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Abstract
A discretization method with non-matching grids is proposed for the coupled Stokes-Darcy problem that uses a mortar
variable at the interface to couple the marker and cell (MAC) method in the Stokes domain with the Raviart-Thomas mixed
finite element pair in the Darcy domain. Due to this choice, the method conserves linear momentum and mass locally in
the Stokes domain and exhibits local mass conservation in the Darcy domain. The MAC scheme is reformulated as a mixed
finite element method on a staggered grid, which allows for the proposed scheme to be analyzed as a mortar mixed finite
element method. We show that the discrete system is well-posed and derive a priori error estimates that indicate first order
convergence in all variables. The system can be reduced to an interface problem concerning only the mortar variables, leading
to a non-overlapping domain decomposition method. Numerical examples are presented to illustrate the theoretical results
and the applicability of the method.

Keywords Stokes-Darcy flow · MAC scheme · Mixed finite element · Mortar finite element

1 Introduction

The coupled Stokes-Darcy flow problem, which models
coupled free fluid and porous media flows, has been exten-
sively studied in recent years due to its numerous applica-
tions, including coupled surface and subsurface flows, flows
through fractured or vuggy porous media, flows through
industrial filters, and flows through biological tissues. The
most commonly used formulation couples the two regions
through continuity of normal velocity, balance of force,
and the Beavers-Joseph-Saffman slip with friction interface
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conditions. Some of the early works on the mathematical and
numerical analysis of Stokes-Darcy flows are [13, 15] using
a pressure Darcy formulation and [32, 38] using a mixed
Darcy formulation. Since then, various numerical methods
have been developed, see e.g., [4, 7–9, 19, 21, 22, 30, 31].
The focus of this paper is the development and analysis of
a numerical scheme that exhibits local momentum and mass
conservation in the Stokes region and local mass conserva-
tion in the Darcy region, and allows for non-matching grids
along the Stokes-Darcy interface. To the best of our knowl-
edge, such method has not been previously developed in the
literature.

Our method couples the marker and cell (MAC) scheme
[27] for Stokes with a mixed finite element (MFE) method
for Darcy. The MAC scheme is a popular method in compu-
tational fluid dynamics, due to its local momentum and mass
conservation properties. We restrict our attention to rectan-
gular elements and refer to [18, 23, 26, 29, 33, 35, 36] for
previous works on its analysis on such grids. On the other
hand, the MFE method is widely used for Darcy flow, due
to its local mass conservation and direct approximation of
the Darcy velocity. In this paper we consider affine elements
in the Darcy region, such as simplices and parallelograms.
While the analysis can be carried out for any stable pair of
MFE spaces of arbitrary degree, since the MAC scheme is
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of first order, we focus on the lowest order Raviart-Thomas
spaces RT0 [37]. A key feature of our method is that it allows
for non-matching grids along the Stokes-Darcy interface.
Such generality is important in practical applications where
different spatial resolution may be needed in the two regions.
We handle the non-matching grids through the use of mortar
finite elements [5, 6, 25]. In particular, we introduce a mor-
tar interface variable with the physical meaning of Darcy
pressure and Stokes normal stress, which is used to impose
weakly the continuity of normal velocity on the interface.
The mortar variable is defined on a separate interface grid,
which may differ from the traces of the subdomain grids.
This further allows for the flexibility to choose the mortar
finite element grid on a coarse scale, resulting in a multi-
scale discretization [6, 25]. The mortar method is suitable
for the use of non-overlapping domain decomposition meth-
ods for the solution of the resulting coupled algebraic system
[12, 14, 16, 20, 44]. In particular, we present an algorithm
that reduces the coupled problem to an interface problem for
the mortar variable. We show that the interface problem is
symmetric and positive definite and employ the conjugate
gradient (CG) method for its solution. Each CG iteration
requires the solution of subdomain Stokes and Darcy prob-
lems with specified normal stress for Stokes and pressure
for Darcy on the interface. Therefore the solution algorithm
involves only single-physics problems. This has an advan-
tage compared to a monolithic solver for the fully coupled
system,which has both larger dimension and larger condition
number.

There are several previous works that are relevant to our
method. The MAC scheme for the coupled Stokes-Darcy
problem has been studied in [34, 39, 41]. The analysis in
these papers is based on finite difference arguments and is
restricted tomatching grids on the interface. In [40], a numer-
ical method for the coupled Navier-Stokes - Darcy problem
is developed, which is based on the MAC scheme in the
fluid region and multipoint flux approximation (MPFA) [1,
17] in the porous media region. The method is restricted
to matching grids and numerical analysis is not presented.
The method presented here can be considered as extension
of the method from [40] to non-matching grids through the
use of mortar finite elements. We further note that, while we
focus on the RT0 MFE method, our method and its analysis
can be extended to the multipoint flux mixed finite element
(MFMFE) discretization for Darcy flow [2, 28, 47], which is
closely related to theMPFAmethod, using techniques devel-
oped in [42, 43, 46].

Or analysis is based on the reformulation of the MAC
scheme for Stokes as a conforming MFE method [26]. In
particular, a staggered grid for each component of the veloc-
ity can be formed with vertices corresponding to the degrees
of freedom for this component, i.e., the midpoints of the
associated edges (faces). Then a continuous bilinear (trilin-

ear) field can be constructed for each velocity component on
its staggered grid and the MAC scheme can be formulated
as a conforming MFE method. This reformulation allows us
to cast the MAC-MFE method as a MFE-MFE method and
utilize tools frommortar MFEmethods [5, 6, 25] in the anal-
ysis.

The reminder of the paper is organized as follows. Some
notation is introduced at the end of this section. The Stokes-
Darcy model and its variational formulation are presented in
Section 2. The numerical method is developed in Section 3.
Its well-posedness analysis is carried out in Section 4, fol-
lowed by error analysis in Section 5. The non-overlapping
domain decomposition algorithm is developed in Section 6.
Section 7 is devoted to numerical experiments that illus-
trate the theoretical convergence results, as well as the
performance and flexibility of the method applied to two
challenging practical problems. Conclusions are presented
in Section 8.

We utilize the following notation in the paper. For a
domain O ⊂ R

n , n ∈ {2, 3}, Hk(O), k ≥ 0, is the standard
notation for a Hilbert space equipped with a norm ‖ · ‖k,O
and a seminorm | · |k,O. The L2(O)-inner product is denoted
by (·, ·)O. We omit the subscript ifO = �. For a section of a
domain boundary G ⊂ R

n−1, 〈·, ·〉G denotes the L2(G)-
inner product or duality pairing. The expression a � b
denotes that there exists a constant C > 0, independent of a,
b, and the discretization parameter h, such that Ca ≤ b. The
definition of a � b is similar.

2 Themodel problem and its variational
formulation

Consider an open, bounded domain � ⊂ R
n , n ∈ {2, 3},

partitioned into two disjoint subdomains �S and �D with
interface � = ∂�S ∩ ∂�D . Subscripts S and D are used,
throughout this work, to denote entities related to Stokes
and Darcy flow, respectively. Let ni denote the outward unit
vector normal to ∂�i , i = S, D. Let the symmetric gradient
and the stress be given by

ε(u) = 1

2

(
∇u + (∇u)T

)
, σ S = 2με(uS) − pS I , (2.1)

withμ > 0 the viscosity.We consider the steady state Stokes-
Darcy problem:

−∇ · σ S = f S, in �S, (2.2a)

∇ · uS = 0, in �S, (2.2b)

uD + μ−1K∇ pD = 0, in �D, (2.2c)

∇ · uD = fD, in �D. (2.2d)
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The permeability K is a positive-definite tensor whereas
f S and fD are given source terms. The coupling conditions
on � are given by mass conservation, momentum conser-
vation, and the Beavers-Joseph-Saffman (BJS) condition,
respectively:

uS ·nS + uD ·nD =0 on �, (2.2e)

(σ S nS)·nS =−pD on �, (2.2f)

(σ S nS)·τ S =− μα√
Kτ

uS ·τ S =:−αBJS uS ·τ S, on �, (2.2g)

where Kτ = (Kτ S) · τ S and α > 0 is an experimentally
determined coefficient. In Eq. 2.2g, to simplify the notation,
we have adopted notation for a one-dimensional interface �,
with τ S being the unit tangential vector on �. In the case
of a two-dimensional interface �, Eq. 2.2g involves a sum
over the the two unit tangential vectors on �. Finally, the
following boundary conditions close the system:

uS = 0, on ∂�S \ �, (2.2h)

uD · nD = 0, on ∂�D \ �. (2.2i)

Due the choice of boundary conditions, the source term
fD must satisfy the compatibility condition

∫
�D

fD = 0.
We proceedwith the variational formulation of the Stokes-

Darcy model problem. The function spaces for the velocity
incorporate the essential boundary conditions (2.2h)–(2.2i)
and are defined as follows:

V S :=
{
v ∈ (H1(�S))

n : v|∂�S\� = 0
}

, (2.3a)

V D := {
v ∈ H(div;�D) : v · nD|∂�D\� = 0

}
, (2.3b)

V := V S × V D, (2.3c)

where

H(div;�D) := {v ∈ (L2(�D))n : ∇ · v ∈ L2(�D)}
(2.3d)

equipped with the norm ‖v‖2div;�D
:= ‖v‖2�D

+ ‖∇ · v‖2�D
.

