
t (θ′′)γ′′] reduces to

E′′
[
∂µX

θ′,[θ]
t (θ′′)γ′′

]
=

d∑

i=0

∫ t

0

{
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)E

′′[∂µX
θ′,[θ]
s (θ′′)γ′′]

+ ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+ E′
[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′

s )′)
[
∂x(X

θ′,[θ]
s )′γ′ + E′′[∂x(X

θ′′,[θ]
s )′(θ′′)γ′′]

]}
dBi

s.

(4.9)

By (4.1), we can evaluate the equation at x = θ, multiply by x, and derive a dynamic

of ∂xX
θ,[θ]
t γ. It can be seen that ∂xX

θ,[θ]
t γ + E′′[∂µX

θ′,[θ]
t (θ′′)γ′′] is equal to

γ +

d∑

i=0

∫ t

0

{
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)E

′′[∂µX
θ′,[θ]
s (θ′′)γ′′] + ∂̃Vi(s,X

θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+ E′
[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′

s )′)
[
∂x(X

θ′,[θ]
s )′γ′ + E′′[∂x(X

θ′′,[θ]
s )′(θ′′)γ′′]

]}
dBi

s.

(4.10)
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We observe that this dynamic is identical to the dynamic for DXθ
t (γ) in (4.7)

and hence they are identical by uniqueness. Similarly, by using this result for

DXθ
t (γ) and the same procedures, we are able to derive that E′′[∂µX

x,[θ]
t (θ′′)γ′′] is

equal to DX
x,[θ]
t (γ). So (4.5) is proved. Moreover, ∂µX

x,[θ]
t (v) exists and satisfies

equation (4.4) by its definition.

3. We first deduce the Malliavin derivative for Xθ. Consider the Picard iteration given

by

X
θ,0
t = θ,

X
θ,k+1
t = θ +

d∑

i=0

∫ t

0

Vi(s,X
θ,k
s , [X̃k

s ], X̃
k
s ) dB

i
s,

where X̃k is a copy of Xθ,k independent of the Brownian motion and θ. We have

shown that such an iteration induces a Cauchy sequence {Φ(k)(Law(Xθ,0)), k ∈ N}
in Proposition 2.2 and a weak solution of the directed chain SDE. Since V0, Vi are

bounded and continuously differentiable, we have

DH,l
r [V j

i (s,X
θ,k
s , [X̃k

s ], X̃
k
s )] = ∂V

j
i D

H,l
r Xθ,k

s ,

where we omit the arguments in Vi’s for notation simplicity. Note that |∂V j
i | ≤ K

for some constant K > 0. We can then deduce V
j
i (s,X

θ,k
s , [X̃k

s ], X̃
k
s ) ∈ D1,∞ by [29,

Proposition 1.5.5]. Moreover, the Ito integral

∫ t

0

V
j
i (s,X

θ,k
s , [X̃k

s ], X̃
k
s ) dB

i
s, i = 1, . . . , d

belongs to D1,2 and for r ≤ t, we have

DH,l
r

[ ∫ t

0

V
j
i (s,X

θ,k
s , [X̃k

s ], X̃
k
s ) dB

i
s

]
= V

j
l (r,X

θ,k
r , [X̃k

r ], X̃
k
r )

+

∫ t

r

DH,l
r [V j

i (s,X
θ,k
s , [X̃k

s ], X̃
k
s )] dB

i
s.

On the other hand, the Lebesgue integral
∫ t

0
V

j
0 (s,X

θ,k
s , [X̃k

s ], X̃
k
s ) ds is also in the

space D1,2 and have the dynamics

DH,l
r

[ ∫ t

0

V
j
0 (s,X

θ,k
s , [X̃k

s ], X̃
k
s ) ds

]
=

∫ t

0

DH,l
r [V j

0 (s,X
θ,k
s , [X̃k

s ], X̃
k
s )] ds.

Therefore, the dynamic of DH,l
r [Xθ,k+1

t ] has exactly the form of (4.6) by the

chain rule of the Malliavin derivative. Due to the reason that X̃k and Xθ,k has the

same distribution, by Doob’s maximal inequality and Burkholder’s inequality,

E[ sup
0≤s≤t

|DH,l
r Xθ,k

s |p] ≤ c1,

where c1 is a constant that depends only on K, d, p for p ≥ 2. Moreover, we define a

metric similar to (2.5) but raise the power to general p ≥ 1,

Dt,p(µ1, µ2) := inf

{∫
( sup
0≤s≤t

|Xs(ω1)−Xs(ω2)|p ∧ 1) dµ(ω1, ω2)

}1/p

.

We then have the following,

Dt,p(m
k+1,mk)2 ≤ c1

∫ t

0

Ds,p(Law(X
θ,k),Law(Xθ,k−1)) ds+c2

∫ t

0

Ds(m
k,mk−1)2 ds,
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Smoothness on directed chain SDEs

by a similar approach as in the proof of Proposition 2.2, where c1, c2 are positive

constants depending on K, d, p and mk = Law(DH,l
r Xθ,k). By iteration, we find that

{mk, k ∈ N} forms a Cauchy sequence in space M(C([0, T ],RN×d)) and has a limit.

We have now proved that

DH
r Xθ

t = σ
(
r,Xθ

r , [X
θ
r ], X̃r

)
+

d∑

i=0

∫ t

r

(
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)D

H
r Xθ

s

)
dBi

s, (4.11)

and the solution of DH
r Xθ

t exists uniquely in the weak sense. In the iteration, it

can easily be proved by induction that Xθ,k ∈ D1,∞ and the sequence DH
r X

θ,k
t is

uniformly bounded in Lp(Ω;H) for p ≥ 2. Therefore, we have Xθ
t ∈ D1,∞

H . The proof

for X
x,[θ]
t is similar, we can set X

x,[θ],0
t = θ add another equation for X

x,[θ],k
t into

the above Picard iteration

X
x,[θ],k+1
t = x+

d∑

i=0

∫ t

0

Vi(s,X
x,[θ],k
s , [X̃k

s ], X̃
x,k
s ) dBi

s.

