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Abstract

A discretization method with non-matching grids is proposed for the coupled Stokes-Darcy problem that uses a mortar
variable at the interface to couple the marker and cell (MAC) method in the Stokes domain with the Raviart-Thomas mixed
finite element pair in the Darcy domain. Due to this choice, the method conserves linear momentum and mass locally in
the Stokes domain and exhibits local mass conservation in the Darcy domain. The MAC scheme is reformulated as a mixed
finite element method on a staggered grid, which allows for the proposed scheme to be analyzed as a mortar mixed finite
element method. We show that the discrete system is well-posed and derive a priori error estimates that indicate first order
convergence in all variables. The system can be reduced to an interface problem concerning only the mortar variables, leading
to a non-overlapping domain decomposition method. Numerical examples are presented to illustrate the theoretical results

and the applicability of the method.

Keywords Stokes-Darcy flow - MAC scheme - Mixed finite element - Mortar finite element

1 Introduction

The coupled Stokes-Darcy flow problem, which models
coupled free fluid and porous media flows, has been exten-
sively studied in recent years due to its numerous applica-
tions, including coupled surface and subsurface flows, flows
through fractured or vuggy porous media, flows through
industrial filters, and flows through biological tissues. The
most commonly used formulation couples the two regions
through continuity of normal velocity, balance of force,
and the Beavers-Joseph-Saffman slip with friction interface
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conditions. Some of the early works on the mathematical and
numerical analysis of Stokes-Darcy flows are [13, 15] using
a pressure Darcy formulation and [32, 38] using a mixed
Darcy formulation. Since then, various numerical methods
have been developed, see e.g., [4, 7-9, 19, 21, 22, 30, 31].
The focus of this paper is the development and analysis of
a numerical scheme that exhibits local momentum and mass
conservation in the Stokes region and local mass conserva-
tion in the Darcy region, and allows for non-matching grids
along the Stokes-Darcy interface. To the best of our knowl-
edge, such method has not been previously developed in the
literature.

Our method couples the marker and cell (MAC) scheme
[27] for Stokes with a mixed finite element (MFE) method
for Darcy. The MAC scheme is a popular method in compu-
tational fluid dynamics, due to its local momentum and mass
conservation properties. We restrict our attention to rectan-
gular elements and refer to [18, 23, 26, 29, 33, 35, 36] for
previous works on its analysis on such grids. On the other
hand, the MFE method is widely used for Darcy flow, due
to its local mass conservation and direct approximation of
the Darcy velocity. In this paper we consider affine elements
in the Darcy region, such as simplices and parallelograms.
While the analysis can be carried out for any stable pair of
MFE spaces of arbitrary degree, since the MAC scheme is
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of first order, we focus on the lowest order Raviart-Thomas
spaces RT [37]. A key feature of our method is that it allows
for non-matching grids along the Stokes-Darcy interface.
Such generality is important in practical applications where
different spatial resolution may be needed in the two regions.
We handle the non-matching grids through the use of mortar
finite elements [5, 6, 25]. In particular, we introduce a mor-
tar interface variable with the physical meaning of Darcy
pressure and Stokes normal stress, which is used to impose
weakly the continuity of normal velocity on the interface.
The mortar variable is defined on a separate interface grid,
which may differ from the traces of the subdomain grids.
This further allows for the flexibility to choose the mortar
finite element grid on a coarse scale, resulting in a multi-
scale discretization [6, 25]. The mortar method is suitable
for the use of non-overlapping domain decomposition meth-
ods for the solution of the resulting coupled algebraic system
[12, 14, 16, 20, 44]. In particular, we present an algorithm
that reduces the coupled problem to an interface problem for
the mortar variable. We show that the interface problem is
symmetric and positive definite and employ the conjugate
gradient (CG) method for its solution. Each CG iteration
requires the solution of subdomain Stokes and Darcy prob-
lems with specified normal stress for Stokes and pressure
for Darcy on the interface. Therefore the solution algorithm
involves only single-physics problems. This has an advan-
tage compared to a monolithic solver for the fully coupled
system, which has both larger dimension and larger condition
number.

There are several previous works that are relevant to our
method. The MAC scheme for the coupled Stokes-Darcy
problem has been studied in [34, 39, 41]. The analysis in
these papers is based on finite difference arguments and is
restricted to matching grids on the interface. In [40], a numer-
ical method for the coupled Navier-Stokes - Darcy problem
is developed, which is based on the MAC scheme in the
fluid region and multipoint flux approximation (MPFA) [1,
17] in the porous media region. The method is restricted
to matching grids and numerical analysis is not presented.
The method presented here can be considered as extension
of the method from [40] to non-matching grids through the
use of mortar finite elements. We further note that, while we
focus on the RT(y MFE method, our method and its analysis
can be extended to the multipoint flux mixed finite element
(MFMFE) discretization for Darcy flow [2, 28, 47], which is
closely related to the MPFA method, using techniques devel-
oped in [42, 43, 46].

Or analysis is based on the reformulation of the MAC
scheme for Stokes as a conforming MFE method [26]. In
particular, a staggered grid for each component of the veloc-
ity can be formed with vertices corresponding to the degrees
of freedom for this component, i.e., the midpoints of the
associated edges (faces). Then a continuous bilinear (trilin-
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ear) field can be constructed for each velocity component on
its staggered grid and the MAC scheme can be formulated
as a conforming MFE method. This reformulation allows us
to cast the MAC-MFE method as a MFE-MFE method and
utilize tools from mortar MFE methods [5, 6, 25] in the anal-
ysis.

The reminder of the paper is organized as follows. Some
notation is introduced at the end of this section. The Stokes-
Darcy model and its variational formulation are presented in
Section 2. The numerical method is developed in Section 3.
Its well-posedness analysis is carried out in Section 4, fol-
lowed by error analysis in Section 5. The non-overlapping
domain decomposition algorithm is developed in Section 6.
Section 7 is devoted to numerical experiments that illus-
trate the theoretical convergence results, as well as the
performance and flexibility of the method applied to two
challenging practical problems. Conclusions are presented
in Section 8.

We utilize the following notation in the paper. For a
domain © c R", n € {2, 3}, HX(O), k > 0, is the standard
notation for a Hilbert space equipped with a norm | - ||x.©
and a seminorm | - [¢, 0. The L?(O)-inner product is denoted
by (-, -). We omit the subscript if O = . For a section of a
domain boundary G C R, (., ) denotes the L*(G)-
inner product or duality pairing. The expression a < b
denotes that there exists a constant C > 0, independent of a,
b, and the discretization parameter &, such that Ca < b. The
definition of ¢ 2 b is similar.