Second, the pressure space is naturally given by:

W := (WS × WD) ∩ L2
0(�)

= (L2(�S) × L2(�D)) ∩ L2
0(�) = L2

0(�), (2.3e)

where L2
0(�) is the space of L2(�) functions with mean

value zero. The norms in V and W are defined as

‖v‖2V := ‖vS‖21,�S
+ ‖vD‖2div;�D

, ‖w‖W := ‖w‖. (2.3f)

Third, we introduce the Lagrange multiplier λ to enforce
(2.2e) and (2.2f):

λ ∈ � := H1/2(�), λ = pD = −(σ S nS) · nS . (2.3g)

The space � is chosen as the dual of the space {vD ·
nD|� : vD ∈ V D}. In particular, sincevD ∈ H(div;�D) and
vD ·nD = 0 on ∂�D \�, it holds that vD ·nD|� ∈ H−1/2(�).

With the function spaces defined, we continue with the
variational formulation. We test the equations defined in the
free flow domain with vS ∈ V S to obtain:

−(∇ · σ S, vS)�S = (σ S,∇vS)�S − 〈σ S nS, vS〉�
= (2με(uS),∇vS)�S − (pS,∇ · vS)�S

+〈αBJ S uS ·τ S, vS ·τ S〉�+〈λ, vS ·nS〉�
= ( f S, vS)�S . (2.4a)

On the other hand, in the porous medium, we test Darcy’s
law with vD ∈ V D to arrive at

(μK−1uD, vD)�D −(pD,∇ · vD)�D +〈λ, vD · nD〉� =0.
(2.4b)

The Lagrange multiplier space � is then used to impose
flux continuity. In particular, using a test function ξ ∈ �, we
impose

〈uS · nS + uD · nD, ξ 〉� = 0. (2.4c)

Combining equations (2.4) with the mass conservation
equations,we arrive at the variational problem: find the triplet
(u, p, λ) ∈ V × W × � such that for all (v, w, ξ) ∈ V ×
W × �,

(2με(uS),∇vS)�S + 〈αBJ S uS · τ S, vS · τ S〉�
− (pS,∇ · vS)�S + 〈λ, vS · nS〉� = ( f S, vS)�S (2.5a)

(∇ · uS, wS)�S = 0 (2.5b)

(μK−1uD, vD)�D − (pD,∇ · vD)�D + 〈λ, vD · nD〉� = 0
(2.5c)

(∇ · uD, wD)�D = ( fD, wD)�D (2.5d)

〈uS · nS + uD · nD, ξ 〉� = 0. (2.5e)

Introducing the bilinear forms

aS(uS,vS) :=(2με(uS),∇vS)�S +〈αBJS uS ·τ S, vS ·τ S〉� ,

aD(uD, vD) := (μK−1uD, vD)�D ,

a(u, v) := aS(uS, vS) + aD(uD, vD),

bi (vi , wi ) := −(∇ · vi , wi )�i , i = S, D,

b(v, w) := bS(vS, wS) + bD(vD, wD),

b�(v, ξ) := 〈vS · nS + vD · nD, ξ 〉� ,
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this system has the following structure:

a(u,v)+b(v,p)+b�(v, λ)=( f S,vS)�S , ∀v ∈ V , (2.6a)

b(u, w) = −( fD, wD)�D , ∀w ∈ W , (2.6b)

b�(u, ξ) = 0, ∀ξ ∈ �. (2.6c)

The system (2.6) is a symmetric two-fold saddle point
problem. Existence and uniqueness of a solution has been
shown in [32]. The solution satisfies

‖uS‖1,�S + ‖uD‖div;�D + ‖p‖� + ‖λ‖H1/2(�)

� ‖ f S‖−1,�S + ‖ fD‖�D .

3 Mortar MAC–MFEmethod

Assume that the subdomains �S and �D are polytopal and
consider shape-regular meshes on �S and �D denoted by
�S,h and �D,h , respectively. The two meshes may be non-
matching on the interface�. In the Stokes regionwe consider
the MAC scheme [27], described below, and restrict �S,h

to rectangular-type elements. Due to this restriction, � is a
piecewise linear curve consisting of horizontal and vertical
segments, denoted by �1 and �2, respectively, see Fig. 1.
The Darcy mesh �D,h may consist of affine elements. Let
V D,h × WD,h ⊂ V D × WD be mixed finite element spaces
that form a stable pair for the Darcy sub-problem. Even
though theoretically arbitrary order spacesmaybeused, since
theMACscheme is of first order,we focus on the lowest order
Raviart-Thomas spaces RT0 [37] for V D,h and the piecewise
constants forWD,h .We emphasize that this pair of spaces has
the property:

∇ · V D,h = WD,h . (3.1)

The Lagrange multiplier space � in Eq. 2.6 is discretized
as follows. We consider a tessellation of � denoted by
�h , which can be constructed independently of the previ-
ously introduced meshes. Let �h be the discretization of

Fig. 1 The Stokes-Darcy domain

� consisting of (dis)continuous, piecewise polynomials. For
simplicity of the presentation we consider the mortar grid
on the same scale h as the traces of the subdomain grids.
The analysis can be extended to a multiscale setting with the
mortar grid defined on a coarse scale H , utilizing multiscale
mortar finite element techniques developed in [6, 25].

We next describe the MAC scheme used in the Stokes
region. The pressure pS is computed at the centers of the ele-
ments of �S,h . The normal velocities uS · n are computed at
the centers of the edges (faces) of the elements. For example,
in two dimensions these are the horizontal velocities uS,1 at
the midpoints of the vertical edges, and the vertical velocities
uS,2 at the midpoints of the horizontal edges, see Fig. 2 (left).
We note that these are the same as the degrees of freedom
of the RT0 spaces. We denote the discrete MAC velocity and
pressure spaces as VMAC

S and WMAC
S , respectively. For each

edge we consider an associated control volume obtained by
drawing lines parallel to the edge through the centers of the
two neighboring elements. If an edge is on the boundary, it
is associated with a half-volume. We denote a generic con-
trol volume by Gi , with i = 1 for vertical edges and i = 2
for horizontal edges, see Fig. 2 (left). The momentum bal-
ance (2.2a) is imposed component-wise: −∇ · σ S,i = f S,i ,
i = 1, 2, where σ S,i is the i-th row of σ S . The divergence
theorem gives

−
∫

∂Gi

σ S,i · n =
∫

Gi

f S,i ,

where n is the unit outward normal vector to Gi . Taking
i = 1, and using the notation from Fig. 2, we obtain

−
∫

∂G1

σ S,1 · n = −
∫

∂G1

(
2μ

(
ε11
ε12

)
−

(
pS
0

))
· n

= −
∫

l1
(−2με11 + pS) −

∫

r1
(2με11 − pS)

−
∫

b1
−2με12 −

∫

t1
2με12. (3.2)

Similarly,

−
∫

∂G2

σ S,2 · n = −
∫

∂G1

(
2μ

(
ε21
ε22

)
−

(
0
pS

))
· n

= −
∫

l2
−2με21 −

∫

r2
2με21 (3.3)

−
∫

b2
(−2με22 + pS)−

∫

t2
(2με22− pS).