Then the procedures are the same as the deduction for DH
r Xθ.

For the purpose of more general applications, we want to make sure that the density

for directed chain SDE is at least second order differentiable in (x, [θ]), hence we need

to extend the above first order regularities to higher orders. Following [10], we provide

a result for the general case, which characterizes X
x,[θ]
t as a Kusuoka-Stroock process.

Theorem 4.2. Suppose V0, . . . , Vd ∈ Ck,k,k
b,Lip ([0, T ]×RN×P2(R

N )×RN ;RN ), then it follows

(t, x, [θ]) 7→ X
x,[θ]
t ∈ K1

0(R
N , k). If, in addition, V0, . . . , Vd are uniformly bounded, then

(t, x, [θ]) 7→ X
x,[θ]
t ∈ K0

0(R
N , k).

Note that [10, Proposition 6.7 and 6.8] can be extended to our directed chain case,

since the coefficients Vi : [0, T ]×RN×P2(R
N )×RN → RN in the directed chain SDEs can

be written as a map of the form Ω× [0, T ]×RN ×P2(R
N ) 3 (ω, t, x, µ) 7→ a(ω, t, x, µ) ∈ RN .

This is because the auxiliary dependence on the neighborhood in the coefficients can be

thought of as the dependence on an initial state x, initial distribution µ and independent

Brownian motions, which are implied in the term ω. Moreover, we are able to take care

of the extra term with DX̃s due to the differentiability and regularity of Vi.

Similarly to Proposition 4.1, each type of derivative (w.r.t. x, µ or v) of X
x,[θ]
t satisfies

a linear equation. We will introduce a general linear equation, derive some a priori Lp

estimates on the solution, and then show that this linear equation is again differentiable

under some conditions in the next lemma. Whenever we say ak, k = 1, 2, 3, we also mean

ã1.

Lemma 4.3. Let vr be one element of the tuple v = (v1, . . . , v#v) and Y x,[θ](v) solve the

following SDE

Y
x,[θ]
t (v) = a0 +

d∑

i=0

∫ t

0

{
ai1(s, x, [θ])Y

x,[θ]
s (v) + ãi1(s, x, [θ])Ỹs(v) + ai2(s, x, [θ],v)

+ E′
[
ai3(s, x, [θ], θ

′)(Y θ′,[θ]
s )′(v) +

#v∑

r=1

ai3(s, x, [θ], θ
′)(Y vr,[θ]

s )′(v)
]}

dBi
s,

(4.12)
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where, for all i = 1, . . . , d, the coefficients (t, x, [θ],v) 7→ ak(t, x, [θ],v) are continuously in

Lp(Ω) ∀p ≥ 1, k = 1, 2, 3 and

a0 ∈ RN ,

a1, ã1 : Ω× [0, T ]×RN × P2(R
N ) → RN×N

a2 : Ω× [0, T ]×RN × P2(R
N )× (RN )#v → RN

ai3 : Ω′ × Ω× [0, T ]×RN × P2(R
N )×RN → RN×N .

In (4.12), (Y θ′,[θ])′ is a copy of Y θ on the probability space (Ω′,F ′,P′) where the initial

state is θ′. Similarly, (Y vr,[θ])′ is a copy of Y x,[θ] on the probability space (Ω′,F ′,P′)

where the initial state is vr. Ỹ is the neighborhood process, which has the same law as

Y θ and is independent of Brownian motion B and θ. We make the following boundedness

assumptions

1. supx∈RN ,[θ]∈P2(RN ),v∈(RN )#v ‖a2(·, x, [θ],v)‖Sp
T
< ∞,

2. a1, ã1 and a3 are uniformly bounded,

3. supx∈RN ,[θ]∈P2(RN ),v∈(RN )#v ‖a2(·, x, [θ],v)‖S2
T
< ∞

and then we have the following estimate for C = C(p, T, a1, a3)

‖Y x,[θ](v)‖Sp
T
≤ C(|a0|+ ‖a2(·, x, [θ],v)‖Sp

T
+ ‖a2(·, x, [θ],v)‖S2

T
).

Moreover, we also get that the mapping

[0, T ]×RN × P2(R
N )× (RN )#v 3 (t, x, [θ],v) 7→ Y

x,[θ]
t (v) ∈ Lp(Ω)

is continuous.

Proof. Note that ‖Ỹ (v)‖Sp
T

= ‖(Y θ′,[θ]
s )′(v)‖Sp

T
since they have the same distribution.

The rest proof is identical to [10, Lemma 6.7] by using Gronwall’s lemma and the

Burkholder-Davis-Gundy inequality a couple times.

We now consider the differentiability of the generic process satisfying the linear

equation in Lemma 4.3. To ease the burden on notation, we omit the (t, x, [θ]) in ak, and

write ak
∣∣
v=θ′ to denote ak(s, x, [θ], θ

′), for example.

Proposition 4.4. Suppose that the process Y x,[θ](v) is as in Lemma 4.3. In addition to

the assumptions of Lemma 4.3, we introduce the following differentiability assumptions:

(a) For k = 1, 2, 3, all (s, [θ],v) ∈ [0, T ]× P2(R
N )× (RN )#v and each p ≥ 1, RN 3 x 7→

ak(s, x, [θ],v) ∈ Lp(Ω) is differentiable.

(b) For k = 1, 2, 3, all (s, [θ], x) ∈ [0, T ]× P2(R
N )×RN and each p ≥ 1, (RN )#v 3 v 7→

ak(s, x, [θ],v) ∈ Lp(Ω) are differentiable.