2 The model problem and its variational
formulation

Consider an open, bounded domain @ C R", n € {2,3},
partitioned into two disjoint subdomains Qg and Qp with
interface ' = 9Qg N d2p. Subscripts S and D are used,
throughout this work, to denote entities related to Stokes
and Darcy flow, respectively. Let r; denote the outward unit
vector normal to 9€2;,7 = §, D. Let the symmetric gradient
and the stress be given by

1
e =3 (Vu n (Vu)T> o =2ue(us) — psl, 2.1)

with > 0 the viscosity. We consider the steady state Stokes-
Darcy problem:

—V.os5=fg, in Qg, (2.2a)

V.us =0, in Qg, (2.2b)

up+p 'KVpp =0, in Qp, (2.2¢)
V~uD = fD, in QD. (2.2d)
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The permeability K is a positive-definite tensor whereas
[ and fp are given source terms. The coupling conditions
on I' are given by mass conservation, momentum conser-
vation, and the Beavers-Joseph-Saffman (BJS) condition,
respectively:

us-ns+up-np=0 on I', (2.2e)

(osns)-ns=—pp on I, (2.2f)
"

(osng) T5=— us-Tg=:—apjus-ts, on I', (2.2g)
VK

where K; = (Ktg) - ts and ¢ > 0 is an experimentally
determined coefficient. In Eq. 2.2g, to simplify the notation,
we have adopted notation for a one-dimensional interface I',
with T being the unit tangential vector on I'. In the case
of a two-dimensional interface I', Eq. 2.2g involves a sum
over the the two unit tangential vectors on I'. Finally, the
following boundary conditions close the system:

(2.2h)
(2.2i)

uSZOv OnaQS\F,

up -np =0, ondQ2p \ T

Due the choice of boundary conditions, the source term
fp must satisfy the compatibility condition fQD fp=0.

We proceed with the variational formulation of the Stokes-
Darcy model problem. The function spaces for the velocity
incorporate the essential boundary conditions (2.2h)—(2.21)
and are defined as follows:

Vsi={ve (' @) vlagar =0} (23a)
Vp:={v e H(div; Qp) : v-nplag,r =0}, (2.3b)
V=VgxVp, (2.3¢)

where

H(div; Qp) :={v € (L>(2p))" : V-v e L*(Qp))}

(2.3d)
equipped with the norm ||v||(21iv;QD = ||v||§20 +V- vIIéD.
Second, the pressure space is naturally given by:

W = (Ws x Wp) N L3(RQ)
= (L*(Qs) x L*(Qp) N L5(Q) = L§(Q),  (2.3¢)

where L%(Q) is the space of L2(2) functions with mean
value zero. The norms in V and W are defined as

2. 2 2 :
Ivlly == llvsli o + 1vDllGv. 0, lwllw == lwll. (2.3)

Third, we introduce the Lagrange multiplier A to enforce
(2.2e) and (2.2f):
reA:=HY>’I), r=pp=—(osns) -ng. (239

The space A is chosen as the dual of the space {vp -
nplr : vp € Vp}.Inparticular, sincevp € H(div; 2p)and
vp-np =00ndQp\I,itholdsthatvp -np|r € H~/2(I).

With the function spaces defined, we continue with the
variational formulation. We test the equations defined in the
free flow domain with vg € V g to obtain:

—(V-05,v5)0; = (05, Vvg)os — (05ns, vs)r
= 2ue(us), Vos)ag — (ps, V - vs5)ag
+lapssus -Ts, vs -Ts)r+(A, vs -ng)r
= (fs. vs5)Qy- (2.4a)

On the other hand, in the porous medium, we test Darcy’s
law with vp € V p to arrive at

(K 'up,vp)a, —(pp,V-vp)ap +(r, vp - np)r=0.
(2.4b)

The Lagrange multiplier space A is then used to impose
flux continuity. In particular, using a test function £ € A, we
impose
(us-ns+up-np,&)r =0. (2.4¢)

Combining equations (2.4) with the mass conservation
equations, we arrive at the variational problem: find the triplet

(u, p,x) € Vx W x A such that for all (v, w,&) € V x
W x A,

(ue(us), Vvs)ag + (apjsts - T, vs - Tg)r

—(ps. V- vs)os + (A vs-ns)r = (fg, v5)es  (2.52)
(V- us,ws)og =0 (2.5b)
(WK 'up.vp)a, — (pp. V- vp)a, + (A, vp - np)r =0

(2.5¢)
(V-up,wp)e, = (fp, wpa, (2.5d)
(us-ns+up-np,&)pr =0. (2.5e)

Introducing the bilinear forms

as(us,vs):=Q2ue(us),Vog)os+{apstts-Ts, Vs-Ts)r,
ap(up,vp):= (K 'up.vp)a,.
a(u,v):=as(us,vs) +ap(up,vp),
bi(vi, w;j):=—(V v, w)q, i=S,D,
b(v, w):= bg(vs, ws) + bp(vp, wp),
br(v,&):=(vs-ns+vp-np,&)r,
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this system has the following structure:

a(m,v)+bw,p)+br(v, \)=(fg,vs5)qs, YveV, (2.6a)
b(u,w) = —(fp, wplap, Yw e W, (2.6b)
br(u,§) =0, VE e A. (2.6¢)

The system (2.6) is a symmetric two-fold saddle point
problem. Existence and uniqueness of a solution has been
shown in [32]. The solution satisfies

lusllios + luplldgv.ep, + Pl + 1A g2
Sfsl=1as + 1 follep-

3 Mortar MAC-MFE method

Assume that the subdomains Q2 and Q2p are polytopal and
consider shape-regular meshes on Qg and Q2p denoted by
Qs and Qp p, respectively. The two meshes may be non-
matching on the interface I'. In the Stokes region we consider
the MAC scheme [27], described below, and restrict Q5
to rectangular-type elements. Due to this restriction, I" is a
piecewise linear curve consisting of horizontal and vertical
segments, denoted by T'! and I'?, respectively, see Fig. 1.
The Darcy mesh Qp ; may consist of affine elements. Let
Vpnrx Wpr CVp x Wp be mixed finite element spaces
that form a stable pair for the Darcy sub-problem. Even
though theoretically arbitrary order spaces may be used, since
the MAC scheme is of first order, we focus on the lowest order
Raviart-Thomas spaces RTq [37] for V p j, and the piecewise
constants for Wp . We emphasize that this pair of spaces has
the property:
V-Vpnr=Wpph. 3.1
The Lagrange multiplier space A in Eq. 2.6 is discretized
as follows. We consider a tessellation of I denoted by
I';,, which can be constructed independently of the previ-
ously introduced meshes. Let Aj be the discretization of

Q
S r,

Qp

Fig.1 The Stokes-Darcy domain
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A consisting of (dis)continuous, piecewise polynomials. For
simplicity of the presentation we consider the mortar grid
on the same scale & as the traces of the subdomain grids.
The analysis can be extended to a multiscale setting with the
mortar grid defined on a coarse scale H, utilizing multiscale
mortar finite element techniques developed in [6, 25].

We next describe the MAC scheme used in the Stokes
region. The pressure pg is computed at the centers of the ele-
ments of Qg ;. The normal velocities ug - n are computed at
the centers of the edges (faces) of the elements. For example,
in two dimensions these are the horizontal velocities ug | at
the midpoints of the vertical edges, and the vertical velocities
u s > at the midpoints of the horizontal edges, see Fig. 2 (left).
We note that these are the same as the degrees of freedom
of the RT( spaces. We denote the discrete MAC velocity and
pressure spaces as Vlg’IAC and Wg/IAC, respectively. For each
edge we consider an associated control volume obtained by
drawing lines parallel to the edge through the centers of the
two neighboring elements. If an edge is on the boundary, it
is associated with a half-volume. We denote a generic con-
trol volume by G;, with i = 1 for vertical edges and i = 2
for horizontal edges, see Fig. 2 (left). The momentum bal-
ance (2.2a) is imposed component-wise: =V - 05; = fg;,
i = 1,2, where o ; is the i-th row of o 5. The divergence
theorem gives

—/ ‘TS,i'"=/ fs.is
aG; Gi

where n is the unit outward normal vector to G;. Taking
i = 1, and using the notation from Fig. 2, we obtain

e, (e () ()