For full volumes Gi , the edge integrals in Eqs. 3.2 and
3.3 are approximated by the midpoint rule, therefore ε11,

123



Computational Geosciences (2024) 28:413–430 417

Dual cell

Cell center

Face velocities

Vertex

Fig. 2 Grids and velocity degrees of freedom for the MAC scheme

ε22, and pS are evaluated at the centers of the primal cells,
while ε12 and ε21 are evaluated at the vertices of the primal
cells. Since ε11 = ∂uS,1

∂x , ε22 = ∂uS,2
∂ y , and ε12 = ε21 =

1
2

(
∂uS,1
∂ y + ∂uS,2

∂x

)
, this implies that ∂uS,1

∂x , ∂uS,2
∂ y , and pS are

evaluated at the cell centers, while ∂uS,1
∂ y and ∂uS,2

∂x are evalu-
ated at the vertices. The cell-centered values are degrees of
freedom for the pressure. For the velocity derivatives, using
the notation from Fig. 2 (center, right), the quantities are
approximated as

∂uS,1

∂x
(C) = 1

h
(uE

S,1− uWS,1),
∂uS,2

∂ y
(C)= 1

h
(uN

S,2 −uSS,2),

(3.4)

∂uS,1

∂ y
(V) = 1

h
(uN

S,1 −uSS,1),
∂uS,2

∂x
(V) = 1

h
(uE

S,2− uWS,2),

(3.5)

where for simplicity we have assumed that the mesh is uni-
form.

Referring to the notation from Fig. 3 and using Eqs. 3.4–
3.5, the momentum balance (3.2)–(3.3) on interior volumes
G1 and G2 give, respectively,

2μ

(
−u2S,1 + 2u3S,1 − u4S,1 + 1

2
(−u1S,1 + 2u3S,1 − u5S,1)

+ 1

2
(u2S,2 − u1S,2) − 1

2
(u4S,2 − u3S,2)

)
+ h

(
p2S − p1S

)
=

∫

G1

f S,1,

(3.6)

2μ

(
−u1S,2 + 2u3S,2 − u5S,2 + 1

2
(−u2S,2 + 2u3S,2 − u4S,2)

+ 1

2
(u3S,1 − u1S,1) − 1

2
(u4S,1 − u2S,1)

)
+ h

(
p2S − p1S

)
=

∫

G2

f S,2.

(3.7)

The mass balance (2.2a) is imposed on the primal cells E :

∫

∂E
uS · n = h(uE

S,1 − uWS,1 + uN
S,2 − uSS,2) = 0. (3.8)

We next discuss briefly the MAC discretization of the
boundary conditions. The condition uS ·nS is essential, since
the MAC degrees of freedom include the normal veloci-
ties on the boundary. In this case, the momentum balance

Fig. 3 Finite difference stencils for the MAC momentum balance equations on volumes G1 (left) and G2 (right)
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(3.2) or (3.3) on the associated half-volume is omitted. The
condition uS ·τ S is natural, as the term appears in themomen-
tum balance equations for volumesG1 adjacent to horizontal
boundaries, through the integrals

∫
b1

−2με12 and
∫
t1
2με12

in Eq. 3.2, and volumes G2 adjacent to vertical boundaries,
through the integrals

∫
l2

−2με21 and
∫
r2
2με21 in Eq. 3.3. In

particular, as the vertex V in Fig. 2 (right) is on the bound-
ary, one or both of the expressions in Eq. 3.5 are modified
to involve the boundary value. For example, on a bottom
boundary, the first equation in Eq. 3.5 becomes ∂uS,1

∂ y (V) =
2
h (uN

S,1−uS,1(V)), which results in u1S,1 not being included in
Eq. 3.6. Finally, both stress boundary conditions (σ S nS) ·nS

and (σ S nS)·τ S are natural. In particular, (σ S nS)·nS appears
in the integrals

∫
l1
(−2με11 + pS) and

∫
r1

(2με11 − pS)
in Eq. 3.2 on half-volumes G1 adjacent to vertical bound-
aries, as well as in the integrals

∫
b2

(−2με22 + pS) and∫
t2
(2με22 − pS) in Eq. 3.3 on half-volumes G2 adjacent to

horizontal boundaries. For example, on a left boundary, u2S,1

and p1S are not included in Eq. 3.6. Similarly, (σ S nS) · τ S

appears in the integrals
∫
b1

−2με12 and
∫
t1
2με12 in Eq. 3.2

on volumes G1 adjacent to horizontal boundaries, as well as
in integrals

∫
l2

−2με21 and
∫
r2
2με21 in Eq. 3.3 on volumes

G2 adjacent to vertical boundaries. For example, on a bottom
boundary, u1S,1 is not included in Eq. 3.6.

We are now ready to formulate the mortar MAC-MFE
method for the approximation of the variational problem
(2.5): find (uS, pS) ∈ VMAC

S × WMAC
S , (uD,h, pD,h) ∈

V D,h × WD,h , and λh ∈ �h such that

(uS, pS) satisfy the MAC Eqs. 3.2–3.8 in �S with

uS = 0 on ∂�S \ �, (σ S nS) · nS = −λh on �,

(σ S nS) · τ S = −αBJ S uS · τ S on �, (3.9a)

(μK−1uD,h, vD,h)�D − (pD,h,∇ · vD,h)�D

+ 〈
λh, vD,h · nD

〉
�

= 0 ∀vD,h ∈ V D,h, (3.9b)

(∇ · uD,h, wD,h)�D = ( fD, wD,h)�D ∀wD,h ∈ WD,h,

(3.9c)〈
uS · nS + uD,h · nD, ξh

〉
�

= 0 ∀ξh ∈ �h, (3.9d)

where uS ·nS in Eq. 3.9d is interpreted as a piecewise constant
function associated with the MAC degrees of freedom on �.

For the purpose of the analysis, we will utilize the refor-
mulation of the MAC scheme as a conforming mixed finite
element method for Stokes [26]. For simplicity of the presen-
tation, we focus on the two dimensional case. The extension
to three dimensions is natural. Starting from the primal grid
and degrees of freedom, Fig. 4 (left), we consider two stag-
gered grids �i

S,h , i = 1, 2, for the horizontal and vertical
velocities, respectively, with vertices associated with their
respective degrees of freedom, see Fig. 4 (center, right). Note
that degrees of freedom have been included for the tangen-
tial velocity on the boundary of �S . The boundary velocities
are determined from the Dirichlet boundary condition on the
external boundary and are incorporated into the stress inter-
face conditions on �. The values at the vertices allow for
constructing continuous bilinear functions on the two stag-
gered grids. Denote the corresponding spaces by Sih , i = 1, 2.
Let V S,h = (S1h × S2h) ∩ V S . We emphasize that, due to
Eq. 2.3a, vS,h ∈ V S,h satisfies vS,h = 0 on ∂�S \ �. The
Stokes mixed finite element pair is V S,h ×WS,h , whereWS,h

is the space of piecewise constant functions on the primal grid
�S,h .

For uS,h ∈ V S,h , let ε̃(uS,h) be a modification of ε(uS,h)

with

ε̃(uS,h)12 = 1

2

(
∂uS,h,1

∂ y
+ Q1

∂uS,h,2

∂x

)
and

ε̃(uS,h)21 = 1

2

(
Q2

∂uS,h,1

∂ y
+ ∂uS,h,2

∂x

)
,

whereQ1
∂uS,h,2

∂x andQ2
∂uS,h,1

∂ y are defined as follows. For Q1,

consider E2 ∈ �2
S,h and split it as E

b
2 ∪ Et

2 by the horizontal

edges from �1
S,h . Noting that ∂uS,h,2

∂x = α + β y on E2, we

define Q1
∂uS,h,2

∂x |E2 as the piecewise constant function satis-

fying Q1
∂uS,h,2

∂x |Eb
2

= ∂uS,h,2
∂x |b and Q1

∂uS,h,2
∂x |Et

2
= ∂uS,h,2

∂x |t ,
where b and t denote the bottom and top edges of E2,

Fig. 4 Primal MAC grid with velocity degrees of freedom (left) and staggered grids with degrees of freedom for the horizontal (center) and vertical
(right) velocities
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respectively. We define Q2
∂uS,h,1

∂ y on E1 ∈ �1
S,h similarly,

by splitting it by the vertical edges from �2
S,h .