(c) For all (s, x,v) ∈ [0, T ] × RN × (RN )#v the mapping L2(Ω) 3 θ 7→ a2(s, x, [θ],v) ∈
L2(Ω) is Fréchet differentiable.

(d) ak(s, x, [θ],v) ∈ D1,∞
H for k = 1, 2, 3 and all (s, x, [θ],v) ∈ [0, T ]× P2(R

N )× (RN )#v.

Moreover, we assume the following estimates on the Malliavin derivatives hold.

sup
r∈[0,T ]

E

[
sup

s∈[0,T ]

|DH
r ak(s, x, [θ],v)|p

]
< ∞, k = 0, 1, 2, 3.

Then, for all t ∈ [0, T ] the following hold:
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1. Under assumption (a), x 7→ Y
x,[θ]
t (v) is differentiable in Lp(Ω) for all p ≥ 1 and

∂xY
x,[θ]
t (v) :

Lp

= lim
h→0

1

|h|

(
Y

x+h,[θ]
t (v)− Y

x,[θ]
t (v)

)
,

where the limit is taken in Lp sense, satisfies

∂xY
x,[θ]
t (v) =

d∑

i=0

∫ t

0

{
∂xa

i
1Y

x,[θ]
s (v) + ai1∂xY

x,[θ]
s (v) + ∂xa

i
2

+ E′

[
∂xa

i
3

∣∣
v=θ′(Y

θ′,[θ]
s )′(v) +

#v∑

r=1

∂xa
i
3

∣∣
v=vr

(Y θ′,[θ]
s )′(v)

]}
dBi

s

2. Under assumption (b), v 7→ Y
x,[θ]
t (v) is differentiable in Lp(Ω) for all p ≥ 1 and

∂vY
x,[θ]
t (v) :

Lp

= lim
h→0

1

|h|

(
Y

x,[θ]
t (v + h)− Y

x,[θ]
t (v)

)

satisfies

∂vj
Y

x,[θ]
t (v) =

d∑

i=0

∫ t

0

{
ai1∂vj

Y x,[θ]
s (v) + ãi1∂vj

Ỹs(v) + ∂vja
i
2

+ E′

[
∂va

i
3

∣∣
v=vj

(Y vj ,[θ]
s )′(v)

]
+ E′

[
ai3
∣∣
v=vj

∂x(Y
vj ,[θ]
s )′(v)

+ ai3
∣∣
v=θ′∂vj

(Y θ′,[θ]
s )′(v) +

#v∑

r=1

ai3
∣∣
v=vr

∂vj
(Y vr,[θ]

s )′(v)

]}
dBi

s.

3. Under assumption (a), (b) and (c), the maps θ 7→ Y
θ,[θ]
t (v) and θ 7→ Y

x,[θ]
t (v) are

Fréchet differentiable for all (x,v) ∈ RN × (RN )#v, so ∂µY
x,[θ]
t (v) exists and it

satisfies

∂µY
x,[θ]
t (v, v̂) =

d∑

i=0

∫ t

0

{
∂µa

i
1Y

x,[θ]
s (v) + ai1∂µY

x,[θ]
s (v, v̂) + ∂µã

i
1Ỹs(v) + ai1∂µỸs(v, v̂)

+ ∂µa
i
2 + E′

[
∂µa

i
3(Y

θ′,[θ]
s )′(v) + ∂va

i
3(Y

v̂,[θ]
s )′(v) + ai3

∣∣
v=θ′∂µ(Y

θ′,[θ]
s )′(v, v̂)

]

+ E′

[
ai3
∣∣
v=v̂

∂x(Y
v̂,[θ]
s )′(v) +

#v∑

r=1

ai3
∣∣
v=vr

∂µ(Y
vr,[θ]
s )′(v, v̂)

]}
dBi

s.

Moreover, we have the representation, for all γ ∈ L2(Ω),

D
(
Y

θ,[θ]
t (v)

)
(γ) =

(
∂xY

x,[θ]
t (v)γ + E′′

[
∂µY

x,[θ]
t (v, θ′′)γ′′

])∣∣∣∣
x=θ

.

4. Under assumption (d), Y
x,[θ]
t ∈ D1,∞ and DH

r Y
x,[θ]
t satisfies

DH
r Y

x,[θ]
t (v) =

(
a
j
1Y

x,[θ]
r + ã

j
1Ỹr + a

j
2 + E′

[
a
j
3(Y

x,[θ]
s )′(v)

])

j=1,...,d

+

d∑

i=0

∫ t

0

{
DH

r ai1Y
x,[θ]
s (v) +DH

r ãi1Ỹs + ai1D
H
r Y x,[θ]

s (v) + ãi1D
H
r Ỹs

+DH
r ai2 + E′

[
DH

r ai3
∣∣
v=θ′(Y

x,[θ]
s )′(v)

]}
dBi

s.

EJP 29 (2024), paper 127.
Page 17/28

https://www.imstat.org/ejp



Smoothness on directed chain SDEs

Moreover, the following bound holds:

sup
r≤t

E

[
|DH

r Y
x,[θ]
t (v)|p

]
≤ C sup

r≤t
E

[
sup

r≤t≤T

(
|DH

r a1|p + |DH
r ã1|p

)]
(4.13)

The limits in the above are taken in the Lp sense. When we say k = 1, 2, 3 for the

assumptions, we also mean ã1.

Proof. See Propositions 4.1 and [10, Proposition 6.8] for the proof.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. The proof follows identically the proof of [10, Theorem 3.2], where

we apply Lemma 4.3 and Proposition 4.4.

4.2 Integration by parts formulae

Now we introduce some operators acting on the Kusuoka-Stroock processes. These

operators will be used later in the integration by parts formulae. We first make the

following common assumption on uniform ellipticity.