— — [ (<2ue + ps) - / Quen — ps)
I It

- / dueny - / 2uenn. (32)
by 11
Similarly,
&1 0
[, (o))
/acz 3G €22 Ps
= —/ —2uer) —/ 2ue21 (3.3)
) p)

— | (—2uexn + ps)— / (Quexn — ps).
by %]

For full volumes G;, the edge integrals in Eqgs. 3.2 and
3.3 are approximated by the midpoint rule, therefore &1,
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Fig.2 Grids and velocity degrees of freedom for the MAC scheme

€22, and pg are evaluated at the centers of the primal cells,

while €17 and &1 are evaluated at the vertices of the primal

. dus
cells. Since €11 = g‘;', g0 = tg_sy,z’ and €10 = & =

1 (dusy | duspz 3Ms1
§< 5y T “ox ) this implies that ,

dus»
By ,and pg are

M51 3145 2

evaluated at the cell centers, while and are evalu-
ated at the vertices. The cell- centered values are degrees of
freedom for the pressure. For the velocity derivatives, using
the notation from Fig. 2 (center, right), the quantities are
approximated as

ou us 2
“(C)— Sy -, = (C>——(usz 43 ).
(3.4)
du 1 du
L) =@l -l “<v>— o= u).
3.5)

where for simplicity we have assumed that the mesh is uni-
form.

Referring to the notation from Fig. 3 and using Eqs. 3.4—
3.5, the momentum balance (3.2)—(3.3) on interior volumes
G and G give, respectively,

1
2 34 1 3,8
2 <*“s,1 +2ug gy g (Cugy  2u —ugy)

P§)=/G] fs.1,

(3.6)

1 1
5 WG —ugp) = 5y — ”§,2)> +h{rs -

1
1 35 2 3 4
2 <*“S,2 2y —ugyt S (g y+2ugy —ug )

1 1
+§(”§,1 —ugp) — 5(”?1 —”§,1)> +h (p§ —P]s> = /Gz fso
3.7

The mass balance (2.2a) is imposed on the primal cells E:

/ us-nzh(ug1 —u§V’1+u§{2—u§Y2)=0. (3.8)
IE

We next discuss briefly the MAC discretization of the
boundary conditions. The condition u s - n g is essential, since
the MAC degrees of freedom include the normal veloci-
ties on the boundary. In this case, the momentum balance

5
ul Ug 2
1>
ug,o ud 3 2 |ud
) 5,2 Usi| __gPs _|Us1
1 1
2 3 n u2 ud 4
Us,1; 2 us,1; , |Us 5,2 AUS,2 Us,2
T |pS T™ ' Ps 1 .
1 1 G
| Gli _? p}s
T ul DA Y
Uug 2 . Us2 5,1 ul S,1
s i

Fig.3 Finite difference stencils for the MAC momentum balance equations on volumes G (left) and G, (right)
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(3.2) or (3.3) on the associated half-volume is omitted. The
condition u g - T g is natural, as the term appears in the momen-
tum balance equations for volumes G adjacent to horizontal
boundaries, through the integrals fbl —2u81> and ffl 2e12
in Eq. 3.2, and volumes G, adjacent to vertical boundaries,
through the integrals flz —2ue71 and frz 2uez1 inEq. 3.3.In
particular, as the vertex V in Fig. 2 (right) is on the bound-
ary, one or both of the expressions in Eq. 3.5 are modified
to involve the boundary value. For example, on a bottom
boundary, the first equation in Eq. 3.5 becomes a'gi" V) =

%(ujs\i | —us,1(V)), which results in ”3?,1 not being included in
Eq. 3.6. Finally, both stress boundary conditions (o s ng)-ng
and (0 s ng)-T s arenatural. In particular, (o s ng)-ng appears
in the integrals fl| (—2peq + ps) and frl 2uer — ps)
in Eq. 3.2 on half-volumes G; adjacent to vertical bound-
aries, as well as in the integrals fhz (—2unexn + ps) and
ftz (2uexn — ps) in Eq. 3.3 on half-volumes G, adjacent to
horizontal boundaries. For example, on a left boundary, “§,1
and pé are not included in Eq. 3.6. Similarly, (o5 ng) - 75
appears in the integrals [, —2ueé12 and [, 2per2 in Eq. 3.2
on volumes G adjacent to horizontal boundaries, as well as
in integrals flz —2ugo1 and frz 2121 in Eq. 3.3 on volumes
G adjacent to vertical boundaries. For example, on a bottom
boundary, ”é,l is not included in Eq. 3.6.

We are now ready to formulate the mortar MAC-MFE
method for the approximation of the variational problem
(2.5): find (us, ps) € VYAC x WYAC, p . ppa) €
Vp.r x Wp,and Ay, € Ay, such that

(us, ps) satisfy the MAC Egs. 3.2-3.8 in Qg with
us=00ndQs\TI,(csns) -ng=—iponl,

(osns) -ts = —apjsus-tsonl, (3.9a)
(K upn.vow)ey — (Poas V- vpr)ap
+ (An. v -np). =0 Vupy € Vpa, (3.9b)
(V-upp, wpnae, = (fp,wpr)e, Ywpnr € Wp.a,
(3.9¢)
(ws-ns+upy-np. &), =0 V& € Ay, (3.9d)

where ug-ngsin Eq. 3.9d is interpreted as a piecewise constant
function associated with the MAC degrees of freedom on I'.

For the purpose of the analysis, we will utilize the refor-
mulation of the MAC scheme as a conforming mixed finite
element method for Stokes [26]. For simplicity of the presen-
tation, we focus on the two dimensional case. The extension
to three dimensions is natural. Starting from the primal grid
and degrees of freedom, Fig. 4 (left), we consider two stag-
gered grids Qg »» 1 = 1,2, for the horizontal and vertical
velocities, respectively, with vertices associated with their
respective degrees of freedom, see Fig. 4 (center, right). Note
that degrees of freedom have been included for the tangen-
tial velocity on the boundary of 2. The boundary velocities
are determined from the Dirichlet boundary condition on the
external boundary and are incorporated into the stress inter-
face conditions on I'. The values at the vertices allow for
constructing continuous bilinear functions on the two stag-
gered grids. Denote the corresponding spaces by S,’;, i=1,2.
Let Vg, = (S}ll X S,%) N V5. We emphasize that, due to
Eq. 2.3a, vs, € Vg satisfies vg, = 0 on Q25 \ I'. The
Stokes mixed finite element pairis Vg 5 x Ws 5, where W j,
is the space of piecewise constant functions on the primal grid
QS’h .

Forugj € Vg, leté(us, ) be amodification of & (us p)
with

~ I (Qusp1 dus p2
€ = - = = and
(us.n)12 > < 3y + 01 x )
~ 1 dusp1 . ousp2
e(us n)2 = 3 (Qz 3y + oy ,
where Q] 2 and Q> du Sy" L are defined as follows. For Q1,

consider E2 € Q2 5., and splititas E; bu E}, by the horizontal
0145 h2

edges from QL s.p- Noting that = a + By on Ep, we

define Q1 2512 |p, as the piecewise constant function satis-
Sh2 3u5h2 Sh2 3u5h2
fying 0 2 o lEp = lp and Q24512 |py = It

where b and t denote the bottom and top edges of E,,

e f————%

|
|
]

I
] 0
|
!