For each element Ei ∈ �i
S,h , i = 1, 2, let Q1(Ei ) denote

the space of bilinear functions on Ei . For a function ϕ with
domain Ei such that ϕ is well defined at the vertices, let
IEi (ϕ) ∈ Q1(Ei ) interpolate ϕ at the four vertices of Ei . For
each element E ∈ �S,h , let IE : C0(E) → P0(E) inter-
polate the function at the center of E , where P0(E) denotes
the space of constant functions on E . Motivated by [26], we
define the discrete bilinear forms

aS,h(uS,h, vS,h) :=
∑

E1∈�1
S,h

∫

E1

2μIE1 (̃ε(uS,h)1 · (∇vS,h)1)

+
∑

E2∈�2
S,h

∫

E2

2μIE2 (̃ε(uS,h)2 · (∇vS,h)2)

+
∑

E1∈�1
S,h

∫

∂E1∩�1
αBJ S IE1(uS,h,1 vS,h,1)

+
∑

E2∈�2
S,h

∫

∂E2∩�2
αBJ S IE2(uS,h,2 vS,h,2), (3.10a)

bS,h(vS,h, wS,h) := −
∑

E∈�S,h

∫

E
IE (∇ · vS,h)wS,h, (3.10b)

where ε(uS,h)i is the i-th row of ε(uS,h), (∇vS,h)i is the i-th
row of ∇vS,h , and we recall that �1 and �2 are, respectively,
the horizontal and vertical parts of the interface �, see Fig. 1.

Finally, for incorporating the right-hand side, we define
the interpolants Qi , i = 1, 2, for ϕ ∈ Sih such that Qiϕ is
constant on each control volume Gi , defined from the value
of ϕ at the vertex of �i

s,h interior to Gi . The combined inter-
polant is denoted by Q = (Q1,Q2).

Lemma 1 The MAC scheme (3.9a) is equivalent to the fol-
lowing mixed finite element method: find (uS,h, pS,h) ∈
V S,h × WS,h such that

aS,h(uS,h, vS,h) + bS,h(vS,h, pS,h)

+ 〈
λh, vS,h · nS

〉
�

= ( f S,QvS,h)�S , ∀vS,h ∈ V S,h,

(3.11a)

bS,h(uS,h, wS,h) = 0, ∀wS,h ∈ WS,h .

(3.11b)

Proof A simple calculation shows that Eq. 3.11a with vS,h

the basis function in S1h associated with the vertex of �1
S,h at

the degree of freedom u3S,1 in Fig. 3 (left) results in Eq. 3.6.

Similarly, Eq. 3.11a with vS,h the basis function in S2h asso-
ciated with the vertex of �2

S,h at the degree of freedom u3S,2
in Fig. 3 (right) results in Eq. 3.7.

One can also check that, adjacent to the external boundary
and the interface �, the MAC Eqs. 3.2–3.3 and the MFE
(3.11a) result in the same modification of Eqs. 3.6 and 3.7.
In particular, since the stress interface conditions in Eq. 3.9a
are natural, the summation of Eqs. 3.2 and 3.3 results in the
interface terms

∫

�

−(σ S nS)·nS =
∫

�

λh and
∫

�

−(σ S nS)·τ S =
∫

�

αBJ S uS ·τ S,

(3.12)

which correspond to the interface terms that appear in
Eq. 3.11a.

Finally, Eq. 3.11b with wS,h the basis function in WS,h

associated with element E results in the mass balance (3.8).
��

The equivalence established in Lemma 1 allows us to
rewrite the mortar MAC-MFE method (3.9) as a mortar
mixed finite element method. Let V h := V S,h × V D,h ,
Wh := WS,h × WD,h ,

ah(uh; vh) := aS,h(uS,h, vS,h) + aD(uD,h; vD,h),

bh(vh, wh) := bS,h(vS,h, wS,h) + bD(vD,h, wD,h).

Due to Lemma 1, the mortar MAC-MFE method Eq. 3.9
is equivalent to the following mortar MFE method: find
(uh, ph, λh) ∈ V h × Wh × �h such that

ah(uh, vh) + bh(vh, ph) + b�(vh, λh)

= ( f S,QvS,h)�S , ∀vh ∈ V h, (3.13a)

bh(uh, wh) = −( fD, wD,h)�D , ∀wh ∈ Wh, (3.13b)

b�(uh, ξh) = 0, ∀ξh ∈ �h . (3.13c)

4 Well posedness

We begin with stating results from the literature for inter-
polants in the Stokes and Darcy velocity spaces and local
inf-sup stability that will be used in the analysis. It is shown
in [26] that there exists an interpolant 
S,h : V S → V S,h ,
where 
S,hvS = (
1

S,hvS,1,

2
S,hvS,2) ∈ S1h × S2h such that

for all sufficiently smooth vS ∈ V S ,

bS,h(
S,hvS,wS,h) = bS(vS, wS,h), ∀wS,h ∈WS,h, (4.1a)

‖vS − 
S,hvS‖1,�S � h|vS|2,�S , (4.1b)

‖
S,hvS‖1,�S � ‖vS‖1,�S . (4.1c)
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Furthermore, the following continuity and inf-sup condi-
tion hold:

bS,h(vS,h, wS,h) � ‖vS,h‖1,�S‖wS,h‖�S ,

∀ vS,h ∈ V S,h, wS,h ∈ WS,h, (4.2a)

sup
vS,h∈V S,h\0

bS,h(vS,h, wS,h)

‖vS,h‖1,�S

� ‖wS,h‖�S ,∀wS,h ∈ WS,h .

(4.2b)

We next establish continuity and coercivity for the bilinear
form aS,h(uS,h, vS,h). Let

ZS,h := {vS,h ∈ V S,h : bS,h(vS,h, wS,h) = 0 ∀wS,h ∈ WS,h}.

Lemma 2 It holds that

aS,h(uS,h, vS,h) � ‖uS,h‖1,�S‖vS,h‖1,�S ,

∀ uS,h, vS,h ∈ V S,h, (4.3a)

aS,h(vS,h, vS,h) � ‖vS,h‖21,�S
, ∀ vS,h ∈ ZS,h . (4.3b)

Proof The continuity bound (4.3a) follows easily from the
definition (3.10a). For the coercivity bound, consider the
Eq. 3.6 with uS,h ∈ ZS,h . Since u2S,2 − u4S,2 = u4S,1 − u3S,1

and u3S,2 − u1S,2 = u2S,1 − u3S,1, we obtain that for the choice
of vS,h in Eq. 3.6,

aS,h(uS,h, vS,h) = μ(−u2S,1 + 2u3S,1 − u4S,1)

+ μ(−u1S,1 + 2u3S,1 − u5S,1)

=
∑

E1∈�1
S,h

∫

E1

μIE1((∇uS,h)1 · (∇vS,h)1).

Similarly, for the choice of vS,h in Eq. 3.7,

aS,h(uS,h, vS,h) = μ(−u1S,2 + 2u3S,2 − u5S,2)

+ μ(−u2S,2 + 2u3S,2 − u4S,2)

=
∑

E2∈�2
S,h

∫

E2

μIE2((∇uS,h)2 · (∇vS,h)2).

A similar modification holds for a test function vS,h with
support adjacent to ∂�1, implying that for uS,h ∈ ZS,h

aS,h(uS,h, vS,h) =
∑

E1∈�1
S,h

∫

E1

μIE1((∇uS,h)1 · (∇vS,h)1)

+
∑

E2∈�2
S,h

∫

E2

μIE2((∇uS,h)2 · (∇vS,h)2)

+
∑

E1∈�1
S,h

∫

∂E1∩�1
αBJ S IE1(uS,h,1 vS,h,1)

+
∑

E2∈�2
S,h

∫

∂E2∩�2
αBJ S IE2(uS,h,2 vS,h,2). (4.4)

Therefore, noting that
∫

Ei

IEi (·) corresponds to employ-

ing the vertex quadrature rule, a simple calculation, see [47,
Lemma 2.4], gives that for all vS,h ∈ ZS,h

aS,h(vS,h, vS,h) � ‖∇vS,h‖2�S
� ‖vS,h‖21,�S

,

where the last inequality follows from the Poincaré inequal-
ity. ��

For theDarcy problem, it is well known [11] that for stable
mixed finite element pairs, there exists an interpolant 
D,h :
V D ∩ H1(�D) → V D,h such that for all vD ∈ H1(�D),

bD(
D,hvD, wD,h) = bD(vD, wD,h), ∀wD,h ∈ WD,h,

(4.5a)

‖vD − 
D,hvD‖�D � h|vD|1,�D , (4.5b)

‖
D,hvD‖�D � ‖vD‖1,�D . (4.5c)

Furthermore, the following continuity, coercivity, and inf-
sup condition hold:

aD(uD,h, vD,h) � ‖uD,h‖�D‖vD,h‖�D ,

∀ uD,h, vD,h ∈ V D,h, (4.6a)

aD(vD,h, vD,h) � ‖vD,h‖2�D
, ∀ vD,h ∈ V D,h, (4.6b)

bD(vD,h, wD,h) � ‖vD,h‖div;�D‖wD,h‖�D ,

∀ vD,h ∈V D,h, wD,h ∈WD,h, (4.6c)

sup
vD,h∈V D,h\0

bD(vD,h, wD,h)

‖vD,h‖div;�D

� ‖wD,h‖�D ,∀wD,h ∈ WD,h .