Assumption 4.5 (Uniform Ellipticity). Let σ : [0, T ] × RN × P2(R
N ) × RN → RN×d be

given by

σ(t, z, µ, z̃) := [V1(t, z, µ, z̃), . . . , Vd(t, z, µ, z̃)].

We assume that there exists ε > 0 such that, for all ξ ∈ RN , z ∈ RN and µ ∈ P2(R
N ),

ξ>σ(t, z, µ, z̃)σ(t, z, µ, z̃)>ξ ≥ ε|ξ|2.

For a function Ψ : [0, T ] × RN × P2(R
N ) → D

n,∞, the following operators acting

on Kusuoka-Stroock processes in Kq
r(R, n) with multi-index α = (i) and (t, x, [θ]) ∈

[0, T ]×RN × P2(R
N ) are given by

I1(i)(Ψ)(t, x, [θ]) :=
1√
t
δH

(
r 7→ Ψ(t, x, [θ])

(
σ>

(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)∂xX

x,[θ]
r

)
i

)

I2(i)(Ψ)(t, x, [θ]) :=

N∑

j=1

I1(j)

((
∂xX

x,[θ]
t

)−1

j,i
Ψ(t, x, [θ])

)
,

I3(i)(Ψ)(t, x, [θ]) := I1(i)(Ψ)(t, x, [θ]) +
√
t∂iΨ(t, x, [θ]),

I1
(i)(Ψ)(t, x, [θ], v1) :=

1√
t
δH

(
r 7→

(
σ>

(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)

∂xX
x,[θ]
r (∂xX

x,[θ]
t )−1∂µX

x,[θ]
t (v1)

)
i
Ψ(t, x, [θ])

)
,

I3
(i)(Ψ)(t, x, [θ], v1) := I1

(i)(Ψ)(t, x, [θ], v1) +
√
t(∂µΨ)i(t, x, [θ], v1).

For a general multi-index α = (α1, . . . , αn), we inductively define

I1α := I1αn
◦ I1αn−1

◦ · · · ◦ I1α1
,

the definition of the other operators are analogue to I1α. The following proposition follows

directly from our previous discussion and the definition of the Kusuoka-Stroock process.
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Proposition 4.6. If V0, . . . , Vd ∈ Ck,k,k
b,Lip ([0, T ]×RN ×P2(R

N )×RN ;RN ), Assumption 4.5

holds and Ψ ∈ K
q
r(R, n), then I1α(Ψ) and I3α(Ψ), are all well-defined for |α| ≤ (k ∧ n).

I2α(Ψ), I1
α(Ψ) and I3

α(Ψ) are well defined for |α| ≤ n ∧ (k − 2). Moreover,

I1α(Ψ), I3α(Ψ) ∈ Kq+2|α|
r (R, (k ∧ n)− |α|),

I2α(Ψ) ∈ Kq+3|α|
r (R, [n ∧ (k − 2)]− |α|),

I1
α(Ψ), I3

α(Ψ) ∈ Kq+4|α|
r (R, [n ∧ (k − 2)]− |α|).

If Ψ ∈ K0
r(R, n) and V0, . . . , Vd are uniformly bounded, then

I1α(Ψ), I3α(Ψ) ∈ K0
r(R, (k ∧ n)− |α|),

I2α(Ψ) ∈ K0
r(R, [n ∧ (k − 2)]− |α|),

I1
α(Ψ), I3

α(Ψ) ∈ K0
r(R, [n ∧ (k − 2)]− |α|).

From now on, the Integration by Parts Formulae (IBPF) follow in the same way as [10,

Sec 4.] by replacing D, δ by DH, δH and using integral by parts for this partial Malliavin

derivative.

Integration by parts formulae in the space variable are established in the following

Proposition.

Proposition 4.7 (Proposition 4.1, [10]). Let f ∈ C∞
b (RN ,R) and Ψ ∈ Kq

r(R, n), then

1. If |α| ≤ n ∧ k, then

E
[
∂α
x

(
f
(
X

x,[θ]
t

))
Ψ(t, x, [θ])

]
= t−|α|/2E

[
f
(
X

x,[θ]
t

)
I1α(Ψ)(t, x, [θ])

]
.

2. If |α| ≤ n ∧ (k − 2), then

E
[
(∂αf)

(
X

x,[θ]
t

)
Ψ(t, x, [θ])

]
= t−|α|/2E

[
f
(
X

x,[θ]
t

)
I2α(Ψ)(t, x, [θ])

]
.

3. If |α| ≤ n ∧ k, then

∂α
xE

[
f
(
X

x,[θ]
t

)
Ψ(t, x, [θ])

]
= t−|α|/2E

[
f
(
X

x,[θ]
t

)
I3α(Ψ)(t, x, [θ])

]
.

4. If |α|+ |β| ≤ n ∧ (k − 2), then

∂α
xE

[
(∂βf)

(
X

x,[θ]
t

)
Ψ(t, x, [θ])

]
= t−(|α|+|β|)/2E

[
f
(
X

x,[θ]
t

)
I3α

(
I2( βΨ)

)
(t, x, [θ])

]
.