Qs p,

1
QS,h

2
QS,h

Fig.4 Primal MAC grid with velocity degrees of freedom (left) and staggered grids with degrees of freedom for the horizontal (center) and vertical

(right) velocities
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respectively. We define Qzauas% on Ey € Q, similarly,

by splitting it by the vertical edges from Q% e

For each element E; € Qis,h’ i =1,2,let Q'(E;) denote
the space of bilinear functions on E;. For a function ¢ with
domain E; such that ¢ is well defined at the vertices, let
Ig, () € O L(E;) interpolate ¢ at the four vertices of E;. For
each element £ € Qg p, let Ig : C%E) — Py(E) inter-
polate the function at the center of E, where Py(E) denotes
the space of constant functions on E. Motivated by [26], we
define the discrete bilinear forms

asp(us,n, vs,p) = Z

/ 2ulg, (Eus )1 - (Vosp)i)
E\eQy, ki

/ 2ulE, (E(us,p)2 - (VUs,p)2)

E:
B}, "’
+ Z / By sTE (s h 1 vs01)
JENI
EieQ}, !
+ / apssIp,(Usn2 Vs02). (3.10a)
5 JIE,NT?
EzEQS,h
bsnspwsn)=— Y | Ie(V-vsp)wss. (3.10b)

EeQgp

where e(us j,); is the i-throw of e (ug ), (Vvg p,); is the i-th
row of Vug 5, and we recall that 'l and 2 are, respectively,
the horizontal and vertical parts of the interface I', see Fig. 1.

Finally, for incorporating the right-hand side, we define
the interpolants Q;, i = 1,2, for ¢ € Sfl such that Q; ¢ is
constant on each control volume G;, defined from the value
of ¢ at the vertex of Qg ,, interior to G;. The combined inter-
polant is denoted by Q = (Q, Q»).

Lemma 1 The MAC scheme (3.92) is equivalent to the fol-
lowing mixed finite element method: find (usp, psn) €
Vs.n x Ws , such that

asn(sp, vsp) +bsn(vsn, ps.n)

+ (hn. vs - ms)p = (fs. Qusi)as.  Yusa € Vi,
(3.11a)

bs.n(usn, ws.n) =0, VYws p € Ws.p.
(3.11b)

Proof A simple calculation shows that Eq. 3.11a with vg
the basis function in S /i associated with the vertex of Q2 g 5 at
the degree of freedom uéyl in Fig. 3 (left) results in Eq. 3.6.
Similarly, Eq. 3.11a with vg 5 the basis function in S}zl asso-
ciated with the vertex of Qé , at the degree of freedom u%yz

in Fig. 3 (right) results in Eq. 3.7.

One can also check that, adjacent to the external boundary
and the interface I', the MAC Egs. 3.2-3.3 and the MFE
(3.11a) result in the same modification of Eqs. 3.6 and 3.7.
In particular, since the stress interface conditions in Eq. 3.9a
are natural, the summation of Egs. 3.2 and 3.3 results in the
interface terms

/—(Gs"s)'ns=/)»h and /—(Us"s)fs:/asjsusfs,
r r r r

(3.12)

which correspond to the interface terms that appear in

Eq. 3.11a.
Finally, Eq. 3.11b with wg ; the basis function in Wy
associated with element E results in the mass balance (3.8).
m}

The equivalence established in Lemma 1 allows us to
rewrite the mortar MAC-MFE method (3.9) as a mortar
mixed finite element method. Let Vj := Vg5 x Vpy,
Wi = Wsn X Wpp,

ap(up; vy) =as (s p, vsp) +ap@pp; vpp),
by (v, wp) == bs p(vsp, wsp) +bp(Wpp, Wp.a).

Due to Lemma 1, the mortar MAC-MFE method Eq. 3.9
is equivalent to the following mortar MFE method: find
(un, pn, An) € Vi x Wy x Ap, such that

ap(up, vy) + by (v, pp) + br(vy, Ay)

= (fs, Qus.n)as, Yv, € Vy, (3.13a)
bp(up, wp) = —(fp, Wp.p)ep, Yw, € Wy, (3.13b)
br(up, &) =0, V&, € Ay, (3.13¢)

4 Well posedness

We begin with stating results from the literature for inter-
polants in the Stokes and Darcy velocity spaces and local
inf-sup stability that will be used in the analysis. It is shown
in [26] that there exists an interpolant I1s s : Vs — Vg,
where g pvs = (st,hUS,l’ Hﬁ’hvs,z) € S}l X S,% such that
for all sufficiently smooth vg € Vg,

bs (s pvs,ws p) = bs(vs, wsp), YwsyeWsp, (4.1a)
(4.1b)
(4.1¢)

lvs — s nvslies S klvsl2,aq.
ITs pvslies S lvslhi,os-
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Furthermore, the following continuity and inf-sup condi-
tion hold:

bsn(sn, wsn) S lvsnllesllwskllos,

VYosn € Vsn, wsn € Wen, (4.2a)
bs.n(vs.n, Ws.n)
sup  —————— 2 |lwsallas, Yws.n € Ws .
vsneVsno  vsallnag
(4.2b)

We next establish continuity and coercivity for the bilinear
form as ,(us n, vs.pn). Let

Zsp = {vsn € Vsn:bsp(vsn wsp) =0 Yws, € Wg

Lemma 2 It holds that

asp@s.p,vsn) S lusnlliesllvsalies,
(4.3a)
(4.3b)

Yusn, vsn € Vs,

2
asn(Wsn vs.n) 2 Mvsalliqq  Ysn € Zga.

Proof The continuity bound (4.3a) follows easily from the

definition (3.10a). For the coercivity bound, consider the

: : 2 4 _ 4 _ 3
Eq. 3.6 withus, € Zs ). Since Ugn —Ugy =Ugy —Ug,

and “i‘,z — ”}s,z = “%‘,1 — ui |» we obtain that for the choice
of vs , in Eq. 3.6,

2 3 4
asp(Usp, Vs p) = M(—”s,l + 2“5,1 - M5,1)
1 3 5
+ul—ugy +2ug ) —ug )

- ¥

EieQ},

I, (Vusp)r - (Vs ).
E;

Similarly, for the choice of vs j in Eq. 3.7,

1 3 5
as,p (s p, vs,n) = p(—ug o+ 2ug, — Uy o)

+ /L(—u%’z + 2u§’2 — u‘é,z)

- ¥

E2EQ§',h

I, (Vus p)a - (Vug p)2).
E>

A similar modification holds for a test function vg ; with
support adjacent to €21, implying that for ugs , € Zg

Il (Vusp)r - (Vos )
E;

asn(usp. vsp) = Y

E1eQy,

py

Ezeﬂéh

wle,(Vus p)2 - (Vg p)2)
E>

+ E / 1 apysle, (us p1vs.n1)
JE|NT
Eje@l, "

+Z/&

Ezeﬂgh

apyslp,(Us n2vsh2)- 4.4)

E,NI'2
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Therefore, noting that / I, (-) corresponds to employ-

i

ing the vertex quadrature rule, a simple calculation, see [47,
Lemma 2.4], gives that for all vg ; € Zs p,

2 2
asn(vs.n, vs.n) 2 I1IVosallag 2 I1vsallt o

where the last inequality follows from the Poincaré inequal-
ity. O

For the Darcy problem, itis well known [11] that for stable
mixed finite element pairs, there exists an interpolant ITp  :
VpNHYQp) — Vp, such that forall vp € H'(Qp),

bp(Ilp,pvp, wps) =bp(vp, wpr), Ywpn € Wpa,

(4.5a)
lvp —Mpavplle, S Alvplep, (4.5b)
IMprvplle, S llvpliep- (4.5¢)