(4.6d)

We next discuss the choice of �h . In order to simplify the
presentation, we define

�h = V D,h · n|�, (4.7)

which allows us to utilize the arguments from [32]. With this
choice, the following interface inf-sup condition holds [3]:

inf
ξh∈�h\0

sup
vh∈V h\0

b�(vh, ξh)

‖vh‖V ‖ξh‖�

� 1. (4.8)

We note that a more general choice of�h is also possible.
In particular,�h may consist of continuous or discontinuous
polynomials of degree m ≥ 1 on a mesh �h different from
the subdomain grids, satisfying for all ξh ∈ �h ,

‖ξh‖� � ‖PD,hξh‖�, (4.9)

where PD,h is the L2-orthogonal projection onto V D,h · n|� .
For the treatment of this more general choice, we refer the
reader to [25], see also [5].
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For the purpose of the analysis, following [32], we con-
sider a reduced formulation of Eq. 3.13 in the weakly
continuous velocity space

V h,c := {vh ∈ V h : b�(vh, ξh) = 0 ∀ ξh ∈ �h}. (4.10)

The reduced problem is: find (uh, ph) ∈ V h,c × Wh such
that

ah(uh, vh)+ bh(vh, ph) =( f S,QvS,h)�S , ∀vh ∈V h,c,

(4.11a)

bh(uh, wh) = −( fD, wD,h)�D , ∀wh ∈ Wh .

(4.11b)

Lemma 3 Method (3.13) is equivalent tomethod (4.11) in the
following sense. For any solution (uh, ph, λh) to Eq. 3.13,
(uh, ph) is a solution toEq. 4.11. Conversely, for any solution
(uh, ph) to Eq. 4.11, there exists a unique λh ∈ �h such that
(uh, ph, λh) is a solution to Eq. 3.13.

Proof Let(uh, ph, λh)beasolution toEq.3.13.Equation 3.13c
implies that uh ∈ V h,c. Taking vh ∈ V h,c implies Eq. 4.11a.
Therefore (uh, ph) is a solution to Eq. 4.11. Conversely,
let (uh, ph) be a solution to Eq. 4.11. Since uh ∈ V h,c,
Eq. 3.13c holds. Due to the inf-sup condition Eq. 4.8, there
exists a unique λh ∈ �h such that Eq. 3.13a holds. Therefore
(uh, ph, λh) is a solution to Eq. 3.13.

Lemma 4 There exists an interpolant
h,c : H1(�) → V h,c

such that for all sufficiently smooth v,

bh(
h,cv, wh) = b(v, wh) ∀wh ∈ Wh, (4.12a)

‖
h,cv‖V � ‖v‖1, (4.12b)

‖v − 
h,cv‖1,�S + ‖v − 
h,cv‖�D � h(‖v‖1 + |vS|2,�S ),

(4.12c)

‖∇ · (v − 
h,cv)‖�D � h|∇ · vD|1,�D . (4.12d)

Proof The proof follows from the proofs of Lemma 4.3 and
Proposition 4.2 in [32], utilizing
S,h fromEq. 4.1 and
D,h

from Eq. 4.5 to build the interpolant in �S and �D , respec-
tively. In particular,


h,cv|�S = 
S
h,cvS = 
S,hvS,


h,cv|�D = 
D
h,cvD = 
D,hvD + δD,h, (4.13)

where δD,h ∈ V D,h is a suitably constructed correction that
provides the weak continuity of the normal velocity.We omit
further details. ��
Lemma 5 The following inf-sup condition holds:

sup
vh∈V h,c\0

bh(vh, wh)

‖vh‖V � ‖wh‖W , ∀wh ∈ Wh . (4.14)

Proof Letwh ∈ Wh be given. Sincewh ∈ L2
0(�), it is known

[24] that there exists v ∈ H1
0 (�) such that

∇ · v = −wh in �, ‖v‖1 � ‖wh‖. (4.15)

We then have, using Eqs. 4.15, 4.12a and 4.12b,

‖wh‖W � b(v, wh)

‖v‖1 = bh(
h,cv, wh)

‖v‖1 � bh(
h,cv, wh)

‖
h,cv‖V .

��
Lemma 6 Problem (4.11) has a unique solution (uh, ph) ∈
V h,c × Wh that satisfies

‖uS,h‖1,�S + ‖uD,h‖div;�D + ‖ph‖�

� ‖ f S‖−1,�S + ‖ fD‖�D . (4.16)

Proof Let ZD,h = {vD,h ∈ V D,h : bD(vD,h, wD,h) =
0 ∀wD,h ∈ WD,h} and

Zh = ZS,h×ZD,h ={vh ∈V h : bh(vh, wh)= 0 ∀wh ∈ Wh}.

From Eqs. 4.3b and 4.6b, using Eq. 3.1, we obtain

ah(vh, vh) � ‖vS,h‖21,�S
+ ‖vD,h‖2div;�D

∀ vh ∈ Zh .

(4.17)

The assertion of the lemma follows from Eq. 4.17 and the
inf-sup condition (4.14), using the general theory of saddle
point problems [11]. ��

Lemmas 3 and 6 imply well posedness of the mortar MFE
method (3.13).

Lemma 7 Problem (3.13) has a unique solution (uh, ph, λh)
∈ V h × Wh × �h that satisfies

‖uS,h‖1,�S + ‖uD,h‖div;�D + ‖ph‖� + ‖λh‖�

� ‖ f S‖�S + ‖ fD‖�D . (4.18)

5 Error estimates

In this section we establish convergence rates for the mortar
finite element solution to the coupled Stokes-Darcy problem.

Theorem 1 Assuming sufficiently smooth solution to Eq. 2.6,
the solution (uh, ph) of the mortar finite element method
(4.11) satisfies

‖u − uh‖V � h(‖u‖1 + |uS|2,�S + |∇ · uD|1,�D

+|pS|1,�S + |λ|1,�+‖ f S‖�S ), (5.1a)

‖p − ph‖W � h(‖u‖1 + |uS|2,�S + |pS|1,�S

+|pD|1,�D + |λ|1,�+‖ f S‖�S ). (5.1b)
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Proof Let Qh = (QS,h, QD,h), where Qi,h is the L2-
orthogonal projection onto Wi,h , i = S, D. The two
operators satisfy, for all wS ∈ H1(�S) and wD ∈ H1(�D),

‖wS − QS,hwS‖�S � h|wS|1,�S ,

‖wD − QD,hwD‖�D � h|wD|1,�D . (5.2)

We start by noting that V h × Wh ⊂ V × W . Thus, sub-
tracting (4.11a)–(4.11b) from Eqs. 2.6a–2.6b leads us to the
error equations:
a(u, vh) − ah(uh, vh) + b(vh, p) − bh(vh, ph)

+b�(vh, λ)=( f S, (I−Q)vS,h)�S , ∀vh ∈V h,c, (5.3a)

b(u, wh) − bh(uh, wh) = 0, ∀wh ∈ Wh . (5.3b)

Using ∇ · V D,h = WD,h , cf. Eq. 3.1, we proceed by con-
sidering the following differences:

ah(
h,cu, vh) − a(u, vh)

= aD(
D
h,cuD − uD, vD,h)+

(
aS,h(
S,huS, vS,h) − aS(uS, vS,h)

)

=: Ru,D(uD, vD,h) + Ru,S(uS, vS,h) (5.4a)
bh(vh, Qh p) − b(vh, p) = bS,h(vS,h, QS,h pS) − bS(vS,h, pS)

=: Rp,S(pS, vS,h) (5.4b)