Proof. 1. First, we note that Equation (4.1) satisfied by ∂xX
x,[θ]
t and Equation (4.6)

satisfied by DH
r X

x,[θ]
t are the same except their initial condition. It therefore

follows from our discussion of partial Malliavin derivative that

∂xX
x,[θ]
t = DH

r X
x,[θ]
t σ>

(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)∂xX

x,[θ]
r . (4.14)
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We are then allowed to compute the followings for f ∈ C∞
b (RN ,R),

E
[
∂x

(
f
(
X

x,[θ]
t

))
Ψ(t, x, [θ])

]
= E

[
∂f

(
X

x,[θ]
t

)
∂xX

x,[θ]
t Ψ(t, x, [θ])

]

=
1

t
E

[ ∫ t

0

∂f
(
X

x,[θ]
t

)
∂xX

x,[θ]
t Ψ(t, x, [θ]) dr

]

=
1

t
E

[ ∫ t

0

∂f
(
X

x,[θ]
t

)
DH

r X
x,[θ]
t σ>

(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)

× ∂xX
x,[θ]
r Ψ(t, x, [θ]) dr

]

=
1

t
E

[ ∫ t

0

DH
r f

(
X

x,[θ]
t

)
σ>

(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)

× ∂xX
x,[θ]
r Ψ(t, x, [θ]) dr

]

=
1

t
E

[
f
(
X

x,[θ]
t

)
δH

(
r 7→ Ψ(t, x, [θ])

×
(
σ>

(
σσ>

)−1
(r,Xx,[θ]

r , [Xθ
r ], X̃r)∂xX

x,[θ]
r

))]
,

where we have applied partial Malliavin calculus integration by parts from Equa-

tion (3.4) in the last equality. This proves the result for |α| = 1. By Proposition 4.6,

I1α(Ψ) ∈ Kq+2
r (R, (k∧n)−1) when |α| = 1. We can then repeat the above procedures

iteratively to get to desired result.

2. By the chain rule,

E
[
(∂if)

(
X

x,[θ]
t

)
Ψ(t, x, [θ])

]
=

N∑

j=1

E

[
∂xi

(
f
(
X

x,[θ]
t

))((
X

x,[θ]
t

)−1
)j,i

Ψ(t, x, [θ])

]

= t−1/2
N∑

j=1

E

[
f
(
X

x,[θ]
t

)
I1(j)

(((
X

x,[θ]
t

)−1
)j,i

Ψ(t, x, [θ])

)]

= t1/2E
[
f
(
X

x,[θ]
t

)
I2(i)(Ψ)(t, x, [θ])

]
,

where we apply the result in part 1 to the second equality. From Proposition 4.6,

I2(i)(Ψ) ∈ Kq+3
r (R, (n ∧ (k − 2)) − 1), so since |α| ≤ (n ∧ (k − 2)), the proof follows

from applying the same arguments for another |α| − 1 times.

3. By part 1 and direct computation,

∂i
xE

[
f
(
X

x,[θ]
t

)
Ψ(t, x, [θ])

]
= E

[
∂i
xf

(
X

x,[θ]
t

)
Ψ(t, x, [θ]) + f

(
X

x,[θ]
t

)
∂i
xΨ(t, x, [θ])

]

= t−1/2E

[
f
(
X

x,[θ]
t

){
I1i (Ψ)(t, x, [θ]) +

√
t∂i

xΨ(t, x, [θ])
}]

,

which proves the result for |α| = 1. Again, we have I3α(Ψ) ∈ Kq+2
r (R, (k ∧ n) − 1)

when |α| = 1. Then the proof follows from iterative implementation of the above

procedure.

4. This part follows from parts 2 and 3 directly.

Similarly to integration by parts in the space variable, we can also derive integration

by parts in the measure variable as follows.

Proposition 4.8 (Proposition 4.2, [10]). Let f ∈ C∞
b (RN ,R) and Ψ ∈ Kq

r(R, n), then
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1. If |β| ≤ n ∧ (k − 2), then

E
[
∂β
µ

(
f
(
X

x,[θ]
t

))
(v)Ψ(t, x, [θ])

]
= t−|β|/2E

[
f
(
X

x,[θ]
t

)
I1
β(Ψ)(t, x, [θ],v)

]
.

2. If |β| ≤ n ∧ (k − 2), then

∂β
µE

[
f
(
X

x,[θ]
t

)
Ψ(t, x, [θ])

]
(v) = t−|β|/2E

[
f
(
X

x,[θ]
t

)
I3
β(Ψ)(t, x, [θ],v)

]
.

3. If |α|+ |β| ≤ n ∧ (k − 2), then

∂β
µE

[
(∂αf)

(
X

x,[θ]
t

)
Ψ(t, x, [θ])

]
(v) = t−(|α|+|β|)/2E

[
f
(
X

x,[θ]
t

)
I3
β

(
I2α(Ψ)

)
(t, x, [θ],v)

]
.

Proof. The proofs use the same idea as Proposition 4.7 and Equation (4.14).

We now consider the integration by parts formulae for the derivatives of the mapping:

x 7→ E[f(Xx,δx
t )].

Let us introduce the following operator acting on Kq
r(R,M), the set of the Kusuoka-

Stroock processes that do not depend on measure µ. For α = (i),

J(i)(Φ)(t, x) := I3(i)(Φ)(t, x, δx) + I3
(i)(Φ)(t, x, δx)

and for α = (α1, . . . , αn), Jα(Φ) := Jαn
◦ · · · ◦ Jα1

(Φ).

Theorem 4.9. Let f ∈ C∞
b (RN ;R). For all multi-indices α on {1, . . . , N} with |α| ≤ k − 2,

∂α
xE

[
f
(
X

x,δx
t

)]
= t−|α|/2E

[
f
(
X

x,δx
t

)
Jα(1)(t, x)

]
.

In particular, we get the following bound,

∣∣∂α
xE

[
f
(
X

x,δx
t

)]∣∣ ≤ C‖f‖∞t−|α|/2(1 + |x|)4|α|

Proof. Since δx depends on x, we have

∂i
xE

[
f
(
X

x,δx
t

)]
= ∂i

zE
[
f
(
X

z,δx
t

)]∣∣
z=x

+ ∂i
µE

[
f
(
X

x,[θ]
t

)]
(v)

∣∣
[θ]=δx,v=x

,

then for |α| = 1 the result yields by Proposition 4.7 and 4.8. The proof is completed by

repeating this procedure for another |α| − 1 times.