Furthermore, the following continuity, coercivity, and inf-
sup condition hold:

apWp.n,vpn) S llupnlepllvp.sllep,
(4.6a)
VIJD,h S VD,h, (4.6b)

bp(p.n, wpp) S lvppllaviepllwpnllap,

Yupp, vph € Vpa,

2
ap(p.n,vp.n) 2 lvpalla,

Yvpr€Vph wph€Wpn, (4.6¢)
bp(wp,n, wp,pn)
sup  ———=2 |lwpalley, Ywps € Wp -
vpneVp\0 VD nlldiviep
(4.6d)

We next discuss the choice of Aj,. In order to simplify the
presentation, we define
An=Vopu-nlr, 4.7

which allows us to utilize the arguments from [32]. With this
choice, the following interface inf-sup condition holds [3]:

br(vp, &p) >

n OriO 5n)_ 4.8)
&n€An\0 y,cv,\o0 lonllvIEnlr

We note that a more general choice of Ay, is also possible.
In particular, A, may consist of continuous or discontinuous
polynomials of degree m > 1 on a mesh I', different from
the subdomain grids, satisfying for all £, € Ay,

I€nllr < I1PpnéRIITS (4.9

where Pp j, is the L2-orthog0nal projectiononto Vp - n|r.
For the treatment of this more general choice, we refer the
reader to [25], see also [5].



Computational Geosciences (2024) 28:413-430

421

For the purpose of the analysis, following [32], we con-
sider a reduced formulation of Eq. 3.13 in the weakly
continuous velocity space
Vie:={vn € Vi : br(vp, &) =0 V& € Ay} (4.10)

The reduced problem is: find (uy,, pr) € Vi, x W), such
that

ap(up, vp)+ bp(vp, pn) =(fs. Qusn)as,  Yvn €Vie,
(4.11a)

by(up, wp) = —(fp. wp.p)e,, Yw, € W
(4.11b)

Lemma 3 Method (3.13) is equivalent to method (4.11) in the
following sense. For any solution (uy, pn, Ap) to Eq. 3.13,
(un, pn)isasolutionto Eq.4.11. Conversely, for any solution
(up, pn) to Eq. 4.11, there exists a unique Ay, € Ay, such that
(un, pn, An) is a solution to Eq. 3.13.

Proof Let(uy, pp, L) beasolutiontoEq.3.13. Equation 3.13c
implies thatuy, € V), .. Taking v, € V. implies Eq. 4.11a.
Therefore (up, pj) is a solution to Eq. 4.11. Conversely,
let (uy, pn) be a solution to Eq. 4.11. Since u, € V.,
Eq. 3.13c holds. Due to the inf-sup condition Eq. 4.8, there
exists aunique A, € Ay such that Eq. 3.13a holds. Therefore
(un, pn, Ap) is a solution to Eq. 3.13.

Lemma 4 There exists aninterpolant Iy, . HY(Q) —> Vie
such that for all sufficiently smooth v,

b (ITpcv, wp) = b(v, wp) Yw, € Wy, (4.12a)
Tp.collv < vl (4.12b)
[v—pcvllies + lv = Huevli, S AP+ vsl2af),

(4.12¢)
V- —Tpev)le, SV -vplie. (4.12d)

Proof The proof follows from the proofs of Lemma 4.3 and
Proposition 4.2 in [32], utilizing I1s j, from Eq. 4.1 and I1p 5,
from Eq. 4.5 to build the interpolant in Qg and 2 p, respec-
tively. In particular,

s
[y cvloy = I, .vs = Is s,

[y cvlQ, = H;,D,C”D =Iprvp +dp.a, (4.13)
where p , € Vp p is a suitably constructed correction that
provides the weak continuity of the normal velocity. We omit
further details. O

Lemma5 The following inf-sup condition holds:

bp(vp, wp)

Yw; € Wp. (4.14)
lvnllv

2 llwallw,
v,€V \O

Proof Letwy, € W), be given. Since wy, € L3(S), itis known
[24] that there exists v € H(} (£2) such that

Vv =—w, in€, ol < llwall- (4.15)

We then have, using Eqgs. 4.15, 4.12a and 4.12b,

b, wy) _ bp(Tp,cv, wp) _ bp(Tp,cv, wp)
vl vl [T, cvlly

lwallw <

~

O
Lemma 6 Problem (4.11) has a unique solution (uy, pp) €
Ve X Wy, that satisfies

lus nll,os + lwp nlldgiv.ep, + lpnll

SIfsll-1,05 + 1 fpllap- (4.16)

Proof Let Zpy, = {vpxr € Vpnr : bp(wpn, wpp) =
0 Ywp,r € Wp}and

Zp =ZspxZpn ={vn €V : bp(vp, wp)=0Vw, € Wp}.
From Egs. 4.3b and 4.6b, using Eq. 3.1, we obtain

2 2
an(p, vi) 2 wsnlli o + 1vpallgv., Yvn € Zn.
(4.17)

The assertion of the lemma follows from Eq. 4.17 and the
inf-sup condition (4.14), using the general theory of saddle
point problems [11]. O

Lemmas 3 and 6 imply well posedness of the mortar MFE
method (3.13).

Lemma 7 Problem (3.13) has a unique solution (up, pn, Ap)
€ Vi x Wy, x Ay, that satisfies

lus nlli,os + lup plldiv.e, + llpalle + l1Axlr

Siifslas + 1 follap- (4.18)

5 Error estimates

In this section we establish convergence rates for the mortar
finite element solution to the coupled Stokes-Darcy problem.

Theorem 1 Assuming sufficiently smooth solution to Eq. 2.6,
the solution (uy, pn) of the mortar finite element method
(4.11) satisfies

lw —uplly S h(llullt + luslz,o5 + 1V -upligp

+Ipsh,os + [AM,r+I fslies). (5.1a)
lp — pullw < hlully + lusl2,os + 1psli,os
+lppli,ep + 1AL+ fsllas)- (5.1b)
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Proof Let O, = (Qs.n, Op.n), Where Q;p is the L2
orthogonal projection onto W;j,, i = S, D. The two
operators satisfy, for all wg € H'(Qg) and wp € H (),

lws — Osrwsllas S klwsli qg,

lwp — Oprwplle, S hlwpliap- (5.2)

We start by noting that V), x Wy, C V x W. Thus, sub-
tracting (4.11a)—(4.11b) from Eqgs. 2.6a-2.6b leads us to the
error equations:

a(u, vy) — ap(up, vy) + b(vy, p) — bp(vp, pr)
+bl“(vh, )\'):(f57 (I_Q)vs,h)ﬂs’ Vvh € Vh,C7 (533)

b(u, wy) — bp(up, wy) =0, Ywy, € Wy. (5.3b)

Using V- Vp = Wpp, cf. Eq. 3.1, we proceed by con-
sidering the following differences:

ap(Mp,cu, vy) — au, vp)
= aD(l'I;?,(,.uD —up, vpp)+(asy (s pus, vsp) — as(us, vsp))
=: Ry pup,vp;)+ Ry s(us, vsn) (5.4a)
by (v, Qnp) — b(vp, p) = bsn(vs.n, Qs.nps) — bs(Vs.n, ps)

=: R, s(ps. vs.) (5.4b)