Adding (5.4) to (5.3a) and using property (4.12a) of 
h,c

in Eq. 5.3b, we rewrite (5.3) as

ah(
h,cu − uh, vh) + bh(vh, Qh p − ph)

= −b�(vh, λ)+ ( f S, (I− Q)vS,h)�S

+ Ru,D(uD, vD,h) + Ru,S(uS, vS,h)

+ Rp,S(pS, vS,h), ∀vh ∈ V h,c, (5.5a)

bh(
h,cu − uh, wh) = 0, ∀wh ∈ Wh, (5.5b)

We now take vh = 
h,cu−uh andwh = ph−Qh p. Note
that Eq. 5.5b implies that 
h,cu − uh ∈ Zh . By summing
the Eq. 5.5 and using the coercivity (4.17) we derive:

‖
h,cu − uh‖2V � |b�(vh, λ)|+|( f S, (I − Q)vS,h)�S |
+|Ru,D(uD, vD,h)| +|Ru,S(uS, vS,h)|
+|Rp,S(pS, vS,h)|. (5.6)

We proceed by bounding the five terms on the right-hand
side. The first term is the non-conforming error on the inter-
face. Using the definition (4.10) of V h,c and the fact that
�h = V D,h · n|� , we have

|b�(
h,cu − uh, λ)| = |b�(
h,cu − uh, λ − P�hλ)|
= | 〈
S,huS − uS,h, λ − P�hλ

〉
�

|
� h‖
S,huS − uS,h‖1,�S |λ|1,�
≤ h‖
h,cu − uh‖V |λ|1,�, (5.7)

where P�h is the L
2-orthogonal projection onto �h , and we

used its approximation property

∀ξ ∈ H1(�), ‖ξ − P�h ξ‖� � h|ξ |1,�, (5.8)

and the trace inequality

∀vS ∈ (H1(�S))
n, ‖vS‖� � ‖vS‖1,�S .

We bound the second term by using the Cauchy-Schwarz
inequality and the approximation properties of the interpolant
Q:

|( f S, (I − Q)vS,h)�S | � ‖ f S‖�S‖(I − Q)vS,h‖�S

� h‖ f S‖�S‖vS,h‖1,�S (5.9)

The third term is bounded by the continuity of aD (4.6a)
and the approximation property (4.12c):

Ru,D(uD, vD,h) � ‖
D
h,cuD − uD‖�D‖vD,h‖�D

� h ‖u‖1‖vD,h‖�D . (5.10)

To bound the final two terms in Eq. 5.6, we first note
that, due to Eq. 4.1a, 
S,huS ∈ ZS,h , implying that
aS,h(
S,huS, vS,h) can be expressed as in Eq. 4.4. In addi-
tion, since ∇ · uS = 0, the elliptic term in aS(uS, vS) can
be expressed as (μ∇uS,∇vS)�S . Therefore, following the
argument in [26], we have

|Ru,S(uS, vS,h)| � h|uS|2,�S‖vS,h‖1,�S ,

|Rp,S(pS, vS,h)| � h|ps |1,�S‖vS,h‖1,�S . (5.11)

Combining (5.6)–(5.7) and (5.9)–(5.11), we obtain

‖
h,cu − uh‖V � h(‖u‖1 + |uS|2,�S + |pS|1,�S

+|λ|1,�+‖ f S‖�S ). (5.12)

The bound on ‖u − uh‖V in Eq. 5.1a now follows from
Eqs. 4.12c and 4.12d. To bound ‖p − ph‖W , we use the
inf-sup condition (4.14) and the error equation (5.5a):

‖Qh p − ph‖W � sup
vh∈V h,c\0

‖vh‖−1
V bh(vh, Qh p − ph)

= sup
vh∈V h,c\0

‖vh‖−1
V (−ah(
h,cu − uh, vh)

−b�(vh, λ−P�hλ)+( f S, (I−Q)vS,h)�S

+Ru,D(uD, vD,h)+Ru,S(uS, vS,h)+Rp,S(pS, vS,h))

� h (‖u‖1 + |uS|2,�S + |pS|1,�S + |λ|1,�+‖ f S‖�S ),

where we used bounds (5.8)–(5.12) in the last inequality.
The bound on ‖p − ph‖W in Eq. 5.1b now follows from the
approximation property (5.2) and the triangle inequality. ��
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Theorem 2 If the solution to Eq. 2.6 is sufficiently smooth,
then the mortar variable λh ∈ �h satisfies

‖λ − λh‖�

� h(‖u‖1+|uS|2,�S +|pS|1,�S + |λ|1,�+‖ f S‖�S ). (5.13)

Proof We start by considering the error equation obtained
by subtracting (3.13a) from Eq. 2.6a and testing with vh =
(0, vD,h):

aD(uD − uD,h, vD,h) + bD(vD,h, pD − pD,h)

+ 〈
vD,h · nD, λ − λh

〉
�

= 0, ∀vD,h ∈ V D,h . (5.14)

The proof then relies on choosing an appropriate test func-
tion vh . We recall the inf-sup condition (4.8). In particular,
it is shown in the proof of [3, Lemma 5.1] that, for given
ξh ∈ �h , there exists v

ξ
D,h ∈ V D,h that satisfies

∇ · v
ξ
D,h = 0,

〈
v

ξ
D,h · nD, ξh

〉
�

= ‖ξh‖2�,

‖vξ
D,h‖�D � ‖ξh‖�. (5.15)

We now set ξh = P�hλ − λh and choose the test function
vD,h = v

ξ
D,h in Eq. 5.14. Using the properties (5.15) and the

choice (4.7), we derive

‖P�hλ − λh‖2� =
〈
v

ξ
D,h · nD, P�hλ − λh

〉
�

=
〈
v

ξ
D,h · nD, λ − λh

〉
�

= aD(uD,h − uD, v
ξ
D,h)

� ‖uD,h − uD‖�D‖vξ
D,h‖�D

� ‖uD,h − uD‖�D‖P�hλ − λh‖�.

To conclude the proof, we invoke the bound (5.1a)
restricted to ‖uD,h − uD‖�D , the approximation property
(5.8), and the triangle inequality. ��

6 Domain decomposition algorithm

In this sectionwe describe a non-overlapping domain decom-
position for the solution of the algebraic system resulting
from Eq. 3.13. The algorithm reduces (3.13) to solving
an interface problem for λh and requires only decoupled
Stokes andDarcy subdomain solves. Following [44], we con-
sider two sets of complementary subdomain problems.Given
λh ∈ �h , let (u∗

i,h(λh), p
∗
i,h(λh)) ∈ V i,h × Wi,h , i = S, D,

be the solution of Stokes or Darcy subdomain problems with
specified normal stress (for Stokes) or pressure (for Darcy)
boundary condition λh on �:

ai,h(u∗
i,h(λh), vi,h) + bi,h(vi,h, p

∗
i,h(λh))

+ 〈
λh, vi,h · ni

〉
�

= 0, ∀vi,h ∈ V i,h, (6.1a)

bi,h(u∗
i,h(λh), wi,h) = 0, ∀wi,h ∈ Wi,h, (6.1b)

where we set aD,h(·, ·) = aD(·, ·) and bD,h(·, ·) = bD(·, ·),
which allows us to unify the notation for the two types of
problems. We also consider the set of complementary sub-
domain problems for (ūi,h, p̄i,h) ∈ V i,h × Wi,h , i = S, D,
such that

ai,h(ūi,h, vi,h) + bi,h(vi,h, p̄i,h)

= ( f S,QvS,h)�S , ∀vi,h ∈ V i,h, (6.2a)

bi,h(ūi,h, wi,h) = −( fD, wD,h)�D , ∀wi,h ∈ Wi,h . (6.2b)

The first set of subdomain problems incorporates interface
data as boundary condition, while setting the outside bound-
ary conditions and source terms to zero. The second set has
zero data on the interface and uses the true outside bound-
ary conditions and source terms. It is easy to check that the
solution to Eq. 3.13 satisfies

uh = u∗
h(λh) + ūh, ph = p∗

h(λh) + p̄h,

where λh ∈ �h is the solution of the interface problem

sh(λh, ξh) ≡ −b�(u∗
h(λh), ξh) = b�(ūh, ξh), ∀ξh ∈ �h .

(6.3)

Lemma 8 The bilinear form sh(λh, ξh) is symmetric and pos-
itive definite on �h.