The following corollary is useful for the smoothness of densities of directed-chain

SDEs.

Corollary 4.10. Let f ∈ C∞
b (RN ;R), α and β be multiindices on {1, . . . , N} with |α| +

|β| ≤ k − 2. Then,

∂α
xE

[
(∂βf)

(
X

x,δx
t

)]
= t−

|α|+|β|
2 E

[
f
(
X

x,δx
t

)
I2β(Jα(1))(t, x)

]

and I2β(Jα(1)) ∈ K
4|α|+3|β|
0 (R, k − 2− |α| − |β|).

Proof. The proof is derived from Theorem 4.9 and Proposition 4.7.
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4.3 Smooth densities

We are now ready to prove the main theorem of this section.

Theorem 4.11. We assume that Assumption 4.5 holds and V0, . . . , Vd ∈ Ck,k,k
b,Lip ([0, T ] ×

RN×P2(R
N )×RN ;RN ). Let α, β be multiindices in {1, . . . , N} and let k ≥ |α|+|β|+N+2.

1. Assume also the initial state for directed chain SDE is θ ≡ x, i.e. [θ] = δx. Then

the directed chain SDE (2.1) coincides with the alternative SDE (2.10). For all

t ∈ [0, T ], Xx,δx
t has a density p(t, x, ·) such that (x, z) 7→ ∂α

x ∂
β
z p(t, x, z) exists and

is continuous. Moreover, there exists a constant C which depends on T,N and

bounds on the coefficients, such that for all t ∈ (0, T ]

|∂α
x ∂

β
z p(t, x, z)| ≤ C(1 + |x|)4|α|+3|β|+3N t−

1
2 (N+|α|+|β|), x ∈ RN , z ∈ RN . (4.15)

If V0, . . . , Vd are bounded, then the following estimate holds, for all t ∈ (0, T ]

|∂α
x ∂

β
z p(t, x, z)| ≤ Ct−

1
2 (N+|α|+|β|) exp

(
− C

|z − x|2
t

)
, x ∈ RN , z ∈ RN .

2. The alternative SDE (2.10) has a density pθ(t, x, ·) such that (x, z) 7→ ∂α
x ∂

β
z pθ(t, x, z)

exists and is continuous. Moreover, there exists a constant C which depends on

T,N and bounds on the coefficients, such that for all t ∈ (0, T ]

|∂α
x ∂

β
z pθ(t, x, z)| ≤ C(1 + |x|)2|α|+3|β|+3N t−

1
2 (N+|α|+|β|), x ∈ RN , z ∈ RN . (4.16)

If V0, . . . , Vd are bounded, then the following estimate holds, for all t ∈ (0, T ]

|∂α
x ∂

β
z pθ(t, x, z)| ≤ Ct−

1
2 (N+|α|+|β|) exp

(
− C

|z − x|2
t

)
, x ∈ RN , z ∈ RN .

Proof. 1. The proof is verbatim to Theorem 6.1 of [10] by applying our integration by

parts formulae established in Corollary 4.10 and Lemma 3.1 in [31].

2. The inequality (4.16) is similar to the inequality (4.15) but with a different exponent.

The procedures to derive this exponent is briefly discussed and the rest procedures

are the same as Theorem 6.1 of [10].

Let η = (1, 2, 3, . . . , N) and 1{z<z0} :=
∏N

i=1 1{zi<zi
0}
. For any g ∈ C∞

0 (RN ,R) define

the function f as

f(z0) :=

∫

RN

g(z)1{z<z0} dz

is in C∞
p (RN ,R) and we have ∂ηf = g. Therefore,

∂α
xE

[
(∂βg)

(
X

x,[θ]
t

)]
= ∂α

xE
[
(∂β∗ηf)

(
X

x,[θ]
t

)]

= t−
|α|+|β|+N

2 E
[
f
(
X

x,[θ]
t

)
I3α

(
I2β∗η(1)

)
(t, x, [θ])

]

= t−
|α|+|β|+N

2 E

[(∫

RN

g(z)1
{z<X

x,[θ]
t }

dz

)
I3α

(
I2β∗η(1)

)
(t, x, [θ])

]

= t−
|α|+|β|+N

2

∫

RN

g(z)E
[
1
{z<X

x,[θ]
t }

I3α
(
I2β∗η(1)

)
(t, x, [θ])

]
dz,

(4.17)

where we have used ∂ηf = g, Proposition 4.7, and Fubini’s theorem. The exponent

2|α|+3|β|+3N comes from Proposition 4.6 and I3α
(
I2β∗η(1)

)
(t, x, [θ]) being a Kusuoka-

Stroock process.
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Theorem 4.11 presents the smoothness result for X
x,δx
t and it can be generalized to

Xθ
t with a general initial distribution [θ].

Corollary 4.12. Suppose Assumption 4.5 holds and V0, . . . , Vd ∈ Ck,k,k
b,Lip ([0, T ] × RN ×

P2(R
N )×RN ;RN ). Let θ be a random variable in RN with finite moments of all orders.

For any multi-index β on {1, . . . , N} such that k ≥ |β|+N +2, we see that for all t ∈ [0, T ],

Xθ
t has a density pθ(t, ·) such that z 7→ ∂β

z pθ(t, z) exists and is continuous.

Proof. If θ is degenerate and θ ≡ x, then the results follow directly from Theorem 4.11

part 1. If θ is non-degenerate, we use the relation

pθ(t, z) =

∫
pθ(t, x, z)[θ]( dx),

and hence, the existence and regularities of pθ(t, x, z) is given in Theorem 4.11 part 2.

The proof is done by taking the expectation on both sides of the inequality (4.16) with

respect to the initial distribution θ and applying the dominated convergence theorem,

where we use the assumption that θ has finite moments.