Adding (5.4) to (5.3a) and using property (4.12a) of Iy
in Eq. 5.3b, we rewrite (5.3) as

ap(Ip,cu — up, vp) + bp(Vp, Onp — pn)
= —br(vp, M)+ (fs, I — Qs n)ag
+ Ru.p@p,vpp) + Ry s(us, vsn)
+ Ry s(ps, vs.n), Vv, € Vi,
bp(Mp cuw — up, wp) =0,

(5.5a)

Yw, € Wy, (5.5b)

We now take vj, = Iy .u—uy and wy, = pp — Qp p. Note
that Eq. 5.5b implies that I, .u — u, € Z;. By summing
the Eq. 5.5 and using the coercivity (4.17) we derive:

IThcte — upll? < 1br (i, MIHI(Fs, (I — Qvs el
+|Ry,p(up, vpp)l +|Ry s(us, vsp)l
+IRp,s(ps, vs.n)l. (5.6)

We proceed by bounding the five terms on the right-hand
side. The first term is the non-conforming error on the inter-
face. Using the definition (4.10) of V. and the fact that
Ap = Vpp-nlr, we have

|br (pcu —up, A)| = |br (Ip ctt — up, A — Py, )|
= |(Msptts — wsp, k — Pa,A)p |
S hls pus —us pll,oglrlr

< h|Mp,cu —upllv|rilr, (5.7)
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where P, is the L2-orthogonal projection onto Ay, and we
used its approximation property
Vs e HY(D),

1§ — Pa,&lir S hIENLr, (5.8)

and the trace inequality

Vos € (H'(Q5))", Jvsllr < llvslh.a;.
‘We bound the second term by using the Cauchy-Schwarz
inequality and the approximation properties of the interpolant

Q:
|(fs, (I = Duspasl S I fsllaslld — Dvs nllag

Shllfsllaslvsnllias (5.9)

The third term is bounded by the continuity of ap (4.6a)
and the approximation property (4.12c):

D
Rupp,vpn) ST, up —uple,lvpale,

< hllulilvpalle,. (5.10)

To bound the final two terms in Eq. 5.6, we first note
that, due to Eq. 4.1a, IIsus € Zgj, implying that
as.n(Ils pus, vs ) can be expressed as in Eq. 4.4. In addi-
tion, since V - ug = 0, the elliptic term in ag(us, vg) can
be expressed as (uVus, Vvg)gq,. Therefore, following the
argument in [26], we have

[Ru,s(us, vsp)l S hlusl ogllvsaliag.

IRy, s(ps, vs,)| S hipslhagllvsallag- (5.11)

Combining (5.6)—(5.7) and (5.9)—(5.11), we obtain

T cue —uplly S h(lully + luslz, o + sl as

HAlLr+If sllas)- (5.12)

The bound on ||u — uy|ly in Eq. 5.1a now follows from
Egs. 4.12c and 4.12d. To bound ||p — pnllw, we use the
inf-sup condition (4.14) and the error equation (5.5a):

10hp — pullw < sup  llvally' bu(vn, Qup — pi)

€V \O

—1
= sup |lvplly (—an(Tlpcu —up, vp)

vAEVh\0
—br(vp, A= Ppr, M)+ (f 5, U =Q)vs )
+Ry pup,vpp)+Rysus, vsn)+Rp s(ps, vsn))
Sh(lully + luslz,s + Ipslias + AL+ fslles).

where we used bounds (5.8)—(5.12) in the last inequality.
The bound on || p — pjllw in Eq. 5.1b now follows from the
approximation property (5.2) and the triangle inequality. O
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Theorem 2 [f the solution to Eq. 2.6 is sufficiently smooth,
then the mortar variable L, € A, satisfies

A = Anlir
S h(llulli+lusl,os+1psh,es + 1AL e+ Fsllag). (5.13)

Proof We start by considering the error equation obtained
by subtracting (3.13a) from Eq. 2.6a and testing with v;, =
0. vp.n):

ap(up —upn,vpr) +bp@Wp.h, Pp — PD.1)

+(vD,h~nD,A—Ah)F =0, YvpreVpn. (5.14)

The proof then relies on choosing an appropriate test func-
tion v;. We recall the inf-sup condition (4.8). In particular,
it is shown in the proof of [3, Lemma 5.1] that, for given
&, € Ay, there exists v%’h € V p,, that satisfies

Vvl =0 (o, m0.6) = l&IE

105, pllep < Nl (5.15)

We now set &, = Pj, A — A, and choose the test function
Vph = v%h in Eq. 5.14. Using the properties (5.15) and the
choice (4.7), we derive

1Payk = 2l = (05 - w00 Pai =)
= <v§),h “np, A — )\h>r =ap(upn —up, vED,h)

< lups —uplay vy ,lep

Sllupn —uplliap | Pa,r — Anllr.

To conclude the proof, we invoke the bound (5.1a)
restricted to |lup,, — uplle,, the approximation property
(5.8), and the triangle inequality. O

6 Domain decomposition algorithm

In this section we describe a non-overlapping domain decom-
position for the solution of the algebraic system resulting
from Eq. 3.13. The algorithm reduces (3.13) to solving
an interface problem for A; and requires only decoupled
Stokes and Darcy subdomain solves. Following [44], we con-
sider two sets of complementary subdomain problems. Given
M € Ap, let (uf , (hp), pj,(An)) € Vip x Wip, i =S, D,
be the solution of Stokes or Darcy subdomain problems with
specified normal stress (for Stokes) or pressure (for Darcy)
boundary condition A, on I':

ai n (U}, en), vin) + bi (Vi ns P, n))

+ (Ans vin - mi)p =0,
bin(u} j,(kn), wip) =0,

(6.1a)
(6.1b)

Yvin € Vin,

Yw;n € Wi p,

where we set ap (-, -) = ap(-,-) and bp (-, ) = bp(:, ),
which allows us to unify the notation for the two types of
problems. We also consider the set of complementary sub-
domain problems for (&; ,, pin) € Vi x Wip, i =S, D,
such that

ai n (@i p, vip) + b n (Vi p, Pin)
= (sz QvS,h)Qs»

bi n(ui p, win) = —(fp, wp.r)ap,

Yvip € Vip, (6.2a)
Yw; , € Wi . (6.2b)

The first set of subdomain problems incorporates interface
data as boundary condition, while setting the outside bound-
ary conditions and source terms to zero. The second set has
zero data on the interface and uses the true outside bound-
ary conditions and source terms. It is easy to check that the
solution to Eq. 3.13 satisfies

up, = ujy(hy) + up, pn = pj(An) + Pas

where Aj, € Ay, is the solution of the interface problem
sn(hns En) = —br (uy(An), &) = br(un, &),

V&, € Ay,
(6.3)

Lemma 8 The bilinear form s, (Ay, &) is symmetric and pos-
itive definite on Ay,.

Proof The proof is similar to the proof of Lemma 5.1 in [44].
We provide it here for completeness. Taking v; = u; ;, (&),
i = S, D in Eq. 6.1 and summing implies that

sn(Ens An) = — (M, w5, (5n) - ms) — (M, uh, (En) - mp)
= as n Wy, i), s 1, (En)) + bs (W, (En), s, (An)
- ap @l o), wh p(E0) + b s €, Pl Oon)

= ag (s, n), us (&) +ap @, hn), uh 1, (En))s

which implies that s (-, -) is symmetric and positive semi-
definite, using the coercivity (4.3b) of ag 5 (-, -) and Eq. 4.6b
of ap(-, -). Due to the zero outside boundary conditions and
source terms in Eq. 6.1, itis clear that u;“,h (Ap) = Oifand only
if A, = 0, which implies that sj, (-, -) is positive definite. O

As a consequence of the above lemma, the conjugate
gradient (CG) algorithm can be applied for solving the inter-
face problem (6.3). Each CG iteration requires evaluating
sn(An, &), which involves solving decoupled Stokes and
Darcy subdomain problems (6.1).