Proof The proof is similar to the proof of Lemma 5.1 in [44].
We provide it here for completeness. Taking vi,h = u∗

i,h(ξh),
i = S, D in Eq. 6.1 and summing implies that

sh(ξh, λh) = − 〈
λh, u∗

S,h(ξh) · nS
〉
�

− 〈
λh, u∗

D,h(ξh) · nD
〉
�

= aS,h(u∗
S,h(λh), u

∗
S,h(ξh)) + bS,h(u∗

S,h(ξh), p
∗
S,h(λh)

+ aD(u∗
D,h(λh), u

∗
D,h(ξh)) + bD,h(u∗

D,h(ξh), p
∗
D,h(λh)

= aS,h(u∗
S,h(λh), u

∗
S,h(ξh)) + aD(u∗

D,h(λh), u
∗
D,h(ξh)),

which implies that sh(·, ·) is symmetric and positive semi-
definite, using the coercivity (4.3b) of aS,h(·, ·) and Eq. 4.6b
of aD(·, ·). Due to the zero outside boundary conditions and
source terms inEq. 6.1, it is clear that u∗

i,h(λh) = 0 if andonly
if λh = 0, which implies that sh(·, ·) is positive definite. ��

As a consequence of the above lemma, the conjugate
gradient (CG) algorithm can be applied for solving the inter-
face problem (6.3). Each CG iteration requires evaluating
sh(λh, ξh), which involves solving decoupled Stokes and
Darcy subdomain problems (6.1).

6.1 Implementation

We next describe how the above algorithm is implemented
when using the MAC scheme (3.2)–(3.8). The term

〈
λh, vi,h
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·ni
〉
�
inEq. 6.1a that incorporates themortar data as boundary

condition for the subdomain solves can be written as

〈
λh, vi,h · ni

〉
�

= 〈
Pi,hλh, vi,h · ni

〉
�

,

where Pi,h is the L2-orthogonal projection ontoV i,h ·n|� . On
the Darcy side, due to the mortar choice�h = V D,h ·n|� , cf.
Eq. 4.7, the mortar data is already in the correct space. On the
Stokes side, it needs to be projected first intoV S,h ·n|� before
using it as a normal stress boundary data for the Stokes solve.
In the context of the MAC scheme (3.2)–(3.8), V S,h · n|�
consists of piecewise constant functions on the trace of the
primal grid on �.

7 Numerical results

In this section, we investigate the performance and appli-
cability of the proposed method through the use of three
numerical test cases in two dimensions. Case 1 investi-
gates the convergence of the method predicted in Section 5
by employing a known analytical solution. Case 2 is more
challenging and considers flow in a channel past a porous
obstacle. Finally, we illustrate the flexibility of the method
by considering regional mesh refinements in Case 3.

7.1 Case 1: Convergence test

To test the convergence of the method, we use the following
analytical solution (cf. [45]):

uS =
(

(2 − x) (1.5 − y) (y − β) + Gω cos (ωx)

− y3

3 + y2

2 (β + 1.5) − 1.5β y − 0.5 + sin (ωx)

)

uD =
(

ω cos (ωx) y
χ (y + 0.5) + sin (ωx)

)
(7.1a)

pS = − sin (ωx) + χ

2K
+ 2μ (0.5 − β) + cos (π y)

pD = − χ

K

(y + 0.5)2

2
− sin (ωx) y

K
, (7.1b)

where

μ = 1, K = 1, α = 0.5, G =
√

μK

α
, ω = 6,

β = 1 − G

2(1 + G)
, χ = −30β − 17

48
.

The computational domain is taken to be � = �S ∪ �D ,
where�S = (0, 1)×( 12 , 1) and�D = (0, 1)×(0, 1

2 ). Dirich-
let boundary conditions based on the analytical solutions for
uS and pD are used on all outer boundaries. We start with
a 15 × 15 square grid in �D and a 16 × 16 square grid in

the �S . We consider two choices for the mortar space on the
interface: piecewise-constant satisfying�h = V D,h ·n|� , cf.
Eq. 4.7, with 15 mortar elements, and continuous piecewise-
linear with 14 mortar elements, which satisfies (4.7). This
grid is then refined 5 times, and the measured errors and con-
vergence rates are listed in Tables 1, 2, 3 and 4 (see Fig. 5
for the computed solution on the first refinement). The error
norms are computed as follows. Consider the L2(�i )-norm

‖ϕ‖i =
⎛
⎝ ∑

E∈�i,h

∫

E
ϕ2

⎞
⎠

1/2

, i ∈ S, D.

The pressure pD,h is a piecewise constant function and pS,h

is reconstructed as a piecewise constant function based on its
degrees of freedom at the cell-centers. The pressure errors
ep,i are measured in the above norm::

ep,i = ‖pi − pi,h‖i , i ∈ S, D.

For the L2-norms of uS and uD , the following edge-norm is
employed::

‖vi‖e,i =
⎛
⎝ ∑

E∈�i,h

|E |
∑
e⊂∂E

1

|e|
∫

e
(vi · n)2

⎞
⎠

1/2

,

in which each e is an edge of themesh.We take euD = ‖uD−
uD,h‖e,D . We note that for the discrete vector uD,h ∈ V D,h ,
uD,h ·n is constant on each edge. For uS we use the following
H1(�S)-type norm:

‖vS‖S =
(

‖vS‖2e,S +
∥∥∥∥
∂vS,1

∂x

∥∥∥∥
2

S
+

∥∥∥∥
∂vS,2

∂ y

∥∥∥∥
2

S
+

∥∥∥∥
∂vS,1

∂ y

∥∥∥∥
2

S

+
∥∥∥∥
∂vS,2

∂x

∥∥∥∥
2

S

)1/2

, euS = ‖uS − uS,h‖S .

In the the first term on the right hand side above, uS,h · n
is reconstructed as constant on each edge, based on theMAC
normal velocity degrees of freedom et the edge midpoints.
In the second and third terms, ∂uS,h,1

∂x and ∂uS,h,2
∂ y are recon-

structed as constants on each primary element E based on
their values at the cell-center C computed in Eq. 3.4. In the
last two terms, ∂uS,h,1

∂ y and ∂uS,h,2
∂x are reconstructed as bilinear

functions on each primary element E based on their values
at the vertices V computed in Eq. 3.5. In Tables 1 and 2
we report the errors and convergence rates with piecewise-
constant and piece-linear mortars, respectively. We observe
first order convergence for all subdomain variables, as pre-
dicted by Theorem 1. For the mortar variable we observe first
order convergence for the piecewise-constant choice, which
is consistent with Theorem 2, and second order convergence
for the piecewise-linear case. The latter is not covered by the
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Table 1 Errors and convergence rates using piecewise-constant mortars for Case 1

i ep,D rp,D eu,D ru,D ep,S rp,S eu,S ru,S eλ rλ

0 1.70e-02 9.21e-02 2.74e-01 3.80e+00 3.99e-02

1 8.53e-03 9.98e-01 4.49e-02 1.04e+00 7.01e-02 1.96e+00 1.90e+00 9.98e-01 1.99e-02 1.00e+00

2 4.26e-03 9.99e-01 2.24e-02 1.01e+00 1.88e-02 1.90e+00 9.52e-01 1.00e+00 9.98e-03 1.00e+00

3 2.13e-03 1.00e+00 1.12e-02 1.00e+00 5.71e-03 1.72e+00 4.76e-01 1.00e+00 4.99e-03 1.00e+00

4 1.07e-03 1.00e+00 5.58e-03 1.00e+00 2.16e-03 1.40e+00 2.38e-01 1.00e+00 2.49e-03 1.00e+00

5 5.33e-04 1.00e+00 2.79e-03 1.00e+00 9.76e-04 1.15e+00 1.19e-01 1.00e+00 1.25e-03 1.00e+00

Table 2 Errors and convergence rates using piecewise-linear mortars for Case 1

i ep,D rp,D eu,D ru,D ep,S rp,S eu,S ru,S eλ rλ

0 1.70e-02 9.11e-02 2.72e-01 3.80e+00 1.84e-03

1 8.53e-03 9.98e-01 4.48e-02 1.02e+00 6.99e-02 1.96e+00 1.90e+00 9.98e-01 4.34e-04 2.08e+00

2 4.26e-03 9.99e-01 2.23e-02 1.01e+00 1.87e-02 1.90e+00 9.52e-01 1.00e+00 1.01e-04 2.11e+00