The above existence and smoothness results on the marginal density of a single

object can be extended to the joint distribution for any number of adjacent particles.

Namely, for a fixed integer m ≥ 1, we may construct the system of stochastic processes

(X̃0
· , X̃

1
· , X̃

2
· , . . . , X̃

m
· ) such that (X̃m−1

· , X̃m
· ) ≡ (Xθ

· , X̃·) in (1.1), and X̃i
· depends on the

adjacent process X̃i+1
· and Brownian motion B̃i

· , independent of X̃
i+1, in the same

fashion as (Xθ
· , X̃·) in (1.1) for i = 0, . . . ,m− 1.

Corollary 4.13. Suppose that Assumption 4.5 holds and V0, . . . , Vd ∈ Ck,k,k
b,Lip ([0, T ]×RN ×

P2(R
N ) × RN ;RN ) and θ has finite moments. Then the joint density of the process

(Xθ
· , X̃

1
· , X̃

2
· , . . . , X̃

m
· ) exists and is continuous at any t ∈ [0, T ], where X̃1

· ≡ X̃· and X̃i
·

depend on X̃i+1
· in the same way as (Xθ

· , X̃·) in (1.1).

Proof. We consider the process evolving in space R(m+1)N defined by

Y· := (X̃0
· , X̃

1
· , X̃

2
· , . . . , X̃

m
· )

and the neighborhood process Ỹ· := (X̃m+1
· , X̃m+2

· , . . . , X̃2m+1
· ). Now (Y·, Ỹ·) satisfies

the directed chain structure and it can be proved that this new directed chain SDE

structure Y· also satisfies Assumption 4.5. Hence, the existence and continuity follow

from Theorem 4.11 and Corollary 4.12. In particular, if m = 1, the coupled process Y· is

defined by

Yt = Y0 +

2d∑

i=1

∫ T

0

V
y
i (s, Ys,Law(Ys), Ỹs) dB

y,i
s ,

where the diffusion coefficients V
y
i , i = 1, . . . , 2d are given by

V
y
i :=

{ (
Vi(s,Xs,Law(Xs), X̃

1
s ),0

)T ∈ R2N , i = 1, . . . d,(
0, Vi−d(s, X̃

1
s ,Law(X̃

1
s ), X̃

2
s )
)T ∈ R2N , i = d+ 1, . . . 2d,

By is independent standard Brownian motions in R2d and 0 ∈ RN is a zero vector.

4.4 Markov random fields

The existence of density in Theorem 4.11 is closely related to the local Markov

property (or Markov random fields) of the directed chain structure. Here, we shall briefly

elaborate the relation. A similar topic has been studied by [24] on the undirected graph

with locally interactions only on the drift terms. Their approach is to apply a change of
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measure under which the diffusion coefficients at one vertex of the undirected graph do

not depend on the diffusions at the other vertexes of the graph, to get the factorization

of the probability measure. Usually, this Markov property is only discussed for the

undirected graph or directed acyclic graph. The finite particle system that approximates

the directed chain structure discussed in [13] admits a loop structure in the finite graph.

More precisely, the finite system of n particles (X
(n)
1,· , . . . , X

(n)
n,· ) is constructed in a loop

of size n so that X
(n)
1,· depends on X

(n)
2,· , X

(n)
2,· depends on X

(n)
3,· , . . . , X

(n)
n−1,· depends on

X
(n)
n,· and X

(n)
n,· depends on X

(n)
1,· . However, when the size n of this loop is forced to be

infinity, that is, n → ∞, we can then treat the dependence of the system on any finite

subgraph as the system on an acyclic graph [13, Section 3], as (1.2) in our paper. An

illustration is given in Figure 1.

Figure 1: This figure shows a finite cut of the infinite directed chain, i.e., Xk is affected

by Xk+1.

Proposition 4.14. The directed chain SDEs described in (1.2) form first-order Markov

random fields, or we say it has the local Markov property.

We follow the notation and terminology in [26]. Given a directed graph G = (V,E)

with vertices V and edges E, for a vertex ν ∈ V , let Xν denote the generic space

of vertex ν and pa(ν) ∈ V denote all its parents. In the infinite directed chain case,

pa(Xk,·) = Xk+1,·.

Definition 4.15 (Recursive Factorization). Given a directed graph G = (V,E), we say

the probability distribution PG admits a recursive factorization according to G, if there

exists non-negative functions, henceforth referred to as kernels, kν(·, ·), ν ∈ V defined

on Xν ×Xpa(ν), such that ∫
kν(yν , xpa(ν))µν( dyν) = 1

and PG has density fG with respect to a product measure µ, which is defined on the

product space
∏

ν∈V Xν by µν a measure defined on each Xν , where

fG(x) =
∏

ν∈V

kν(xν , xpa(ν)).

Proof of Proposition 4.14. Thanks to the special structure of the chain, it can be shown

that the distribution of the chain satisfies the recursive factorization property, where

the existence and continuity of the kernel functions are given by Theorem 4.11 and

Corollary 4.12. For it, on a filtered probability space, let us consider a system of

directed chain diffusion Xi,t, i ∈ N, t ≥ 0 on the infinitely graph with vertices N =

{1, 2, . . .}. Firstly, coupled diffusion (X1,·, X2,·) ≡ (Xθ
· , X̃·) satisfies the directed chain

stochastic equation and has a continuous density according to Corollary 4.13 and we

denote this joint density by g(·, ·) : RN × RN → R. We then construct the chain

recursively according to the following rule: Given Xk,·, initial state Xk+1,0 and Brownian

motion Bk+1,· independent of (X1,·, . . . , Xk,·, Xk+1,0), we construct Xk+1,· according to

the distribution of (Xθ
· , X̃·).