6.1 Implementation

We next describe how the above algorithm is implemented
when using the MAC scheme (3.2)—(3.8). The term <Ah, Vip
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‘-n; >r in Eq. 6.1athat incorporates the mortar data as boundary
condition for the subdomain solves can be written as

(Ao vin - i)y = (Prphn, vig - ni)p

where P; j, is the Lz-orthogonal projectiononto V; j,-n|r.On
the Darcy side, due to the mortar choice Ay, = V p j,-n|r, cf.
Eq. 4.7, the mortar data is already in the correct space. On the
Stokes side, it needs to be projected firstinto V s j, -n|r before
using it as a normal stress boundary data for the Stokes solve.
In the context of the MAC scheme (3.2)-(3.8), Vs, - n|r
consists of piecewise constant functions on the trace of the
primal grid on T".

7 Numerical results

In this section, we investigate the performance and appli-
cability of the proposed method through the use of three
numerical test cases in two dimensions. Case 1 investi-
gates the convergence of the method predicted in Section 5
by employing a known analytical solution. Case 2 is more
challenging and considers flow in a channel past a porous
obstacle. Finally, we illustrate the flexibility of the method
by considering regional mesh refinements in Case 3.

7.1 Case 1: Convergence test

To test the convergence of the method, we use the following
analytical solution (cf. [45]):

_ Q2-x)15-=y)(y —B)+ Gwcos (wx)
TNy 42 (B4 1.5) — 158y — 0.5 + sin (wx)

_ wcos (wx) y
U= (x (y +0.5) + sin (a)x)) (7.12)
sin (wx) +
ps ==L L2005~ )+ cos (e
x (y+0.5)?%  sin(wx)y
__X _ , 7.1b
PD X 5 X (7.1b)
where
VK
=1 K=1, a=05 6= o=
(07
1-G —308 — 17
ﬂ == —7 X = - o -
2(1 +G) 48

The computational domain is taken to be Q= 55 UQp,
where Qg = (0, 1)x (%, 1)and 2p = (0, 1)x (0, 3). Dirich-
let boundary conditions based on the analytical solutions for
ug and pp are used on all outer boundaries. We start with
a 15 x 15 square grid in Q2p and a 16 x 16 square grid in
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the Q25. We consider two choices for the mortar space on the
interface: piecewise-constant satisfying A, = Vp 5 -n|r, cf.
Eq. 4.7, with 15 mortar elements, and continuous piecewise-
linear with 14 mortar elements, which satisfies (4.7). This
grid is then refined 5 times, and the measured errors and con-
vergence rates are listed in Tables 1, 2, 3 and 4 (see Fig. 5
for the computed solution on the first refinement). The error
norms are computed as follows. Consider the L?($2;)-norm

172

Z[Eqﬁz :

EeQip

el = i€, D.

The pressure pp j is a piecewise constant function and ps p,
is reconstructed as a piecewise constant function based on its
degrees of freedom at the cell-centers. The pressure errors
ep,; are measured in the above norm::

epi =llpi — pinlli, i €S,D.

For the L?-norms of ug and u p, the following edge-norm is
employed::

1/2
1
”vi”e,i = Z |E| Z m/(l)i -n)2 S
E€Qip eCIE ¢
in which each e is an edge of the mesh. We take e, , = |lup —

up . hle p- We note that for the discrete vector up j, € Vp s,
up ,-nisconstant on each edge. For u g we use the following
H! (R25)-type norm:

Vs, 1 2

0x

avs 2
dy

2 Vs 1
ay

"

S S N

2
lvslls = (IIvslle,s + H

8v5,2 2 12
. eug = llus —usplls.
ox g

In the the first term on the right hand side above, us j, - n
is reconstructed as constant on each edge, based on the MAC
normal velocity degrees of freedom et the edge midpoints.
In the second and third terms, % and ()"5# are recon-
structed as constants on each primary element E based on
their values at the cell-center C computed in Eq. 3.4. In the
last two terms, ""5—;” and % are reconstructed as bilinear
functions on each primary element E based on their values
at the vertices ¥V computed in Eq. 3.5. In Tables 1 and 2
we report the errors and convergence rates with piecewise-
constant and piece-linear mortars, respectively. We observe
first order convergence for all subdomain variables, as pre-
dicted by Theorem 1. For the mortar variable we observe first
order convergence for the piecewise-constant choice, which
is consistent with Theorem 2, and second order convergence

for the piecewise-linear case. The latter is not covered by the
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Table 1 Errors and convergence rates using piecewise-constant mortars for Case 1

i €p,.D 'p,D €u,D fu,D €p.S 'p,S ey, s fu,S e F

1.70e-02 9.21e-02 2.74e-01 3.80e+00 3.99¢-02

8.53e-03 9.98e-01 4.49e-02 1.04e+00 7.01e-02 1.96e+00 1.90e+00 9.98e-01 1.99¢-02 1.00e+00
4.26e-03 9.99¢-01 2.24e-02 1.01e+00 1.88e-02 1.90e+00 9.52e-01 1.00e+00 9.98e-03 1.00e+00
2.13e-03 1.00e+00 1.12e-02 1.00e+00 5.71e-03 1.72e+00 4.76e-01 1.00e+00 4.99e-03 1.00e+00
1.07e-03 1.00e+00 5.58e-03 1.00e+00 2.16e-03 1.40e+00 2.38e-01 1.00e+00 2.49¢-03 1.00e+00
5.33e-04 1.00e+00 2.79e-03 1.00e+00 9.76e-04 1.15e+00 1.19e-01 1.00e+00 1.25e-03 1.00e+00

wm A WD = O

Table 2 Errors and convergence rates using piecewise-linear mortars for Case 1

i €p,D 'p,D €u,D Yu,D €p.S p,S €y.S Yu,S €y r

0 1.70e-02 9.11e-02 2.72e-01 3.80e+00 1.84e-03

1 8.53e-03 9.98e-01 4.48e-02 1.02e+00 6.99e-02 1.96e+00 1.90e+00 9.98e-01 4.34e-04 2.08e+00
2 4.26e-03 9.99e-01 2.23e-02 1.01e+00 1.87e-02 1.90e+00 9.52e-01 1.00e+00 1.01e-04 2.11e+00
3 2.13e-03 1.00e+00 1.12e-02 1.00e+00 5.70e-03 1.71e+00 4.76e-01 1.00e+00 2.50e-05 2.01e+00
4 1.07e-03 1.00e+00 5.58e-03 1.00e+00 2.16e-03 1.40e+00 2.38e-01 1.00e+00 6.24e-06 2.00e+00
5 5.33e-04 1.00e+00 2.79e-03 1.00e+00 9.75e-04 1.15e+00 1.19e-01 1.00e+00 1.56e-06 2.00e+00