3 2.13e-03 1.00e+00 1.12e-02 1.00e+00 5.70e-03 1.71e+00 4.76e-01 1.00e+00 2.50e-05 2.01e+00

4 1.07e-03 1.00e+00 5.58e-03 1.00e+00 2.16e-03 1.40e+00 2.38e-01 1.00e+00 6.24e-06 2.00e+00

5 5.33e-04 1.00e+00 2.79e-03 1.00e+00 9.75e-04 1.15e+00 1.19e-01 1.00e+00 1.56e-06 2.00e+00

Table 3 Errors and convergence rates using piecewise-constant mortars and a midpoint quadrature rule for error integration for Case 1

i ep,D rp,D eu,D ru,D ep,S rp,S eu,S ru,S eλ rλ

0 1.20e-03 2.50e-02 2.73e-01 2.39e-01 5.12e-03

1 2.79e-04 2.11e+00 6.00e-03 2.06e+00 6.89e-02 1.99e+00 6.01e-02 1.99e+00 1.19e-03 2.11e+00

2 7.60e-05 1.88e+00 1.60e-03 1.91e+00 1.73e-02 1.99e+00 1.50e-02 2.00e+00 3.22e-04 1.88e+00

3 1.89e-05 2.01e+00 4.06e-04 1.98e+00 4.33e-03 2.00e+00 3.76e-03 2.00e+00 8.04e-05 2.00e+00

4 4.72e-06 2.00e+00 1.05e-04 1.96e+00 1.08e-03 2.00e+00 9.41e-04 2.00e+00 2.01e-05 2.00e+00

5 1.18e-06 2.00e+00 2.77e-05 1.92e+00 2.71e-04 2.00e+00 2.35e-04 2.00e+00 5.01e-06 2.00e+00

Table 4 Errors and convergence rates using piecewise-linear mortars and a midpoint quadrature rule for Case 1

i ep,D rp,D eu,D ru,D ep,S rp,S eu,S ru,S eλ rλ

0 8.63e-04 2.04e-02 2.72e-01 2.40e-01 4.20e-03

1 2.15e-04 2.01e+00 5.08e-03 2.01e+00 6.86e-02 1.99e+00 6.02e-02 1.99e+00 1.03e-03 2.02e+00

2 5.32e-05 2.01e+00 1.26e-03 2.01e+00 1.72e-02 2.00e+00 1.51e-02 2.00e+00 2.51e-04 2.04e+00

3 1.33e-05 2.00e+00 3.16e-04 2.00e+00 4.31e-03 2.00e+00 3.77e-03 2.00e+00 6.26e-05 2.00e+00

4 3.32e-06 2.00e+00 7.90e-05 2.00e+00 1.08e-03 2.00e+00 9.43e-04 2.00e+00 1.57e-05 2.00e+00

5 8.29e-07 2.00e+00 1.98e-05 2.00e+00 2.70e-04 2.00e+00 2.36e-04 2.00e+00 3.91e-06 2.00e+00
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(a) (b) (c)

Fig. 5 Velocity and pressure distributions after the first refinement for Case 1

presented theory, but it is consistent with the approximation
properties of the mortar space.

We also report the errors and convergence rates using
superconvergent norms based on computing the error inte-
grals on the elements E and edges e with the midpoint
quadrature rule, see Table 3 for piecewise-constant mortars
and Table 4 for piecewise-linear mortars. We observe second
order convergence for all variables. While the superconver-
gence analysis is beyond the scope of this paper, the rates
are consistent with known superconvergence for the MAC
scheme for Stokes [33, 34] and the RT0 MFE method for
Darcy [5]. Interestingly, to the best of our knowledge, these
are the first numerical results in the literature reporting sec-
ond order convergence for theMACvelocity in the H1-norm.

7.2 Case 2: Porous obstacle

This test case is inspired by [40] and considers a free-flow
channel of dimensions 0.75 × 0.25, with a square porous
obstacle of dimensions 0.25×0.2 placed halfway on the floor
of the channel. It is designed to illustrate the flexibility of
the mortar method to use different grids in the two regions in
order to resolve local solution features. Flow is enforced from
left to right by setting σ Sn|x=0 = 1.1n and σ Sn|x=0.75 =
n on the left and right boundaries, respectively, while no-
flow and no-slip conditions are used on the top and bottom
boundaries. We set μ = 1 and α = 1. The permeability of
the porous medium is set as the following anisotropic tensor:

K = R (ϕ)

(
1
β k 0

0 k

)
R−1 (ϕ) , with R (ϕ) =

(
cosϕ −sin ϕ

sin ϕ cosϕ

)
,

(7.2)

with an anisotropy ratio of β = 100, k = 10−5, and angle
ϕ = π/4.

Figure 6 shows the velocity and pressure distributions in
the domain. Qualitatively, we see that the flow is partially
blocked by the obstacle leading to a high pressure upstream
from the block. The anisotropy of the porous medium forces
the flow downward and, due the no-flow conditions at the
bottom boundary, leads to a high pressure in the lower left
triangular region of the obstacle. Along the top of the block,
a higher velocity is observed due to the narrowing of the
channel. The mesh in Stokes region is graded so that it is
finer in the area above the obstacle where the velocity is
high. We note that the resulting mismatch between the mesh
of the porous medium and the mesh of the free-flow domain
introduces no visible artifacts.

7.3 Case 3: Locally adapted grids

This test case is motivated by modeling coupled surface and
subsurface flows. The porous medium characterization is
inspired by [10, Example 4] and considers a two-dimensional
permeability field from the second data set of the Society
of Petroleum Engineers (SPE) Comparative Solution Project
SPE10 (see spe.org/csp/). In [10, Example 4], the subsurface
flow domain is decomposed into 4 × 4 subdomains, each of
which is discretized with a grid whose refinement reflects the
permeability variation in that subdomain. This way, regions
with high permeability variations are discretized with finer
meshes in comparison with regions where permeability vari-
ations are lower. In this example, we take the two center
rows of the domain decomposition presented in [10, Exam-
ple 4], flip them vertically, and place a surface flow domain
on top. Figure 7 illustrates the permeability field in the porous
medium and the meshes in the subdomains. We note that the
resulting Stokes and Darcy grids are non-matching along the
interface with varying ratio. Moreover, the decomposition
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Fig. 6 Velocity (top) and pressure together with the mesh (bottom) for Case 2

Fig. 7 Visualization of the mesh
over the entire domain and the
permeability distribution used in
the porous medium for Case 3
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Fig. 8 Velocity distribution for
Case 3

of the Darcy domain results in several non-matching Darcy-
Darcy interfaces.While the formulation and theory presented
in this paper focus on one Stokes and one Darcy subdomain,
they can be extended to multiple Stokes and Darcy subdo-
mains using tools developed in [5, 6, 25, 44].

The entire domain is 6 × 4.5 of which the top band
with height 1.5 constitutes the free-flow region. Flow is
enforced from left to right along the fluid region by imposing
σ Sn|x=0 = n and σ Sn|x=6 = 0 on the left and right bound-
aries, respectively. At the bottom of the porous medium,
a fixed pressure of p = 0 is used to also drive the flow
downwards through the porous medium. On all remaining
boundaries, no-slip and/or no-flow boundary conditions are
applied. We set μ = 1 and α = 1.

Avisualization of the velocity distribution in the domain is
shown in Fig. 8. We once again observe a qualitatively good
fit with the expected behavior of the system. The majority of
the flow infiltrates the porous medium in the first half of the
domain and then follows the high-permeable regions to the
bottomboundary.The locally refinedgrids accurately capture
the channelized flow field while the coarser grids in the low-
permeable regions allow for a reduction in computational
cost.

8 Conclusions

We presented a numerical method for coupled Stokes-Darcy
flows that exhibits local mass and momentum conserva-

tion and allows for non-matching grids on the interface.
The method combines the MAC scheme for Stokes, the
RT0 MFE method for Darcy, and mortar finite elements
on the interface. We established well posedness and first
order convergence of the method. We further presented a
non-overlapping domain decomposition algorithm for the
solution of the resulting coupled algebraic problem, which
requires solving only decoupled subdomain problems and
can result in scalable parallel implementations. A numeri-
cal test was presented to verify the theoretical convergence
results. Second order superconvergence was also observed in
suitable discrete norms. Finally, two computational experi-
ments for challenging problems were presented to illustrate
the applicability and flexibility of the proposed method.
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