Defining the kernel functions in the following way

kν(xν , xpa(ν)) :=

{
g(xν , xpa(ν)), if ν = X1,

(g(xν))
−1g(xν , xpa(ν)), if ν = Xk, k ≥ 2,
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i.e., the conditional density of Xk+1,t given Xk,t for k ≥ 2, proves the recursive factoriza-

tion property of the chain on any finite cut (X1,t, X2,t, . . . , Xm,t), ∀m ∈ N of the infinite

chain for any t ∈ [0, T ], as well as the local Markov property following from [26, Theorem

3.27], which is also called the first order Markov random field in the context of [24].

This result can also be verified by a filtering problem built upon this directed chains

structure, which we omit due to the page limitation.

4.5 Relation to PDE

We have constructed the integration by parts formulae to argue that the den-

sity of directed chain SDEs is smooth in section 4.2, which is also the tool for con-

structing solutions to a related PDE problem. To simplify notation, we will omit

the time dependency in coefficients of SDEs through this section, i.e. we will write

V (X
x,[θ]
t , [Xθ

t ], X̃t) := V (t,X
x,[θ]
t , [Xθ

t ], X̃t). In particular, we are interested in the function

U(t, x, [θ]) = E[g(X
x,[θ]
t , [Xθ

t ])],

t ∈ [0, T ], x ∈ RN for some sufficiently smooth function g. Here Xθ
· is the solution of (2.1)-

(2.2) with random initial θ and X
x,[θ]
t is the solution to (2.10) with deterministic initial x.

They depend on a neighborhood process X̃· with an initial independent random vector θ̃.

Recall the flow property (2.13) in section 2.3. It follows that for every 0 ≤ t ≤ t+ h ≤ T ,

x ∈ Rd,

U(t+ h, x, [θ]) = E[g(X
x,[θ]
t+h , [Xθ

t+h])] = E
[
U(t,X

x,[θ]
h , [Xθ

h])
]
.

Hence

U(t+ h, x, [θ])− U(t, x, [θ])

= U(t, x, [Xθ
h])− U(t, x, [θ]) + E

[
U(t,X

x,[θ]
h , [Xθ

h])− U(t, x, [Xθ
h])

]

= I − E[J ], (4.18)

where we define I = U(t, x, [Xθ
h]) − U(t, x, [θ]) and J = U(t,X

x,[θ]
h , [Xθ

h]) − U(t, x, [Xθ
h]).

Applying the chain rule introduced in [9] to I and Ito’s formula to J , we have

I =

∫ h

0

E

[ N∑

i=1

V i
0 (X

θ
r , [X

θ
r ], X̃r)∂µU(t, x, [Xθ

r ], X
θ
r )i

+
1

2

N∑

i,j=1

[σσ>(Xθ
r , [X

θ
r ], X̃r)]i,j∂vj

∂µU(t, x, [Xθ
r ], X

θ
r )i

]
dr,

J =

∫ h

0

N∑

i=1

V i
0 (X

x,[θ]
r , [Xθ

r ], X̃r)∂xi
U(t,Xx,[θ]

r , [Xθ
h]) dr

+
1

2

∫ h

0

N∑

i,j=1

[σσ>(Xx,[θ]
r , [Xθ

r ], X̃r)]i,j∂xi
∂xj

U(t,Xx,[θ]
r , [Xθ

h]) dr

+

∫ h

0

d∑

j=1

N∑

i=1

V i
j (X

x,[θ]
r , [Xθ

r ], X̃r)∂xi
U(t,Xx,[θ]

r , [Xθ
h]) dB

j
r .

For the meaning of the differential operator with respect to the measure ∂µ appearing

in I, we refer to Section 2.1. Then let us plug I, J into (4.18) and take expectation, divide

by h on both sides, and send h to 0, we will end up with a PDE of the form given below

(∂t − L)U(t, x, [θ]) = 0 for (t, x, [θ]) ∈ (0, T ]×RN × P2(R
N ),

U(0, x, [θ]) = g(x, [θ]) for (x, [θ]) ∈ RN × P2(R
N ),

(4.19)
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where g : RN × P2(R
N ) → R and the operator L acts on smooth enough functions

F : RN × P2(R
N ) → RN defined by

LF (x, [θ]) =E

[ N∑

i=1

V i
0 (x, [θ], θ̃)∂xi

F (x, [θ]) +
1

2

N∑

i,j=1

[σσ>(x, [θ], θ̃)]i,j∂xi
∂xj

F (x, [θ])

]

+ E

[ N∑

i=1

V i
0 (θ, [θ], θ̃)∂µF (x, [θ], θ)i +

1

2

N∑

i,j=1

[σσ>(θ, [θ], θ̃)]i,j∂vj∂µF (x, [θ], θ)i

]
. (4.20)

The expectation in the first line of (4.20) is taken with respect to the random variable

θ̃ due to the appearance of the neighborhood process in the difference J , while the

expectation in the second line is taken with respect to the joint distribution of θ, θ̃, as an

application of the chain rule introduced in [9] to the difference I.

Evidently, a proper condition for the initial g is needed to establish the existence of

the solution to PDE (4.19). Such a directed chain type SDE has not been considered

before, the closest works are related to the existence of solutions to Kolmogorov PDE on

the Wasserstein space; see [32, 11, 12]. In [3], g is assumed to have bounded second-

order derivatives. The smoothness on g is relaxed in [10]. In particular, they assume

g belongs to a class of functions that can be approximated by a sequence of functions

with polynomial growth, and also satisfy certain growth conditions on its derivatives.

Hence, they claim that g is not necessarily differentiable. We emphasize that a detailed

discussion on the choice of assumptions in g is beyond the scope of this paper, but we

conjecture that some similar results should also hold for our case and will include this in

our future research.
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