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Abstract: We present a method for generating squeezed Schrödinger cat states and cubic 
phase states via quantum nondemolition measurement of the squared-quadrature operator, 
offering a realistic route to fault-tolerant universal continuous-variable quantum computa-
tion. 
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One-way quantum computation with continuous-variable (CV) photonic cluster states is one of the leading can-
didates for building large-scale quantum computers. While all-Gaussian quantum computation can be performed
by homodyne measurements and linear feed-forward operations on cluster states, non-Gaussian resources are
essential to achieve quantum computational advantages and fault tolerance. A leading approach to introducing
non-Gaussianity is through photon-number-resolving (PNR) measurements [1], which allows one to perform a
variety of non-Gaussian quantum state engineering schemes [2]. This approach provides access to non-Gaussian
states, including cat states and cubic phase states [3], but the requirements for cryostats and the slow speed of con-
ventional PNR detectors (e.g., superconducting nanowires and superconducting transition-edge sensors) critically
limit the scalability and clock speeds.

In this work, we propose an all-optical route to generate cat state and cubic phase state using quadratic (χ(2))
nonlinearity and homodyne conditioning. We show that applying strong squeezing operations to the signal and
pump fields of a χ(2) nonlinear system can engineer the system Hamiltonian into a form that is capable of per-
forming a quantum-nondemolition (QND) measurement [4] of squared quadrature of the signal mode. The QND
measurement result can be read out from the conditional displacement of the pump mode via a homodyne measure-
ment, which conditionally projects the signal mode to a squeezed Schödinger’s cat state.

We consider a resonant, single-mode χ(2) nonlinear system with a Hamiltonian

Ĥ =−g(â2b̂† + â†2b̂) (1)

where g > 0 is the nonlinear coupling constant, and â and b̂ are the annihilation operators for the signal and the
pump modes, respectively. For an initial system state of |ϕ(0)⟩ = |ϕa(0)⟩ |ϕb(0)⟩, we apply a pair of opposite
squeezing operations ŜaŜb and Ŝ†

bŜ†
a before and after the state evolves under (1) (see Fig. 1). This leads to the

overall system evolution given as

|ϕ(t)⟩= Ŝ†
bŜ†

ae−iĤt ŜaŜb |ϕ(0)⟩= e−iĤefft |ϕ(0)⟩ , (2)

where an effective Hamiltonian Ĥeff is obtained via substitutions â 7→ Ŝ†
aâŜa and b̂ 7→ Ŝ†

bb̂Ŝb in Ĥ [5]. We take
Ŝ†

c ĉ Ŝc = rcx̂c + ir−1
c p̂c with x̂c = (ĉ+ ĉ†)/2, p̂c = (ĉ− ĉ†)/2i, and field gain rc ≥ 1 for c ∈ {a,b}. As a result, the

effective Hamiltonian is

Ĥeff =−2grb(r2
a x̂2

a − r−2
a p̂2

a)x̂b −2gr−1
b (x̂a p̂a + p̂ax̂a)p̂b =−2g̃x̂2

ax̂b +O(r0
ar−1

b )+O(r−2
a rb) (3)

with g̃ = r2
arbg. Assuming rc ≫ 1, the time evolution under Ĥeff can be approximately solved in the Heisenberg

picture to give

x̂a(t) = x̂a(0); p̂a(t) = p̂a(0)+2τ x̂a(0)x̂b(0) (4)

x̂b(t) = x̂b(0); p̂b(t) = p̂b(0)+ τ x̂2
a(0) (5)

with a normalized interaction time τ = g̃t. Notice that (5) implies that the pump quadrature operator p̂b experiences
conditional displacement depending on the value of x̂2

a. Note that [Ĥeff, x̂2
a]≈ 0 ensures x̂2

a remains constant during
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Fig. 1. (a) Conditional generation of a squeezed Schödinger’s cat state and (b) deterministic genera-
tion of a cubic phase state using the nonlinear dynamics of a quadratic OPA.

the system evolution, enabling us to perform a QND measurement of squared quadrature x̂2
a by measuring p̂b,

e.g., via a p-homodyne measurement. The overview of the QND measurement protocol of squared quadrature x̂2
a

is illustrated in Fig. 1(a), where we show the efficacy of our scheme by generating a squeezed cat state with the
success probability of 1.9%.

Next, we expand our scheme for the deterministic generation of cubic phase state. The overview of our protocol
is illustrated in Fig. 1(b). As an initial state, we consider an EPR-pair with correlation x̂a(0)− x̂b(0) ≈ 0 and
p̂a(0)+ p̂b(0)≈ 0. By virtue of (4) and (5), we can solve for the dynamics of the signal quadrature operator as

p̂a(t) = τ(2x̂a(0)x̂b(0)+ x̂2
a(0))︸ ︷︷ ︸

≈3τ x̂2
a(t)

+( p̂a(0)+ p̂b(0))︸ ︷︷ ︸
≈0

− p̂b(t)︸ ︷︷ ︸
7→pb

,

where we can approximate the first term and the second term as 3τ x̂2
a(0) ≈ 3τ x̂2

a(t) and 0, respectively. After
propagating through the χ(2) nonlinear medium, we perform the p-quadrature measurement on the pump mode,
which collapses the third term to a real number pb. As a result, applying signal p-displacement operation to
compensate for this change, we can deterministically enforce p̂a(t) = 3τ x̂2

a(t), which indicates that the final signal
state becomes a cubic phase state.

Our scheme offers significant advantages over traditional quantum state engineering protocols. Generally, the
purity of the resultant state in measurement-based schemes is critically limited by the overall quantum efficiency
(QE) of the detectors. This issue is particularly severe in PNR-based schemes, where the imperfect QE of the PNR
detectors degrades the purity of the heralded state. On the other hand, it is possible to mitigate the imperfect QE for
quadrature measurements, e.g., homodyne measurements, by pre-amplifying the signal using optical parametric
amplifiers [6]. In fact, our QND measurement scheme inherently involves such pre-amplification technique as the
second-stage pump squeezing operation Ŝ†

b before the homodyne measurement, shown in Fig. 1. In addition to be-
ing loss-tolerant, OPA-assisted homodyne measurements can be performed with high speeds at room temperature,
thereby circumventing the constraints inherent to PNR-based quantum state engineering protocols.

Recent experiments in χ(2) nonlinear nanophotonics have made significant progress toward the strong photon-
photon coupling regime. Using high-Q micro-ring resonators, g/κ ∼ 0.01 has been achieved in nanophotonic
platforms such as thin-film lithium niobate (TFLN) and indium gallium phosphide [7]. With further advances in
the fabrication techniques that enable material-absorption-limited loss, g/κ = 0.1−1 could be envisaged. Beyond
the conventional continuous-wave devices, g/κ > 40 might be possible by leveraging the three-dimensional con-
finement of optical fields using ultrashort pulses [8]. These numbers suggest that the experimental realization of
our scheme might be within reach in the next-generation χ(2) nanophotonics.

In conclusion, we proposed and analyzed the squared-quadrature QND measurement with optical parametric
interactions for generating cat states and cubic phase states. Our scheme exploits significantly stronger quadratic
nonlinearity compared to existing hybrid techniques that combine cubic nonlinearity and homodyne (heterodyne)
measurements, offering an experimentally viable route to ultrafast quantum state engineering.
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