Table 3 Errors and convergence rates using piecewise-constant mortars and a midpoint quadrature rule for error integration for Case 1

i €p.D T'p.D eu,p Tu,D ep.s Tp.S eu,s Tu,s e 9

1.20e-03 2.50e-02 2.73e-01 2.39e-01 5.12e-03

2.79e-04 2.11e+00 6.00e-03 2.06e+00 6.89e-02 1.99¢+00 6.01e-02 1.99e+00 1.19e-03 2.11e+00
7.60e-05 1.88e+00 1.60e-03 1.91e+00 1.73e-02 1.99e+00 1.50e-02 2.00e+00 3.22e-04 1.88e+00
1.89e-05 2.01e+00 4.06e-04 1.98e+00 4.33e-03 2.00e+00 3.76e-03 2.00e+00 8.04e-05 2.00e+00
4.72e-06 2.00e+00 1.05e-04 1.96e+00 1.08e-03 2.00e+00 9.41e-04 2.00e+00 2.01e-05 2.00e+00
1.18e-06 2.00e+00 2.77e-05 1.92e+00 2.71e-04 2.00e+00 2.35e-04 2.00e+00 5.01e-06 2.00e+00

W W= O

Table 4 Errors and convergence rates using piecewise-linear mortars and a midpoint quadrature rule for Case 1

i €p.D T'p.D eu,p Tu,D ep.s Ip.S eu,s Tu,s e 9
8.63e-04 2.04e-02 2.72e-01 2.40e-01 4.20e-03
2.15e-04 2.01e+00 5.08e-03 2.01e+00 6.86e-02 1.99¢+00 6.02e-02 1.99e+00 1.03e-03 2.02e+00
5.32e-05 2.01e+00 1.26e-03 2.01e+00 1.72e-02 2.00e+00 1.51e-02 2.00e+00 2.51e-04 2.04e+00

1.33e-05 2.00e+00 3.16e-04 2.00e+00 4.31e-03 2.00e+00 3.77e-03 2.00e+00 6.26e-05 2.00e+00
3.32¢-06 2.00e+00 7.90e-05 2.00e+00 1.08e-03 2.00e+00 9.43e-04 2.00e+00 1.57e-05 2.00e+00
8.29¢-07 2.00e+00 1.98e-05 2.00e+00 2.70e-04 2.00e+00 2.36e-04 2.00e+00 3.91e-06 2.00e+00

wm AW NN = O
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Fig.5 Velocity and pressure distributions after the first refinement for Case 1

presented theory, but it is consistent with the approximation
properties of the mortar space.

We also report the errors and convergence rates using
superconvergent norms based on computing the error inte-
grals on the elements £ and edges e with the midpoint
quadrature rule, see Table 3 for piecewise-constant mortars
and Table 4 for piecewise-linear mortars. We observe second
order convergence for all variables. While the superconver-
gence analysis is beyond the scope of this paper, the rates
are consistent with known superconvergence for the MAC
scheme for Stokes [33, 34] and the RTy MFE method for
Darcy [5]. Interestingly, to the best of our knowledge, these
are the first numerical results in the literature reporting sec-
ond order convergence for the MAC velocity in the H'-norm.

7.2 Case 2: Porous obstacle

This test case is inspired by [40] and considers a free-flow
channel of dimensions 0.75 x 0.25, with a square porous
obstacle of dimensions 0.25 x 0.2 placed halfway on the floor
of the channel. It is designed to illustrate the flexibility of
the mortar method to use different grids in the two regions in
order to resolve local solution features. Flow is enforced from
left to right by setting o sn|y—0 = 1.1n and o sn|y—p75 =
n on the left and right boundaries, respectively, while no-
flow and no-slip conditions are used on the top and bottom
boundaries. We set 4 = 1 and o« = 1. The permeability of
the porous medium is set as the following anisotropic tensor:

O) R~ (p), with R(p) = (COW —sin (p) 7

k sing cos¢

1

iy

K=R(y) (P
( )(0

(7.2)

with an anisotropy ratio of g = 100, k = 1073, and angle
¢ =m/4.

@ Springer

Figure 6 shows the velocity and pressure distributions in
the domain. Qualitatively, we see that the flow is partially
blocked by the obstacle leading to a high pressure upstream
from the block. The anisotropy of the porous medium forces
the flow downward and, due the no-flow conditions at the
bottom boundary, leads to a high pressure in the lower left
triangular region of the obstacle. Along the top of the block,
a higher velocity is observed due to the narrowing of the
channel. The mesh in Stokes region is graded so that it is
finer in the area above the obstacle where the velocity is
high. We note that the resulting mismatch between the mesh
of the porous medium and the mesh of the free-flow domain
introduces no visible artifacts.

7.3 Case 3: Locally adapted grids

This test case is motivated by modeling coupled surface and
subsurface flows. The porous medium characterization is
inspired by [10, Example 4] and considers a two-dimensional
permeability field from the second data set of the Society
of Petroleum Engineers (SPE) Comparative Solution Project
SPE10 (see spe.org/csp/). In [10, Example 4], the subsurface
flow domain is decomposed into 4 x 4 subdomains, each of
which is discretized with a grid whose refinement reflects the
permeability variation in that subdomain. This way, regions
with high permeability variations are discretized with finer
meshes in comparison with regions where permeability vari-
ations are lower. In this example, we take the two center
rows of the domain decomposition presented in [10, Exam-
ple 4], flip them vertically, and place a surface flow domain
on top. Figure 7 illustrates the permeability field in the porous
medium and the meshes in the subdomains. We note that the
resulting Stokes and Darcy grids are non-matching along the
interface with varying ratio. Moreover, the decomposition


https://www.spe.org/en/csp/
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Fig.6 Velocity (top) and pressure together with the mesh (bottom) for Case 2

Fig.7 Visualization of the mesh
over the entire domain and the
permeability distribution used in
the porous medium for Case 3
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Fig.8 Velocity distribution for
Case 3
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of the Darcy domain results in several non-matching Darcy-
Darcy interfaces. While the formulation and theory presented
in this paper focus on one Stokes and one Darcy subdomain,
they can be extended to multiple Stokes and Darcy subdo-
mains using tools developed in [5, 6, 25, 44].

The entire domain is 6 x 4.5 of which the top band
with height 1.5 constitutes the free-flow region. Flow is
enforced from left to right along the fluid region by imposing
osn|,—o = n and o gn|,—¢ = 0 on the left and right bound-
aries, respectively. At the bottom of the porous medium,
a fixed pressure of p = 0 is used to also drive the flow
downwards through the porous medium. On all remaining
boundaries, no-slip and/or no-flow boundary conditions are
applied. Weset u = l and @ = 1.

A visualization of the velocity distribution in the domain is
shown in Fig. 8. We once again observe a qualitatively good
fit with the expected behavior of the system. The majority of
the flow infiltrates the porous medium in the first half of the
domain and then follows the high-permeable regions to the
bottom boundary. The locally refined grids accurately capture
the channelized flow field while the coarser grids in the low-
permeable regions allow for a reduction in computational
cost.

8 Conclusions

We presented a numerical method for coupled Stokes-Darcy
flows that exhibits local mass and momentum conserva-

@ Springer

tion and allows for non-matching grids on the interface.
The method combines the MAC scheme for Stokes, the
RTy MFE method for Darcy, and mortar finite elements
on the interface. We established well posedness and first
order convergence of the method. We further presented a
non-overlapping domain decomposition algorithm for the
solution of the resulting coupled algebraic problem, which
requires solving only decoupled subdomain problems and
can result in scalable parallel implementations. A numeri-
cal test was presented to verify the theoretical convergence
results. Second order superconvergence was also observed in
suitable discrete norms. Finally, two computational experi-
ments for challenging problems were presented to illustrate
the applicability and flexibility of the proposed method.
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